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Abstract

To improve deep learning models’ robustness,
adversarial training has been frequently used in
computer vision with satisfying results. How-
ever, adversarial perturbation on text have
turned out to be more challenging due to the
discrete nature of text. The generated adver-
sarial text might not sound natural or does not
preserve semantics, which is the key for real
world applications where text classification is
based on semantic meaning. In this paper, we
describe a new way for generating adversar-
ial samples by using pseudo-labeled in-domain
text data to train a seq2seq model for adversar-
ial generation and combine it with paraphrase
detection. We showcase the benefit of our ap-
proach for a real-world Natural Language Un-
derstanding (NLU) task, which maps a user’s
request to an intent. Furthermore, we experi-
ment with gradient-based training for the NLU
task and try using token importance scores to
guide the adversarial text generation. We show
that our approach can generate realistic and rel-
evant adversarial samples compared to other
state-of-the-art adversarial training methods.
Applying adversarial training using these gen-
erated samples helps the NLU model to recover
up to 70% of these types of errors and makes
the model more robust, especially in the tail dis-
tribution in a large scale real world application.

∗The work is completed during Hieu Le’s internship at
Amazon Inc.

1 Introduction

Over the past years, neural machine learning mod-
els have become more popular in a wide range of
real world natural language applications. While
these models have become very accurate, they are
susceptible to errors due to small changes in the
input, e.g. adding a stop word. This makes it dif-
ficult for a natural language understanding system
to recognize all utterances correctly since there are
many ways to formulate one request. In fact, while
common user commands can be understood very
well by the system, a system can react differently
due to minor input changes, e.g., article variations,
paraphrasing, or adding functional words.

Natural Language Understanding (NLU) is at the
core of voice assistants and maps a user’s request
(also referred to as utterance later) to a specific
intent within a certain domain, i.e. PlayMusic in-
tent within the Music domain. In this paper, we
identify the weaknesses of an NLU text classifi-
cation model by finding the types of inputs that
have high probability of causing prediction errors
and show how to mitigate them. Inspired by recent
work in adversarial training and adversarial sample
generation (Goodfellow et al., 2015; Morris et al.,
2020a), we describe how we employ adversarial
text perturbation to identify and fix such samples to
ensure a stable behavior of the model and thereby
significantly boost the tail accuracy in a large scale
real world application through adversarial training.
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We show that while common text perturba-
tion methods relying on character manipula-
tion (Ebrahimi et al., 2018; Li et al., 2019), word
swap (Alzantot et al., 2018; Ren et al., 2019) could
generate adversarial samples on the original text
inputs to trick the model, most of them often gen-
erate many irrelevant samples that either do not
make sense (e.g., grammatically incorrect, unnat-
ural, out of domain) or change the meaning of the
original text utterance. Therefore, applying these
methods in a real world application without any
domain adaptation and additional constraints is not
only unsuitable but could even harm the model. In
this work, we describe how we use pseudo-labeled
in-domain text data for task adaptation and thereby
create adversarial perturbations that are more nat-
ural and relevant to the NLU task. Our approach
uses in-domain data to train a seq2seq model that
generates an adversarial version of the input ut-
terance. We introduce multiple constraints includ-
ing a paraphrase detector model to make sure that
the generated adversarial text samples are of high
quality. Finally, we show that including these gen-
erated adversarial samples during training helps
to improve the model’s robustness. We compare
the results with adversarial training based on the
Fast Gradient Sign Method (FGSM) (Shafahi et al.,
2019) often used in computer vision.

2 Related work

Adversarial sample generation in the text domain
can be categorized by the level of the attemptsto-
wards a target sentence. At the lowest level, hot-
flip (Ebrahimi et al., 2018) and TextBugger (Li
et al., 2019) perform character level perturbation
by character manipulations (swap, insert or delete).
Other methods by Alzantot et al. (2018), Zang et al.
(2020) and Li et al. (2020) create attempts at word
level using synonym swaps or masked language
model. The most broad type of attempt is sen-
tence level attempt where multiple words within
a sentence are changed, such as PAWS (Zhang
et al., 2019), SCPN (Iyyer et al., 2018) and SEARs
(Ribeiro et al., 2018). While these methods can
sometimes produce very high attempt success rates,
they are not straightforward to apply out-of-the-box
to real world applications, especially when the do-
mains are specific and small changes in the original
inputs can lead to a valid change in the labels (i.e.,
invalid attempts). In this work, we mainly deal
with the problem of generating in-domain valid ad-

versarial attempts by using a seq2seq model that
learns from live traffic/un-annotated data in real
world applications.

3 Seq2Seq-based adversarial text
perturbation

Figure 1 describes our semi-supervised seq2seq-
based adversarial text perturbation (SSAT) frame-
work which consists of three components: (1) ad-
versarial candidate extraction from unannotated
data based on pseudo-labels, (2) a paraphrase de-
tector model that keeps only candidates that are
actual paraphrases, and (3) a seq2seq (T5) model
that is trained on the data generated in the first two
steps to generate adversarial samples for a given
input text.

3.1 Pseudo-label based data filtering

In industry applications, it is common that there is
significantly more unlabeled data than high quality
labeled data. Our goal is to leverage the unanno-
tated data to find pairs of utterances that belong to
the same class but are classified differently by the
target model. To that end, we propose a multi-step
funnel. First, we use the target classification model
to pseudo-label the unlabeled data. Then, to obtain
sentence vectors, the utterances are encoded using
S-BERT (Reimers and Gurevych, 2019). We iden-
tify the k nearest neighbors in the embedding space
for each sentence vector to obtain a dictionary with
the top k closest utterances in the embedding space
for every utterance. Using the list of nearest neigh-
bors for each utterance, we create k pairs and only
keep those where the pseudo-label differs.

3.2 Paraphrase detection

We train a paraphrase detection model that deter-
mines if two sentences are paraphrases to further
filter the dataset created in the previous step. We
use a BERT model finetuned on the binary clas-
sification task. The training data for this task is
extracted from labeled data where we used two dif-
ferent types of data. If a dataset contains only labels
(e.g. intent) without specific name entity annota-
tions, we ignore the name entities and define two
sentences as paraphrases when they share the same
label : PARAPHRASE(x, x′) : 1 if y == y′ else 0.
If, however, the dataset contains labels (e.g. do-
main/intent) and slot labels (e.g. Named Entities),
we define two sentences as paraphrases if they
share the same non-absent named entities and in-
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Figure 1: Components of our semi-supervised seq2seq-based adversarial text perturbation framework (SSAT): (1) a
text filtering that finds texts that are similar by L2 distance, (2) paraphrase detector model that detects and keeps
only pairs that are paraphrases, (3) text perturbation recipe consisting of a seq2seq model trained on data created
from (2).

tent/class. The detailed definition of labeled para-
phrases is shown in Algorithm 1.
The pairs of semantically similar utterances but
with different pseudo-labels from 3.1 are then fed
into the paraphrase detector model. We only keep
the the pairs classified as paraphrases and use them
as training data for the next step.

Input : x = ([w1|NE1, .., wn|NEn], y)
SLOT(x):

s = []
for wi|NEi ∈ x do

if NEi exists then
add wi|NEi to s

end
end
return s

PARAPHRASE(x, x′):
if SLOT(x) == SLOT(x′) and y == y′ then

return True
else

return False
end
Algorithm 1: Definition of Paraphrases

3.3 Text perturbation recipe

From the text filtering and paraphrase detection
steps, we obtain data that satisfy multiple criteria
of adversaries: Semantic similarity: ensured by
knn search in BERT embedding space. Mean-
ing preservation: ensured by a paraphrase detec-
tor model trained on labeled data with a dataset-
specific definition of paraphrases. Intuitively, filter-
ing the data with a paraphrase detector has several

advantages: a high level of fluency as the data come
from real user traffic and a flexible constraint of
semantic similarity that is not enforced through se-
mantic agnostic measurements like edit distance or
word embedding similarity.

Our perturbation recipe contains a text-to-text
transformer model that creates variations of the in-
put text, serving as candidates for testing the model.
We use a pretrained Text-to-Text Transfer Trans-
former model (T5) (Raffel et al., 2020) fine-tuned
on the filtered data for our task. The fine-tuned T5
model is then used to generate multiple adversarial
candidates. Specifically, given an input x, we use
T5 with a large beam to generate a fixed number of
successful perturbation candidates. The heuristic
used for beam search is cosine similarity to encour-
age higher similarity to the input text. From the
set of successful candidates T5(x) = [x1, · · · , xn],
the candidate with the highest cosine similarity is
returned. In terms of perturbation constraints, we
reuse the paraphrase detector and thus, any returned
perturbation candidate that switches class from the
original text and is classified as a paraphrase of the
input text is deemed a successful attempt. Figure
2 shows an example of adversarial text generation
with T5 and beam search. In this example, from
the original SNIPS input of "add this song to blues
roots" (labeled AddToPlaylist), beam search gen-
erates multiple successful candidates [ ’play music
from the playlist late night blues’, ’add this tune
to my blues playlist’, · · ·]. The candidate ’add this
tune to my blues playlist’, wrongly classified as
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PlayMusic, is the closest to the original input by
cosine similarity and also satisfies the paraphrase
constraint. Thus it is returned as a successful at-
tempt.

Figure 2: Adversarial text generation process on SNIPS
example using beam search on T5 output. Blue nodes
are text variants still correctly classified, orange nodes
are variants that cause the target model to switch label.

3.4 Adversarial training with text
perturbation

Besides finding adversarial perturbations that ex-
ploit model weaknesses, we also explored the usage
of these generated utterances as additional training
data to make the target model more robust against
these types of adversarial utterances. We applied
the recipe described in 3.3 to our regular training,
evaluation and test data. From the generated utter-
ances we added the successful perturbations, those
identified as not altering meaning but switching the
predicted class, as additional training data into the
regular training process. For the test set we kept the
original test set and the generated adversarial test
set separate to also get insights into the effective-
ness of the text perturbations and the effectiveness
of the adversarial training.

4 Experiments

4.1 Dataset

We experiment with four text data sets, two com-
mercial data sets from a virtual assistant in Ger-
man and French, the SNIPS dataset (Coucke et al.,
2018) and the MASSIVE data set (FitzGerald et al.,
2022). The data consists of unannotated data as
well as annotated training and test data. With the
commercial data set, unannotated data, i.e. live
traffic, is organic audio data coming in from users
and processed through an acoustic speech recog-
nition (ASR) system to convert it to text. In this
commercial dataset, all data has been preprocessed
and anonymized so that no user related information
is identifiable. For SNIPS data set, we split data the
same way as (Goo et al., 2018) for validation and

test set. However, we further split the training data
set of 13, 084 utterances into roughly 20 − 80 of
labeled and ‘live traffic’ (unannotated) utterances:
we remove the label for 11, 000 utterances to simu-
late live traffic and keep 2, 084 utterances annotated
for training. Lastly, for MASSIVE data set, we use
the training portion of the data set as the live-traffic,
unannotated data set and use the validation and test
data set to train the target model. Finally, the live-
traffic portion of all the datasets are pseudo-labeled
by our corresponding target models.

4.2 Implementation
For each dataset, we fine-tuned a pre-trained BERT
architecture for text classification which all achieve
above 90% accuracy. Those models serve as target
models for the generated perturbations, i. e. we
want to fool them through slight changes in the
inputs.

For the paraphrase classifier, we chose a mul-
tilingual T5 (mT5) (Xue et al., 2021) model as it
accommodates the considered datasets in different
languages. The training data for the paraphrase
classifier is processed from the training set by pick-
ing out positive and negative pairs. The positive
pairs of paraphrases are picked based on definition
1. For negative examples, as the NLU dataset con-
tains named entity slots, beside randomly selecting
pairs of sentences with different classes, we also
include cross-class pairs that share at least one slot.
The binary classifier model is trained for 5 epochs
with batch size of 16 and achieves an accuracy
above 90% for both datasets.

We leverage the trained target models and the
trained paraphraser to create a training dataset for
our T5 model. First, we run the target model on
the live traffic to acquire pseudo-labels. Using the
pseudo-labels, utterances are sorted into buckets
for each class. Then, for each utterance, we find
the knn closest utterances in other buckets using
FAISS (Johnson et al., 2021) similarity search. The
detailed algorithm is shown in algorithm 2. By
prefiltering the live traffic in this manner, we gener-
ate pairs of sentences that are close by L2 distance
yet classified differently by the target model. The
candidate pairs are then passed through the trained
paraphrase detector and all the positive pairs are
kept.

4.3 Baselines
We compare our perturbation recipe with four other
text perturbation recipes across different pertur-
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DeepWordBug BAE TextBugger TextFooler SSAT

German Commercial dataset

Success rate 92.38% 66.93% 64.14% 43.44% 61.93%
Success paraphrase rate 27.59% 14.60% 27.25% 9.88% 46.69%

Perplexity 1704.81 758.85 1239.13 857.00 498.25
Average grammar issues 2.80 2.215 2.88 2.53 2.21

French Commercial dataset

Success rate 94.17% 78.35% 38.45% 70.54% 86.37%
Success paraphrase rate 30.48% 28.23% 21.59% 25.18% 45.12%

Perplexity 7087.31 2743.82 2820.99 4323.48 1712.14
Average grammar issues 2.50 1.75 2.38 2.17 1.65

SNIPS

Success rate 57.98% 51.1% 22.59% 73.94% 90.42%
Success paraphrase rate 49.14% 46.85% 11.14% 65.71% 12%

Perplexity 294.06 82.90 139.42 159.59 6.3
Average grammar issues 3.67 1.84 2.88 2.30 1.57

MASSIVE
Success rate 70.07% 67.32% 48.52% 18.09% 84.73%

Success paraphrase rate 69.48% 66.79% 48.20% 18.03% 84.08%
Perplexity 958.18 794.44 980.37 872.93 677.51

Table 1: All metrics for generated text perturbations across 4 baselines compared with SSAT: Success rate, success
rate under paraphrase constraint, perplexity and average grammatical issues of generated perturbations. The
threshold confidence level for paraphrased positive pairs constraint is set at 95%. Perplexity is calculated with
german-gpt2, gpt2-french-small, gpt2 and mgpt accordingly for the corresponding language. Average number of
issues per perturbation text found by language-tool-python

bation paradigms including character level per-
turbation - DeepWordBug (Gao et al., 2018) and
TextBugger (Li et al., 2019), BERT based word
level perturbation - BAE (Garg and Ramakrishnan,
2020) and synonym swaps - TextFooler (Jin et al.,
2020) 1. Besides measuring the number of success-
ful and failed attempts, we also report the number
of skipped attempts. An attempt is only counted
as successful or failed if the classification of the
original input is the same as the label, i.e f(x) = y.
Thus, when f(x) ̸= y, an attempt is labeled as
skipped. The attempt success rate is then measured
with:

success_rate = success_count
success_count+failure_count

(1)

Furthermore, as discussed in 3.2, we also use the
paraphrase detector as an extra constraint for all
of the successful perturbations. By using the para-
phrase detector constraint, the successful perturba-
tion not only fools the classifier but is also ensured
to be paraphrase in of the original input taking
all domain-specific (device functionalities) into ac-
count. Lastly, we calculate the perplexity as well
as grammatical and semantic issues for perturba-
tion texts from each method to see which method
gives the best semantically sound texts. In terms of
perplexity, we use GPT-2 (Radford et al., 2019) for
the SNIPS dataset, mGPT (Shliazhko et al., 2022)
for MASSIVE dataset, German GPT-2 (Schweter,
2020) and French GPT2 for the German and French
commercial dataset accordingly. All the GPT2
models are available at Huggingface. For gram-
matical issues, we calculate this metric by using

1We take the implementation from TextAttack framework
(Morris et al., 2020b) for our baselines

language-tool-python which is a wrapper of Lan-
guage Tool, a grammar checker that counts the
number of issues for every perturbation text and
then gets the average number of issues. The results
are shown in table 1.

For the effectiveness of the adversarial training
we compare our adversarial data augmentation as
described in 5.2 with a baseline model not trained
on adversarial data and on a model trained using
FGSM based adversarial training as described in
(Shafahi et al., 2019), where we used the gradi-
ents to modify the input on the embedding layer to
overcome the restrictions of the discrete nature of
language input.

5 Results and discussion

In this section, we present our results on adversarial
sample generation and adversarial training on top
of the generated samples for the target models.

5.1 Adversarial sample generation

• Attempt success rates. We compare the four
common text perturbation methods with our semi-
supervised adversarial text perturbation method
(SSAT) using two metrics: general success rate
and success rate under the paraphrase detector con-
straint. The result of the experiment is shown in
table 1. From the experimental results, SSAT’s
success rate is comparable with other approaches
as approximately 50% of the perturbation success-
fully fool the target model. However, when all
perturbation recipes are subject to the paraphrase
constraint, the SSAT method outperforms the rest
of the recipes.
• Attempt sample perplexity and grammar is-

https://huggingface.co/bert-base-cased
https://github.com/jxmorris12/language_tool_python
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sues. For the perplexity metric, SSAT also con-
sistently outperforms other baselines as shown in
table 1, which indicates that the generated sam-
ples are more relevant and natural. In terms of
fluency/grammatical issues of text samples, SSAT
generated samples containing fewer grammatical
issues than all 5 methods in comparison. This can
be explained by our recipe using training data from
the live-unannotated traffic data which is inherently
more organic than using a masked language model
like (Li et al., 2020) or rule based character swaps
like (Li et al., 2019) without any domain adaptation.
Indeed, when calculating the pairwise similarity
between texts from each perturbation method and
the unlabeled corpus dataset using tf-idf, SSAT’s
generated samples are the most similar in cosine
similarity to the unlabeled set of the dataset.

perturbation Method tf-idf cosine similarity
BAE 0.171

DeepWordBug 0.155
TextBugger 0.152
TextFooler 0.057

SSAT 0.523

Table 2: pairwise similarity between all successful at-
tempts from each perturbation method and the unlabeled
set of MASSIVE dataset

To support our numbers with concrete exam-
ples, we picked some successful attempts across
baselines and our method on the SNIPS dataset to
highlight the difference in perturbation fluency. For
example, synonym swaps methods like TextFooler
can successfully perturbate a text by swapping in
synonyms of some particular words. However, in
practice, synonyms have to be taken in the context
of the sentence for the swaps to be fluent and natu-
ral. While (rate - rhythm) and (stars - celebs) are
synonyms, the swaps make the sentence unnatural
and incomprehensible by a human reader as rate in
this text is in the verb form with meaning of evaluat-
ing, not in the noun form as a musical term. On the
other hand, by integrating unlabeled, human gen-
erated data into the adversarial generation process,
SSAT generates a more natural variants like give
this textbook a three given the sentence rate this
textbook a zero. While the candidate does slightly
change the complete meaning of the sentence, to a
human reader, it keeps the overall meaning and the
label classification of the text as both should be la-
beled as rate book. Other successful attempts from
baselines such as DeepWordBug only made small
modifications but the change completely alters the
word’s meaning and make it hard to comprehend

to human readers. All the examples are shown in
table 3.

Method Input text Perturbed text
BAE i rate secret water as a 4 i use tap music as a 4

DeepWordBug rate this current arte this current
novel 1 stars novel 1 stZars

TextBugger rate maps for lost rate maps for lost
lovers 1 of 6 lovers l of 6

TextFooler rate lamy of santa fe rhythm lamy of santa fe
5 of 6 stars 5 of 6 celebs

SSAT rate this textbook a zero give this textbook a three

Table 3: Some examples of successful perturbations
from different baselines and our SSAT method on input
texts from SNIPS dataset

Furthermore, we compare the change in the num-
ber of paraphrased pairs at different confidence
levels of the paraphrase detector output. Figure 3

Figure 3: Number of successful attempt at different para-
phrase detector threshold on the German commercial
dataset. The experiment is run on 10, 000 perturbations.

showed that when gradually increasing the confi-
dence threshold for paraphrase detector to judge
that a pair of input-perturbed text are paraphrases,
the number of successful attempts also gradually
decreases. This is expected behavior as when the
oracle model is more strict, the number of suc-
cessful attempts should be decreasing. Another
observation from the figure is that regardless of the
threshold, UAT consistently performs better than
all other perturbation recipes on the German com-
mercial dataset.
• Gradient-based targeted adversarial genera-
tion. Similar to white-box adversarial perturbation
methods such as HotFlip (Ebrahimi et al., 2018),
we further experimented using token importance
scores based on Integrated Gradients (IG) (Sun-
dararajan et al., 2017) in the decoding step to check
whether this could provide guidance on the gen-
eration step to find samples with higher attempt
success rates. Specifically, we use the token im-
portance score based on IG, which is calculated
with respect to the predicted class of the original
utterance to re-rank the probability of the next gen-
erated token in the beam search of the seq2seq
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model. The IG value is positive if the token posi-
tively contributed to the predicted class, negative if
the token is not associated with the predicted class
and 0 if it is neutral. The idea is to generate and
favor tokens that are more likely to switch classes
to fool the target model. In our experiments, this
however leads to poorer results, where we obtained
attempt success rate of 51.1%, success paraphrase
rate of 22.8%, perplexity of 618.9, and average
grammatical issues of 2.22 on the German commer-
cial dataset. This somehow shows that the decoding
strategies of the translator model are sensitive to
this reranking method, which leads to more invalid
attempt generation, especially when running on dis-
crete text input data, where a small local change
in embedding gradient cannot account for a word
replacement. We plan to experiment with other
combinations of SSAT and white-box perturbation
methods in the future to further understand this
behavior.

5.2 Adversarial training
After generating adversarial instances, we include
them to a vanilla adversarial training on the pri-
vate dataset as a defense mechanism to improve the
model’s robustness. For the German Commercial
dataset, we ran adversarial perturbation on both the
train and the test set with the target model being
trained on the regular training set. The adversarial
examples from training set are then combined with
the original training set to train the target model.
The so trained model is then tested on the original
test set as well as the adversarial perturbations on
test set and is compared with the original target
model. In addition to the original target model, we
also tested the effectiveness of a model trained with
FGSM based adversarial training (Shafahi et al.,
2019). From results in Table 4, the adversarially
trained model only sacrificed a very small loss in
standard test set performance but achieve a huge
gain in the adversarial test set as the original target
model is easily fooled by our method with perfor-
mance of 15%. In comparison to that, the FGSM
based adversarial training achieved slightly better
performance than the vanilla model on the adver-
sarial testset, however given the local perturbations
used in this approach, this model is still fooled in
75% of the adversarial examples.

6 Conclusions

In this paper, we proposed a framework that uses
pseudo-labeled data for learning and training an

Target Model Class Std test set Adv test set
Music 0% 19%

bert-base-german-cased
Books -1% -3%

FGSM-adv. trained
Calendar -1% 6%

Commercial dataset
Shopping -1% 15%

Notification 7% -1%
Overall -1% 10%
Music -0% 74%

bert-base-german-cased
Books -1.11% 61%

SSAT adversarially trained
Calendar -2.13% 63%

Commercial dataset
Shopping -1.04% 73%

Notification 7.6% 80%
Overall -1.03% 70%

bert-base-multilingual-cased
FGSM-adv. trained

Overall 0% 0%

MASSIVE dataset

bert-base-multilingual-cased
SSAT adversarially trained

Overall -1.01% 25.23%

MASSIVE dataset

Table 4: The relative gain and loss in the accuracy per-
formance of the adversarially trained model compared
to the standard model on the standard test set and adver-
sarial test set. The adversarial trained model sacrifices
little in accuracy compared to standard model on regular
test set and achieves large gain on adversarial tests

adversarial perturbation generator that can produce
more relevant and natural samples. We trained a
paraphraser detector to serve as an additional con-
straint to validate the generated perturbations. We
showed that our perturbation methods outperforms
general adversarial perturbation methods on suc-
cess attempt rates and is able to generate meaning-
ful samples with lower perplexity and less gram-
matical issues. We further demonstrated how ap-
plying adversarial training on the generated sam-
ples can better improve the model’s robustness than
when using traditional gradient adversarial training
such as FGSM.

7 Ethical Considerations

Our work proposes a new way of improving classi-
fication model performance in natural language un-
derstanding tasks. Since our approach is based on
the usage of unlabeled data as it is occurring during
production, there is a certain risk for the models to
overfit on user groups that use the model the most
which might introduce a bias for this group. In
addition to that there is the need to keep the genera-
tion model of the adversarial perturbation generator
current, making sure, that data that was removed by
customers is also not used in any future application
of the model.
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A FAISS search application

To apply FAISS search to our pseudo-labeled data,
we first partitioned the pseudo-labeled data by the
labels. Then, for each utterance xi, we run FAISS
knn search in one-vs-rest style where we search
for the most similar utterances among the those

that do not share the same class label as xi. Each
of these similar sentences then got matched with
xi to generate k similar pairs for xi

Input : X = [xi], Y = [f(xi)]
SIMILARITYSEARCH(X):

S = {}
for xi ∈ X do

S[xi] = []
for y ∈ Y, y ̸= f(xi) do

classY= [xj ] s.t f(xj) = y
knn =FAISS(xi, classY, k)
add knn to S[xi]

end
end
return S

CANDIDATE_PAIRS(S):
pairs = []
for xi ∈ S do

nearestNeighbors = S[xi] = [xj ]
add [xi, xj ]∀xj ∈ S[xi] to pairs

end
return pairs

Algorithm 2: Filtering live traffic with FAISS search

B Limitations

The limitation of our approach lies 1) in the post-
filtering approach and 2) in the similarity to actu-
ally seen traffic. It is crucial and at the same time
very hard to filter out those adversarial samples
that are relevant and correct since the T5 model
also produces sentences that do not preserve the
meaning of the input or are grammatically correct.
The second limitation lies in how similar the gener-
ated variations actually are to real variations actual
customers would say. We are planning to investi-
gate this further and test the target model trained
on generated perturbed utterances on general data.

https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.5281/zenodo.4275046
https://doi.org/10.48550/ARXIV.2204.07580
https://doi.org/10.48550/ARXIV.2204.07580
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/N19-1131

