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Abstract
With evergrowing digital adoption in the soci-
ety and increasing demand for businesses to
deliver to customers doorstep, the last mile
hop of transportation planning poses unique
challenges in emerging geographies with un-
structured addresses. One of the crucial inputs
to facilitate effective planning is the task of
geolocating customer addresses. Existing sys-
tems operate by aggregating historical delivery
locations or by resolving/matching addresses
to known buildings and campuses to vend a
high-precision geolocation. However, by de-
sign they fail to cater to a significant fraction
of addresses which are new in the system and
have inaccurate or missing building level infor-
mation. We propose a framework to resolve
these addresses (referred to as hard-to-resolve
henceforth) to a shallower granularity termed
as neighbourhood. Specifically, we propose a
weakly supervised deep metric learning model
to encode the geospatial semantics in address
embeddings. We present empirical evaluation
on India (IN) and the United Arab Emirates
(UAE) hard-to-resolve addresses to show sig-
nificant improvements in learning geolocations
i.e., 22% (IN) & 55% (UAE) reduction in deliv-
ery defects (where learnt geocode is >Y meters1

away from actual location), and 43% (IN) &
90% (UAE) reduction in 50th percentile (p50)
distance between learnt and actual delivery lo-
cations over the existing production system.

1 Introduction and Motivation
Last Mile delivery planning systems aim to opti-
mize the delivery experience for both customers
and delivery associates when packages travel from
the final delivery stations to customer doorsteps.
One crucial input to this planning is the delivery
location of customers. Customers provide infor-
mation regarding their whereabouts through ad-
dress text, the only mandatory input they need

1In this paper, the exact values at few places are not re-
vealed due to the business confidentiality reasons and finer
address details are masked (X) to preserve customers’ privacy.

Figure 1: Address geocoding via nearest neighbours

to provide while placing their order. The task
of learning geolocation of addresses is commonly
known as geocoding and it is challenging in emerg-
ing geographies because of two primary reasons
– 1) Lack of standardisation in the address text in
form of spelling variations, missing components
and use of vernacular content, synonyms and ab-
breviations, 2) Large proportion of cold-start ad-
dresses to which too few or no deliveries have been
made in the past. For instance, the address Bank
Colony Sheriguda, Ibrahimpatnam, Gandi Statue,
501510, Hyderabad, IN does not contain any fine-
grained details other than mentions of locality and
landmark. Apart from the unstructured nature, ad-
dresses in emerging geographies tend to have inac-
curate components such as XX1 Marina Bay One,
Rawdat Al Reef, Abu Dhabi, UAE contains wrong
customer chosen district information (correct: Al
Reem Island). It should be noted that the geocod-
ing problem becomes trivial and simply reduces to
aggregation of past delivery scans once there are
successful deliveries to the address, irrespective of
the address quality. The central theme of this work
is to deal with customer addresses which have little
or no delivery history along with missing or inaccu-
rate components, also referred to as hard-to-resolve
addresses here.

In general, the address geocoding task is largely
approached as entity matching or record linkage
in natural language processing (NLP) where the
idea is to match a query address to a reference set
of addresses with known geocodes (Comber and
Arribas-Bel, 2019; Lin et al., 2020; Li et al., 2022).
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These models target for a fine-grained (i.e. building,
campus level) or exact matching of addresses and
thus do not serve to a large fraction of addresses
in emerging geographies which have missing or
inaccurate building/campus information. Figure
1 illustrates a conceptual view of our geocoding
pipeline. Rather than matching a query address to
an individual address in reference set, we aim to
retrieve its nearest neighbours. Using neighbour-
hood based approach we attempt to treat addresses
not in isolation but in the view of their multiple
neighbours, making it more robust to inconsisten-
cies in hard-to-resolve addresses. The matched set
of addresses can be used to vend a geocode and/or
to jointly form a neighbourhood for the query ad-
dress which can be vended as a approximate area
to guide a delivery agent. In this paper, we focus
on the experimental evaluation of geocoding task,
and keep the neighbourhood polygons study as a
work in the future.

We propose a novel deep metric learning based
model to encode the geospatial distance semantics
in address embeddings, in turn facilitating the re-
trieval of neighbours solely based on the address
text. We pre-train the transformer based RoBERTa
(Liu et al., 2019) model on address data and further
employ a triplet network to learn quality address
embeddings. A major proportion of hard-to-resolve
addresses that this work targets, do not have any
delivery history. Thus, our models draw supervi-
sion from past delivery scans while training only,
and solely use address text (cold start) at the time
of inference. In summary, our contributions are:

• We propose a deep metric learning based model
to facilitate the encoding of geospatial distance
semantics into address embeddings.

• We introduce a novel training data generation
strategy to learn from geospatially rich addresses
via weak supervision and transfer the knowledge
to operate on cold-start addresses.

• To demonstrate the real-world impact of our
model, we perform experiments on multiple
emerging geographies (IN & the UAE).

This paper focuses on the downstream geocoding
task, but learnt address embeddings can cater to
other applications in the delivery planning space
such as address correction, parsing, and learning
neighbourhoods for package sorting.

2 Related Work

Short Text Geolocation Learning Geocoding
short text (especially Tweets) has been an active
area of research (Zheng et al., 2018). In (Hulden
et al., 2015), authors propose a Naive Bayes classi-
fier with kernel to learn the geospatial distribution
of words and predict geolocation for tweets. (Paule
et al., 2019) propose a weighted voting based near-
est neighbours model to predict the location of
traffic events. (Kulkarni et al., 2020) propose a
neural network model with multi-level S2 (geospa-
tial data structure) grids loss to learn tweets ge-
olocation. Further (Qian et al., 2020) experiment
with a seq2seq geocoding model to directly predict
geohash string for Chinese addresses. (Li et al.,
2019a) introduce GeoAttn model, which focuses
on geolocation signals in the text and attends to the
relevant Point-of-Interests (POIs) for location pre-
diction. Although, most of these studies operate on
a coarser level of geolocation (such as large geospa-
tial grids, city) in contrast to the address geocoding
task in e-commerce domain, which requires pre-
dicting within few meters of the customer doorstep
to optimize delivery operations.

Entity Matching and Addresses In NLP, entity
matching (or record linkage/deduplication) refers
to the task of matching a query data instance to
instances in a reference set (Hu et al., 2019). (Guo
et al., 2016) propose a deep relevance matching
model and more recently, the large language mod-
els for entity matching are explored by Ditto (Li
et al., 2020) and dual objective fine-tuning of BERT
(Peeters and Bizer, 2021).

Address geocoding has also been largely ap-
proached as entity matching task. (Comber and
Arribas-Bel, 2019) propose to first parse the ad-
dress text into address fields (unit, building, etc.),
and then apply a pairwise matcher model to find
a matching address in reference set and make a
geocode prediction. (Lee et al., 2020) also imple-
ment a similar process where a rule-based parser
and an SVM based matcher with building num-
ber interpolation are used for geocoding. Further,
(Lin et al., 2020) and (Li et al., 2022) utilize deep
learning based model for semantic matching of ad-
dresses. (Chen et al., 2021) propose a contrastive
learning based address matcher for Chinese ad-
dresses while synthetically manipulating address
texts to generate matching pairs. (Yang et al., 2019)
propose to learn embedding for places and then uti-
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lize them to train a supervised places deduplication
model. In (Ganesan et al., 2021), authors propose a
clustering based unsupervised model to learn POIs
from the address data.
Deep Metric Learning Deep metric learning
is being widely used on similarity retrieval tasks
in both computer vision (CV) and NLP domains
(Kaya and Bilge, 2019). (Hermans et al., 2017)
apply triplet loss for person re-identification task
and (Chen et al., 2020) introduce the contrastive
learning of visual representations (SimCLR) for ob-
ject detection. Sentence embeddings using siamese
BERT networks are proposed to learn better down-
stream task specific embeddings (Reimers and
Gurevych, 2019). SimCSE (Gao et al., 2021) and
DeCLUTR (Gao et al., 2021) exploit contrastive
learning to learn sentence representation in an un-
supervised setting. In geospatial domain, Tile2Vec
(Jean et al., 2019) and Hex2Vec (Woźniak and Szy-
mański, 2021) explore embeddings learning of map
tiles, whereas (Samano et al., 2020) explore the mo-
bility data to learn regions representation.

To the best of our knowledge, none of the afore-
mentioned studies target geocoding of hard-to-
resolve addresses in emerging geographies. Fur-
ther, a systematic way to impart geospatial distance
semantics in address embeddings remains unex-
plored. Unstructured geographies pose a variety of
challenges as discussed in the Section 1, making
our contribution non-trivial and impactful.

3 Proposed Model

We adapt the K-Nearest Neighbours (K-NN) model
(Altman, 1992) for the address geocoding task by
using Kernel Density Estimation (KDE) (Parzen,
1962; Forman, 2021). Our workflow for geocode
learning is illustrated in Figure 1. In essence, the
K-NN model first retrieves the neighbourhood set
N for an address a and then predicts its geocode
by picking the geocode of the neighbour x with
highest kernel density value. Equation 1 formulates
the kernel density estimator P over the retrieved
neighbours N where K(x;h) is a Gaussian kernel
with haversine metric. The bandwidth h works as
a smoothing parameter, we chose h as 200 meters
after manual validation over 25m to 400m.

Ph(x) =
1

|N|h
X

n2N
K(x� n;h) (1)

The absolute nearest neighbours search becomes
very computationally expensive in higher dimen-

sional input space. Thus, we employ approximate
nearest neighbours search (Li et al., 2019b) and
build an Annoy (Erik et al., 2018) index over the
address embedding vectors to fetch neighbouring
addresses from the reference set. One key differ-
ence here from the other address or entity matching
systems (Lin et al., 2020; Li et al., 2022, 2020) is
the flexibility as we are not restricting the match
to a given building or campus, rather allowing a
shallow matching on the full address text to ar-
rive at a neighbourhood that can be of any size,
shape and granularity. To this end, once the near-
est neighbours are retrieved, we normalize their
scores w.r.t. the maximum score and prune out the
neighbours with low normalized score (below 0.25).
This has an adaptive thresholding effect as all neigh-
bours will be preserved if having more or less equal
scores, and if there are disparity in scores then the
low scored neighbours will get pruned. Also, we
perform basic outlier removal of potentially incor-
rect neighbours via mean±2⇤sd over latitude and
longitude values to compute a neighbourhood poly-
gon via convex hull. The geocode of the query ad-
dress is computed using the described KDE model
as a representative geocode of the neighbourhood.
In this setting, quality representation of addresses
are of utmost importance for retrieval of quality
nearest neighbours. Thus, we propose a deep met-
ric learning driven address representation learning
approach in the following.

3.1 Deep Metric Learning

Deep distance metric learning (or simply, deep met-
ric learning) aims to automatically construct task-
specific distance metric from (weakly) supervised
data by employing deep neural networks (Kaya and
Bilge, 2019). The learned distance metric/pseudo-
metric can then be used to perform various down-
stream tasks (e.g., information retrieval, clustering).
In the context of addresses geocoding, the ideal-
istic goal for the aforementioned neighbourhood
retrieval problem is to fetch the true neighbours
(i.e. to mimic geospatial distance semantics) for an
address by using its text information only. Thus,
we aim at learning an embedding transformation
function f✓(x) : RI ! RO which maps geospa-
tially closer addresses from the input data manifold
in RI onto metrically close points in the output
embedding space RO (✓ denotes parameter set).
Similarly, f✓ should map geospatially far addresses
in RI onto metrically distant points in RO.
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Figure 2: Deep metric learning on addresses to capture geospatial distance semantics

In the address domain, a key challenge with both
the context-insensitive embeddings (e.g. FastText
(Bojanowski et al., 2017)) or the contextualized
embeddings (e.g. RoBERTa (Liu et al., 2019)) is
the lack of understanding for geospatial distance
semantics (cf. Section 4.2) as addresses do not fol-
low a document or a paragraph like organization.
Figure 2 depicts our adaptation of the deep metric
learning workflow to learn quality address embed-
dings. As illustrated, we propose to systematically
exploit geocodes of known addresses while train-
ing to give rise to geospatial distance semantics via
weak supervision. To learn the transformation func-
tion f✓, we choose RoBERTa as our base model
as it has shown strong performance widely across
multiple downstream NLP tasks (Liu et al., 2019).

Encoding Geospatial Semantics We employ
contrastive learning approaches, specifically train-
ing via triplet loss. The triplet loss operates on
triplets (x, x+, x�) of an anchor, a positive, and a
negative instances. Equation 2 formulates the loss
function with margin ↵ and distance metric d. The
objective here is to move the negative instance by
distance margin ↵ away from the anchor instance
w.r.t. the positive instance. In our experiments, we
chose margin 5 and Euclidean distance for triplet
loss based on manual finetuning and practices in
literature (Reimers and Gurevych, 2019).

L(x, x+, x�) = max(0, d(f✓(x), f✓(x
+))

� d(f✓(x), f✓(x
�)) + ↵) (2)

3.2 Training Data Generation

In classification, supervised metric learning algo-
rithms use instance class labels (e.g. object, face
identity) to generate the training data. However,
manually labeling the matching/non-matching ad-
dress pairs is very expensive and unscalable task.
We employ historical delivery scans data to auto-
matically generate the weakly labeled training pairs

or the triplets. The address metric learning prob-
lem is now formulated as an optimization problem
where we seek to find the parameters ✓ of function
f✓ that optimize a objective function (i.e. triplet
loss) measuring the agreement with training data.

Ideally, positive addresses for an address should
be sampled from the absolute geospatial neigh-
bours within some small �+ distance and negatives
should be sampled from the addresses which are
relatively far �� away. Here, the limitation is costly
computation of haversine distance of each address
to every other address, further even using some spa-
tial data structure such as Ball Tree (Omohundro,
1989) involves significant computation overhead.
To overcome this, we propose to use H3 geospa-
tial indexing2 system as an approximate solution to
retrieve positive and negative addresses in a more
intelligent manner. H3 is a hierarchical spatial data
structure which subdivides the space into buckets
of hexagonal grid shape. Every hexagonal grid has
seven child grids below it in the hierarchy, thus, a
hexagon of resolution L have 7 child hexagons of
resolution L+ 1 and so on (cf. Appendix C). For
instance, L = 10 hexagon has edges of length 66m,
and the children (L = 11) have 25m edges.

For an address, T positive addresses are sampled
from its H3 grid of level L. T negative addresses
are sampled from the ring of parent’s (i.e. level
L� 1) 1-skip neighbouring grids as shown in Fig-
ure 2b. To this end, we generate triplets by varying
the resolution (L 2 [11, 10, 9]) for positive samples
(and consequently for negatives). The motivation
behind including triplets with varying resolution
is to compile a more diverse training data where
triplets can encode very a fine-grained as well as
a coarse grained comparison of addresses. As ad-
dresses in close vicinity tend to differ only in the
header part, we generate another T triplets where
negatives are sampled from the city level to enforce
sufficient focus on the tail address components.

2H3 geospatial index https://github.com/uber/h3

https://github.com/uber/h3
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4 Experimental Evaluation

We evaluate the learnt embeddings intrinsically and
on the downstream geocoding task.

4.1 Experimental Setup
We experiment with IN and the UAE addresses.
For each of the dataset we use large unlabelled
address text to pre-train the RoBERTa model and
use historical delivery scans data to generate weak
supervision for metric learning. We operate on the
last few years of data which are worth hundreds
of millions of shipments and tens of millions of
unique addresses. We do minimal preprocessing
of the address text by replacing repeated space and
punctuations to single character. For evaluation, a
few weeks of out-of-time network wide shipments
are considered where learnt geolocations are com-
pared against the observed delivery scans (marked
by delivery associates). As our solution is targeted
towards hard-to-resolve cases (i.e., production base-
lines couldn’t vend any confident geocode and fall
back to postal code/locality centroids), we only run
our pipeline for this particular subset. Note that
due to confidentiality reasons, we cannot reveal the
actual proportion of hard-to-resolve addresses how-
ever, they are considerably high for the emerging
geographies such as IN & the UAE, which is why
improvements on this subset result in large amount
of savings network-wide.

Deep Metric Learning Data Set For metric
learning experiments, we only consider the ad-
dresses with at least H historical scans1 to be more
confident on the actual location. We take a stratified
sample w.r.t. grids to have better representation of
addresses across a geography and to not skew the
learning disproportionately towards high density
metropolitan areas. We generate 2*T triplets1 for
an anchor address as explained in Section 3.2. To
this end, we get a total of 37M triplets for IN and
7M triplets for the UAE.

Model Configurations and Baselines We per-
form extensive experiments on the task of geolo-
cating hard-to-resolve addresses across various un-
derlying models. We set up the current produc-
tion geocoding system on the considered hard-to-
resolve test set and report relative improvements
over it. Due to the complex nature of these ad-
dresses, the baseline reduces to simply the cen-
troid at postal code or locality level. For a better
comparative analysis, we also consider a context-

insensitive model based on FastText, which is a
skip-gram model trained with character n-grams
of size 3-5 and window size of 8 for 10 epochs
on address data. Among the transformer mod-
els, we have two groups – 1) The first group in-
cludes RoBERTa-General which is the general pur-
pose English RoBERTa-base model, and RoBERTa-
Address (6 layers) is trained from scratch on ad-
dress data; 2) The second group is based on metric
learning framework. RoBERTa-Triplet is trained
on triplets generated by sampling positives at single
fixed H3 resolution (L = 11) only and negatives
are sampled only from the city level. In contrast,
RoBERTa-Triplet-H3 is trained using the proposed
training data generation strategy, which operates
at multiple H3 resolutions to generate better qual-
ity triplets (cf. Section 3.2). These two models
are fine-tuned over RoBERTa-Address. The final
address embedding vector is computed via mean
pooling over token embeddings of the final layer.

Pre-training Address Language Model As ad-
dresses have quite different vocabulary and domain
than general English text, we train from scratch
the geography specific RoBERTa models (6 layers)
with masked language modeling (MLM) objective
on addresses data (tens of millions). We train Byte-
Pair Encoding tokenizers with vocabulary size of
52K. The model training with sequence length of
100 and batch size of 64 for 10 epochs takes around
49 hours on 4 Tesla V100 GPUs.

4.2 Assessing Embeddings Quality

To intrinsically measure the geospatial distance se-
mantics captured in address embeddings, we com-
pute cosine similarity co-relation on address pairs.
A test set of 0.5M pairs is compiled by sampling
positive pairs (score 1) from the same H3 grid of
resolution 9 and negatives (score 0) are sampled
from city level (equal + & - pairs). Further, to eval-
uate more complex relationship among addresses,
we generate a set of 0.5M triplets constrained by

Pearson Triplet Acc
Model IN UAE IN UAE
FastText 0.56 0.66 84.23 86.91
RoBERTa-General 0.35 0.45 70.42 75.76
RoBERTa-Address 0.63 0.68 85.78 87.02
RoBERTa-Triplet 0.76 0.75 91.33 91.79
RoBERTa-Triplet-H3 0.81 0.84 93.92 95.54

Table 1: Address pairs cosine similarity co-relation (cf.
Appendix A for density plots) and Triplet accuracy
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Figure 3: Clustering the addresses using different embeddings and visualizing via their geocodes (Note: background
maps are modified and blurred to preserve customers’ privacy)

>Y DPMO (# %) p25 (# %) p50(# %) p95(# %)
Geocoding Model IN UAE IN UAE IN UAE IN UAE
FastText 19.3% 48.9% 84.0% 94.3% 35.2% 82.4% 34.6% 61.6%
RoBERTa-General 9.8% 34.3% 52.1% 88.9% 9.1% 60.1% -44.2% 31.8%
RoBERTa-Address 20.9% 47.4% 86.2% 94.0% 43.6% 80.2% 33.2% 60.5%
RoBERTa-Triplet 21.0% 52.1% 85.7% 95.5% 41.1% 86.7% 31.5% 60.1%
RoBERTa-Triplet-H3 22.0% 54.6% 88.6% 96.4% 42.8% 90.3% 32.2% 53.1%

Table 2: Geocoding metrics relative to the production baseline on shipments against hard-to-resolve addresses

the only condition that anchor will be geospatially
closer to the positive than the negative. Then the
triplet accuracy is computed to evaluate if embed-
dings pass the same criterion using cosine distance.
Table 1 reports Pearson co-relation and the triplet
accuracy metrics and we observe that the metric
learning based models outperform others by a large
margin (cf. Appendix A for density plots).

We also do a qualitative analysis by clustering (K-
means with K=20) the addresses using their embed-
dings and visualizing them via their geocodes (cf.
Figure 3 for 50K addresses in an IN postal code).
The motivation is that embeddings which capture
quality geospatial distance semantics will result
in smoother clusters by facilitating the grouping
of geospatially closer addresses. We observe that
FastText based embeddings produce clusters with
very high overlaps. In contrast, RoBERTa-Triplet-
H3 embeddings facilitate smoother boundary clus-
ters because of better geospatial distance semantic
understanding. RoBERTa-Triplet-H3 embeddings
clusters’ quality can also be seen slightly improv-
ing over the RoBERTa-Address. This is also visible
in Silhouette scores which are 0.02, 0.08, and 0.13
for FastText, RoBERTa-Address, and RoBERTa-
Triplet-H3 respectively. The observed geospatial
distance semantics are beneficial for multiple down-
stream tasks such as address correction, package
sortation, and address geocoding.

4.3 Geolocating Hard-to-Resolve Addresses

We compute neighbourhood level geocodes via
KDE over the retrieved neighbours as illustrated in
Figure 1 and serve to guide the drivers to a closer
proximity in the absence of any better geocode.
Table 2 presents experimental results via vari-
ous geocoding metrics relative to the production
baseline on shipments for the chosen test period.
DPMO (Defects Per Million Opportunities) mea-
sures the number of prediction falling beyond Y1

meters normalized to a million. The percentile
metrics (p25, p50, p95) capture the distribution of
error distances (actual vs predicted geocode) on
the test set. A superior model shall lead to higher
reductions in these metrics.

It can be observed from Table 2 that the proposed
model based on deep metric learning outperforms
the production baseline by a substantial margin as
well as stands superior in comparison to other base-
lines i.e. FastText and basic Transformer models.
The poor performance of RoBERTa-General model
is due to its training on general purpose English text
only. It can also be seen that RoBERTa-Triplet-H3
improves over RoBERTa-Triplet by a large margin,
which can be directly attributed to the importance
of our proposed training data generation strategy.
Overall, we observe an improvement of 22% in
DPMO for IN and 54% for the UAE (cf. Appendix
B for geocoding anecdotes). This reduction in num-
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ber of defects is directly translatable to the saved
operational cost arising from delivery defects. It
should be noted that addresses in IN & the UAE
are quite different in nature, thus, improved metrics
confirm the wide applicability of our framework.
Further, IN has much bigger scale and more diverse
addresses than the UAE, which manifests in our re-
sults with larger improvements in the UAE. We per-
formed a ablation study by experimenting without
adaptive thesholding (cf. Section 3) and observed
degraded performance across models (IN DPMO
became 13% for FastText and 16% for RoBERTa-
Triplet-H3). It is also worth pointing out that the
proposed model is trained with weak supervision
and does not have a dependency on any manually
curated ground truth or the address parsing models.

5 Conclusion and Future Work

In this work, we presented an efficient nearest
neighbours & deep metric learning based approach
to perform the address geocoding and facilitate the
capturing of geospatial distance semantics in ad-
dress embeddings. We intrinsically observe quan-
tifiable improvements in address embeddings qual-
ity. Encouraging results from offline experiments
suggest an immediate improvement in serving hard-
to-resolve addresses. Our model operates solely us-
ing address text at the inference time, and is trained
without any manually curated labels making it scal-
able across emerging geographies such as IN, the
UAE, Mexico, and Saudi Arabia.

We plan to perform online experiments and ex-
tend our models to multi-lingual addresses in order
to deal with prevalent issues like code switching
in emerging geographies. We also would like to
enhance our negative mining strategies and explore
a pairwise cross encoder model to filter out the
poorly retrieved neighbours. Retrieval of addresses
from the neighbourhood can power many other
downstream applications such as address compo-
nent correction, address auto-complete suggestions,
and optimizing delivery station assignment. We
plan to explore geospatial constraints aware neigh-
bourhood learning (e.g., to ensure neighbourhoods
do not cross natural obstacles such as water bodies
and highways).
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A Cosine Similarity Density Plots

Figure 4 depicts the cosine similarity density plots
for positive (label 1) and negative (label 0) address
pairs in the test set (cf. Section 4.2). The x-axis
represents cosine similarity values and it can be
seen in Figure 4 that RoBERTa-Triplet-H3 model
segregates well positives from negatives with least
overlap between the two density curves (cf. Fig.
4c) in comparison to others (cf. Fig. 4a,b).

(a) FastText

(b) RoBERTa-Address

(c) RoBERTa-Triplet-H3

Figure 4: Density curves of positive (label=1) and nega-
tive (label=0) address pairs

B Anecdotes on Geocoding

Figure 5 depicts geocodes of the retrieved neigh-
bours (along with neighbourhood polygons/circles)
and the predicted geocode by various models for a
hard-to-resolve address X-X-X , Shivalayam Nagar
, 500070 , Hyderabad , Telangana. The masked in-
formation (X-X-X) here is the house number, which
carry some relevance for geocoding but usually
noisy and do not follow a standard pattern. It

is a hard address as it is relatively sparse with
no landmark information and the locality name is
misspelled (Shivalayam instead of Sachivalayam).
Shivalayam means Temple whereas Sachivalayam
means Government Admin Office. There exist no
Shivalayam Nagar in 500070 , Hyderabad. We
observe that the FastText model struggles to re-
trieve good quality neighbour addresses. RoBERTa-
Address model utilizes the context and retrieves
few good addresses but at the same time many poor
matches too. The RoBERTa-Triplet-H3 model uti-
lizes the contextual information best along with
house number in address header to be resilient to-
wards wrong locality name. It produces a quality
set of neighbouring addresses to bring the predicted
geocode as close as 39m to the actual location.

(a) FastText (prediction within 1482m)

(b) RoBERTa-Address (prediction within 792m)

(c) RoBERTa-Triplet-H3 (prediction within 39m)

Figure 5: Retrieved nearest neighbour addresses by var-
ious models for an example address: X-X-X Shivalayam
Nagar , 500070 , Hyderabad , Telangana. The current
production baseline vends a geocode 986m away and
we vend within 39m. (Note: background maps are mod-
ified and blurred to preserve customers’ privacy)
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C H3 Hexagonal Grids

Table 3 reports size of hexagon grids with respect
to various H3 index resolution levels, and Figure 6
illustrates the hierarchical relation between grids.
The geographical containment of children by a par-
ent is approximate while the logical containment in
the index is exact. We choose H3 over other geospa-
tial indices such as Geohash because of the benefits
observed via the symmetry of hexagonal shape in
contrast to squares/triangles which have neighbors
at varying distances in different directions.

Figure 6: H3 parent and child hexagonal grids hierarchy

H3 Resolution Edge (meters) Diagonal (meters)
0 11,07,712.6 22,15,425.2
1 4,18,676.0 8,37,352.0
2 1,58,244.7 3,16,489.3
3 59,810.9 1,19,621.7
4 22,606.4 45,212.8
5 8,544.4 17,088.8
6 3,229.5 6,459.0
7 1,220.6 2,441.3
8 461.4 922.7
9 174.4 348.8

10 65.9 131.8
11 24.9 49.8
12 9.4 18.8
13 3.6 7.1
14 1.3 2.7
15 0.5 1.0

Table 3: H3 hexagonal grid edge and diameter sizes
w.r.t. the resolution levels


