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Abstract

Large pretrained Transformer-based language
models like BERT and GPT have changed
the landscape of Natural Language Processing
(NLP). However, fine tuning such models still
requires a large number of training examples
for each target task, thus annotating multiple
datasets and training these models on various
downstream tasks becomes time consuming
and expensive. In this work, we propose a sim-
ple extension of the Prototypical Networks for
few-shot text classification. Our main idea is to
replace the class prototypes by Gaussians and
introduce a regularization term that encourages
the examples to be clustered near the appropri-
ate class centroids. Experimental results show
that our method outperforms various strong
baselines on 13 public and 4 internal datasets.
Furthermore, we use the class distributions as a
tool for detecting potential out-of-distribution
(OOD) data points during deployment.

1 Introduction

Pretrained Transformer-based language models
(PLMs) have achieved great success on many NLP
tasks (Devlin et al., 2019; Brown et al., 2020), but
still need a large number of in-domain labeled
examples for finetuning (Yogatama et al., 2019).
Learning to learn (Lake et al., 2015a; Schmidhu-
ber, 1987; Bengio et al., 1997) from limited super-
vision is an important problem with widespread
application in areas where obtaining labeled data
can be difficult or expensive. To that end, meta-
learning methods have been proposed as effective
solutions for few-shot learning (Hospedales et al.,
2020). Current applications of such meta-learning
methods have shown improved performance in few-
shot learning for vision tasks such as learning to
classify new image classes within a similar dataset.
Namely, on classical few-shot image classification
benchmarks, the training tasks are sampled from
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a “single” larger dataset (for ex: Omniglot (Lake
et al., 2015b) and miniImageNet (Vinyals et al.,
2016)), and the label space contains the same task
structure for all tasks. There has been a simi-
lar trend of such classical methods in NLP as
well (Geng et al., 2019). In contrast, in text clas-
sification tasks, the set of source tasks available
during training and target tasks during evaluation
can range from sentiment analysis to grammatical
acceptability judgment (Bansal et al., 2020a,b). In
recent works (Wang et al., 2021), the authors use a
range of different source tasks (different not only
in terms of input domain, but also their task struc-
ture i.e. label semantics, and number of labels) for
meta-training and show successful performance on
a wide range of downstream tasks. In spite of this
success, meta-training on various source tasks is
quite challenging as it requires resistance to over-
fitting to certain source tasks due to its few-shot
nature and more task-specific adaptation due to the
distinct nature among tasks (Roelofs et al., 2019).

However, in medical NLP, collecting large num-
ber of diverse labeled datasets is difficult. In our in-
stitution, we collect high quality labeled radiology
reports (which are always used as held out test data)
and use it to train our internal annotators who then
annotate our unlabeled data. This training process
is expensive and time consuming. Our annotation
process is described in section A. Thus a natural
question is: if we have a large labeled dataset con-
sisting of a lot of classes, can we use it to meta-train
a model that can be used on a large number of down-
stream datasets where we have little to no training
examples? This is a challenging problem as the
reports can be structured differently based on the
report type and there can be a substantial variation
in writing style across radiologists from different
institutions. Our main goal is to build out a set
of extensible pipelines that can generalize to new
pathologies typically in new sub-specialties while
also generalizing across different health systems.
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In addition, the exact definition of the pathologies
and their severity change can change depending on
the clinical use case. This makes fully supervised
approaches that rely on large labeled datasets ex-
pensive. Having few-shot capabilities allows us to
annotate a handful of cases and rapidly expand the
list of pathologies we can detect and classify. In ad-
dition, we can use our approach to generate pseudo
labels for rare pathologies and enrich our validation
and test sets for annotation by an in-house clinical
team. Lastly our approach can be extended to sup-
port patient search and define custom cohorts of
patients.

Our contributions in this work are the following:
(1) We develop a novel loss function that extends
the vanilla prototypical networks and introduce a
regularization term that encourages tight cluster-
ing of examples near the class prototypes. (2) We
meta-train our models on a large labeled dataset
on shoulder MRI reports (single domain) and show
good performance on 4 diverse downstream classi-
fication tasks on radiology reports on knee, cervical
spine and chest. In addition to our internal datasets,
we show superior performance of our method on
13 public benchmarks over well-known methods
like Leopard. Our model is very simple to train,
easy to deploy unlike gradient based methods and
just requires a few additional lines of codes to a
vanilla prototypical network trainer. (3) We deploy
our system and use the dataset statistics to inform
out-of-distribution (OOD) cases.

2 Related Work

There are three common approaches to meta-
learning: metric-based, model-based, and
optimization-based. Model agnostic meta-learning
(MAML) (Finn et al., 2017) is an optimization-
based approach to meta-learning which is agnostic
to the model architecture and task specification.
Over the years, several variants of the method have
shown that it is an ideal candidate for learning
to learn from diverse tasks (Nichol et al., 2018;
Raghu et al., 2019; Bansal et al., 2020b). However,
to solve a new task, MAML type methods would
require training a new classification layer for the
task. In contrast, metric-based approaches, such
as prototypical networks (Vinyals et al., 2016;
Snell et al., 2017), being non-parametric in nature
can handle varied number of classes and thus
can be easily deployed. Given the simple nature
of prototypical networks, a lot of work has been

done to improve them (Allen et al., 2019; Zhang
et al., 2019; Ding et al., 2022; Wang et al., 2021).
Prototypical networks usually construct a class
prototype (mean) using the support vectors to
describe the class and, given a query example,
assigns the class whose class prototype is closest to
the query vector. In (Allen et al., 2019), the authors
use a mixture of Gaussians to describe the class
conditional distribution and in (Zhang et al., 2019);
the authors try to model an unknown general class
distribution. In (Ding et al., 2022), the authors
use spherical Gaussians and a KL-divergence type
function between the Gaussians to compute the
function d in equation 2. However, the function
used by the above authors is not a true metric, i.e.
does not satisfy the triangle inequality. Triangle
inequality is implicitly important since we use this
metric as a form of distance which we optimize, so
it makes sense to use a true metric. In this work
we replace it by the Wasserstein distance which is
a true metric and add in a regularization term that
encourages the L2 norm of the covariance matrices
to be small, encouraging the class examples to be
clustered close to the centroid. One of our main
reasons to work with Gaussians is due to the closed
form formula of the Wasserstein distance.

Few shot learning (FSL) in the medical domain
has been mostly focused in computer vision (Singh
et al., 2021). There are only a few works that have
applied FSL in medical NLP (Ge et al., 2022) but
most of those works have only focused on different
tasks on MIMIC-III (Johnson et al., 2016) which
is a single domain dataset (patients from ICU and
one hospital system). To the best of our knowledge,
ours is the first study to successfully apply FSL on
a diverse set of medical datasets (diverse in terms
of tasks and patient populations).

3 Datasets

All our internal datasets are MRI radiology re-
ports detailing various pathologies in different body
parts. Our models are meta-trained on a dataset of
shoulder pathologies which is collected from 74
unique and de-identified institutions in the United
States. 60 labels are chosen for training and 20
novel labels are chosen for validation. The number
of training labels is similar to some well-known
image datasets (Lake et al., 2015b; Vinyals et al.,
2016; Wah et al., 2011). This diverse dataset has
a rich label space detailing multiple structures in
shoulder, granular pathologies and their severity
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levels in each structure. The relationship between
the granularity/severity of these pathologies at dif-
ferent structures can be leveraged for other patholo-
gies in different body parts and may lead to suc-
cessful transfer to various downstream tasks. The
labels are split such that all pathologies in a given
structure appear at either training or validation but
not both. More details about the label space can
be found in section B. The figure 1 and the table 1
shows the distribution of labels and an example
of this dataset can be found in figure 4. Our met-

Figure 1: Histogram showing the label distribution in
(left) train and (right) validation dataset.

alearner is applied to 4 downstream binary clas-
sification tasks spanning different sub-specialities
(cancer screening, musculoskeletal radiology, and
neuro-radiology) that are both common as well as
clinically important. The statistics for each task are
given in table 2 : (1) High risk cancer screening
for lung nodules (according to Fleischner guide-
lines (Nair et al., 2018) which bucket patients at
high-risk of lung cancer and requiring follow up
imaging immediately or within 3 months as belong-
ing to Category High Risk ; we consider patients
not at high-risk as Low Risk), (2) Complete An-
terior Cruciate Ligament (ACL) tear (Grade 3) vs
not Complete ACL tear, (3) Acute ACL tears (MRI
examination was performed within 6 weeks of in-
jury) and typified by the presence of diffuse or
focal increased signal within the ligament vs not
Acute ACL tear (Dimond et al., 1998), (4) Severe
vs not severe neural foraminal stenosis in the cervi-
cal spine as severe foraminal stenosis may indicate
nerve impingement, which is clinically significant.
Acute tear in ACL refers to the age of the tear/injury
whereas the complete tear refers to the integrity
of the ligament. Our testing datasets are diverse
and sampled from different institutions: the knee
data, lung dataset and cervical dataset is sampled

Split Number of examples Min Max Average

Train 34595 79 6379 567
Validation 5754 44 1138 303

Table 1: Statistics of our meta-training and meta-
validation dataset, where the min/max/average refer to
min/max/average examples per label.

from 50, 4 and 65 institutions respectively and our
annotation process is described in Appendix A. Ex-
amples of these datasets can be found in figure 10
(knee), figure 6 (lung), and figure 8 (cervical).

Task Validation Distribution Test Distribution

Lung Nodule
Low Risk : 233
High Risk : 30

Low Risk : 347
High Risk : 46

Knee ACL
Acute Tear

Normal: 258
Acute Tear: 48

Normal : 439
Acute Tear: 93

Knee ACL
Complete Tear

Normal : 263
Complete Tear : 44

Normal : 429
Complete Tear :103

Neural Foraminal
Stenosis

Normal : 215
Abnormal : 43

Normal : 789
Abnormal : 91

Table 2: Statistics of our downstream testing datasets

4 Workflow

Our workflow consists of the following parts: A

Figure 2: Overview of our workflow. A report is passed
through a report segmenter which splits it into sentences
and extracts the relevant portion of the text for down-
stream classification. The relevant text is passed through
our model and we use the pre-computed prototypes and
class variances to assign a label to the query point.

report is first de-identified according to HIPAA reg-
ulations and passed through a sentence parser (ex.
Spacy (Honnibal et al., 2020)) that splits the re-
port into sentences. In the shoulder dataset, each
of these sentences is labeled with the appropri-
ate structure and severity label and we filter out
sentences that do not have such a label. We first
train a meta-learner in an episodic fashion on this
dataset and choose the best model based on meta-
validation accuracy.

For our downstream tasks, we use a body-part
specific custom data processor to collect sentences
related to a given structure (ACL in knee, different
vertebrae in the cervical spine, the entire impres-
sion section for lung reports) and concatenate them
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together to create a paragraph describing all the
pathologies in the structure of interest. Detailed de-
scription of preprocessing for different body parts,
is presented in Appendix C. The concatenated text
from the validation sets of each task is passed to our
trained meta-learner to generate the relevant class
statistics (mean and variance). We then perform
pathology classification on the test set by using our
trained meta-learner and the saved class statistics.
The downstream tasks are similar to the shoulder
task in the sense that the pathology classification
is performed on a sequence of sentences that all
pertain to the same anatomical structure. Thus our
approach needs to learn the language that describes
the severity of the pathology for a specific anatomi-
cal structure.

We would like to shed some light on the com-
plexity of the language we encounter. Since our
dataset is sourced from multiple health systems,
and not all reports follow a standard structure, there
is a large amount of variation in the language de-
scribing the same diagnosis. For example: a severe
tear can be referred to as a rupture, or only the
size of the nodule is mentioned without specifying
that it is low risk (see Appendix C for more exam-
ples). Furthermore, most of our pipelines attempt
to classify the different severities for a given pathol-
ogy and the language describing severity can vary.
While it might be possible to construct a rule based
system to extract the diagnoses and severities we
are interested in, it will be difficult to generalize
as we expand to more diagnoses as well as to new
health systems.

5 Prototypical Networks

Prototypical Networks or ProtoNets (Snell et al.,
2017) use an embedding function fθ to encode
each input into a M -dimensional feature vector. A
prototype is defined for every class c ∈ L, as the
mean of the set of embedded support data samples
(Sc) for the given class, i.e.

vc =
1

|Sc|
∑

(xi,yi)∈Sc

fθ(xi). (1)

The distribution over classes for a given test input x
is a softmax over the inverse of distances between
the test data embedding and prototype vectors.

P (y = c|x) = softmax(−d(fθ(x), vc))

=
exp(−d(fθ(x), vc))∑

c′∈L exp(−d(fθ(x), vc′))

(2)

where d can be any (differentiable) distance func-
tion. The loss function is negative log-likelihood:

L(θ) = −logPθ(y = c|x).

ProtoNets are simple and easy to train and deploy.
The mean is used to capture the entire conditional
distribution P (y = c|x), thus losing a lot of infor-
mation about the underlying distribution. A lot of
work (Ding et al., 2022; Allen et al., 2019; Zhang
et al., 2019) has focused on improving ProtoNets by
taking into account the above observation. We ex-
tend ProtoNets by incorporating the variance (2nd
moment) of the distribution and use distributional
distance, i.e. 2-Wasserstein metric, directly gener-
alizing the vanilla ProtoNets.

5.1 Variance Aware ProtoNets

In this work, we model each conditional distribu-
tion as a Gaussian. Now the main question is: how
do we match a query example with a distribution?
The simplest thing here is to treat the query exam-
ple as a Dirac distribution. With that formulation
in mind, recall: the Wasserstein-Bures metric be-
tween Gaussians (mi,Σi) is given by:

d2 = ||m1−m2||2+Tr(Σ1+Σ2−2(Σ
1
2
1Σ2Σ

1
2
1 )

1
2 )

Given (xi, yi) ∈ Sc, where Sc is the support set
of examples belonging to class c, we compute the
mean mc and covariance matrix Σc; the computa-
tion of Wasserstein distance between a Gaussian
and a query vector q (i.e. a Dirac) boils down to

d2 = ||mc − q||2 + Tr(Σc) (3)

The above formula shows that we can simplify our
conditional distribution to be a Gaussian with a
diagonal covariance matrix. This brings down our
space complexity to store this covariance matrix
from O(n2) to O(n). Note, this is a direct general-
ization of the vanilla prototypical networks as the
vanilla prototypical networks can be interpreted as
computing the Wasserstein distance (aka simple L2

distance) between two Dirac distributions (mean
of the conditional distribution and the query sam-
ple). We also propose another variant of the above
called Isotropic Gaussian variant where we average
over the diagonal entries of Σc, i.e. α = 1

n(Σc)ii
and redefine Σc = αI , where I is the identity ma-
trix, allowing us to just store the scalar α, further
reducing the space complexity. Furthermore, we
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Backbone Methods Foraminal
Knee
(Acute Tear vs Not)

Knee
(Complete tear vs Not)

Lung

Baseline 0.38 0.44 0.49 0.36
Multi-Task 0.41 0.47 0.52 0.39

Vanilla ProtoNet 0.79 0.73 0.60 0.68
Big ProtoNet 0.58 0.59 0.51 0.64

Leopard 0.84 0.78 0.80 0.74
PubMedBERT ProtoNet w/ Isotropic Gaussian 0.81 0.74 0.76 0.69

ProtoNet w/ Isotropic Gaussian + reg 0.83 0.76 0.77 0.73
Variance Aware ProtoNet (ours) 0.84 0.78 0.79 0.76

Variance Aware ProtoNet + reg (ours) 0.86 0.81 0.84 0.80

Baseline 0.42 0.47 0.51 0.41
Multi-Task 0.44 0.49 0.53 0.43

Vanilla ProtoNet 0.78 0.71 0.69 0.66
Big ProtoNet 0.59 0.57 0.54 0.67

PubMedBERT w/ Adapters ProtoNet w/ Isotropic Gaussian 0.83 0.75 0.78 0.72
ProtoNet w/ Isotropic Gaussian + reg 0.89 0.80 0.86 0.77

Variance Aware ProtoNet (ours) 0.87 0.77 0.81 0.74
Variance Aware ProtoNet + reg (ours) 0.91 0.82 0.89 0.78

Table 3: Table showing F1 scores of Few Shot Models in downstream classification tasks.

regularize the negative log likelihood loss to pre-
vent the variance term from blowing up. Our new
loss function reads:

L(θ) = L(θ) +
λ

ways
||Σc||F (4)

where ways are the number of classes in the mini-
batch and || · ||F is the Frobenius norm and we
average the norm of the variance matrix over all
the classes in a given meta-batch. The extra reg-
ularization term is designed to encourage the ex-
amples to be close to the appropriate cluster cen-
troid. This term can also be seen as an entropic
regularization term, i.e. up to a factor as the expo-
nential of KL(p||q), where p = N(mc,Σc) and
q = N(mc, I). This type of entropy regularized
Wasserstein distances is widely studied (Cuturi and
Doucet, 2014; Altschuler et al., 2021).

A PyTorch style pseudocode is described in Al-
gorithm 1, where the teal color refers to the changes
to a vanilla prototypical networks trainer. We pro-
vide detailed motivation for using Wasserstein dis-
tance instead of KL divergence in section E.2. This
also explains why we compute the Wasserstein dis-
tance between the query and the estimated class
distribution instead of a simple likelihood.

6 Experiments

All our experiments are run on 4 V100 16 GB GPU
using PyTorch (Paszke et al., 2019) and Hugging-
Face libraries (Wolf et al., 2020). Bert-base (De-
vlin et al., 2019), Clinical BERT (Alsentzer et al.,
2019) and PubMedBERT (Gu et al., 2021) are used
as our backbone models. Adapters (Pfeiffer et al.,
2020) are applied to each of these backbone models.

While training adapter based models, the BERT
weights are frozen and only the adapter weights are
updated, thus requiring less resources to train. This
idea is similar to (Raghu et al., 2019) in the sense
that we are reusing the features from these deep pre-
trained models. We compare our methods to Leop-
ard (Bansal et al., 2020a), vanilla ProtoNets and big
ProtoNets (Ding et al., 2022). Additional results
with BERT-base and Clinical BERT backbones can
be found in table 6 and table 7. Meta-training is
done in an episodic manner using 4-way 8-shot and
16-examples as support. For meta-training on the
shoulder dataset, we set the variance regularizer
hyperparameter to be .1. It is an important hyper-
parameter and detailed ablation study is conducted
in section E.1. Other hyperparameters and design
choices are described in section E.

To prevent overfitting on the test set, we choose
the best model from each of these experiments
based on the meta-validation accuracy and apply
it to our downstream classification tasks. We note
that these downstream tasks are significantly dif-
ferent from the few shot regime these models are
trained in. Moreover for these downstream tasks,
we train BERT models on each task and a multi-
tasking model to provide additional baselines.

In all our experiments, PubMedBERT consis-
tently outperforms BERT-base and Clinical BERT
by an average of 5 points and 3 points respectively.
We believe the reason behind the improved per-
formance is the domain specific vocabulary. Even
though Clinical BERT is pre-trained on MIMIC-
III (Johnson et al., 2016), it still shares the same
vocabulary as BERT-base.

ProtoNet-BERT shows better performance and
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faster convergence rates during training and valida-
tion (Table 4), but it is outperformed by ProtoNet-
AdapterBERT which has fewer orders of magni-
tude of parameters to learn (Table 3). Like (Wang
et al., 2021) we believe that ProtoNet-BERT is
more vulnerable to overfitting on the meta-training
tasks than the ProtoNet-AdapterBERT. Finally, we
note that even though Big ProtoNets work well on
meta-validation, they fail on our downstream tasks.
We hypothesize that it is due to the fact that big
protonets are encouraged to have large radii which
has the potential to become a bottleneck where the
data distribution is highly imbalanced causing the
spherical Gaussians to overlap. In fact, we have
found that doing the exact opposite (i.e. constrict-
ing the norms of the covariance matrix), tends to
produce better results. Finally instead of using

Backbone Methods Accuracy

Vanilla ProtoNet 89.1± 1.1
Big ProtoNet 90.8± 1.2

Leopard 85.1± 9.2
PubMedBERT ProtoNet w/ Isotropic Gaussian 90.2± 1.4

ProtoNet w/ Isotropic Gaussian + reg 92.1± .8
Variance Aware ProtoNet (ours) 91.5± 1.3

Variance Aware ProtoNet + reg (ours) 92.9± .9

Vanilla ProtoNet 88.3± 1.4
Big ProtoNets 89.4± 1.2

PubMedBERT
w/Adapters ProtoNet w/ Isotropic Gaussian 89.8± 1.4

ProtoNet w/ Isotropic Gaussian + reg 90.9± .7
Variance Aware ProtoNet (ours) 90.5± 1.3

Variance Aware ProtoNet + reg (ours) 91.2± .8

Table 4: Results showing accuracy percentages on the
meta-validation dataset. We sampled 1000 tasks with
4-way 8-shot and 16-support classification. We replicate
each experiment over 10 random seeds.

the entire validation set to compute the class dis-
tribution, we also experiment with choosing a k
shots from the validation set to compute the class
distribution (figure 12 in section G).

Our regularized Variance Aware ProtoNets with
BERT-base + Adapter is also validated on 13 pub-
lic datasets. For the models and datasets marked
with ∗ in table 5, we use the results reported
in (Bansal et al., 2020a) and for those datasets, we
use the code from (Wang et al., 2021) to generate
the results for ProtoNet with Bottleneck Adapters
while the rest of the results are taken from (Wang
et al., 2021). The variance regularization hyper-
parameter is set to .01 for these experiments. Our
method beats Leopard by 5, 3 and 2 points on 4, 8
and 16 shots, respectively. The training details for
these experiments can be found in section F.

7 Deployment

Based on the results described in table 3,
we choose to deploy our regularized Variance
Aware ProtoNet with Adapter-PubMedBERT. Our
pipeline is deployed on AWS using a single p3.2x
instance housed with one NVIDIA V100 GPU. The
main pipeline components include (1) body-part
specific report segmenter, (2) PubMedBERT back-
bone with adapters and (3) a dictionary of class
prototypes and class variances, for all classes in
the datasets. On inference, requests sent to the
pipeline include a body part which the pipeline
utilizes to load up the relevant report segmenter,
class prototypes and variances. A report is then
ingested by the pipeline, parsed by a sentencizer,
grouped into segments according to its body part
specific segmentation, and then passed to the model.
Class probabilities and labels are inferred after com-
puting the Wasserstein distance between the text
embedding and the appropriate class distributions.
These outputs and pipeline metadata are written
out to an AWS Redshift database cluster. The en-
tire pipeline is orchestrated in batch mode with a
large enough batch size to maximize GPU capacity
resulting in an average latency of 68ms/report.

Figure 3: Variance along different directions for the
Lung validation set

7.1 Monitoring

It is well-known that the BERT embeddings are
highly anisotropic (Ethayarajh, 2019). We observe
the same phenomenon in our meta-learned models
as well (figure 3) which we use to our advantage to
monitor OOD cases. For each class in a dataset, we
pick top k-dimensions (a hyperparameter) of max-
imum variance. We then take the union of these
indices that we call the set of dataset indices i.e. the
indices that explain the variance among all classes
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Shots Dataset BERT* MT-BERT* Leopard ProtoNet ProtoNet+Adapter
Variance Aware ProtoNet

(Ours)

airline 42.76± 13.50 46.29± 12.26 54.95± 11.81 65.39± 12.73 65.33± 7.95 62.67± 11.18
disaster 55.73± 10.29 50.61± 8.33 51.45± 4.25 54.01± 2.9 53.48± 4.76 53.89± 3.79
emotion 9.20± 3.22 9.84± 2.14 11.71± 2.16 11.69± 1.87 12.52± 1.32 15.15± 4.19

political_audience 51.89± 1.72 51.53± 1.80 52.60± 3.51 52.77± 5.86 51.88± 6.37 52.5± 6.45
sentiment_kitchen* 56.93± 7.10 60.53± 9.25 78.35± 18.36 62.71± 9.53 83.13± 0.96 84.16± 1.37

political_bias 54.57± 5.02 54.66± 3.74 60.49± 6.66 58.26± 10.42 61.72± 5.65 59.39± 6.18
4 rating_electronics* 39.27± 10.15 41.20± 10.69 51.71± 7.20 37.40± 3.72 53.81± 6.01 55.49± 5.42

political_message 15.64± 2.73 14.49± 1.75 15.69± 1.57 17.82± 1.33 20.98± 1.69 19.28± .91
sentiment_books* 54.81± 3.75 64.93± 8.65 82.54± 1.33 73.15± 5.85 83.88± 0.55 84.95± 1.72

rating_books* 39.42± 07.22 38.97± 13.27 48.44± 7.43 54.92± 6.18 59.20± 7.26 66.18± 7.89
rating_dvd* 32.22± 08.72 41.23± 10.98 49.76± 9.80 47.73± 6.20 50.20± 10.26 52.59± 14.09

rating_kitchen 34.76± 11.2 36.77± 10.62 50.21± 9.63 58.47± 11.12 55.99± 9.85 59.39± 8.79
scitail* 58.53± 09.74 63.97± 14.36 69.50± 9.56 76.27± 4.26 77.84± 2.61 79.16± 2.54
Average 41.98 44.23 52.11 51.58 56.15 57.29

airline 38.00± 17.06 49.81± 10.86 61.44± 3.90 69.14± 4.84 69.37± 2.46 69.31± 2.43
disaster 56.31± 9.57 54.93± 7.88 55.96± 3.58 54.48± 3.17 53.85± 3.03 55.19± 2.77
emotion 8.21± 2.12 11.21± 2.11 12.90± 1.63 13.10± 2.64 13.87± 1.82 15.1± 3.58

political_audience 52.80± 2.72 54.34± 2.88 54.31± 3.95 55.17± 4.28 53.08± 6.08 53.82± 4.13
sentiment_kitchen* 57.13± 6.60 69.66± 8.05 84.88± 1.12 70.19± 6.42 83.48± 0.44 84.69± .8

political_bias 56.15± 3.75 54.79± 4.19 61.74± 6.73 63.22± 1.96 65.36± 2.03 64.09± .58
8 rating_electronics* 28.74± 08.22 45.41± 09.49 54.78± 6.48 43.64± 7.31 56.97± 3.19 60.24± 2.62

political_message 13.38± 1.74 15.24± 2.81 18.02± 2.32 20.40± 1.12 21.64± 1.72 20.44± 1.17
sentiment_books* 53.54± 5.17 67.38± 9.78 83.03± 1.28 75.46± 6.87 83.9± 0.39 84.68± .85

rating_books* 39.55± 10.01 46.77± 14.12 59.16± 4.13 52.13± 4.79 61.74± 6.83 65.54± 6.78
rating_dvd* 36.35± 12.50 45.24± 9.76 53.28± 4.66 47.11± 4.00 53.25± 7.47 53.83± 10.46

rating_kitchen 34.49± 8.72 47.98± 9.73 53.72± 10.31 57.08± 11.54 56.27± 10.70 56.68± 11.21
scitail* 57.93± 10.70 68.24± 10.33 75.00± 2.42 78.27± 0.98 80.41± 1.05 80.57± .48
Average 40.97 48.54 56.02 53.8 57.94 58.78

airline 58.01± 8.23 57.25± 9.90 62.15± 5.56 71.06± 1.60 69.83± 1.80 69.9± 1.06
disaster 64.52± 8.93 60.70± 6.05 61.32± 2.83 55.30± 2.68 57.38± 5.25 60.14± 5.36
emotion 13.43± 2.51 12.75± 2.04 13.38± 2.20 12.81± 1.21 14.11± 1.12 13.55± 3.51

political_audience 58.45± 4.98 55.14± 4.57 57.71± 3.52 56.16± 2.81 57.23± 2.77 56.36± 2.29
sentiment_kitchen* 68.88± 3.39 77.37± 6.74 85.27± 01.31 71.83± 5.94 83.72± 0.30 84.93± .49

political_bias 60.96± 4.25 60.30± 3.26 65.08± 2.14 61.98± 6.89 65.38± 1.71 63.97± 2.49
16 rating_electronics* 45.48± 06.13 47.29± 10.55 58.69± 2.41 44.83± 5.96 56.62± 5.62 61.01± 1.54

political_message 20.67± 3.89 19.20± 2.20 18.07± 2.41 21.36± 0.86 24.00± 1.39 22.49± 1.31
sentiment_books* 65.56± 4.12 69.65± 8.94 83.33± 0.79 77.26± 3.27 83.92± 0.41 84.91± 0.66

rating_books* 43.08± 11.78 51.68± 11.27 61.02± 4.19 57.28± 4.57 64.75± 4.27 67.34± 7.52
rating_dvd* 42.79± 10.18 45.19± 11.56 53.52± 4.77 48.39± 3.74 55.08± 4.92 56.63± 6.11

rating_kitchen 47.94± 8.28 53.79± 9.47 57.00± 8.69 61.00± 9.17 59.45± 8.33 58.34± 11.72
scitail* 65.66± 06.82 75.35± 04.80 77.03± 1.82 78.59± 0.48 80.27± .75 80.89± .23
Average 50.42 52.74 57.97 55.22 59.36 60.04

Table 5: Results on some benchmark text datasets on a wide range of tasks from NLI, sentiment analysis and text
classification. For the Variance Aware ProtoNet, we use BERT-base with bottleneck Adapters. For meta-training,
WNLI (m/mm), SST-2, QQP, RTE, MRPC, QNLI, and SNLI datasets are used.

in the dataset. For any given query example, we
compute the absolute difference (d⃗j) between its
embedding vector (q⃗) and class centroids (v⃗j), i.e.
the i-th coordinate d⃗j : d⃗j i = |q⃗i − v⃗j i|. We then
select top k dimensions of the each of these dj . We
propose an OOD metric called Average Variance
Indices (AVI_k) by the overlap between the top-
k difference vector indices and the top-k dataset

indices, i.e. AV I_k :=
|∪c

j=1top-k(d⃗j)|
dataset indices , where c

is the number of classes. For ex: in case of the
lung dataset: The text "The heart is normal in size.
There is no pericardial effusion. The pulmonary
artery is enlarged." shows an AVI_10 score .79,
whereas "L1L2: There is no disc herniation in lum-
bar spine." gives a score of .31. As part of our mon-
itoring, we threshold reports with an AVI_10 < .5
to further investigate if the report is OOD.

8 Conclusion

We extend Prototypical Networks by using Wasser-
stein distances instead of Euclidean distances and
introduce a regularization term to encourage the
class examples to be clustered close to the class
prototype. By training our models on a label rich
dataset (shoulder MRI reports), we show success-
ful performance on a variety of tasks. Since the
model weights are reused for all tasks, a single
model is deployed enabling us to cut inference
costs. Moreover, adapters are used allowing us to
tune smaller number of parameters (∼ 10 million)
resulting in huge training cost savings. Our model
is also benchmarked on 13 public datasets and out-
performs strong baselines like Leopard. Current
work is underway to make our training dataset more
diverse so that our models are more generalizable.
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Ethical Considerations

Due to various legal and institutional concerns aris-
ing from the sensitivity of clinical data, it is difficult
for researchers to gain access to relevant data ex-
cept for MIMIC (Johnson et al., 2016). Despite its
large size (covering over 58k hospital admissions),
it is only representative of patients from a specific
clinical domain (the intensive care unit) and geo-
graphic location (a single hospital in the United
States). We can not expect such a sample to be rep-
resentative of either the larger population of patient
admissions or other geographical regions/hospital
systems. We have tried to address this partially
by collecting radiology data for various body parts
across multiple practices in the US. However we
are always mindful that our work may not gener-
alize to new body parts/pathologies and radiology
practices (see Section H). Even though we intro-
duce a simple OOD metric, we realize it is far
from perfect. We understand the need to minimize
ethical risks of AI implementation like threats to
privacy and confidentiality, informed consent, and
patient autonomy. And thus we strongly believe
that stakeholders should be flexible in incorporat-
ing AI technology as a complementary tool and not
a replacement for a physician. Thus, we develop
our workflows, annotation guidelines and generate
actionable insights by working in conjunction with
a varied group of radiologists and medical profes-
sionals to minimize these above risks. Finally our
pipeline as deployed is meant as a pseudo-labeling
tool which we expect would cut down on expensive
annotation costs but can potentially introduce some
bias in our pseudo-labels.
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A Annotation

First we collect data from various sources and
a part of the data are annotated by our team of
in-house expert annotators with deep clinical exper-
tise, which we use as test and development sets for

our model training. We then use this annotated data
to train a larger pool of other annotators who are
generally medical students. They are provided clear
guidelines on the task and performance is measured
periodically on a benchmark set and feedback is
provided. As of the writing of the manuscript, the
validation and the test sets as described in section 3
are being used to train the annotators. After the
completion of their training, the annotators will
annotate the remaining unlabeled data that will be
used as a training data for our models. The entire
process is slow but is designed to generate high
quality annotated data. We believe that our few
shot models can be used as a source of pseudo-
labels and will greatly simplify and quicken our
annotation process.

B Shoulder Dataset

In this section we will briefly describe our label
rich shoulder dataset that is used as meta-training
and meta-validation sets. There are 80 labels for the
shoulder dataset. They range from Clinical history,
metadata, Impressions, Finding to various granu-
lar pathologies at different structures in the shoul-
der like AC joint, Rotator Cuff, Muscles, Bursal
Fluid, Supraspinatus, Infraspinatus, Subscapularis,
Labrum, Glenohumeral Joint, Humeral Head, Acro-
mial Morphology, Impingement: AC Joint. The
labels are split such that all pathologies in a given
structure appear at either training or validation but
not both. We believe that such a split would help
a model to learn the key words that may describe
the granularity of a pathology in a given structure
of interest. The dataset level statistics can be found
in figure 1 and table 1. An example of the shoulder
data is shown in figure 4.

Text Labels

The AC joint and anterior acromion show evidence of prior subacromial 
decompression and there may have been a distal clavicle excision as well with 
widening of the AC fluid in the joint glenohumeral joint/ labrum.
        

AC Joint: Mild Arthritis with Edema

Type Il acromion with hypertrophic changes causing impingement and partial rotator 
cuff tear of the infraspinatus and supraspinatus myotendinous junction.
        

Impingement: Acromion

Mild subacromial-subdeltoid bursitis. Findings are age-indeterminate unless 
otherwise specified.

Bursal Fluid: Small

Acromioclavicular joint: Anatomic alignment. No substantial degenerative change.
       

 AC Joint: Normal

There is fraying of the anterior labrum above the level of the equator.
       

       

Labrum: Normal or mild 
degeneration

Figure 4: Figure showing an example of our shoulder
dataset which is used for meta-training. Note that the
labels attached to the text have information about the
location and severity of a given pathology.
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C Detailed Workflow

We now present a detailed description of various
body part specific workflows. All reports, irrespec-
tive of body part, are first de-identified according
to HIPAA regulations. We then pass the report
through a sentence parser to parse the report in
sentences.

C.1 Lung Dataset
For the lung dataset, we use a report segmenter
which is a rule-based regex to extract the “Impres-
sion" section from the entire report. This section
can be thought as the summary of the report and
contains all the critical information like number
of lung nodules and their sizes and potential for
malignancy. This section text is used for final clas-
sification task as shown in figure 5. Figure 6 shows
examples of the labels in the dataset.

EXAM DESCRIPTION:  CT CHEST W  /O CONTRAST 
CLINICAL HISTORY: R91.8:  Other nonspecific abnormal finding of lung field.   
History of pulmonary nodule . History of leiomyosarcoma. 
 TECHNIQUE: 
  Axial 3 mm images of the chest were obtained without IV contrast.  Dosimetry:  Total 
DLP 492 mGy*cm. This exam was performed according to our departmental 
dose-optimization program, which includes automated exposure control, adjustment 
of the mA and/or kV  according to patient size  and/or use of iterative reconstruction 
technique. 
 FINDINGS: 
  Several pulmonary nodules are present bilaterally with the largest in the left upper 
lobe medially measuring 1.9  x 1 .7 cm (image 17 series 6).   A nodule more superiorly 
in the medial left upper lobe measures 1.4  x 1 .2  cm (image 38).   A right middle lobe 
nodule measures 1.2  x 1.0 cm. The remaining nodules measure less than 1 cm.   A 
tiny calcified granuloma is visible in the right upper lobe.   No acute infiltrate is 
identified.  The central airways are patent.  No pleural or pericardial effusion is 
present.   The heart is normal in size.   Thoracic aorta is normal in caliber.   No 
mediastinal mass or adenopathy is evident on this unenhanced exam. Included 
images of the upper abdomen show no mass or acute abnormality. No aggressive 
osseous lesions are evident.   There is disc degeneration in the thoracic spine.   A 
subcentimeter sclerotic focus in the T3 vertebral body is compatible with a bone 
island. 
  IMPRESSION: 
  Several pulmonary nodules bilaterally measuring up to 1.9 cm, suspicious for 
metastatic disease.
 WARNING :  this patient with history of malignancy.

Report Segmenter

  IMPRESSION: 
  Several pulmonary nodules bilaterally measuring up to 1.9 cm, 
suspicious for metastatic disease.
 WARNING :  this patient with history of malignancy.

Figure 5: Figure showing the preprocessing of the lung
dataset. Our report segmenter extracts the relevant para-
graph which is used for downstream classification.

Text Labels

Dominant  6.7 cm  right upper lobe mass, with contiguous extension into the right hilar region, probable 
adjacent interstitial spread, bilateral pulmonary metastatic nodules, mediastinal lymphadenopathy. 3 cm left 
adrenal gland lesion suspicious for metastasis.

High Risk

Mild interstitial and ground glass density in the right upper lobe near the apex and probably representing 
sequelae of radiation treatment.  A tiny benign-appearing pulmonary nodule in the right middle lobe is 
unchanged compared to 2016.  No findings suspicious for metastatic disease in the chest. Hepatic steatosis. 

Low Risk

Figure 6: Figure showing the labels in the Lung dataset

C.2 Cervical Dataset
Our task in the cervical dataset is to predict the
severity of a neural foraminal stenosis for each
motion segment - the smallest physiological mo-
tion unit of the spinal cord (Swartz et al., 2005).
Breaking information down at the motion segment
level in this way enables pathological findings to
be correlated with clinical exam findings, and can
inform future treatment interventions. A BERT
based NER model is used to identify the motion
segment(s) referenced in each sentence, and all the
sentences containing a particular motion segment

are concatenated together. We also use additional
rule-based logic to assign motion segments to rel-
evant sentences that may not mention a motion
segment in it. We then predict the disease severity
using this concatenated text at each motion seg-
ment. This data pre-processing mostly follows the
ideas and the steps outlined in (Sehanobish et al.,
2022). Figure 7 shows our preprocessing steps and
figure 8 shows examples in the datasets.

Figure 7: Figure showing the preprocessing of the cervi-
cal dataset. Our report segmenter extracts all the motion
segments mentioned in the report and groups all sen-
tences belonging to the relevant motion segment. The
paragraph belonging to a given motion segment is used
for downstream classification.

Text Label

C3-4: Desiccation mild disc space loss. There is mild disc osteophyte bulge. Uncovertebral hypertrophy left greater 
than right. Mild facet hypertrophy. In conjunction with short pedicles mild central canal narrowing. There is mild to 
moderate left and mild right foraminal stenosis. 

0

At C3-C4, there is a degenerated bulging disc with osteophytic ridging, facet and uncovertebral hypertrophy and 
short pedicles combining to cause mild to moderate central stenosis and severe bilateral foraminal stenosis 
unchanged.  There is mild motion artifact on some of the images. There is reversal of the cervical alignment with 
grade 1 anterolisthesis at C3-4 and C5-6.

1

Figure 8: Figure showing the labels in the Cervical
dataset. 0 means absence of severe neural foraminal
stenosis and 1 indicates presence of severe neural foram-
inal stenosis.

C.3 Knee Dataset
The data processing steps for the knee dataset is
similar to the cervical dataset. A BERT based
NER model is used to tag sentences that men-
tion the structure of importance, i.e. the anterior
cruciate ligament (ACL). We group all the sen-
tences together that mention ACL and we use these
grouped sentences to predict our pathology severity
as shown in the workflow (figure 9). An example
of the labels in the knee dataset can be found in
figure 10.

D Additional Experiments

We also experiment with BERT-base and Clinical
BERT as additional backbones. We add adapters
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Figure 9: Figure showing the preprocessing of the knee
dataset. Our report segmenter selects all the relevant
sentences pertaining to the structure of interest, i.e. ACL.
We then predict various pathology severities using this
paragraph of text.

Text Acute 
Tear

Complete Tear

The anterior cruciate ligament is intact and there is a partial tear of the posterior cruciate 
ligament with a thin residual component of the distal half of the PCL still intact. 

0 0

While there is some edema in the ACL, there appear to be intact fibers.  This may indicate 
ACL sprain or partial tear.  A complete tear is not identified.  Secondary signs of ACL 
insufficiency are not identified. While there is likely an ACL sprain or mild partial tear, there 
are intact ACL fibers.The pattern of bone bruises raises some concern for an ACL tear, but 
the femoral bone bruises slightly more lateral than commonly seen.  

1 0

Proximal ACL tear and PCL intact.  Left knee MRI demonstrates: Complete ACL tear with 
bone bruises in the medial tibial plateau, medial femoral condyle and lateral femoral 
condyle. 

1 1

There is no normal anterior cruciate ligament identified.  There is diffuse intermediate 
signal within the posterior cruciate ligament on the proton density images and to a lesser 
extent on the T2-weighted images compatible with chronic PCL degeneration. 
While this could be the sequela of old surgery, degenerative tearing of the meniscus 
including involvement of the root attachment cannot be excluded. Nonvisualization of the 
ACL compatible with an old ACL tear.

0 1

Figure 10: Figure showing the labels in the Knee dataset.
0 means absence of a given pathology and 1 indicates
presence of such.

to these backbones as well. Finally, we choose the
best model based on meta-validation accuracy and
use it for our downstream tasks. In all our experi-
ments, PubMedBERT-based backbones outperform
the BERT-base and the Clinical BERT backbones.

E Hyperparameters and Additional
Experimental Details

In this section, we will describe the hyperparam-
eters used for experiments on our internal and
public datasets and explain some of the design
choices. Table 8 shows the best hyperparame-
ters used for our experiments. For our internal
dataset, we use the Pfeiffer configuration in the
adapter implementation from (Pfeiffer et al., 2020),
whereas for the public datasets we use the ex-
act implementation and configuration as in (Wang
et al., 2021) for a fair comparison to the results
reported there. For all vanilla ProtoNet experi-
ments, we use the Euclidean distance as it out-
performs the cosine distance. All BERT models
without adapters are trained with 8 shots and 8 sup-
port due to memory considerations. We choose
learning rate and the variance regularizer for each
model from {1e − 5, 2e − 5, 5e − 5, 1e − 4} and
{1e− 4, 1e− 3, .01, .1, .5} based on the validation
performance. For all the experiments, a dropout

Backbone Methods Accuracy

Vanilla ProtoNet 86.3± 1.2
Big ProtoNet 87.8± .9

Leopard 81.4± 9.7
BERT-base ProtoNet w/ Isotropic Gaussian 88.7± 1.4

ProtoNet w/ Isotropic Gaussian + reg 89.5± .8
Variance Aware ProtoNet (ours) 88.9± 1.5

Variance Aware ProtoNet + reg (ours) 90.1± .9

Vanilla ProtoNet 85.6± 1.3
Big ProtoNet 87.1± 1.1

BERT-base
w/Adapters ProtoNet w/ Isotropic Gaussian 87.8± .8

ProtoNet w/ Isotropic Gaussian + reg 88.6± .7
Variance Aware ProtoNet (ours) 88.1± 1.2

Variance Aware ProtoNet + reg (ours) 89.7± .8

Vanilla ProtoNet 87.4± 1.3
Big ProtoNet 88.5± 1.1

Leopard 82.2± 9.8
Clinical BERT ProtoNet w/ Isotropic Gaussian 89.6± 1.2

ProtoNet w/ Isotropic Gaussian + reg 90.1± .8
Variance Aware ProtoNet (ours) 89.9± 1.1

Variance Aware ProtoNet + reg (ours) 90.9± .8

Vanilla ProtoNet 86.8± .9
Big ProtoNet 87.9± 1.1

Clinical BERT
w/Adapters ProtoNet w/ Isotropic Gaussian 88.4± 1.3

ProtoNet w/ Isotropic Gaussian + reg 89.1± .9
Variance Aware ProtoNet (ours) 88.7± 1.1

Variance Aware ProtoNet + reg (ours) 89.5± .9

Table 6: Results showing accuracy percentages on the
meta-validation dataset. We sample 1000 tasks with 4-
way 8-shot and 16-support classification. We replicate
each experiment over 10 random seeds.

layer is added after the final BERT layer.
For our internal dataset, we also experiment

with {2, 3, 4} ways and {4, 6, 8} shots and
{4, 6, 8, 12, 16} support. The experiments with 2-
way and 3-way produce poor results on our down-
stream tasks irrespective of the number of shots
and support. During training with 4-way, the meta-
validation results for lower support show worse
performance than the numbers reported in table 4.
We believe that it is caused by the high variability
between the various groups of samples of a given
class. Finally our downstream performance is best
for models that are trained on higher number of
shots.

In case of ProtoNets, there is no adaptation dur-
ing testing. The validation set is used to compute
prototypes to query the test set. However, in case
of Leopard, there is an additional few shot adap-
tation step that occurs as outlined in (Wang et al.,
2021). In this case, the validation set is used for the
adaptation and also as the support set for querying
the test set.

E.1 Effect of Regularization on means and
variances

Table 9 illustrates the benefits of adding the regu-
larization term. The regularization term not only
aids in lowering the variances but also manages
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Backbone Methods Foraminal
Knee
(Acute Tear vs Not)

Knee
(Complete tear vs Not)

Lung

Baseline .24 .29 .32 .19
Multi-Task .29 .34 .41 .27

Vanilla ProtoNet .75 .71 .66 .65
Big ProtoNet .57 .58 .53 .6

Leopard .63 .72 .61 .41
BERT-base ProtoNet w/ Isotropic Gaussian .77 .72 .69 .68

ProtoNet w/ Isotropic Gaussian + reg .78 .76 .71 .70
Variance Aware ProtoNet (ours) .79 .78 .73 .72

Variance Aware ProtoNet + reg (ours) .81 .80 .76 .75

Baseline .28 .32 .40 .25
Multi-Task .32 .35 .44 .29

Vanilla ProtoNet .74 .73 .65 .67
Big ProtoNet .58 .59 .55 .61

BERT-base w/ Adapters ProtoNet w/ Isotropic Gaussian .78 .71 .67 .69
ProtoNet w/ Isotropic Gaussian + reg .80 .74 .72 .74

Variance Aware ProtoNet (ours) .80 .74 .72 .74
Variance Aware ProtoNet + reg (ours) .82 .77 .77 .78

Baseline .31 .37 .42 .28
Multi-Task .34 .45 .47 .38

Vanilla ProtoNet .77 .72 .68 .66
Big ProtoNet .57 .59 .53 .61

Leopard .74 .78 .77 .62
Clinical BERT ProtoNet w/ Isotropic Gaussian .78 .74 .71 .68

ProtoNet w/ Isotropic Gaussian + reg .80 .76 .74 .71
Variance Aware ProtoNet (ours) .82 .79 .76 .74

Variance Aware ProtoNet + reg (ours) .84 .81 .79 .76

Baseline .35 .42 .45 .33
Multi-Task .37 .45 .49 .37

Vanilla ProtoNet .76 .74 .70 .67
Big ProtoNet .58 .60 .57 .62

Clinical BERT w/ Adapters ProtoNet w/ Isotropic Gaussian .79 .76 .72 .70
ProtoNet w/ Isotropic Gaussian + reg .81 .77 .73 .72

Variance Aware ProtoNet (ours) .83 .81 .76 .73
Variance Aware ProtoNet + reg (ours) .85 .82 .81 .77

Table 7: Table showing F1 scores of few shot models with BERT-base and Clinical BERT backbones in downstream
classification tasks.

to push the centroids away further which we be-
lieve sheds some light on our method’s success in
downstream classification tasks. We also carry out
various ablation studies by changing the regulariza-
tion hyperparameter.

E.2 Metric and other modeling choices
In (Snell et al., 2017), only the sample means (i.e.

means of the support vectors) are used to estimate
the true population mean. In fact, by the Central
limit theorem, we can use the sample variance (af-
ter normalization) to get an unbiased estimate of the
population variance. Unlike the original work, we
sought to use this extra information to better under-
stand the class distribution. The Gaussian assump-
tion is strong but it is motivated by the fact that
it allows us to compute Wasserstein distances in a
computationally tractable manner. Finally to mo-
tivate the choice of using the Wasserstein distance
instead of a Bergman divergence like KL diver-

gence, consider the following motivating example,
N1(µ1,Σ1), N2(µ2,Σ2) be 2 Gaussians and for
simplicity assume: Σ1 = Σ2 = wI and µ1 ̸= µ2.
With these assumptions, W 2 = ||µ1 − µ2||2 And
DKL = 1

2w ||µ1 − µ2||2. Note that Wasserstein
distance does not change if the variance changes
(w can be arbitrarily large) whereas the KL diver-
gence does. In fact, this is pointed out in (Ding
et al., 2022) where their goal is to create spherical
Gaussians with large radii. However, we found that
having large variance produces worse results in
our downstream tasks. Finally similar dependence
on variance is in play if one computes a simple
likelihood of the sample in the class distributions.

F Public Benchmarks

In this section, we describe the training proce-
dure for the public benchmark datasets. The base-
line results are taken from (Wang et al., 2021;
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Algorithm 1: PyTorch style Pseudocode for Variance Aware ProtoNets
/* f: Encoder Network */

/* N: dimension of the representation */

/* c: Number of classes or ways */

/* k: Shots or number of examples per class in the query set */

/* m: Supports per class in the support set */

/* dist: Pairwise squared Euclidean distance function */

/* loss_fn: Cross-Entropy Loss function */

/* λ: regularizer */

Input: Sample a set L of labels, mini-batch of Support set SL, Query set QL

/* Compute statistics for each class in the Support set */

sorted_labels = torch.sort(support_labels) // sort the labels in the support set

c = len(s.values.unique()) // Number of ways

support_sorted = support[sort.indices]
labels_sorted = labels[sort.indices]
embeddings_support = f (support_sorted) // m ∗ c×N

m = embeddings_support.shape[0]//c // support per class

embeddings_support = embeddings_support.reshape(c,m,−1) // c×m×N

support_mean = embeddings_support.mean(dim=1) // c×N

support_var = torch.var(embeddings_support, dim=1)**2 // c×N

/* Get embeddings for the query set and compute distances from the support */

query = f(QL) // k ×N

logits = dist(query, support_mean) + torch.sum(support_var,dim=1)) // k × c, adding trace to the

distance matrix

loss = loss_fn(-logits, query_labels) + λ * (torch.norm(support_var, dim=1))/c // Regularizer term

Figure 11: Figure showing the effect of changing the
regularization hyperparameter. Top: Figure showing
the F1 score averaged over our 4 internal datasets. Bot-
tom: Figure showing 16-shot accuracy averaged over 13
public datasets. We see a similar trend for 4 and 8-shot
accuracies for these public datasets as well.

Hyperparameter Type Internal Dataset Public Datasets

Epochs 30 40
Sequence Length 128 128
Optimizer AdamW AdamW
Learning Rate 3e− 5 2e− 5
Weight Decay 1e− 4 1e− 4
Gradient Clip 3 2
Early Stopping Yes Yes
Learning Rate Scheduler Linear Linear
Dropout .1 .1
Shots 8 8
Number of supports 16 16
Variance Regularizer .1 .01

Table 8: Hyperparameters used for all our Variance
Aware ProtoNet experiments with BERT+Adapter back-
bones

Bansal et al., 2020a). We have followed the same
meta-training procedure as described in (Wang
et al., 2021). Specifically, for meta-training, WNLI
(m/mm), SST-2, QQP, RTE, MRPC, QNLI, and the
SNLI datasets (Bowman et al., 2015) are used. The
validation set of each dataset is used for hyperpa-
rameter searching and model selection. The models
are trained by sampling episodes from the meta-
training tasks. The sampling process first selects a
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Experiment type Without regularization With regularization

Task Names
Distance

between centroids
Norm of

class 0 variance
Norm of

class 1 variance
Distance

between centroids
Norm of

class 0 variance
Norm of

class 1 variance
Lung 2.97 1.12 1.31 3.96 1.15 1.08
Foraminal 3.65 1.71 1.59 4.17 1.62 1.38
Knee (ACL complete tear) 4.12 1.97 2.10 5.01 1.87 1.85
Knee (ACL acute tear) 3.95 1.53 1.49 4.32 1.27 1.35

Table 9: Table showing the showing the class statistics with and without regularization. Higher Distance and Lower
variance is better.

dataset and then randomly selects m examples for
each class as the support set and another k-shots
as the query set and the probability of a selected
task is proportional to the square root of its dataset
size (Bansal et al., 2020b). For meta-testing, we
use 13 datasets ranging from NLI, text classifica-
tion and sentiment analysis. For the models and
datasets marked with ∗, we use the results reported
in (Bansal et al., 2020a) and for those datasets, we
use the code from (Wang et al., 2021) to generate
the results for ProtoNet with Bottleneck Adapters
while the rest of the results are taken from (Wang
et al., 2021). We reuse their implementation and
configuration of their adapters but modify the loss
function with the Wasserstein distance along with
our variance regularization term. Table 5 shows the
superior performance of our method beating all the
baselines. For detailed hyperparameters, please see
section E. Our method without the variance regu-
larization term shows similar performance to that
of the Leopard baselines. For the isotropic variant
method, it shows similar performance to Leopard
with the variance regularization term and worse
without.

G Stability of the Prototypes

For simplicity, we use our entire validation sets to
compute prototypes. In this section we show how
our results vary if we choose a subset of our vali-
dation set to create the prototypes. The figure 12
shows the F1 scores when a subset of the data is
used to compute the prototypes and the variances
for a given class.

H Failure Cases

We also test our models on few additional tasks like
(i) predicting the severity of disc herniation in our
cervical dataset and (ii) predict the presence of cord
compression at various motion segments in our
internal dataset on the lumbar spine. Our models
achieve an F1 score of .51 and .39 respectively.
The figure 13 shows how the classes are distributed.

Figure 12: Figure showing stability of the prototypes.
We sample k examples 50 times to construct the proto-
types and the standard deviations.

We attribute the failures to the poor separability
between classes and the high variance in the data
distribution.

It is an ongoing project to understand what
makes our model work for these downstream tasks
and why our model works on some tasks and not
others. We hope that by simply increasing the diver-
sity of our training data or applying newer adapter
architectures like Mix-and-Match Adapter (He
et al., 2022) and Compacter (Karimi Mahabadi
et al., 2021), our current methods will work on a
wide range of downstream pathologies.
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Figure 13: T-Sne projections of our Cord and Disc Data.
The prototypes for cord classes are very close while
the prototypes for disc are well separated. However
the large variance in the disc classes causes bad perfor-
mance.


