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Abstract

The application of natural language processing
(NLP) to cancer pathology reports has been fo-
cused on detecting cancer cases, largely ignor-
ing precancerous cases. Improving the charac-
terization of precancerous adenomas assists in
developing diagnostic tests for early cancer de-
tection and prevention, especially for colorectal
cancer (CRC). Here we developed transformer-
based deep neural network NLP models to per-
form the CRC phenotyping, with the goal of
extracting precancerous lesion attributes and
distinguishing cancer and precancerous cases.
We achieved 0.914 macro-F1 scores for clas-
sifying patients into negative, non-advanced
adenoma, advanced adenoma and CRC. We fur-
ther improved the performance to 0.923 using
an ensemble of classifiers for cancer status clas-
sification and lesion size named entity recogni-
tion (NER). Our results demonstrated the poten-
tial of using NLP to leverage real-world health
record data to facilitate the development of di-
agnostic tests for early cancer prevention.

1 Introduction

Cancer has been the second leading cause of death
with more than 1,900k new cases and 600k cancer
deaths in the United States in 2022 (Siegel et al.,
2019). Among those, colorectal cancer (CRC) is
the third most common cancer and the third leading
cause of cancer death (Siegel et al., 2019). Detect-
ing CRC at its early stage can dramatically improve
clinical outcomes. The 5-year survival rate is 90%
when colorectal cancer is identified at the localized
stage compared to 73% and 17% survival rates at
the regional or distant stage, respectively1.

CRC progresses from asymptomatic non-
advanced adenoma (NAA) to advanced adenoma
(AA) and then to invasive carcinoma (Junca et al.,
2020). AAs are adenomas characterized by villous

1https://www.cancer.org/cancer/
colon-rectal-cancer/detection-diagnosis-staging/
survival-rates.html

or tubulovillous histology, adenomas or sessile ser-
rated lesions ⩾ 10mm, or high-grade dysplasia
(Junca et al., 2020; Shaukat et al., 2021). AA indi-
cates an intermediate or high risk for CRC (Lieber-
man et al., 2012) and requires CRC screening every
three years (Lieberman et al., 2012). Recent eco-
nomic studies suggest a test with increasing ade-
noma sensitivity in a blood-based CRC screening
test can reduce CRC incidence and reduce mortality
(Putcha et al., 2022a).

There is great interest in developing noninvasive
diagnostic tests with high sensitivity and specificity
for advanced adenoma and CRC screening (Im-
periale et al., 2014; Putcha et al., 2022a). This
development process requires biomarker discovery
and clinical validation based on samples collected
from large numbers of individuals whose colorec-
tal cancer statuses are confirmed by colonoscopy
(Putcha et al., 2022b). Correctly classifying the
colorectal cancer statuses, namely negative (NEG),
NAA, AA and CRC, requires expertise in distilling
and interpreting tumor stage and histology infor-
mation and size of precancerous adenoma from
colonoscopy and pathology reports. Such nuanced
annotations are typically not documented and col-
lected in structured sections of electronic health
records or standardized via International Classifi-
cation of Diseases (ICD) codes (Raju et al., 2015,
2013). Therefore, extracting this information from
colonoscopy and pathology reports and generating
reliable CRC status classification has heavily relied
on manual review by trained gastrointestinal pathol-
ogists. Such review is time-consuming, costly and
difficult to scale.

To reduce the burden of manually annotating
thousands to hundreds of thousands of pathology
reports, and to facilitate the development of nonin-
vasive diagnostic tools for colorectal cancer preven-
tion, we investigated classical and advanced natural
language processing (NLP) methods to automati-
cally extract precancerous lesion information and

https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html
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determine CRC status (Figure 1). We developed
transformer models to extract both categorical and
numerical attributes from colonoscopy and pathol-
ogy reports. Compared to Bag-of-Word (BoW)
and convolutional neural network (CNN) models
(see Data and methods in section 3), we achieved
the best performance by fine-tuning the BioBERT
model. Since lesion size is an important factor to
distinguish between the AA and NAA classes (Ap-
pendix A.1, Winawer and Zauber (2002)), we de-
veloped an entity recognition model for lesion size
extraction and improved its performance through
transfer learning from a non-biomedical domain.
We further improved the cancer status classification
model performance by explicitly adding extracted
lesion size through an ensemble model. Our study
also addressed two challenges for NLP practice
that are specific to the biomedical industry set-
ting: annotation at the sentence level for numer-
ical variable extraction is limited; and most clin-
ical trial studies that enroll patients from various
sites still receive health records in the scanned PDF
format (Raju et al., 2015), creating challenges for
precisely locating the diagnosis section in health
records. Our research demonstrated that, along
with domain knowledge-informed feature learning,
fine-tuned advanced deep learning methods are able
to achieve high accuracy in highly complex and nu-
anced disease phenotyping tasks, even with only
several thousands of documents for model training.

2 Related Work

NLP methods have been applied to pathology re-
ports to extract categorical attributes associated
with cancer diagnosis. Yala et al. (2017) used ma-
chine learning methods with Bag-of-Words fea-
tures to classify patients into breast cancer carci-
noma and atypia categories. Adding clinical con-
cepts from the Unified Medical Language System
(UMLS) was shown to improve classification per-
formance (Li and Martinez, 2010; Martinez and
Li, 2011). Preston et al. (2022) used embedding
vectors that are pre-trained in BERT-based (Devlin
et al., 2018) models for tumor site, histology and
TNM staging (T: tumor size/location; N: lymph
node status; M: metastasis) classification from lon-
gitudinal reports and developed classifiers to detect
cancer cases. Park et al. (2021) extracted cancer
histology, site and surgical procedure from colon,
lung and kidney cancer data. They demonstrated
good performance by leveraging transfer learning

across cancer types and few-shot learning by ac-
counting for semantic similarity. Other deep learn-
ing approaches such as hierarchical attention neural
networks (Gao et al., 2018, 2019), multitask learn-
ing (Alawad et al., 2020), and graph convolutional
networks (Wu et al., 2020) have been employed
to extract cancer characteristics such as primary
site and histological grade. However, these studies
primarily focused on extracting categorical cancer
characteristics that are routinely collected in cancer
registries (Klein and Havener, 2011) and largely ig-
nored numerical and precancerous attributes, which
are critical for developing early cancer detection
technology.

The extraction of numerical cancer attributes is
challenging because the semantic context for nu-
merical variables is mostly at the sentence level
instead of document/patient level (Li and Martinez,
2010; Odisho et al., 2020). This creates a discrep-
ancy between training objectives (sentence level)
and output evaluation (patient level). To overcome
this limitation, Li and Martinez (2010) first iden-
tified the sentences that contain the numerical val-
ues and extracted them through regular expression
matching. AAlAbdulsalam et al. (2018) treated
TNM staging extraction as a sequence labeling task
with pattern matching and conditional random field
techniques. Odisho et al. (2020) encoded tokens
and their context words as bag-of-n-gram features
and classified the token sequence for TNM stag-
ing and tumor volume extraction. In our work,
we treated numerical lesion size extraction as a
named entity recognition (NER) task and addressed
the challenge of limited annotated sample size by
transfer learning from models pre-trained in a non-
biomedical domain.

Previous attempts to employ NLP methods to
parse colonoscopy reports and linked pathology
reports have aimed to characterize adenomas due
to their importance in estimating colorectal cancer
risk (Lee et al., 2019; Raju et al., 2013, 2015; Imler
et al., 2013). The limitations of current studies are
two fold: first, most studies still rely on rule-based
systems such as Linguamatics (Lee et al., 2019) and
cTAKEs (Imler et al., 2013; Savova et al., 2010)
for extracting adenomas through pattern-matching
and dictionary look-up. Deriving rules can be time-
consuming, require extensive domain knowledge,
and likely results in overfitting to the development
dataset and limited portability; second, NLP studies
for colorectal cancer do not perform end-to-end
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Figure 1: Overall framework

CRC phenotyping to classify patients into NEG,
NAA, AA and CRC, which are of great interest
to characterize CRC risk and prioritize patients
for cancer screening and early cancer detection.
Here we performed end-to-end precancerous and
cancer status characterization with deep learning
methods which promise to be more generalizable
and efficient than rule-based approaches.

3 Data and methods

3.1 Dataset

In this study, we used health records from 3,068
patients collected as part of two studies from 68
collection sites. In some cases, multiple types of
health records are associated with one patient, in-
cluding colonoscopy, pathology, surgical pathol-
ogy, and radiology reports. In total, there are 5,405
documents for all patients. Appendix Figure A1
shows the distribution of document numbers for
each patient.

We split patients into train and test sets stratified
by cancer status. To assess the generalizability of
NLP models when applied to pathology reports
collected in unseen sites, we used samples from
independent collection sites for the train and test
sets. There are 2,149 samples in the training set
from 54 sites and 919 samples in the test set from
14 independent sites. Appendix Table A1 shows
the sample count for each cancer status in the train
and test sets.

3.2 Document and sentence level annotations

A certified pathologist reviewed and assigned
patient-level labels for colorectal cancer status and
lesion size. The detailed annotation criteria are
described in Appendix A.1. For lesion size annota-
tion, the pathologist first identified the index lesion,
which is the most clinically significant lesion ac-
cording to cancer status and lesion type. Then the
size of the index lesion was used as the patient-

level lesion size annotation. We used zero as the
lesion size for healthy samples with no identified
lesions.

We generated sentence-level annotation for le-
sion size. We treated the lesion size named entity
annotation as a binary label with tokens within the
lesion size entity as 1 and tokens outside the lesion
size entity as 0. We did not distinguish the start
or end token of the named entity. We randomly
selected 499 documents from 225 patients from
the training set and 331 documents from 114 pa-
tients from the test set for NER model training and
evaluation, respectively.

3.3 Data preprocessing

Since the reports are in scanned PDF format, we
first digitized the reports with optical character
recognition provided by the Google Vision API2.
The OCR algorithm outputs the recognized text
and the coordinates of the bounding box for each
text block.

We used fuzzy matching for words: "diagnosis,"
"finding," "impression," "diagnoses," "findings,",
"impressions," and "polyp" with text in each bound-
ing box. This allowed us to identify sections im-
portant for diagnosis and ignore irrelevant sections
to increase the signal-to-noise ratio. To allow for
some error in bounding box identification, we re-
tained texts within 10 bounding boxes and at most
100 words after the first matched bounding box.
These keywords for fuzzy matching and window
size were determined by an iterative manual inspec-
tion of reports in the training set.

For CNN and BoW, we concatenated documents
corresponding to one patient into one text segment
and padded the concatenated text segment to the
max length. For the BERT models with a sequence
length limit of 512 tokens, we split the text into
segments with 10 overlapping tokens.

2https://cloud.google.com/vision/docs/ocr

https://cloud.google.com/vision/docs/ocr
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3.4 Cancer status classification model

We built and tested three models, namely Bag-of-
Words (BoW) (Zhong et al., 2018), CNN (Kim,
2019) and BioBERT (Lee et al., 2020), for cancer
status classification. We split the 2,149 documents
reserved for training into training and validation
sets in a 9:1 ratio and selected the best model based
on the validation macro-F1 score [See 3.7]. For
BoW, tf-idf representation (Zhong et al., 2018), a
term-frequency based featurization, was derived as
input features for SVM models with linear, poly-
nomial or radial basis function (RBF) kernels. We
used unigram features and removed terms that ap-
pear in less than 10 documents.

For the CNN model, instead of doing hand-
crafted feature engineering, 1D convolution kernels
were learned to extract localized text patterns from
pathology reports. The convolutional layer is fol-
lowed by a max-pooling layer and a fully connected
layer to classify colorectal cancer status.

For the BERT model, BioBERT (Lee et al.,
2020), a pre-trained biomedical language repre-
sentation, was employed and fine-tuned as follows
to encode the pathology reports for cancer status
classification. BioBERT was pre-trained based on
BERT initiated weights with biomedical domain
corpora (PubMed abstracts and PMC full-text arti-
cles) and has increased performance in biomedical
text mining tasks including NER, relation extrac-
tion and question-answering. We added a fully con-
nected layer after the [CLS] embedding vector for
multiclass classification (Devlin et al., 2018). Be-
cause one patient can be associated with multiple
documents or text segments but the cancer status
label is annotated for each patient, this creates a
multiple instance learning problem. We treated
each patient as a bag and each text segment as an
instance within the bag. We used max-pooling to
get the largest softmax probability for each class
across multiple text segments and renormalize with
the softmax function to calculate cross-entropy loss
per patient.

All these models were optimized through
Bayesian hyperparameter tuning (Snoek et al.,
2012; Shahriari et al., 2015) with early stopping
from the Hyperband algorithm (Li et al., 2017).
More details of the procedures can be found in the
Appendix Table A3.

3.5 Lesion size extraction model
We treated the lesion size extraction as a NER
task and compared two approaches. For direct
fine-tuning, we used a pretrained BERT-base-
uncased3 model and classified token embedding
into binary labels where the positive label indi-
cates the target named entity. We also fine-tuned a
XLM_RoBERTa_base4 model.

Observing the similarity between lesion size vs.
one of the annotated named entities (QUANTITY:
Measurements, as of weight or distance) from the
OntoNotes5 corpus (Weischedel et al., 2011), we
used an XLM_RoBERTa5 model that was previ-
ously fine-tuned on the OntoNotes5 dataset for
NER of QUANTITY. We then continued to fine-
tune this model on the cancer pathology dataset for
lesion size extraction to explore the benefit of trans-
fer learning. Both direct fine-tuning and transfer
learning models were trained and validated based
on a 7:1 split of the sentence-level annotated docu-
ments. We selected the model with the best valida-
tion F1 score and evaluated its performance on the
holdout test set. The hyperpameters can be found
in Appendix Table A3.

3.6 Ensemble model
We built an ensemble model with BioBERT pre-
dicted probability for each class and binarized le-
sion size feature (lesion size ⩾ 10mm or not).
For the model training, we used the binarized
ground-truth lesion size. For model inference, we
used the binarized NER-extracted lesion size. We
trained a random forest model with 10 trees and
max_depth=10 as the ensemble model on the train-
ing set and tested its performance on the validation
and test sets for the cancer status classification task.

3.7 Metrics
For cancer status classification evaluation, we com-
puted the precision, recall and F1 for each can-
cer status. We used the macro-F1=

∑n
i

Fi
n for the

overall model performance metric for multi-class
classification (n classes).

For NER evaluation, we count consecutive posi-
tive labeled tokens as one named entity. We iden-
tified named entities derived from ground-truth la-
bels (total ground-truth positive, TGP) and pre-
dicted labels (total predicted positive, TPP). We

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/xlm-roberta-base
5https://huggingface.co/asahi417/

tner-xlm-roberta-base-uncased-ontonotes5

https://huggingface.co/bert-base-uncased
https://huggingface.co/xlm-roberta-base
https://huggingface.co/asahi417/tner-xlm-roberta-base-uncased-ontonotes5
https://huggingface.co/asahi417/tner-xlm-roberta-base-uncased-ontonotes5
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counted an exact match of starting and ending in-
dex of the ground-truth and predicted entities as
true positive (TP). We calculated the precision as
TP
TPP , recall as TP

TGP and F1 score for the named
entity recognition task.

4 Results

4.1 Cancer status classification model
performance

We treated the cancer status (CRC, AA, NAA and
NEG) extraction as a document classification prob-
lem and trained BoW, CNN and BioBERT mod-
els. All models achieved over 0.8 macro-F1 scores,
with the BioBERT model outperforming BoW and
CNN (Table 1). In particular, all models including
BoW classified CRC and NEG with high accuracy
(> 0.9 F1 score) and AA and NAA with lower accu-
racy (< 0.8 F1 score). This suggests that unigram
features are sensitive for classifying cancer and
healthy patients from pathology reports but less
sensitive for differentiating precancerous patients.

The CNN model (NAA F1=0.842, AA
F1=0.773) improved NAA and AA performance
compared to BoW (NAA F1=0.706, AA F1=0.758).
This suggests that the larger kernels used in CNN
improve the capture of semantics for precancer-
ous classes compared with unigram features. The
BioBERT model further improved AA and NAA
performance (NAA F1=0.888, AA F1=0.833). As
the model complexity and its ability to capture long-
range interaction increases, the model performed
better. Although the number of training samples
was limited, the more complex models appear to
be more generalizable.

4.2 Lesion size extraction model performance

We performed an error analysis on the training and
validation data to identify the source of incorrect
predictions (Table 2, Appendix Table A2) for the
BioBERT model. We found misclassifications were
usually confusion between AA and NAA. 68.0%
(17/25) of incorrect predictions for NAAs were
classified as AA, and 65.0% (13/20) of incorrect
predictions for AAs were classified as NAAs. Since
lesion size is an important factor to distinguish be-
tween the AA and NAA classes (Appendix A.1),
we proposed to explicitly add lesion size as an ad-
ditional feature to improve the BERT-based cancer
status classification model.

The direct fine-tuning of the BERT model for
lesion size NER had low performance, potentially

due to the small sample size for sentence-level an-
notation (test F1 score=0.202, precision=0.159 and
recall=0.273, Table 3). We then evaluated the trans-
fer learning approach, using an XLM_RoBERTa
model that had been fine-tuned on the OntoNotes
dataset for QUANTITY extraction. Directly apply-
ing this model to the cancer pathology dataset to
extract lesion size led to an increased F1 (0.508)
score, with high recall (0.703) and low precision
(0.398). We next continued to train this model
on the cancer pathology dataset to perform lesion
size extraction. Interestingly, additional fine-tuning
substantially improved the performance (F1=0.757,
precision=0.761 and recall=0.753), especially the
precision. This suggests that transfer learning using
models fine-tuned on tasks outside the biomedical
domain can substantially improve domain-specific
NLP performance, even with a relatively small sam-
ple size.

4.3 Ensemble model improves cancer status
classification

We then assessed the effect of explicitly adding
lesion size as an additional feature to classify can-
cer status. The ensemble model which combined
BioBERT predicted probabilities and binarized le-
sion size (⩾ 10mm or not) improved NAA perfor-
mance from 0.888 to 0.894 and AA performance
from 0.833 to 0.854 while maintaining the already
high performance for the NEG and CRC classes
(Table 1). The macro-F1 was 0.923 for the en-
semble model compared to 0.914 for the BioBERT
model alone. This suggests that explicitly adding
features that are informed by domain knowledge
can improve classification performance compared
to fine-tuned transformer models alone. This ap-
proach may be particularly beneficial for applica-
tions in which training data are limited.

4.4 Integrated gradient analysis
To investigate which features are most important
for BioBERT model performance, we performed
integrated gradient analysis, which computes at-
tribution scores that measure feature importance
with respect to the classification prediction (Sun-
dararajan et al., 2017). We calculated attribution
with respect to the input embedding vector. We
performed integrated gradient analysis for a ran-
dom subset of 534 NEGs, 197 NAAs, 168 AAs and
80 CRCs and calculated the averaged feature at-
tributions across documents for each class (Figure
2). High-scoring tokens related to CRC classifica-
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Model NEG F1
(n=515)

NAA F1
(n=183)

AA F1
(n=146)

CRC F1
(n=75) Macro-F1

BoW 0.941 0.706 0.758 0.952 0.839
CNN 0.971 0.842 0.773 0.947 0.883

BioBERT 0.972 0.888 0.833 0.962 0.914
BioBERT+Lesion Size 0.965 0.894 0.854 0.980 0.923

Table 1: Performance of cancer status classifiers as measured by the test F1 scores for each class and their macro-
averages.

Figure 2: Attribution score. Tokens with the largest integrated gradient analysis attribution score for each cancer
status. (Top 10 positive and negative attribution scores.)

Predicted Label
NEG NAA AA CRC Total

True Label

NEG 1195 8 15 0 1218
NAA 7 456 17 1 481
AA 5 13 257 2 277

CRC 1 0 0 172 173

Table 2: Error analysis for the BioBERT model in the
training and validation data.

tion included “tumor,” “invasion,” and “carcinoma.”
High-scoring tokens related to AA and NAA clas-
sification included “tub”, “##umour”, and “##eno.”
This model interpretability analysis helped to con-
firm that our NLP model is able to leverage key
terms that match domain knowledge.

5 Conclusion

Determining cancer status and characterizing pre-
cancerous lesions are critical and time-consuming
steps for the development and evaluation of diag-
nostic tests for colorectal cancer screening. Here
we achieved a 0.914 macro-F1 score for cancer
status classification with transformer models fine-
tuned using BioBERT. Informed by the domain
knowledge and error analyses, we identified le-
sion size as a critical factor for differentiating be-
tween AAs and NAAs, but one that was not effi-
ciently captured in BioBERT context-dependent
embeddings. Using an ensemble model combin-
ing a fine-tuned BioBERT model and a lesion size
named entity recognition model, we further im-
proved classification performance to a macro-F1

score of 0.923. The lesion size extraction model
was developed through transfer learning, using a
transformer model trained in a non-biomedical do-
main. We showed that directly fine-tuning of trans-
former models was inadequate for domain-specific
NLP tasks, and that precise feature engineering and
use of ensemble models was needed to improve
classification performance. Overall, we provided
an accurate algorithm for characterizing precancer-
ous cases that may help to improve early colorec-
tal cancer detection and prevention, and a model
training framework that leverages advanced NLP
techniques to address complex disease phenotyping
tasks in biomedical domain.

6 Limitations

One limitation of this work is that we could not
fully evaluate how use of scanned reports and OCR
affects performance as compared to use of elec-
tronic reports, due to a lack of dataset with paired
scanned and electronic formats. The scanned for-
mat makes the selection of relevant sections from
the colonoscopy and pathology reports challeng-
ing. We used fuzzy matching of selected keywords
to identify sections that are likely important for
diagnosis, but this process might introduce bias.
Additionally, the digitization process by OCR re-
sults in errors in keywords and numerical values.
For example, we observed “tubulovillous” was mis-
recognized as “tubulovillaus” and "0.2cm" is mis-
recognized as "0:2cm". This could affect the perfor-
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Model Train Val Test
F1 precision recall F1 precision recall F1 precision recall

FT_BERT 0.316 0.240 0.450 0.174 0.142 0.225 0.202 0.159 0.273
FT_XLM_RoBERTa 0.471 0.372 0.644 0.259 0.197 0278 0.243 0.186 0.351

OntoNotes_XLM_RoBERTa 0.395 0.275 0.702 0.360 0.243 0.695 0.508 0.398 0.703
TL_OntoNotes_XLM_RoBERTa 0.933 0.911 0.956 0.874 0.856 0.893 0.757 0.761 0.753

Table 3: NER model performance. FT_BERT: direct fine-tuned BERT model. FT_XLM_RoBERTa: direct fine-
tuned XLM_RoBERTa model. OntoNotes_XLM_RoBERTa: XLM_RoBERTa model that has been fine-tuned
on OntoNotes dataset. TL_OntoNotes_XLM_RoBERTa: XLM_RoBERTa model that has been fine-tuned on
OntoNotes dataset and pathology lesion size dataset.

mance in NER and final cancer status classification.
Future work could include evaluating other OCR
tools besides Google Vision.

Another limitation is the lack of validation stud-
ies using an external dataset. It is known that health
records vary substantially in both formats and con-
tent. Studies have been done to transform pathol-
ogy reports to use standardized terminologies and
diagnoses (Kim et al., 2020; Ryu et al., 2020). Even
though the dataset used in this study is collected
from 68 collection sites across the US, the sam-
ple size is still relatively small and may not fully
capture the variabilities of real-world data.
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A Appendix

A.1 CRC status annotation criteria
• CRC

– All stages (I-IV)

• Advanced adenoma (AA)

– Adenoma with carcinoma in situ or high-
grade dysplasia, any size

– Adenoma, any villous features, any size
– Adenoma ⩾ 1.0 cm in size
– Serrated lesion, ⩾ 1.0 cm in size, in-

cluding sessile serrated adenoma/polyp
(SSA/P) with or without cytological dys-
plasia and hyperplastic polyps (HP) ⩾
1.0 cm

– Traditional serrated adenoma (TSA), any
size

• Non-advanced adenoma (NAA)

– Any number of adenomas, all < 1.0 cm
in size, non-advanced

• Negative (NEG)

– All SSA/P < 1.0 cm and HP < 1.0 cm
NOT in sigmoid or rectum

– HP < 1.0 cm in the sigmoid or rectum
– Negative upon histopathological review
– No findings on colonoscopy, no

histopathological review
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Figure A1: Distribution of document number per patient.

Sample Count NEG NAA AA CRC Total
Train+Val set 1,221 482 273 173 2,149
Test set 515 183 146 75 919

Table A1: Sample count for combined training and validation set and for test set for cancer status classification
model.

Model Train Validation Test
F1 precision recall F1 precision recall F1 precision recall

BoW 1.000 1.000 1.000 0.909 0.926 0.897 0.839 0.845 0.838
CNN 0.998 0.998 1.000 0.920 0.932 0.911 0.883 0.886 0.882

BioBERT 0.960 0.955 0.965 0.946 0.946 0.946 0.914 0.904 0.925
BioBERT+Lesion Size 1.000 1.000 1.000 0.921 0.921 0.927 0.923 0.920 0.930

Table A2: Model performance for cancer status classification in training, validation and test sets.
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Hyperparameters

BoW

TfidfVectorizer:
• Minimum frequency for building vocabulary: 0~100%
• Maximum number of words: 800~2500

SVM:
• Regularization strength C: 0.001~1000
• Kernel: {linear, rbf, poly}

CNN

CNN:
• Embedding size: {64, 96, 128, 200, 256, 512}
• Size of kernels: {[3], [3, 6], [3, 4, 5], [3, 6, 9], [3, 4, 5, 6]}
• Number of output channels: {32, 64, 100, 128, 256}

Training:
• Batch size: {16, 32, 50, 64, 128}
• Learning rate: {0.001, 0.005, 0.01, 0.05, 0.1}
• Dropout: 0.01~0.5
• Number of epochs: 256~2048
• Early stopping patience: 20~50
• Weight decay: {0.0, 0.01, 0.05, 0.1, 0.15}

BioBERT

Fine-tuning:
• Batch size: {4, 8, 10, 12}
• Learning_rate: 1.0e-7~5e-5
• Dropout: 0.001~0.5
• Number of fine-tuning epochs: {5, 6, 7, 8, 9, 10}

Table A3: Searched Hyperparameters for the cancer status classification models. We conducted 100 iterations of
hyperparameter search for each of the cancer status classification models via Hyperband-enabled early-stopping (Li
et al., 2017) Bayesian optimization (Snoek et al., 2012; Shahriari et al., 2015) using Weights & Biases’ sweeps.
The best hyperparameters were determined using macro-F1 in the validation set. For NER model training, we used
batch size=4, learning rate=5e-5, warmup_steps=2, lower_case=True, and n_epoch=10.

https://wandb.ai/site/sweeps

