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Abstract

Unexpected responses or repeated clarification
questions from conversational agents detract
from the users’ experience with technology
meant to streamline their daily tasks. To reduce
these frictions, Query Rewriting (QR) tech-
niques replace transcripts of faulty queries with
alternatives that lead to responses that satisfy
the users’ needs. Despite their successes, exist-
ing QR approaches are limited in their ability to
fix queries that require considering users’ per-
sonal preferences. We improve QR by propos-
ing Personalized Adaptive Interactions Graph
Encoder (PAIGE). PAIGE is the first QR ar-
chitecture that jointly models user’s affinities
and query semantics end-to-end. The core idea
is to represent previous user-agent interactions
and world knowledge in a structured form —
a heterogeneous graph — and apply message
passing to propagate latent representations of
users’ affinities to refine utterance embeddings.
Using these embeddings, PAIGE can poten-
tially provide different rewrites given the same
query for users with different preferences. Our
model, trained without any human-annotated
data, improves the rewrite retrieval precision of
state-of-the-art baselines by 12.5–17.5% while
having nearly ten times fewer parameters.

1 Introduction

Facilitating seamless human-computer interactions
is a fundamental goal of conversational AI agents
such as Alexa, Cortana, and Siri. However,
some user interactions lead to frictions, where the
AI agent delivers an unexpected response or repeat-
edly asks the user to clarify the query. Such fric-
tions stem from system errors such as Automatic
Speech Recognition (ASR) and Natural Language
Understanding (NLU). Some aspects of the frictions
are highly personalized, depending on characteris-
tics such as the user’s demographics and interests.
For example, when asking a conversational agent

1Work done while at Amazon Alexa AI.

to “Put on Skyfall,” one user may expect the system
to play a song named “Skyfall” while another may
wish to see a movie with the same title.

Query Rewriting (QR; Grbovic et al., 2015; Pon-
nusamy et al., 2020) aims to reduce frictions by
replacing the transcripts of faulty queries with alter-
natives that lead to desired responses. Personalized
QR systems were proposed in (Fan et al., 2021; Cho
et al., 2021), which restricted rewrite candidates
to the particular user’s historical requests. Such
systems, discussed in Section 6, typically trained
a text encoder to measure the similarity between
request and rewrite. While effective, they overlook
correlations between requests within a user’s dia-
logue history and the inter-dependencies spanning
across other users’ interactions. This information
can help reformulate defective and ambiguous re-
quests when augmented with external knowledge.

To address the aforementioned limitations, we
introduce a QR architecture named Personalized
Adaptive Interactions Graph Encoder (PAIGE) that
jointly models query semantics, world knowledge,
and users’ preferences in an end-to-end fashion.
The core idea is to represent users’ previous in-
teractions in a heterogeneous graph that we can
augment with external world knowledge (§3). The
graph representation learning with Graph Neural
Networks (GNNs) allows us to propagate the repre-
sentations of users’ historical interactions to refine
the utterance embeddings in an end-to-end manner
through joint training.

To construct the heterogeneous graph, we de-
compose the requests into smaller semantic units
such as domains, intents, utterances, entities, and
NLU-hypotheses (§3). We also create nodes repre-
senting the users and link every user node to nodes
representing entities (e.g., songs, artists) appearing
in the user’s historical requests. Inspired by work
in recommendation systems, we use cross-user con-
nections to capture communicative intents among
users (Goldberg et al., 1992; Wang et al., 2019b)
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and further ground the entity nodes in a knowledge
graph (e.g., Wang et al., 2019b, 2020), allowing
PAIGE to learn from the emerging high-order con-
nectivities.

We cast query rewriting as a link prediction
problem between an utterance node and nodes
corresponding to NLU-hypotheses, that abstract
away syntactic variations. Once the link to
NLU-hypothesis node is predicted, we can fol-
low the graph’s edges to select the most fre-
quent non-defective utterance mapping to that NLU-
hypothesis as our rewrite.

PAIGE is scalable in training, without the need
to load the full graph in memory, and efficient at
inference, without the need to re-process the entire
graph. Our inductive node encoding scheme per-
mits dynamically updating the graph to new knowl-
edge and user interests without model re-training.
We demonstrate the efficacy of our system with
a detailed analysis of experiments on real-world
conversation data (§5);

Our contributions are summarized as follows:

• We introduce PAIGE—a novel graph-based archi-
tecture for the task of personalized query rewrit-
ing in dialogue systems.

• We present a scalable and inductive method for
joint learning of query semantics and structured
user preferences in an end-to-end fashion.

• We show that modeling the high-order relations
in the graph facilitates collaborative learning
from customers’ collective behaviors.

• PAIGE outperforms state-of-the-art baselines
(i.e., 43.8% P@1 increase) while having nearly
10× fewer parameters.

2 Preliminaries

Spoken dialogue systems consist of many sequen-
tial components. When a user interacts with their
device, the agent’s ASR takes the audio signal as in-
put and transcribes it into textual utterance (query).
Next, the transcript enters the NLU module that
interprets it so that the downstream modules can
satisfy the user’s request. An NLU component typ-
ically consists of domain and intent classification
and entity linking, executed sequentially. As a pre-
processing step for later modules in the dialogue
system, the NLU module is instrumental to the sys-
tem’s overall quality. One of the challenges in
the NLU module is handling ambiguity or errors
cascading from the previous components. Query

Rewriting (QR) component tackles this issue by re-
placing the ASR transcript with an alternative that
leads to a satisfactory response for the user. Once
the NLU pipeline receives a rewrite, regular data
flow resumes.

2.1 Interactions Data Selection
As hand-annotating a large set of query-rewrite
pairs is expensive, we use weakly-labeled data dur-
ing training. Inspired by Fan et al. (2021) and Cho
et al. (2021), we leverage users’ feedback to collect
the datasets. For example, if a user barged in or
stopped the agent’s response, the turn is defective.
The details are available in Appendix A.

3 Graph Construction

The first step is building a heterogeneous graph
from user-agent interactions expressed as text and
semi-structured metadata. The graph will provide
the computational architecture for the message
passing algorithm.

Heterogeneous Graph (HG; Sun and Han (2013)).
HG is defined as a directed graph G = (V, E) with
a node type mapping function τ : V → A and a
link type mapping function ψ : E → R, where each
node v ∈ V belongs to one particular node type
τ(v) ∈ A, each link ε ∈ E belongs to a particular
relation ψ(ε) ∈ R, |A|+|R| > 2, and if two links
belong to the same relation type, the two links have
the same starting node types and ending node types.

3.1 Design Motivation
A simple way to build an interactions graph would
be to link users with their utterances and the defec-
tive utterances with their rewrites. Unfortunately,
such an approach produces a sparse graph due to
the high degree of linguistic variance in the utter-
ances and fails to capture users’ entity and domain
level preferences. However, GNNs require suffi-
cient connectivity to be effective because their effi-
cacy stems from feature propagation and smooth-
ing across the graph’s edges (Zhang et al., 2021).

NLU-Hypothesis. To abstract away syntactic vari-
ance in users’ requests, we group queries with sim-
ilar meaning by parsing them into structured repre-
sentations called NLU-hypotheses using the agent’s
NLU module. Each hypothesis takes the form of
“domain | intent | slot_type:slot_value.” The domain
is the general topic of a query, e.g., “Weather.” The
intent reflects the action the user wants to take,
e.g., “PlayMusic.” Finally, the slot types/values
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Figure 1: Customer interactions graph augmented with external knowledge. Knowledge enhances collaborative
learning across users to enable reasoning-powered affinity/preference prediction. The goal is to map the two
occurrences of an ambiguous utterance, Play Hello, to their respective interpretations (NLU-Hypotheses) for
user1 (red nodes) and user3 (yellow nodes). To achieve this, PAIGE utilizes message passing over paths such
as (Hello, Adele, user1, Play Hello), and (Hello, Pop Smoke, user3, Play Hello) for the two users. Nodes for
non-defective queries are shared among users, e.g., Play Skyfall by Adele (top, green).

are results of entity labeling from the NLU mod-
ule. To illustrate, the queries “Play Hello by Adele”
and “Put on Hello by Adele” map to the same hy-
pothesis: “Music | PlayMusic | SongName:Hello |
ArtistName:Adele.” We use the hypotheses’ fields
as “semantic units” and assign them nodes to in-
duce a dense graph with a rich set of relations.

3.2 Graph Schema

Every distinct hypothesis, h ∈ H, is assigned a
node in the graph. Moreover, we create a node for
each unique domain, intent, and entity (slot), and
link them to the nodes representing the hypotheses
in which they occur. Additionally, as illustrated in
Figure. 1, edges in our graph connect users, U , to
their respective utterances, T , and the utterances
to their corresponding hypotheses, H. The NLU-
hypothesis nodes act as sub-graph pooling nodes
and represent groups of equivalent queries and their
side information, whereas the utterance nodes rep-
resent the individual queries. The utterance nodes
do not need to be stored after training; instead, they
can be created on the fly to keep the adjacency ma-
trix up to date since PAIGE uses inductive encoders
for nodes with textual input features (§4.1).

There are two types of utterance nodes in our
graph: non-defective and defective. Including de-
fective queries in the graph allows to explicitly
model users’ rephrase behaviors. We use historical

query-rewrite pairs to replace the hypotheses of de-
fective queries with the ones generated for their re-
spective rewrites. In general, utterances with differ-
ent NLU hypotheses map to different nodes, even
if they have the same text, e.g., the two “Play Hello”
nodes in Figure 1. For non-defective queries, c ∈ C,
with identical text and NLU-hypothesis, we create a
single utterance node to represent their text for all
users, e.g., a single “Play Skyfall by Adele” node in
Figure 1 is shared by two users. For a defective ut-
terance, b ∈ B, we create a distinct defect node for
each user for whom the utterance caused friction.
Consequently, each defect node has a single incom-
ing edge from the author’s user node, and only the
information relevant to the defective query’s au-
thor directly affects the embedding of that query.
At inference, we create a new defect node for an
utterance that is not found in the user’s dialogue
history. Our task is to predict links between the new
utterance nodes and the nodes associated with their
NLU-hypotheses. Once the NLU-hypothesis node is
predicted, we can simply follow the graph’s edges
to select the most frequent non-defective utterance
that maps to that NLU-hypothesis as our rewrite.

Factual Knowledge. We align the entity nodes in
our graph with nodes in a knowledge graph (KG).
A KG is an instance of a heterogeneous graph that
consists of real-world entities and their relation-
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ships. A KG is organized into (vi, r, vj)-triples,
where vi, vj ∈ V are the entities, and r ∈ R is the
relation type, e.g., (Adele, AUTHOROF, Hello).

Grounding the model in an explicit representa-
tion of knowledge facilitates rewrites that require
understanding relationships that are not obvious
from the user’s dialogue history alone, i.e., users’
implicit preferences. We link the nodes correspond-
ing to named entities found in each user’s queries
with the corresponding user nodes. As a result,
the information from KG propagates through the
user nodes to the utterance nodes. Crucially, as
described above, entities are also connected to the
NLU-hypotheses. Since GNN acts as neighborhood
smoothing, our model favors the NLU-hypotheses
with neighborhoods that contain entities relevant to
the user who submits the query.

4 PAIGE Model

Computing node representations involves two steps:
using specialized encoders to generate nodes’ input
features and applying message-passing layers to
enable the features to interact and coalesce. In the
message-passing step, we use relation-specific con-
volutional modules that aggregate feature vectors
of the neighboring nodes. These modules learn to
aggregate information from the node’s immediate
neighborhood, and stacking K such operations ef-
fectively convolves features across the K-th order
neighborhood, i.e., representations of nodes depend
on all the nodes that are at most K edges away.

4.1 Input Features

PAIGE uses dedicated encoders for different types
of nodes to produce input embeddings for the GNN.
Our inductive feature encoding design permits up-
dates to the graph’s structure without expensive
model retraining, i.e., adding nodes for users, en-
tities, and utterances. Thus, PAIGE can adapt to
evolving user interests and world knowledge.

A major scalability challenge for end-to-end
training of our model lies in encoding textual
inputs. The reason is that the number of utter-
ances needed to produce embeddings for a graph’s
nodes grows exponentially with the number of
GNN layers. Therefore, we encode textual inputs,
ti ∈ T , for the utterance nodes, τ(vi) ∈ T , us-
ing a lightweight, two-layer Bidirectional Gated
Recurrent Unit (BiGRU) network.

The domain and intent nodes are the only node
types for which we use a fixed vocabulary; this

is feasible because both sets change infrequently
and amount to fewer than 10K vectors. While
previous works tend to use fixed-size embedding
tables for users or entities (Wang et al., 2019b),
such an approach prohibits dynamic updates to the
graph’s structure (e.g., adding new users). Instead,
we embed historical queries using a pre-trained
RoBERTa-base model (Liu et al., 2019), and rep-
resent: i) users with the mean of embeddings of
their previous queries; ii) entities with the mean of
embeddings of queries in which they appear. The
parameters of RoBERTa are fixed during training
to prevent temporary trends in training data from
leaking into initial entity representations.

Formally, a feature encoder encτθ embeds a node
v ∈ V with type τ(v) ∈ A as xτ = enc(τ)θ(v),
where xτ ∈ Rdτ is a dense feature vector. As
the nodes come from different distributions, each
feature encoder contains a fully connected feed-
forward network that is applied to each node sepa-
rately and identically to project vectors to a shared
embedding space before the GNN layers.

h(0)
τ = ϕ

(
xτW

(1)
τ + b(1)τ

)
W (2)

τ + b(2)τ , (1)

where h
(0)
τ ∈ Rdgnn is a node embedding, and

W
(1)
τ ∈ Rdτ×dffn , W (2)

τ ∈ Rdffn×dgnn , b(1)τ ∈
Rdfnn , b

(2)
τ ∈ Rdgnn are learnable parameters,

and ϕ is a GELU activation (Hendrycks and Gim-
pel, 2016). We train feature encoders, except for
RoBERTa, jointly with the graph neural network to
enable each module to learn from other modalities.

4.2 Graph Encoder

In each layer, PAIGE propagates latent node feature
information across edges of the graph while taking
into account the type of an edge (Schlichtkrull et al.,
2018). A single message-passing layer takes the
following form

h̄
(k+1)
i = ϕ

∑
r

∑
j∈N i

r

Wrh
(k)
j

cijr
+

h
(k)
i

cir

 , (2)

where h̄
(k)
i ∈ Rdgnn is the hidden state of node vi

in the k-th layer of the neural network, r is a re-
lation type, W (k)

r ∈ Rdgnn×dgnn is a relation-type
specific parameter matrix, ϕ is a Leaky-ReLU acti-
vation, and cir and cijr are normalization constants.

To avoid over-smoothing, we apply residual con-
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nections around each GNN layer,

h
(k+1)
i = α(k)GNN(h

(k)
i ) + (1− α(k))h

(k)
i ,

(3)

where α(k) is a learnable scalar parameter.
Finally, we concatenate the representations of

utterance nodes, t ∈ T , from the BiGRU and GNN
and pass the result through a feedforward network,

hout
vi∈T = ϕ([BiGRU(vi) ∥GNN(vi)]W + b)

(4)

where [ ·∥· ] is concatenation, W ∈ R(2·dgnn)×dgnn

and b ∈ Rdgnn are parameters, and ϕ is a Leaky-
ReLU activation. Our experiments show that con-
catenating the input and output embeddings of the
GNN improves the QR performance by up to 5.5%.

4.3 Graph Decoder

Once the encoder maps each node vi ∈ V to an
embedding, hi, the goal of the decoder is to use
these embeddings to predict labeled links in the
graph. In particular, the decoder scores a (vi, r, vj)-
triplet using a function g to represent how likely it
is that the hypothesis associated with vj is the right
interpretation of the utterance associated with vi.

g(vi, r, vj) =
∑
m

(him ⊙ r ⊙ hjm) , (5)

where ⊙ is element-wise multiplication, r ∈ Rdgnn

is a parameter vector, hi,hj ∈ Rdgnn are embed-
dings of the source and target nodes, respectively.

4.4 Model Training

We train PAIGE on the link prediction task using
binary cross-entropy loss with negative sampling.
We sample N negative targets for each observed
triple in the training set. By sharing the negative
samples within each batch of size B, we obtain
N ×B negative targets for each positive triple.

The adjacency list and the feature matrix for the
nodes reside in CPU memory due to their large
memory footprint. We uniformly sample a fixed
number of neighbors to convolve over in eq. 2
to control the memory consumption. The train-
ing procedure employs multiple CPU processes
for neighborhood sampling, subgraph construction,
feature extraction, and negative sampling, which
then feed the constructed mini-batches to GPUs
running model computations in parallel.

Data Split Train Dev Test Human Annotated

# of Examples 630K 89K 178K 1K

Table 1: Data summary.

Model Precision@N (%)

P@1 P@5 P@10

RoBERTa 28.3 47.1 54.5

PAIGE-BoW 34.9 57.3 65.0
PAIGE-BiGRU 36.9 59.0 66.6

PAIGE ( BiGRU ∥GNN) 40.8 64.5 71.8

Table 2: PAIGE outperforms the RoBERTa-based base-
line. The PAIGE-BoW and PAIGE-BiGRU remove the
concatenation of the representations from the text and
graph encoders; PAIGE-BoW uses Bag-of-Words en-
coder instead of BiGRU.

We compute RoBERTa embeddings for histori-
cal utterances offline and place them in Redis in-
memory data store. The in-memory storage pro-
vides the CPU workers with fast access to the in-
put features for a minibatch. This allows us to
avoid repeated computation of utterance embed-
dings needed to produce the initial representations
for the user and entity nodes.

4.5 Inference

Our graph design offers highly efficient inference
as the representations of nodes added for incoming
utterances do not affect other nodes in the graph.
For an utterance node created at runtime, the only
outgoing edge is the self-loop, and the only incom-
ing edge is from the author’s user node. Thus, we
can cache the representations for the users’ nodes
from each GNN layer and compute the convolu-
tions in eq. 2 only for the new utterance node. We
cache the representations of the NLU-hypothesis
nodes multiplied with the decoder’s relation param-
eter vector, r in eq. 5, and use efficient Maximum
Inner Product Search to select the rewrite.

5 Experiments

Here we evaluate PAIGE and empirically validate
its performance. We begin with a quantitative as-
sessment on general QR, followed by an evaluation
on personalized use-cases.

5.1 Experimental Setup

Given a defective query, our task is to retrieve rele-
vant rewrites from a large pool of candidates. The
embeddings inferred by a model for a given user’s
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Model
User Index Global Index

P@1 P@5 P@1 P@5 P@10

RoBERTa 78.0 98.2 28.9 47.0 54.27
PAIGE 82.1 98.4 43.41 66.5 73.6

Table 3: Rewrite precision (%) in a mock setting where
all target rewrites are among the previous queries of the
user who issued the query. Performance gains from our
model increase when rewrite candidates are not limited
to the user’s previous queries (User Index) and a Global
Index storing queries from all users is used.

RoBERTa PAIGE

Precision@1 77.9% 79.4%

Table 4: Rewrite precision on the human annotated
dataset with rewrite candidates confined to individual
users’ past queries.

queries are evaluated on future rewrite actions of
that user. Table 1 summarizes our datasets. We con-
struct the datasets following the procedure detailed
in Section 2.1 and Appendix A. The implementa-
tion details and hyperparameters are available in
Appendix B. We follow previous works and eval-
uate models using Precision@N (P@N) metrics.
The P@N measures if at least one rewrite among
the first N retrieved candidates matches the tar-
get’s utterance or NLU hypothesis. We implement
the retriever from Fan et al. (2021) as our baseline
but replace the Deep Structured Semantic Mod-
els (DSSM; Huang et al., 2013) with a pre-trained
RoBERTa-base encoder to make it stronger. The
baseline neural encoder takes a query’s text as in-
put and learns to minimize cosine distance between
the embeddings of the query and the rewrite. The
pre-trained model is fine-tuned on the dataset used
to train PAIGE.

5.2 Results
Table 2 shows that PAIGE outperforms the base-
lines by 12.5–17.3%, indicating the efficacy of our
personalized query embeddings. We observe the
largest absolute gain of 17.3% for P@10, and the
largest relative gain of 43.8% for P@1.

Query’s semantics and graph’s topology are
complimentary. Ablation results in Table 2 show
that feeding query embeddings from GNN to the
decoder without first concatenating them with ut-
terance representations from GRU results in a large
drop in performance of up to ∼5.5%. Removing
the concatenation step and replacing GRU with less

Model Precision@N (Relative change %)

P@1 P@5 P@10

RoBERTa 25.7 47.3 55.7
PAIGE 28.5 (+10.9) 54.5 (+15.3) 63.0 (+13.1)

Table 5: Rewrite precision (%) on a dataset of query–
rewrite pairs such that the rewrites do not appear in the
user’s dialogue history.

expressive Bag-of-Words (BoW) encoder for tex-
tual input features decreases performance only by
additional ∼2%. Finally, all graph-based models
outperform the RoBERTa-based baseline.

PAIGE improves personalized QR. To evalu-
ate how well representations from PAIGE reflect
users’ proclivities, we evaluate models on a dataset
of defective queries with rewrites that are among
the user’s previous requests. We consider two set-
tings: 1) limiting rewrite candidates to individ-
ual users’ past queries (User Index), and 2) using
a global candidate index storing queries from all
users (Global Index). The former setting is an easier
task as the indexes for individual users typically
contain ∼ 100 utterances while the latter uses a
global index that contains ∼4.5M unique requests
mapping to ∼2.2M hypotheses.

Table 3 shows that both models work well when
the index is confined to the user’s past queries. No-
tably, PAIGE offers nearly 4% higher P@1, open-
ing promising avenues for future work on consoli-
dating the retrieval and ranking steps into a single
model. The performance gap increases dramati-
cally when attempting rewrites from a global index
storing queries from all users — i.e., compared to
RoBERTa, PAIGE improves P@1 by 14.4% and
P@10 by 19.3% (Table 3, Global Index).

For a more comprehensive evaluation of PAIGE,
we evaluate models on a test set consisting of query–
rewrite pairs identified by human annotators (1K
examples). As in the previous paragraph, the hu-
man annotated dataset consists of defective queries
for which rewrites can be found among the individ-
ual users’ historical requests. We confined rewrite
candidates to the user’s past queries (User Index
setting). PAIGE achieves 79.4% P@1 on this test
set compared to 77.9% from RoBERTa (Table 4).

PAIGE generalizes to unseen user preferences.
To check if our model generalizes to unseen user
preferences, we evaluate it on a set of query –
rewrite pairs such that the rewrites do not appear
in the user’s dialogue history. We use examples
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from entertainment domains that contain entities
like songs and movies and tend to reflect users’
affinities. Table 5 shows that our model offers up
to 15.3% relative precision improvement over the
baseline in this setting. This result is noteworthy
since most traffic comes from entertainment do-
mains.

6 Related Work

Non-personalized QR. Several prior studies have
investigated the QR problem in a non-personalized
context. Statistical QR models have been deployed
in Alexa (Ponnusamy et al., 2020) and Google
voice search (Sodhi et al., 2021). In their seminal
work, Ponnusamy et al. (2020) apply an Absorbing
Markov Chain (AMC) model as a collaborative fil-
tering mechanism to mine reformulation patterns
from sequences of user queries. At inference, an
exact text match with a defect query in the index
mined offline triggers a rewrite to the correspond-
ing reformulation. Although statistical QR models
are efficient at inference, they are transductive —
limited to a fixed set of utterances — and do not
generalize to unseen queries. Building on the work
of Ponnusamy et al. (2020), Yuan et al. (2021) re-
place the Markov Chain with a GNN to capitalize
on the distributed query representations, however,
their method is still transductive. To facilitate infer-
ence on unseen queries, Chen et al. (2020) train a
RoBERTa (Liu et al., 2019) encoder on a QR cor-
pus. Other than the lack of personalization, the
main limitation of these NR methods is that they
treat each interaction independently, with side infor-
mation encoded implicitly in the model’s parame-
ters. Recent studies show that performance of such
methods tends to suffer when inputs contain rare
words (Schick and Schütze, 2020; Biś et al., 2021)
or spurious patterns (McCoy et al., 2019) such as
common misconceptions (Podkorytov et al., 2021).
PAIGE, on the other hand, uses the rich connectivi-
ties within the interactions graph and KG to refine
the query representations.

Personalized QR. Fan et al. (2021) propose a
Neural Retrieval NR-based personalized QR system.
Through A/B testing on Alexa traffic, they demon-
strate that the personalized approach improves user
satisfaction relative to the non-personalized base-
line. Fan et al. (2021) build a unique index for
each user from the user’s personal query log. They
also build a global index storing historical queries
from all customers. For each index type, dedicated

neural encoders are trained to retrieve rewrite can-
didates, which are then ranked by an arbitration
model. Cho et al. (2021) extend personalization
to the ranker, providing it with user-specific fea-
tures. As in the case of non-personalized NR, these
models rely on user-agnostic query embeddings. In
comparison, PAIGE selects rewrites using query
representations that depend on users’ prior experi-
ences.

Graph Neural Networks. GNNs use input
graph structures as computational architectures that
aggregate neighborhood information to produce
contextual representations for the nodes (Kipf and
Welling, 2017; Schlichtkrull et al., 2018). In rec-
ommendation systems, GNNs operate on collab-
orative knowledge graphs that combine user-item
interactions and structured knowledge (Wang et al.,
2019b, 2020) to predict users’ interests. These
methods model the relations between interactions
to learn from the customers’ collective behaviors
and alleviate issues caused by sparsity in interac-
tions data (Wang et al., 2019b). While these studies
tend to use bipartite graphs, PAIGE supports any
graph structure. Other works use GNNs to model
language and KGs together (Ghazvininejad et al.,
2018; Talmor et al., 2019; Yang et al., 2020; Zhang
et al., 2022). In comparison, PAIGE jointly models
the language, knowledge, and user interactions.

7 Limitations

PAIGE enables rewrite retrieval from a global set
of reformulation candidates but not all defects will
be covered by the index. Considering this, a gener-
ative approach to the problem (Roshan-Ghias et al.,
2020) offers an advantage but generative models
pose quality control challenges in production sys-
tems, where issues like hallucinations (Lee et al.,
2018) could have harmful effects.

8 Conclusion and Future Work

We put forward a graph-based framework for learn-
ing user affinities from their interactions with con-
versational AI agent. The proposed framework
learns directly from user feedback and requires
no human annotated data. Through extensive ex-
periments on real-world conversations, we demon-
strate that our proposed PAIGE improves the per-
formance of QR systems and, as a result, reduces
friction in users’ interactions with the AI agent.
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A Data Collection

We first find two consecutive user utterances in
which the first turn was defective and the second
was successful. To this end, we use defect detec-
tion models from Ling et al. (2020) and Gupta
et al. (2021), and rephrase detectors from Wang
et al. (2021). Moreover, we gather rewrites based
on n-best hypotheses from ASR. In particular, if
two consecutive user utterances are submitted less
than t seconds apart and the first turn’s ASR n-best
(n > 1) is the same as the second turn’s ASR 1-best,
we deem them rephrases. Finally, we apply rule-
based filters to reduce noise in the data. We retain
examples for which the edit distance between the
two turns is less than d, and the time gap between
the two turns is shorter than t seconds. We em-
pirically set the t= 45, d= 7 to reduce noise and
maintain the opportunity.

B Implementation Details

We implement PAIGE using Deep Graph Li-
brary (DGL) (Wang et al., 2019a). We set the
GNN’s dimension (dgnn = 256) and number of
GNN layers (L = 3). We use the batch size
(B = 512) and the number of negative samples
per training example (N = 32). With the in-
batch sharing of corrupted triples, this results in
(N ×B = 16384) negatives per example. The pa-
rameters of the model are optimized by AdamW
with weight decay 1e− 3. We use a warmup proce-
dure that linearly increases the learning rate from
0. to 1e− 3 over the first 2000 training steps. Af-
terward, the learning rate decreases following the
values of the cosine function. We use a dropout
rate of 0.1 applied to each layer (Srivastava et al.,
2014). The models are trained using eight GPUs
(NVIDIA V100) with total memory of 256GB,
which takes ∼20 hours on average.

C Additional Results

In Table 6 we report examples of faulty queries
for which PAIGE provides correct rewrites but the
baseline is unable to correct the defects.
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Defective Query RoBERTa Rewrite PAIGE Rewrite

play pop junior clean play pop culture radio clean play pop clean

play downtown baby play bad romance play down down baby

what is the weather in what is the weather today what is the weather in utah

Table 6: Examples of defective queries where PAIGE provides correct rewrites, but the baseline fails to correct the
defects.

D Relationships in the Interactions
Graph

We provide additional details on the node and re-
lation types in PAIGE interactions graphs. Table 7
summarizes node counts and their respective fea-
tures and feature encoders. Table 8 describes the
main relations captured by the graph’s edges.
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# of Nodes Count† Features Encoder End-to-End
Utterance 4.4M Text BiGRU

+ Adapter

√
√

Defect-Utterance 635K

NLU-Hypothesis 2.2M Frequency & Defect-rate MLP + Adapter
√√

User 400K Mean embedding of user’s queries RoBERTa
+ Adapter

×√
Entity 650K Mean embedding of queries w/entity

Domain 38 Embedding Matrix Embeddings
+ Adapter

√
√

Intent 6722

Table 7: Our node encoding strategy allows graph updates without model re-training, e.g., for new knowledge or
users. †The node counts do not include nodes added on-the-fly during evaluation.

Interaction Linking Entities Link Type Description

Affinity Entity-User Directed A user interacts with an entity

Authorship User-Utterance Directed A user submitted an utterance

Realization Utterance-Hypothesis Directed An utterance expresses the hypothesis

Rewrites DefectUtt.-Hypothesis Directed A defect-uttr. maps to non-defective hypothesis

Slot-Value-Rel Entity-Hypothesis Bi-Directed An entity appears in hypothesis

Domain of Domain-Hypothesis Bi-Directed A domain appears in hypothesis

Intent of Intent-Hypothesis Bi-Directed A intent appears in hypothesis

Attribute entity-entity Bi-Directed A relationship between entities

Table 8: Relationships in PAIGE’s Interactions Graph.


