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Abstract

Real-world business applications require a
trade-off between language model performance
and size. We propose a new method for model
compression that relies on vocabulary transfer.
We evaluate the method on various vertical do-
mains and downstream tasks. Our results indi-
cate that vocabulary transfer can be effectively
used in combination with other compression
techniques, yielding a significant reduction in
model size and inference time while marginally
compromising on performance.

1 Introduction

In the last few years, many NLP applications have
been relying more and more on large pre-trained
Language Models (LM) (Devlin et al., 2018; Liu
et al., 2019; He et al., 2020). Because larger LMs,
on average, exhibit higher accuracy, a common
trend has been to increase the model’s size. Some
LMs like GPT-3 (Brown et al., 2020) and BLOOM1

have reached hundreds of billion parameters. How-
ever, these models’ superior performance comes
at the cost of a steep increase in computational
footprint, both for development and for inference,
ultimately hampering their adoption in real-world
business use-cases. Besides models that only a few
hi-tech giants can afford, like GPT-3, even smaller
LMs with hundreds of million parameters could
be too expensive or infeasible for certain products.
For one thing, despite being tremendously cheaper
than their bigger cousins, fine-tuning, deploying
and maintaining large numbers of such models (one
for each downstream task) soon becomes too ex-
pensive. Furthermore, latency and/or hardware re-
quirements may limit their applicability to specific

1https://bigscience.huggingface.co/blog/bloom

use-cases. For all these reasons, significant efforts
– in both academic and industry-driven research –
are oriented towards the designing of solutions to
drastically reduce the costs of LMs.

Recently, several attempts have been made to
make these models smaller, faster and cheaper,
while retaining most of their original performance
(Gupta et al., 2015; Shen et al., 2020). No-
tably, Knowledge Distillation (KD) (Hinton et al.,
2015) is a teacher-student framework, whereby the
teacher consists of a pre-trained large model and
the student of a smaller one. The teacher-student
framework requires that both the teacher and the
student estimate the same probability distribution.
While the outcome is a smaller model, yet, this
procedure constrains the student to operate with
the same vocabulary as the teacher in the context
of Language Modeling.

In this work, we explore a method for further
reducing an LM’s size by compressing its vocab-
ulary through the training of a tokenizer in the
downstream task domain. The tokenizer (Sennrich
et al., 2016; Schuster and Nakajima, 2012; Kudo
and Richardson, 2018) is a crucial part of modern
LMs. In particular, moving from word to subword-
level, the tokenization solves two problems: vocab-
ulary explosion and unknown words. Moreover,
the capability to tokenize text effectively in any do-
main is key for the massive adoption of pre-trained
general-purpose LMs fine-tuned on downstream
tasks. Indeed, tokenizers are still able to process
out-of-distribution texts at the cost of producing
frequent word splits into multiple tokens.

However, the language varies significantly in
vertical domains or, more generally, in different
topics. Hence, ad-hoc tokenizers, trained on the
domain statistics, may perform a more efficient to-

https://bigscience.huggingface.co/blog/bloom
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Figure 1: Sketch of the VT procedure. First, the vocabulary is constructed on the in-domain data, then an embedding
is assigned to each token, transferring information from the pre-trained representations of the general-purpose
language model.

kenization, reducing on average the length of the
tokenized sequences. This is important since com-
pact and meaningful inputs could reduce computa-
tional costs, while improving performance. Indeed,
memory and time complexity of attention layers
grows quadratically with respect to the sequence
length (Vaswani et al., 2017). Furthermore, a ver-
tical tokenizer may require a smaller vocabulary,
which also affects the size of the embedding matrix,
hence further reducing the model’s size.

Following this intuition, we propose a Vocab-
ulary Transfer (VT) technique to adapt LMs to
in-domain, smaller tokenizers, in order to further
compress and accelerate them. This technique is
complementary to the aforementioned model com-
pression methods and independent of the type of
tokenizer. As a matter of fact, we apply it in com-
bination with KD.

Our experiments show that VT achieves an infer-
ence speed-up between x1.07 and x1.40, depend-
ing on the downstream task, with a limited perfor-
mance drop, and that a combination of VT with
KD yields an overall reduction up to x2.76.

The paper is organized as follows. After re-
viewing related works in Section 2, we present
the methodology in Section 3, we then outline the
experiments in Section 4 and draw our conclusions
in Section 5.

2 Related Works

The goal of Model Compression is to shrink and
optimize neural architectures, while retaining most
of their initial performance. Research on LM com-
pression has been carried out following a variety
of approaches like quantization (Gupta et al., 2015;
Shen et al., 2020), pruning (Zhu and Gupta, 2017;
Michel et al., 2019) knowledge distillation (Sanh

et al., 2019; Jiao et al., 2020; Wang et al., 2020),
and combinations thereof (Polino et al., 2018).

A most popular distillation approach in NLP
was proposed by Sanh et al. (2019). The obtained
model, called DistilBERT, is a smaller version of
BERT, with the same architecture but half the lay-
ers, trained to imitate the full output distribution
of the teacher (a pre-trained BERT model). Dis-
tilBERT has a 40% smaller size than BERT and
retains 97% of its language understanding capabil-
ities. This enables a 60% inference-time speedup.
Further compression was achieved by Jiao et al.
(2020) by adding transformer-layer, prediction-
layer and embedding-layer distillation. The result-
ing model, TinyBERT, is 10 times smaller than
BERT, with only four layers and reduced embed-
dings sizes. Related methods were proposed (Sun
et al., 2020; Wang et al., 2020), achieving simi-
lar compression rates. All these works focus on
the distillation of general-purpose language models.
Gordon and Duh (2020) investigated the interaction
between KD and Domain Adaptation.

Little focus has been devoted thus far to the role
of tokenization in the context of model compres-
sion. Even in domain adaptation (Gordon and
Duh, 2020), the vocabulary was kept the same.
Both the versatility of the subword-level tokeniza-
tion, and the constraints imposed by the teacher-
student framework (same output distribution), dis-
couraged such investigations. Recently, Samenko
et al. (2021) presented an approach for transfer-
ring the vocabulary of an LM into a new vocabu-
lary learned from new domain, with the purpose of
boosting the performance of the fine-tuned model.
To the best of our knowledge, we are the first to
study VT in the scope of model compression.
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3 Vocabulary Transfer

Let us consider a LM, trained on a general-purpose
domain Dgen and associated with a vocabulary
Vgen. Such a vocabulary is used by the LM’s tok-
enizer in order to produce an encoding of the input
string via an embedding matrix Egen defined on
Vgen. More specifically, a tokenizer is a function
that maps a textual string into a sequence of sym-
bols of a given vocabulary V . Let T be a tokenizer
associated with a vocabulary V and a string s, we
have T : s → (t1, . . . , tn), ti ∈ V, ∀i = 1, . . . , n.
Hence, the vocabulary of the tokenizer determines
how words in a text are split, whether as words, sub-
words, or even characters. These symbols, which
define the LM’s vocabulary, are statistically deter-
mined by training the tokenizer to learn the distri-
bution of a dataset.

Now, let us consider a vertical domain Din, also
referred as in-domain. For the reasons discussed
earlier, a vocabulary Vin specialized on Din itself
better fits the language distribution than Vgen. Un-
fortunately, with a new vocabulary, embedding
representations associated with the tokens of Vgen

would be lost. Thus, VT aims to initialize Vin by
re-using most of the information learned from the
LM pre-trained on Dgen. Once the new tokenizer
Tin has been trained on the in-domain dataset Din

using a given vocabulary size, Tin will be differ-
ent from the LM’s tokenizer Tgen. However, the
two tokenizers’ vocabularies Vgen and Vin may still
have a large portion of their symbols in common.
Our objective is to transfer most of the information
from Vgen into Vin. To this end, we first define a
mapping between each symbol in Vin and a set of
symbols in Vgen. Then, we define an assignment
criterion, based on the mapping, to obtain the em-
beddings for the tokens of Tin. The existence of a
meaningful mapping is the only underlying assump-
tion for VT, which holds for all the phonographic
languages.

One such criterion, called Vocabulary Initializa-
tion with Partial Inheritance (VIPI), was defined
by Samenko et al. (2021). Whenever a token is in
Vin but not in Vgen, VIPI calculates all the parti-
tions of the new token with tokens from Vgen, then
takes the minimal partitions and finally averages
them to obtain an embedding for the new token.
Differently, we define a simplified implementation
of VIPI called FVT for Fast Vocabulary Transfer.
Instead of calculating all tokenizations, FVT uses
a straightforward assignment mechanism, whereby

Input:
He was initially treated with interferon alfa.

Tgen:
He, was, initially, treated, with, inter,##fer,
##on, al, ##fa, .

T100:
He, was, initially, treated, with, interferon,
alfa, .

Figure 2: Example of different tokenizations using a
pre-trained or an adapted tokenizer. In the latter case,
domain-specific words are not broken down into multi-
ple word pieces.

Dataset Tgen T100 T75 T50 T25
ADE 31 21 22 23 26

LEDGAR 155 131 131 132 135
CoNLL03 19 17 17 18 20

Table 1: Average sequence length on the three datasets
with different tokenizers. Tgen is the generic tokenizer
(BERT cased), the same in each corpus, while T% are the
tokenizers trained in the vertical domain itself, where %
indicates the percentage of the original vocabulary size
that has been set for training it.

each token ti ∈ Vin is partitioned using Tgen. If ti
belongs to both vocabularies, ti ∈ Vin ∩Vgen, then
Tgen(ti) = ti and the in-domain LM embedding
Ein(ti) is the same as the embedding in the general
LM:

Ein(ti) = Egen(ti). (1)

If instead ti ∈ Vin \ Vgen, then the in-domain em-
bedding is the average of the embeddings associ-
ated with the tokens produced by Tgen:

Ein(ti) =
1

|Tgen(ti)|
·

∑
tj∈Tgen(ti)

Egen(tj). (2)

Please notice that Equation 2 is a generalization
of Equation 1. Indeed, in case ti ∈ Vin ∩ Vgen,
Equation 2 falls back to Equation 1.

Once embeddings are initialized with FVT, we
adjust the model’s weights by training it with MLM
on the in-domain data before fine-tuning it on the
downstream task. MLM eases adaptation and has
already been found to be beneficial in (Samenko
et al., 2021). We observed this trend as well during
preliminary experiments, therefore we kept such a
tuning stage in all our experiments.

As a baseline model, we also implement a
method called Partial Vocabulary Transfer (PVT),
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whereby only the tokens belonging to both vocab-
ularies ti ∈ Vin ∩ Vgen are initialized with pre-
trained embeddings, while unseen new tokens are
randomly initialized.

Transfer ADE LEDGAR CoNLL03
Tgen 90.80 80.93 89.43

T100 + FVT 90.77 80.60 87.87
T75 + FVT 90.40 80.93 87.90
T50 + FVT 90.07 80.93 86.87
T25 + FVT 90.27 81.03 86.17
T100 + PVT 82.57 80.07 84.53
T75 + PVT 82.47 80.33 84.63
T50 + PVT 83.07 80.23 84.43
T25 + PVT 83.57 80.20 83.47

Table 2: F1 results on the three benchmarks. A pre-
trained language model fine-tuned on the task (Tgen)
is compared with models having differently sized
in-domain tokenizers (T100, T75, T50, T25) adapted by
transferring information with FVT or PVT.

3.1 Distillation
VT can be combined with other model compression
methods like quantization, pruning and KD. For
some of the methods, the combination is trivial,
since they have no impact on the vocabulary. KD,
however, requires the vocabularies of the student
and teacher to be aligned. Hence, its integration
with VT is non-trivial. Accordingly, we set up a
KD procedure with VT, in order to determine the
effects of applying both VT and KD to an LM.

Our distillation consists of two steps. In the first
step, we replicate the distillation process used in
(Sanh et al., 2019) for DistilBERT, in which the
number of layers of the encoder is halved and a
triple loss-function is applied: a distillation loss, a
MLM loss, and a cosine embedding loss. However,
unlike the original setup, we do not remove the
token-type embeddings and pooler. Inspired by
Gordon and Duh (2020), after distilling the student
on Dgen, we further distil the student using Din.
However, instead of adapting the teacher before the
second distillation, we simply distil the student a
second time on the in-domain dataset. Finally, we
apply VT using either FVT or PVT and fine-tune
the student model on the in-domain datasets.

Our choice of applying VT after KD is based on
findings by Kim and Hassan (2020), that different
input embedding spaces will produce different out-
put embedding spaces. This difference in spaces
is not conducive to knowledge transfer during dis-

Distillation
Transfer ADE LEDGAR CoNLL03
Tgen 90.47 78.37 86.90

T100 + FVT 89.47 78.33 84.63
T75 + FVT 88.57 78.90 84.23
T50 + FVT 88.43 79.30 83.80
T25 + FVT 88.23 78.10 83.13
T100 + PVT 79.13 76.97 81.13
T75 + PVT 78.87 76.93 81.40
T50 + PVT 76.30 77.37 81.63
T25 + PVT 77.90 77.33 79.50

Table 3: F1 results on the three benchmarks. A distilled
language model fine-tuned on the task (Tgen) is com-
pared with models having differently sized in-domain
tokenizers (T100, T75, T50, T25) adapted by transferring
information with FVT or PVT.

tillation. Hence, if VT were to be applied first to
the student, its input embedding space would differ
greatly from that of the pre-trained teacher during
distillation.

4 Experiments

In the experiments we measure the impact of FVT
on three main KPIs: quality (F1 score), size of the
models and speedup in inference.

4.1 Experimental Setup
We consider for all our experiments the pre-trained
cased version of BERTbase (Devlin et al., 2018) as
our pre-trained language model. Its tokenizer is
composed of 28996 wordpieces. We then define
four vocabulary sizes for retraining our tokenizers.
Specifically, we take the original vocabulary size
and define it as a vocabulary size of 100%. We sub-
sequently reduce this size to 75%, 50%, and 25%.
From now on, we will refer to such tokenizers as
T100, T75, T50, T25 respectively, while the original
vocabulary will be called Tgen.

Models are fine-tuned for 10 epochs with early
stopping on the downstream task. We set the initial
learning rate to 3 · 10−5 and batch size to 64 for
each task. The sequence length is set to 64 for ADE
and CoNLL03 and 128 for LEDGAR. Each config-
uration is repeated 3 times with different random
initializations. MLM is performed for one epoch.

4.2 Datasets
To best assess the effectiveness of VT, we apply
it on three different tasks from three heteroge-
neous linguistic domains: medical (ADE), legal
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Figure 3: Sequence length distribution of each tokenizer on ADE, LEDGAR and CoNLL03 (left to right).

(LEDGAR) and news (CoNLL03). Table 4 reports
the dataset statistics.

ADE. The Adverse Drug Events (ADE) corpus
(Gurulingappa et al., 2012) is a binary sentence
classification dataset in the medical domain. This
domain is particularly suitable for investigating the
benefits of VT, since documents are characterized
by the presence of frequent technical terms, such
as drug and disease names, that are usually rare
in common language. Domain-specific words are
usually split into multiple tokens, yielding longer
sequences and breaking the semantics of a word
into multiple pieces. An example is shown in Fig-
ure 2.

LEDGAR. LEDGAR (Tuggener et al., 2020) is a
document classification corpus of legal provisions
in contracts from the US Securities and Exchange
Commission (SEC). The dataset is annotated with
100 different mutually-exclusive labels. It is also
part of LexGLUE (Chalkidis et al., 2022), a bench-
mark for legal language understanding.

CoNLL03. CoNLL03 (Tjong Kim Sang and
De Meulder, 2003) is a popular Named Entity
Recognition (NER) benchmark. It is made of news
stories from the Reuters corpus. We chose this cor-
pus because, differently from ADE and LEDGAR,
the news domain typically uses a more standard
language, hence we expect its distribution to differ
less from the one captured by a general-purpose
tokenizers in the web. Statistics in Table 1 con-
firms this hypothesis. We can observe that the
sequence compression gain obtained with domain-
specific tokenizers is less significant with respect
to LEDGAR and ADE.

4.3 Results
We report an extensive evaluation of FVT on differ-
ent setups and perspectives.

In-domain Tokenization. By retraining the tok-
enizer on the in-domain dataset, the average num-

Dataset Train Validation Test
ADE 16716 3344 836

LEDGAR 60000 10000 10000
CoNLL03 14042 3251 3454

Table 4: Number of examples of each dataset.

Figure 4: F1-score vs model size of VT with or without
KD on ADE. VT and KD together can further compress
a LM’s size in exchange for a limited performance drop.
FVT is better than PVT. A smaller vocabulary size does
not always imply a lower performance.

ber of tokens per sequence decreases since the
learned distribution reduces the number of word
splits, as shown in Table 1. In the medical domain,
which is particularly specialized, we notice a re-
markable 32% reduction of the average number of
tokens per sequence. We expect this to yield a no-
ticeable impact on inference time speedup. Further-
more, we can notice in Figure 3 that the sequence
length distribution shifts to the left for the learned
tokenizers. It can also be observed that by reduc-
ing the vocabulary size of the in-domain tokenizer,
the sequence length distribution will begin to shift
back to the right. Indeed, with fewer tokens in its
vocabulary, the tokenizer will need to break down
words more frequently into subwords.

Vocabulary Transfer. From the results shown
in Tables 2 and 3, we note a few interesting find-
ings. First, FVT vectors initialization method con-
sistently outperforms the baseline PVT, which con-
firms the positive contribution of Equation 2. Sec-
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Transfer ADE LEDGAR CoNLL03
∆F1 ∆Size Speedup ∆F1 ∆Size Speedup ∆F1 ∆Size Speedup

Tgen 90.80 433.32 1.00 80.93 433.62 1.00 89.43 430.98 1.00
T100 + FVT -0.04 0.00 1.40 -0.41 0.00 1.21 -1.75 0.00 1.07
T75 + FVT -0.44 -5.14 1.35 0.00 -5.14 1.21 -1.71 -5.17 1.07
T50 + FVT -0.81 -10.28 1.32 0.00 -10.27 1.10 -2.87 -10.33 1.02
T25 + FVT -0.59 -15.42 1.20 0.12 -15.41 1.09 -3.65 -15.50 0.99

Distil + Tgen -0.36 -39.26 1.97 -3.16 -39.24 1.97 -2.83 -39.48 1.95
Distil + T100 + FVT -1.47 -39.26 2.76 -3.21 -39.24 2.38 -5.37 -39.48 2.11
Distil + T75 + FVT -2.46 -44.40 2.64 -2.51 -44.37 2.38 -5.81 -44.64 2.11
Distil + T50 + FVT -2.61 -49.54 2.59 -2.02 -49.51 2.16 -6.30 -49.81 2.01
Distil + T25 + FVT -2.83 -54.68 2.37 -3.50 -54.64 2.14 -7.04 -54.98 1.96

Table 5: The first row (Tgen) reports absolute values of the LM fine-tuned on the downstream task without VT or
KD. The rows below show values relative to Tgen.

ond, transferring vocabulary with FVT causes lim-
ited drops in performance, especially in LEDGAR
(the largest one), where F1 slightly increases de-
spite a 75% vocabulary reduction. We observed a
higher degradation in CoNLL03. We believe this
is due to the less specialized nature of the news
domain, whereby the benefits of adapting the vo-
cabulary to it are reduced. Overall, the effects of
FVT on model performance do not have a steadily
decreasing trend, as it might be presumed when
reducing the vocabulary size, as also evident from
Figure 4. In some cases, somewhat surprisingly,
reducing the vocabulary size yields better model
performance. In other cases, a 50% vocabulary
size reduction yields better results than a full scale
reduction or no reduction. Hence, vocabulary size
should be considered as a hyper-parameter, where
the model selection criteria may vary depending on
the application’s KPIs, such as acceptable F1 drop,
disk occupation and delay constraints.

Vocabulary Transfer and Distillation. The re-
sults summarized in Table 3 clearly indicate that
KD is complementary to VT: there is no harm in
applying them together, in terms of performance
on the downstream task. Crucially, this guarantees
a full exploitation of FVT in the scope of language
model compression.

Compression and Efficiency. After showcasing
that VT has limited impact on performance, we
analyze and discuss its effects on efficiency and
model compression. Table 5 reports the relative F1
drop on the downstream task with respect to the
original LM (∆F1), the relative reduction in model
size (∆Size) and the speedup gained by FVT alone

and by FVT combined with KD for varying vocab-
ulary sizes. Either way, FVT achieves a remarkable
15%+ reduction with respect to BERT’s learnable
parameters, with almost no loss in F1.

Furthermore, the reduced input length enabled
by in-domain tokenization brings a reduction in
inference time. The more a language is specialized,
the higher is the speedup with in-domain tokeniz-
ers. This is also confirmed by the experiments,
where the major benefits are obtained on the med-
ical domain, with a x1.40 speedup. In CoNLL03
instead where language is much less specialized,
speedup reduces and even disappears with T25. Dis-
tillation further pushes compression and speedup
in any benchmark and setup, up to about 55% (of
which 15% due to VT) and x2.75 respectively.

In summary, depending on the application needs,
VT enables a strategic trade-off between compres-
sion rate, inference speed and accuracy.

5 Conclusion

The viability and success of industrial NLP applica-
tions often hinges on a delicate trade-off between
computational requirements, responsiveness and
output quality. Hence, language model compres-
sion methods are an active area of research whose
practical ramifications are self-evident. One of the
factors that greatly contribute to a model’s infer-
ence speed and memory footprint is vocabulary
size. VT has been recently proposed for improving
performance, but never so far in the scope of model
compression. In this work, we run an extensive ex-
perimental study on the application of a lightweight
method for VT, called FVT. An analysis conducted
on various downstream tasks, application domains,
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vocabulary sizes and on its possible combination
with knowledge distillation indicates that FVT en-
ables a strategic trade-off between compression
rate, inference speed and accuracy, especially, but
not only, in more specialized domains. Importantly,
FVT appears to be orthogonal to other model com-
pression methods.

In the future, we plan to fully integrate Vocab-
ulary Transfer within Knowledge Distillation dur-
ing the learning process in order to maximize the
information transfer. We also plan to define a uni-
fied metric that combines all the KPIs, to facilitate
model selection.
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