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Abstract
We introduce a novel run-time method for sig-
nificantly reducing the accuracy loss associ-
ated with quantizing BERT-like models to 8-
bit integers. Existing methods for quantizing
models either modify the training procedure,
or they require an additional calibration step to
adjust parameters that also requires a selected
held-out dataset. Our method permits taking
advantage of quantization without the need for
these adjustments. We present results on sev-
eral NLP tasks demonstrating the usefulness of
this technique.

1 Introduction

Transformer-based Neural Networks (NN) such as
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019) and XLM-R (Conneau et al., 2019), pre-
trained on large amounts of data, have led to state-
of-the-art (SOTA) results on many NLP tasks such
as machine translation (Zhu et al., 2019), text clas-
sification (Wang et al., 2018) and question answer-
ing (Kwiatkowski et al., 2019; Clark et al., 2020).
However, run-time inference of such large mod-
els is very costly due to their large computational
requirements. In addition, deploying these mod-
els on smaller footprint mobile devices (Ravi and
Kozareva, 2021) or cost-effective (Sanh et al., 2019;
Jiao et al., 2020) CPU based machines require ag-
gressive optimization techniques for both speed
and network size. One popular speed optimization
technique is NN quantization (Gholami et al., 2021;
Kim et al., 2021; Zafrir et al., 2019), where network
weights and activations are transformed from 32-bit
floating-point representations to integers (typically
8-bit). Running inference using integer operations
has two key advantages. First, the model size foot-
print is considerably reduced e.g. 8-bit quantization
shrinks models by a factor of four. Second, infer-
ence throughput is significantly increased by us-
ing more efficient integer-based “single instruction
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multiple data” (SIMD) (Hennessy and Patterson,
2012) instructions while improving memory band-
width utilization, which is typically a bottleneck
limiting computational throughput for NNs (Quinn
and Ballesteros, 2018).

Fundamentally, quantization leads to a quantita-
tive loss of information due to the lowered numeri-
cal precision. As a result, applying integer quanti-
zation directly to NN models leads to considerable
drop in accuracy (Zafrir et al., 2019). However,
by carefully adjusting the quantization parameters
such as the clipping thresholds, the accuracy loss
can be significantly reduced, if not eliminated.

The majority of quantization research (Gholami
et al., 2021) involve a mix of quantization-aware
training (QAT) and post-training calibration tech-
niques with varying complexities to resolve the
quantization performance gap. Several works (Kim
et al., 2021; Choi et al., 2018; Zhou et al., 2017;
Choi et al., 2018; Krishnamoorthi, 2018; Louizos
et al., 2019; McKinstry et al., 2019) detail tech-
niques for QAT as well as approaches where the
quantization parameters are optimized using statis-
tics gathered during training. While these ap-
proaches typically close the gap in the quantized
model accuracy, they requires access to the training
pipeline as well as the training data. In addition,
these methods are not applicable to black-box mod-
els where both training procedures and data are not
available. Also, these methods may be affected
by training instabilities, increasing the complex-
ity of the training regimes as described in (Krish-
namoorthi, 2018). Post-training approaches such
as (Migacz, 2017; Bhandare et al., 2019) require
calibration techniques on selected datasets. For
example, in (Migacz, 2017) KL-divergence (Kull-
back and Leibler, 1951) between the unquantized
and quantized activations on each layer was used to
tune the quantization clipping thresholds. Special
care needs to be taken when selecting a calibration
dataset; as it needs to be diverse enough but yet task
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specific. In certain cases this leads to low accuracy,
or even unpredictable behaviour, if the run-time
input deviates from the calibration dataset.

Two methods that share our high-level goals of
eliminating the need for training datasets are in-
troduced in (Nagel et al., 2019; Cai et al., 2020).
These methods are implemented with CNN-based
(Gehring et al., 2017) networks, and are used for im-
age classification and object detection tasks. (Nagel
et al., 2019) reduces the quantization error by re-
scaling the weights of consecutive CNN layers
while taking advantage of the equivariance prop-
erty of the piece-wise linear ReLU function. (Cai
et al., 2020), on the other hand, tunes the quanti-
zation parameters using synthetic data generated
utilizing mean and variance statistics obtained from
the batch normalization layers of the model it-
self. While both methods are applicable for mainly
CNN-based networks, our algorithm is consider-
ably simpler to implement and targets transformers
(Vaswani et al., 2017); particularly SOTA NLP net-
works with BERT-like (Devlin et al., 2018; Liu
et al., 2019) pre-trained representations.

In this work, we present a method that utilizes
the Interquartile Range (IQR) (Tukey et al., 1977;
Rousseeuw and Croux, 1993), which is a measure
of statistical dispersion, to clip the activations dy-
namically during inference time. Our method en-
sures that at least 75% of the token-wise extreme
activations are not modified, while leaving the re-
maining 25% to be statistically modified as out-
liers, leading to a robust behaviour while consider-
ably improving quantization accuracy. Our method
works for any transformer-based “trained” model
and does not require any form of training or calibra-
tion. Overall, our contributions can be summarized
as follows:

• We propose a novel “ready-to-use” inference-
time dynamic quantization method that does
not require sophisticated re-training/fine-
tuning and additional calibration strategies.

• Empirically our proposed model demonstrates
both effectiveness and robustness on several
different NLP benchmark tasks.

• Further, contrary to prior work, experiments
suggest that our proposed method works both
for monolingual and multilingual transformer
architectures out-of-the-box.

2 Methodology

2.1 Backgound

Existing approaches to speeding up inference for
Transformers mostly focus on General Matrix Mul-
tiply (GEMM) operations. Fast GEMM implemen-
tations routinely use GPU and CPU specific SIMD
instructions, to execute many multiplications and
additions in parallel. They also optimize memory
access patterns to make the best use of available
memory bandwidth. Integer quantization speeds
up the GEMM operations by increasing the amount
of data transferred with each memory transaction.
They also take advantage of denser SIMD instruc-
tions. For example, 8-bit quantization packs four
times the data per memory transaction compared
to 32-bit floating point values. Many CPUs also
support 8-bit SIMD multiplication operations, pro-
viding faster as well as cost-effective computation.

2.1.1 Uniform Quantization
Dynamic quantization for inference quantizes acti-
vations at run time. The model weights are typ-
ically quantized once ahead of execution. Let
M ∈ Rm×n be a matrix of either an activation
or parameter weights. The quantization scale (QS)
is obtained as:

QS = max
∀i∈{1,...,m}
∀j∈{1,...,n}

|M(i, j)|. (1)

The matrixM is then quantized to M̄ ∈ Zm×n as
follows:

M̄ = int

(
2b/2− 1

QS
M

)
, (2)

where b is the number of integerization bits, typ-
ically 8, and the function int is the element-wise
integer conversion operator; e.g. a floor function.
The reason for the subtraction by 1 in (2) is to en-
sure that the quantization range is equally spread
around zero. In the case of 8 bits, the range be-
comes ±127. This formulation also results in a
symmetric form of uniform quantization, where the
quantization is evenly split around zero. This can
be modified by adding a zero-shift resulting in an
asymmetric quantization (Krishnamoorthi, 2018),
which may particularly be useful for certain acti-
vation functions such as ReLU (Nair and Hinton,
2010) and GELU (Hendrycks and Gimpel, 2016).
While non-uniform quantization (Gholami et al.,
2021) has been explored to better capture weight
and activation distribution with variable step sizes,
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uniform quantization leads to more efficient imple-
mentation on current hardware such as GPUs and
CPUs with acceptable accuracy. Once matrices are
quantized, GEMM operations can be performed
using integer arithmetic allowing the use of fast
SIMD instruction sets.

Quantization lowers numerical precision which
leads to loss of information. Examining (1) shows
how the QS can increase precision errors if it takes
extreme values that largely deviate from the ma-
jority activations. Therefore, the activation tensor
must be clipped to reduce the quantization error;
however, excessive clipping can lead to distortions
in the activation which also leads to drops in accu-
racy.

In the following section, we will outline a
method that chooses better QS values for each acti-
vation tensor dynamically during inference, with-
out any modification to the training pipeline or any
requirement for calibration procedures.

2.2 Interquartile Range Clipping

If we consider the extreme values in the activations
as outliers in a distribution, there is a substantial
amount of research for identifying outliers (Ben-
Gal, 2005; Hodge and Austin, 2004). Our solution
makes use of a low complexity univariate statistical-
based method for outlier detection referred to as
the Interquartile Range (IQR) method originally
proposed by Tukey (Tukey et al., 1977).

IQR is also considered a robust statistical mea-
sure (Rousseeuw et al., 2011) of the data spread,
with the notion of robustness being defined using
the concept of a breakdown point (Rousseeuw and
Croux, 1993; Rousseeuw et al., 2011). The break-
down point is the minimum number of data that can
be arbitrarily replaced while keeping the statistical
measure bounded. The sample mean and variance
have a 0 breakdown point, meaning that these mea-
sures are changed by even a single outlier; on the
other hand, the IQR has a 25% breakdown point,
making it a stable measure even if up to 25% of the
data are outliers.

We introduce an algorithm that effectively uses
IQR to clip outliers from an activation tensor which
consequently improves the selection of the quanti-
zation scale as in (1). It is worth noting that a direct
implementation of the IQR method is too slow as
it uses a sorting operation in order to identify the
quartiles on the data. The complexity of a naive
implementation would be O(N logN) where N

is the number of elements of the activation tensor.
In the case of BERT-like models, N = L × H ,
where L is the sequence length and H is the hidden
dimension; e.g. for BERT-Large, N = 512× 1024.
To lower this complexity, we obtain the IQR clip-
ping threshold from a reduced set formed by tak-
ing the maximums, in absolute sense, along the
H dimension. We will refer to this algorithm
as the Token-Maximums IQR (TM-IQR) clipping.
The resulting complexity of the IQR clipping be-
comesO(N+L logL). Our experiments show that
adding this form of IQR clipping slows inference
by less than 2%, which is negligible considering
the resulting accuracy gains.

Algorithm 2 Activation clipping using TM-IQR
Input: Activation tensor A ∈ RL×H

L ← {1, 2, . . . , L}
H ← {1, 2, . . . , H}

1: M(i)← max
∀j∈H

|A(i, j)|, ∀i ∈ L

2: M ← sort(M)
3: q1← first-quartile(M)
4: q3← third-quartile(M)
5: t← q3 + 1.5(q3− q1) -
6: A(i, j)← min(A(i, j), t), ∀(i,j)∈L×H
7: A(i, j)← max(A(i, j),−t), ∀(i,j)∈L×H

Return: A

Algorithm 2 outlines the basic procedure of our
TM-IQR clipping. In Line 1 we compose the set of
token-maximum activations in the absolute sense.
Essentially, we are reducing the set of activations
to a smaller representative set that contains the top
outliers of the larger set. Lines 2 to 5 compute the
IQR threshold t which is then used to clip the entire
activation tensor in lines 6 and 7. The value 1.5 in
line 5 is commonly referred to as the IQR scale. It
was historically proposed by Tukey (Tukey et al.,
1977) as a level to detect outliers. It is possible to
attempt to fine-tune this value, however we chose
to use the historical value without tuning in line
with the objective of our paper.

It is important to note that the TM-IQR algo-
rithm assigns a dynamic clip value for each ac-
tivation tensor as opposed to using a fixed value
for all run-time inference. Unlike fixed clipping
tuned by training datasets, we expect TM-IQR clip-
ping to be applied in a zero-shot approach across
multiple tasks while maintaining reasonable em-
pirical accuracy. This is due to the fact that our
clipping strategy guarantees that at least 75% of
the row-wise extreme activations are not impacted
by it, while a fixed clipping method does not of-
fer such guarantees for all types of input, as is the
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CPU Precision Method Batch WPS
Xeon 8260 int8 none 48 29005
Xeon 8260 int8 IQR 48 28640
V100 fp16 none 128 71998

Table 1: IQR throughput cost in WPS (words per sec)
averaged over 4 runs. Each input is 512 tokens. 48 core
Xeon 8260 and V100 speed included for reference.

case when the input is not very aligned with train-
ing data. This has the important effect of limiting
the distortion error, which occurs when quantizing
activations with excessive clipping.

3 Experimental Setup

Our run-time inference engine, implemented in
C++, supports both FP32 and optimized 8-bit inte-
ger quantized inference (I8). We quantize model
weights at load-time and dynamically quantize ac-
tivations at run-time. The TM-IQR technique is
a straightforward modification with a negligible
impact on inference speed, as shown in Table 1.

3.1 TM-IQR

TM-IQR can be applied to the activations before
each quantized GEMM operation. However, we
found that the second feed-forward GEMM, hence-
forth referred to as FF2, contributes the majority of
the quantization error. The input dimension of FF2
is very wide, 4×H , providing more of a chance for
saturation and integer numerical instability to ac-
cumulate. In addition, the input to FF2 constitutes
the activations of either ReLU or a GELU non-
linearities. The range of such activation functions
is unbounded on the positive side, which further
increases the chance of saturation. Therefore, we
found it most effective to apply the TM-IQR to the
input activations of the FF2 GEMM operation.

3.2 Tasks

We test our proposed method on GLUE (Wang
et al., 2018) and 2 popular question answering (QA)
tasks: Natural Questions (NQ) (Kwiatkowski et al.,
2019) and TyDI 1 (Clark et al., 2020). We train
all our tasks using the publicly available (Wolf
et al., 2019). For GLUE tasks, we run 5 seeds with
hyper-parameters using HuggingFace’s defaults for
BERT while tuning the learning rate for RoBERTa
(refer to A for more details). For QA tasks, we
follow (Alberti et al., 2019; Clark et al., 2020). Our

1Note that TyDI is multilingual among 11 typologically
diverse languages.

Task FP32 I8 TM-IQR
XLM-R-base TyDI 67.7 62.9 67.0
XLM-R-large TyDI 68.8 66.8 68.4
XLM-R-base NQ 54.6 48.0 53.4
XLM-R-large NQ 56.6 53.3 56.1

Table 2: Question Answering performance.

underlying pre-trained language model for GLUE
is both BERT (cased) (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019), while for QA, we used
XLM-R (Conneau et al., 2019). Note our method
does not need any fine-tuning once this step is done
and models are obtained.

4 Results

Since our method does not modify the training
pipeline or tune the quantization parameters on
training sets, we compare our results directly to the
FP32 numbers. We are not expecting our method to
outperform FP32 but rather to reduce the negative
effect of quantization while keeping its speed as
well as simplifying the model deployment process.

4.1 Question Answering

On TyDI and NQ (Table 2), TM-IQR clearly re-
covers most of the performance lost to dynamic
quantization and is superior to I8 by 1 point on
average. Similar to GLUE, TM-IQR still performs
well with the I8 drop being the highest.

4.2 GLUE

Table 3 shows that TM-IQR is robust with an over-
all average score drop, compared to FP32, by only
0.2% for BERT-base, 0.5% for BERT-large, 1.2%
for RoBERTa-base and 0.4% for RoBERTa-large.
For all 4 pretrained models, TM-IQR wins on av-
erage. Even when TM-IQR does not outperform
I8, the loss is relatively small. Interestingly, TM-
IQR does well for cases where I8 drop is large,
e.g. CoLA and RTE for all models and STS-B for
RoBERTa-base.

5 Conclusion

We show that BERT-like models can be quantized
to 8-bit integers with good accuracy without the
need to modify training procedures or add extra
data sets for parameter calibration. We present a
robust statistically-based algorithm that dynami-
cally adjusts the quantization clipping to maintain
reasonable accuracy. Our empirical results demon-
strate the effectiveness of our method on a number
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Task FP32 I8 TM-IQR
BERT-base-cased
MNLI 83.7 (0.2) 82.3 (0.5) 83.5 (0.3)
MNLI-MM 84.1 (0.1) 82.9 (0.2) 83.8 (0.2)
CoLA 58.0 (1.4) 48.3 (0.9) 57.7 (1.6)
SST-2 92.3 (0.3) 92.1 (0.2) 92.0 (0.4)
MRPC 88.5 (1.2) 88.8 (1.6) 88.5 (1.5)
STS-B 88.3 (0.8) 87.7 (0.8) 88.1 (0.8)
QQP 87.4 (0.1) 86.2 (0.3) 87.2 (0.2)
QNLI 90.8 (0.2) 90.3 (0.1) 90.5 (0.2)
RTE 64.6 (1.0) 63.9 (1.0) 64.9 (1.6)

Average 82.0 80.3 81.8
BERT-large-cased
MNLI 86.4 (0.1) 86.0 (0.2) 86.0 (0.1)
MNLI-MM 86.5 (0.2) 86.3 (0.1) 86.3 (0.2)
CoLA 62.9 (0.8) 60.6 (1.5) 62.1 (1.2)
SST-2 93.3 (0.5) 92.8 (0.7) 92.9 (0.4)
MRPC 90.5 (0.5) 89.6 (0.9) 90.5 (0.7)
STS-B 89.6 (0.6) 87.4 (1.2) 89.1 (0.3)
QQP 88.3 (0.2) 88.1 (0.1) 88.1 (0.1)
QNLI 92.4 (0.1) 91.9 (0.1) 92.2 (0.2)
RTE 69.8 (1.4) 64.0 (2.0) 68.5 (1.7)

Average 84.4 83.0 84.0
RoBERTa-base
MNLI 87.0 (0.1) 85.8 (0.3) 86.1 (0.1)
MNLI-MM 87.1 (0.1) 85.8 (0.2) 86.1 (0.1)
CoLA 53.7 (1.9) 22.7 (4.7) 50.8 (1.8)
SST-2 93.9 (0.2) 93.4 (0.4) 93.5 (0.3)
MRPC 78.6 (2.7) 77.2 (1.1) 78.4 (2.0)
STS-B 87.1 (0.8) 69.6 (0.8) 85.5 (0.8)
QQP 88.3 (0.1) 87.2 (0.2) 87.6 (0.1)
QNLI 92.5 (0.1) 90.1 (1.9) 91.4 (0.3)
RTE 68.0 (2.1) 64.7 (2.5) 67.4 (2.8)

Average 82.0 75.2 80.8
RoBERTa-large
MNLI 90.6 (0.0) 90.0 (0.2) 90.3 (0.1)
MNLI-MM 90.0 (0.3) 89.6 (0.1) 89.6 (0.2)
CoLA 63.5 (0.6) 63.1 (1.3) 63.4 (0.6)
SST-2 96.3 (0.4) 95.8 (0.2) 95.8 (0.4)
MRPC 89.6 (0.4) 90.1 (0.7) 88.7 (0.8)
STS-B 91.8 (0.1) 91.2 (0.2) 91.4 (0.2)
QQP 89.8 (0.1) 89.4 (0.2) 89.4 (0.2)
QNLI 94.6 (0.2) 94.1 (0.3) 94.1 (0.3)
RTE 77.7 (2.0) 76.0 (5.1) 77.3 (1.5)

Average 87.1 86.6 86.7

Table 3: The TM-IQR clipping algorithm on GLUE
tasks with three computational modes, 32-bit floating-
point (FP32), 8-bit quantization (I8) and our algorithm
TM-IQR. Metric values are mean and standard devia-
tion (in parenthesis) over 5 seeds.

of NLP monolingual and multilingual tasks, trained
on both base and large size BERT-like models.
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A Evaluation on GLUE Task

For GLUE experiments we use the publicly avail-
able open-source library PyTorch-Transformers
(Wolf et al., 2019). We report the standard metric
on each task, specifically: Accuracy is used for
MNLI, MNLI-MM (mismatch) (Williams et al.,
2018), SST-2 (Socher et al., 2013), QNLI (Ra-
jpurkar et al., 2016), and RTE (Dagan et al., 2005).
Mathews correlation coefficient is used for CoLA
(Warstadt et al., 2019). F1 is used for MRPC
(Dolan and Brockett, 2005) and QQP (Iyer et al.,
2017). Finally, Pearson correlation coefficient is

used for STS-B (Cer et al., 2017), For BERT mod-
els, We use the default hyper-parameters provided
by the HuggingFace’s library, specifically the learn-
ing rate is 2. × 10−5, the batch-size is 32 and the
fine-tuning epochs is 3, except for MRPC where the
the fine-tuning epochs is 5. For RoBERTa models,
we tuned the learning rate in [5e−7, 2e−6] for best
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Similarly to (Kim et al., 2021) we exclude WNLI
(Levesque et al., 2012) since it showed unstable
results even on FP32 due to its small dataset.
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