
Proceedings of EMNLP 2022 Industry Track, pages 477–484
December 9–11, 2020. ©2022 Association for Computational Linguistics

477

Prototype-Representations for Training Data Filtering in
Weakly-Supervised Information Extraction

Nasser Zalmout and Xian Li
Amazon.com

{nzalmout,xianlee}@amazon.com

Abstract

The availability of high quality training data
is still a bottleneck for the practical utilization
of information extraction models, despite the
breakthroughs in zero and few-shot learning
techniques. This is further exacerbated for in-
dustry applications, where new tasks, domains,
and specific use cases keep arising, which
makes it impractical to depend on manually
annotated data. Therefore, weak and distant
supervision emerged as popular approaches
to bootstrap training, utilizing labeling func-
tions to guide the annotation process. Weakly-
supervised annotation of training data is fast
and efficient, however, it results in many irrel-
evant and out-of-context matches. This is a
challenging problem that can degrade the per-
formance in downstream models, or require a
manual data cleaning step that can incur sig-
nificant overhead. In this paper we present a
prototype-based filtering approach, that can be
utilized to denoise weakly supervised training
data. The system is very simple, unsupervised,
scalable, and requires little manual intervention,
yet results in significant precision gains. We ap-
ply the technique in the task of attribute value
extraction in e-commerce websites, and achieve
up to 9% gain in precision for the downstream
models, with a minimal drop in recall.

1 Introduction

Weak supervision and data programming have re-
cently emerged as powerful techniques to sup-
port information extraction models. Weak super-
vision is useful for dynamic environments, where
new tasks or deployment domains keep emerging,
and using manually annotated data is impractical.
Weakly supervised data programming aims to refor-
mulate the training data annotation process into a
programming paradigm. Instead of manually anno-
tating each training sample, the annotation process
is handled through labeling functions, which are
then used to automatically annotate the training cor-
pora. These labeling functions are usually based

on manually predefined patterns or regular expres-
sions, that are matched against the target unanno-
tated data. The weak supervision setup allows for
an efficient and scalable training data collection
process, but at the expense of accuracy. Labeling
functions can over-match, resulting in many irrele-
vant and out-of-context matches. This hinders the
performance, and could require manual cleaning
steps to lift quality, adding to the overall overhead.

In this paper we present a data filtering system
based on prototype-learning. Prototype here refers
to the correct contexts where a given target value is
usually mentioned, based on a sample dataset. This
can be drawn from a manually annotated corpus
(making it more supervised), or it can be based on
the centroid of the raw dataset (more noisy, but
totally unsupervised). At runtime, we get the em-
bedding of the prototype, along with context em-
bedding of the annotated label for each training
sample, and use outlier detection constructs to re-
move outliers. We calculate the distance between
the prototype and the in-context label representa-
tion, and if the distance is above a certain threshold
we filter it out. These out-of-context annotations
are out-of-distribution, so approaches that utilize
prototype-learning as part of the end-to-end net-
work, or other noise-robust strategies, would not
handle them properly. Removing them before mod-
eling is the best approach to reduce noise. The
intuition behind this filtering logic is that value
context embeddings that are distant from the pro-
totype tend to be more noisy, likely reflecting out-
of-context matches. We use several prototype and
data embedding techniques.

We utilize the filtering technique for attribute
value extraction (AVE), an information extraction
task that has recently been gaining much momen-
tum in e-commerce applications. The goal of the
AVE task is to obtain structured product features
from the unstructured natural language description
of the product’s page in e-commerce websites. This



478

Figure 1: Sample product profile and relevant attributes.

has several downstream applications in areas in-
cluding product search, comparison, question an-
swering, among others. Due to the dynamic and
large scale nature of this domain, contributions for
the AVE task often use weak and distant learn-
ing techniques to train the extraction models. Our
results show up to 9% absolute improvement in pre-
cision, with minimal drop in recall (about 1%), for
the extraction model trained on the filtered data.

2 Background

2.1 Attribute Value Extraction

The AVE task aims to extract the corresponding
values for a given attribute, out of a number of at-
tributes of interest, from the textual sequence of a
product profile (Zheng et al., 2018). Given a text
sequence X = [x1, . . . , xn] in a product profile,
where n is the number of words, and an attribute
r ∈ R, where R is a predefined set of attributes,
the model is expected to extract all text spans from
X that could be valid values for attribute r charac-
terizing this product’s features. When there are no
corresponding values mentioned in X , the model
should return an empty set. For example, for the
product in Figure 1, given its title as X , the model
is expected to return (“8 Fl Ounce”) if r =“Size”,
and an empty set if r =“Hair Type”. The various
products are categorized into diverse product types
(PTs), like Shampoo, Tea, TVs, etc. The products
within a given PT are homogeneous, sharing sim-
ilar overall product features, including the set of
relevant attributes. And different PTs can have a
different set of relevant attributes.

The content in e-commerce websites is very dy-
namic, where new products are frequently added.

The PT categorizations themselves also change
overtime with new products, along with the set
of relevant attributes. This makes manual train-
ing data annotation with a predefined set of PTs
and attributes infeasible for attribute value extrac-
tion. Zero and few-shot learning for new attributes
have also shown limited success (Yang et al., 2022).
Therefore, most of the AVE contributions rely on
distant or weak supervision, which is very suscep-
tible to noisy and out-of-context annotations.

2.2 Training Data Denoising

To better understand how weak supervision with
simple regular expressions or labeling functions
can result in very noisy annotations, we use the
product in Figure 1 as an example. The figure
shows the product profile, which includes the title,
description, along with the product image, for a
Skin Moisturizer PT. Some of the relevant attribute
values are highlighted with different colors. These
are the values that an AVE model is expected to
return, out of the target space of each separate at-
tribute and PT. The target space for the ItemForm
attribute and Skin Moisturizer PT, for example, in-
cludes “lotion”, “cream”, “oil”, among others. The
ItemForm label for this product should be “lotion”
as shown. However, a weakly supervised training
data, that does not consider contextual understand-
ing when assigning labels, could have chosen the
more frequent “oil” as the label. The same behavior
could happen with the Scent attribute, where “Co-
conut” could have been selected instead, or in ad-
dition to, “Island Mango”, which is the right value
for this product. This paper suggests a filtering step
on top of the weakly supervised training data, that
eliminates such out-of-context annotations.

Our filtering setup is on the <attribute, PT> pair
level. So we learn a different prototype for each <at-
tribute, PT> pair, and apply the filtering approach
for product attribute values in each pair separately.

2.3 Desiderata

There are a few constraints and specific desider-
ata that should guide the filtering technique to be
deployed actively in a production system, with-
out being disruptive to the advantages of distant-
supervision. The filtering approach should be unsu-
pervised, with minimal manual overhead. Ideally,
the filtering approach should also provide an easy
mechanism to control the balance between preci-
sion and recall, if needed. And finally, the filtering



479

approach should be easy to deploy without causing
much disruption to existing pipelines.

3 Related Work

Prototype-based approaches for NLP have tradi-
tionally been used in the word representation liter-
ature (Huang et al., 2012; Reisinger and Mooney,
2010). Interest for prototype-based approaches in-
creased significantly with the onset of Prototypical
Networks (ProtoNet), with successful utilization in
few-shot learning classification in computer vision
tasks (Snell et al., 2017), and contrastive learn-
ing models (Gao et al., 2021). ProtoNet-based
approaches compute one prototype per class as the
class mean. These prototypes are then used in a
nearest neighbour classifier to update the objective
function. This is consistent with our overall setup.
There have been many contributions since then uti-
lizing Prototypical Networks for NLP tasks, mostly
in few-shot learning in information extraction (Cui
et al., 2021; Lai et al., 2021; Gao et al., 2019). But
as far as we are aware, this paper is the first to use
prototype representations for training data filtering
in weak supervision models. There are other contri-
butions utilizing data centroids for outlier detection,
mostly through k-nearest neighbor formulation as
well. The idea is to remove samples that are far
from the cluster’s centroid, in a clustering setup
(Wang et al., 2021; Pamula et al., 2011). And we
in fact use a similar formulation in our filtering
approach, with the context prototype as the target.

The attribute value extraction task has tradition-
ally been modeled using distant-supervision (Ding
et al., 2022; Yang et al., 2022; Lin et al., 2021; Yan
et al., 2021; Wang et al., 2020; Zheng et al., 2018)
which is prone to noise. Practical utilization of the
AVE task in production makes further use of weak-
supervision and data programming techniques for
training data collection (Zalmout et al., 2021). This
further amplifies the noise issue, and makes train-
ing data filtering techniques more important.

4 Approach

4.1 Context-Aware Embeddings
Each product in a given <attribute, PT> pair is
represented through the context embedding of the
mentioned attribute value, using pre-trained lan-
guage models like BERT (Devlin et al., 2018). We
use a masking vector on top of the text sequence,
for each value. We then use BERT-like models to
get the context embedding with the sequence and

mask as input. Within this scope, we can use two
embedding paradigms:

• Value-Based Embeddings: We get the context
embedding for the value mention in each prod-
uct profile directly, based on the target value.
For multi-worded values, we take the average
of the word embeddings.

• Name-Based Embeddings: We replace the
value mention with the attribute and PT names,
separated with [BOA] and [EOA] special to-
kens (BOA: beginning of attribute, EOA: end
of attribute). Like “[BOA] skin moisturizer
item form [EOA]”, instead of the “lotion”
value in the example in Figure 1. We then
get the embedding as before.

We also fine-tune the pre-trained language model
using the MLM objective. Fine-tuning is more crit-
ical for name-based embeddings, since the pattern
of using the attribute and PT names instead of val-
ues, along with the additional special tokens, are
not covered in the existing pretrained models. We
follow the same value format mentioned above, and
replace the attribute value with the PT and attribute
names, along with the [EOA] and [BOA] special
tokens. In the fine-tuning dataset, we randomly re-
place value mentions with the above name notation
for n% of the overall corpus products.

It is worth noting that the masking setup in the
name-based embeddings is used both during fine-
tuning and context embedding retrieval at runtime.

4.2 Prototype Representation
The prototype embedding is the mean of the con-
text embeddings of a representative sample of the
values in a given <attribute, PT> pair. The proto-
type representation in prototype-learning is usually
learnt from a small set of manually annotated data.
However, in our case having annotated data for
each PT is challenging, since production systems
would be working with a large number of different
PTs. And collecting annotated data for each PT
is expensive. We therefore identify two different
approaches to obtain the prototype representation;
using a small annotated sample as typically done
in classical prototype-learning, or using the cen-
troid of the raw training data as a proxy for the
prototype.

4.2.1 Gold Prototype
Manually annotated data for each PT would allow
the model to capture more representative embed-



480

Figure 2: Filtering setup using centroid prototype.

dings. In this case, the PT embedding might not be
at the centroid of the training data cluster, depend-
ing on how noisy and how representative it is of the
real distribution. The main advantage of this setup
is that we can have more accurate and meaningful
representations, for the PTs with enough annotated
data coverage. However, the size of the annotated
sample for each PT would be small, given the large
number of different PTs. This might lead to bias,
misrepresentation, and limited coverage of all pos-
sible target values. Moreover, relying on annotated
data incurs significant overhead, and creates a de-
pendency between data annotation and the training
data generation process, which hinders scalability.

4.2.2 Training Data Centroid Prototype
We also use the training data itself to calculate the
prototype. The training data is noisy, so it cannot
be used directly to get the prototype. However, in
this case the goal would be to identify the centroid
of the context embeddings, and then assign a nu-
meric distance score for each context against the
centroid as a proxy. The threshold for the distance
is then used to eliminate outlier contexts relative to
the centroid representation. This can work if the
training data is not too excessively noisy, where the
centroid is somewhat close to the PT representa-
tion if a large amount of gold data was used. The
advantages of such setup is that the weakly super-
vised training data is cheap and does not require
manual curation. We can also get sizable training
data for each PT, that covers most of the relevant
values. However, if the training data is too noisy,
the centroid would not be capturing any meaningful
representations. Figure 2 shows a sample distribu-
tion of the different contexts, centroid, and distance
threshold.

4.3 Outlier Detection

After obtaining the prototype representation,
whether using the gold prototype or data centroid,
along with the individual context embeddings, we
formulate the cleaning task as an outlier detection
task. We use distance metrics to calculate distance
between each training sample context embedding
and the prototype. And eliminate training samples
with a distance above a tunable threshold. We ex-
periment with several distance metrics, in addition
to Euclidean distance, including:

• Mahalonobis Distance: Mahalonabis distance
is a multivariate distance metric, that consid-
ers the potential covariance between the differ-
ent variables. It is commonly used in anomaly
detection literature. However, excessive noise
can bias the covariance matrix, hence result-
ing in biased distance calculations.

d(x, µ) =
√
(x− µ)TC−1(x− µ)

Where x is the vector representation of the
given sample. µ is the vector representation of
the centroid or prototype, C−1 is the inverse
covariance matrix estimate for the samples.

• Cosine Distance: The inverse of the cosine
of the angle between sample and prototype
vectors, through the dot product of the vectors
divided by the product of their lengths.

d(x, µ) = 1−
∑n

i=1 xiµi√∑n
i=1 x

2
i

√∑n
i=1 µ

2
i

4.4 Evaluation Criteria

Throughout the various experiments we evaluate
the filtering setup based on two different criteria,
precision/recall for the training data itself, and pre-
cision/recall for the downstream extraction model.

Training data recall vs model recall. We op-
timize mainly for precision in the training data
evaluation. Recall in the training data evaluation is
calculated based on the intersection of the bench-
marking and training datasets, and does not neces-
sarily correlate with the recall of the model itself.
Therefore, lower recall in the training data evalua-
tion is not problematic, as long as it does not cause
a significant bias in specific values, as in eliminat-
ing certain values completely or near completely.
Whereas for the actual trained model, we optimize



481

Attribute # PTs Training Set Gold Testing Set
ContainerType* 34 265,822 2,119
ItemForm* 14 1,195,256 5,432
Pattern 33 126,153 2,665
ItemShape 80 511,977 2,825
ChocolateType 1 6,797 75
Material 21 41,245 2,198
ControlType 9 72,489 892

Sum 192 2,219,739 16,206

Table 1: Statistics of the training and evaluation datasets
for the various attributes. *We use two attributes (Item-
Form and ContainerType) for the ablations. And we
expand to the remaining attributes afterwards.

for both precision and recall. The goal is to max-
imize precision, with minimal sacrifice in recall.
We confirm this behavior in Table 4, where the re-
call of the model does not drop significantly, even
though the training data evaluation reflects a bigger
drop. Throughout the training data evaluation ex-
periments we mainly focus on the precision results,
but also report recall as a sanity check. But we opt
not to report F1 scores, since it does not reflect a
meaningful metric in this case.

5 Experiments and Results

5.1 Dataset

We collect our raw dataset from the product pro-
files (title, bullets, and description) from the public
web pages at Amazon.com. The goal is to col-
lect training data that is entirely weakly supervised,
without any manual cleaning or intervention. This
is why we opted not to use available public data
like MAVE (Yang et al., 2022), which has been
extensively processed. We selected seven different
attributes, and identified the set of relevant values.
The value identification is the only manual step in
this setup, gathered from Amazon pages. The train-
ing data is then collected through labeling functions
based on regular expressions for each of the target
values. This setup is commonly used in the AVE
task, usually followed by a manual curation step to
fix erroneous matching patterns.

To better understand the limits of our setup, we
also worked on enhancing the quality of the train-
ing data manually, to compare against the auto-
matic filtering system. We selected a sample of
products per PT, and worked with annotators to
identify patterns of erroneous value annotations in
the training data and fix them. The goal is to up-
date the labeling function with negative patterns
that it should avoid matching, through look ahead

and behind phrases in the regular expression. For
example, "whole" is a valid value for the ItemForm
attribute, used in cases like "whole beans". A nega-
tive matching pattern would be phrases like "whole
foods". A manually curated pattern in this case is to
avoid matching the "whole" value if it is followed
by the "foods" word. We call the resulting dataset
manually curated throughout the experiments.

We also collected a benchmarking set of man-
ually annotated set of products in each PT, for
general evaluation. Table 1 shows the statistics
of the datasets we collected. We also collected a
dataset of about 3 million products, from the public
pages at Amazon.com. We use this dataset for the
pre-trained language model fine-tuning, using the
MLM objective.

5.2 Training Data Evaluation

In this part we evaluate the resulting training
datasets directly, through a manually labeled sam-
ple from the raw training data. Since the various ab-
lations aim to filter out erroneous annotations, the
recall of the raw data would be the upper bound for
all subsequent variations. Recall of training data is
not as important as precision, since the downstream
extraction model is expected to cover the recall gap,
as we highlighted earlier. So we report recall in
the various results, but we focus on precision gain.
We use the raw data as the main baseline. We also
compare against the manually curated datasets, that
were handled through manual inspection and sets
of manually curated rules to fix them. The K value,
at the P@R=K metric, were chosen for each case to
match the recall for the manually curated datasets,
to facilitate easier comparison.

Results in Table 2 show significant improvement
compared to the unfiltered data, along with large
improvements compared to the manually curated
data as well. Value-based embeddings outperform
name-based embeddings across the various settings.
And the centroid approach seems to outperform the
Gold Prototype approach. This is significant, since
it indicates that we do not need manually anno-
tated dataset to utilize the filtering approach. This
is probably due to the more representative nature
of the centroid, despite the noise, compared to a
small annotated sample. We also experiment with
the different outlier detection methods. Results in
Table 3 show that Cosine distance outperforms the
other metrics. One theory for why Mahalanobis
distance did not perform well is that covariance

https://www.amazon.com/


482

Training Data ItemForm ContainerType
Precision Recall Precision Recall

Raw Data 86.5% 44.0% 78.1% 24.1%
Manually Curated 93.2% 29.6% 80.3% 20.2%

Centroid Prototype

Value-based max precision 96.4% 21.2% 82.7% 18.8%
Value-based P@R=K* 95.6% 30.0% 81.6% 20.0%
Name-based max precision 89.2% 38.0% 80.0% 21.0%
Name-based P@R=K* 88.5% 30.0% 77.6% 20.0%

Gold Prototype

Value-based max precision 95.1% 21.5% 81.4% 18.5%
Value-based P@R=K* 94.7% 29.3% 80.5% 20.4%
Name-based max precision 87.1% 38.2% 80.5% 21.5%
Name-based P@R=K* 84.5% 30.5% 75.4% 19.4%

Table 2: Training data evaluation results after the various filtering approaches. These results reflect the training data
evaluation, not the extraction model evaluation. Therefore, precision gain is more important than recall, and raw
data recall is not a baseline. Check Section 4.4 for more details. *The K value, for P@R=K, is 0.3 for ItemForm,
and 0.2 for ContainerType, as described in Section 5.2.

Distance Metric ContainerType ItemForm
Precision Recall Precision Recall

Raw Data 78.1% 24.1% 86.5% 44.0%
Cosine Distance 81.6% 20.0% 95.6% 30.0%
Mahalanobis Distance 78.6% 20.8% 88.4% 30.9%
Euclidean Distance 78.9% 20.3% 92.7% 29.8%

Table 3: Training data evaluation results for the various
distance metrics. The data is filtered using value-based
embeddings, centroid prototype, and the P@R=K setup.
We do not include F1 results, as explained in Section 4.4.

matrices are susceptible to noise. To test if this is
more prominent in centroid-based filtering, we also
used the Gold Prototypes approach, and results are
actually lower, in accordance to the results for Gold
Prototypes in general.

We also experimented with a number of pre-
trained language models, including BERT (Devlin
et al., 2018) (base and large), RoBERTa (Liu et al.,
2019) (base and large), and GPT2, all fine-tuned
using the same dataset. Results are very close to
each other, besides GPT2 which is significantly
lower, so we opted to use BERT base.

5.3 Downstream Extraction Models Results

The training data results show significant precision
gain, at the expense of some recall drop, which is
not a problem as we highlighted earlier. To assess
the impact of the filtering setup on the downstream
extraction models themselves, and investigate the
role of cosine distance threshold, we train several
models using the filtered data. There are several ar-
chitectures used for the AVE task in literature, with
a varying degree of complexity (Zalmout et al.,
2021). In this part we opt for the original Open-
Tag model (Zheng et al., 2018). Table 4 shows the
results of the filtered compared to raw data, and Fig-

Figure 3: Results for the extraction models trained using
the filtered training data for the ItemForm attribute, as a
function of the cosine distance threshold.

ure 3 shows the results as a function of the cosine
distance threshold. The filtering setup achieves up
to 10% absolute gain in precision, with a minimal
recall drop of around 1%, after filtering more than
50% of the original training dataset. Interestingly,
recall seems to be doing well overall across most of
the filtering thresholds, even though we are doing
significant filtering of the training data.

5.4 Experimenting with Additional Attributes

We also expanded the experiments to five additional
attributes, to further evaluate the consistency of the
improvement. We evaluated the resulting training
data compared to the unfiltered datasets. Results
in Table 5 show gains across all attributes, with an
average precision gain of about 9% absolute.

6 Conclusion

We presented an automatic filtering approach using
prototype-based representations. We applied the
approach on the AVE task, and showed that using
centroid-based prototypes outperforms gold-data



483

Training Data ContainerType ItemForm
Precision Recall F1 Score Precision Recall F1 Score

Raw data 71.3% 34.6% 46.7% 82.4% 67.1% 73.9%
Filtered data* 80.6% 33.5% 47.4% 85.1% 66.8% 74.9%

Table 4: Results for the extraction model evaluation, trained using the filtered data compared to the raw data. *The
data is filtered using cosine distance, value-based embeddings, centroid prototype, and the P@R=K setup.

Attribute Raw Data Filtered Data
Precision Recall Precision Recall

Pattern 74.4% 14.5% 90.8% 14.1%
ItemShape 59.7% 17.8% 70.3% 16.7%
ChocolateType 88.9% 32.9% 93.1% 27.8%
Material 71.6% 16.1% 74.9% 14.5%
ControlType 69.7% 18.0% 80.1% 12.4%

Average 72.9% 19.9% 81.8% 17.1%

Table 5: Training data results for five additional at-
tributes. As explained earlier, recall drop is not as im-
portant as precision gain for training data evaluation,
and we do not report F1 scores. Check Section 4.4 for
more details.

prototypes. We also showed that cosine distance
outperforms other outlier detection techniques. We
also showed that although recall in the filtered train-
ing data drops, the precision gain would still pro-
vide the downstream model with the capacity to
cover any recall gaps. Model results show signifi-
cant precision gain, with a minimal drop in recall.

Future work in this direction include tying the
filtering process to the underlying task, which
would help learn more meaningful representations.
Along with developing an iterative filtering process,
through which we get the centroids, filter data, then
use filtered data to learn centroids again. Such it-
erative process could improve the quality of the
filtering process.

Limitations

Despite the impressive overall performance, along
with the simplicity of the approach, the filtering
system covers a subset of all possible errors. The
goal is to address out-of-context annotations, so
errors that are not far off contextually would be
more difficult to filter out. Moreover, even for
the out-of-context matches, the filtering system
is relatively crude and aggressive. The filtering
decisions are not fine-grained, so false positives
and negatives can still happen. Finally, the centroid
prototype, which provides the best results in our
setup, is highly dependent on the level of noise in
the raw datasets. So we would expect the filtering
process to be more biased for attributes that are

excessively noisy. Albeit, we still think the filtering
system is powerful, useful, yet simple enough for
successful utilization in production.

References
Li Cui, Deqing Yang, Jiaxin Yu, Chengwei Hu, Jiayang

Cheng, Jingjie Yi, and Yanghua Xiao. 2021. Refining
sample embeddings with relation prototypes to en-
hance continual relation extraction. In Proceedings
of ACL-IJCNLP’21 (Volume 1: Long Papers), pages
232–243.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina N. Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing.

Yifan Ding, Yan Liang, Nasser Zalmout, Xian Li,
Christan Grant, and Tim Weninger. 2022. Ask-and-
verify: Span candidate generation and verification
for attribute value extraction. In Proceedings of
EMNLP’22 Industry Track, Abu Dhabi, UAE.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun.
2019. Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In Proceed-
ings of AAAI’19, volume 33, pages 6407–6414.

Yizhao Gao, Nanyi Fei, Guangzhen Liu, Zhiwu Lu,
and Tao Xiang. 2021. Contrastive prototype learning
with augmented embeddings for few-shot learning.
In Uncertainty in Artificial Intelligence, pages 140–
150. PMLR.

Eric Huang, Richard Socher, Christopher Manning, and
Andrew Ng. 2012. Improving word representations
via global context and multiple word prototypes. In
Proceedings of ACL’12 (Volume 1: Long Papers),
pages 873–882, Jeju Island, Korea.

Viet Lai, Franck Dernoncourt, and Thien Huu Nguyen.
2021. Learning prototype representations across few-
shot tasks for event detection. In Proceedings of
EMNLP’21, pages 5270–5277, Online and Punta
Cana, Dominican Republic.

Rongmei Lin, Xiang He, Jie Feng, Nasser Zalmout, Yan
Liang, Li Xiong, and Xin Luna Dong. 2021. Pam:
Understanding product images in cross product cate-
gory attribute extraction. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, KDD ’21, page 3262–3270,
New York, NY, USA. Association for Computing
Machinery.

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/P12-1092
https://aclanthology.org/P12-1092
https://doi.org/10.18653/v1/2021.emnlp-main.427
https://doi.org/10.18653/v1/2021.emnlp-main.427
https://doi.org/10.1145/3447548.3467164
https://doi.org/10.1145/3447548.3467164
https://doi.org/10.1145/3447548.3467164


484

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Rajendra Pamula, Jatindra Kumar Deka, and Sukumar
Nandi. 2011. An outlier detection method based on
clustering. In 2011 Second International Conference
on Emerging Applications of Information Technology,
pages 253–256.

Joseph Reisinger and Raymond J. Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
Proceedings of NAACL-HLT’10, pages 109–117, Los
Angeles, California.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Ad-
vances in neural information processing systems, vol-
ume 30.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai,
D. Sivakumar, Bin Shu, Zac Yu, and Jon Elsas. 2020.
Learning to extract attribute value from product via
question answering: A multi-task approach. KDD
’20, New York, NY, USA. Association for Computing
Machinery.

Xiaochun Wang, Xiali Wang, and Mitch Wilkes. 2021.
A k-nearest neighbor centroid-based outlier detection
method. In New Developments in Unsupervised Out-
lier Detection: Algorithms and Applications, pages
71–112, Singapore. Springer Singapore.

Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant,
Xiang Ren, and Xin Luna Dong. 2021. AdaTag:
Multi-attribute value extraction from product profiles
with adaptive decoding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4694–4705, Online. Association
for Computational Linguistics.

Li Yang, Qifan Wang, Zac Yu, Anand Kulkarni, Sumit
Sanghai, Bin Shu, Jon Elsas, and Bhargav Kanagal.
2022. Mave: A product dataset for multi-source
attribute value extraction. In Proceedings of WSDM

’22, WSDM ’22, page 1256–1265, New York, NY,
USA.

Nasser Zalmout, Chenwei Zhang, Xian Li, Yan Liang,
and Xin Luna Dong. 2021. All you need to know to
build a product knowledge graph. In Proceedings of
KDD’21, page 4090–4091, New York, NY, USA.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
extraction from product profiles. In Proceedings of
KDD’18.

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1109/EAIT.2011.25
https://doi.org/10.1109/EAIT.2011.25
https://aclanthology.org/N10-1013
https://aclanthology.org/N10-1013
https://doi.org/10.1145/3394486.3403047
https://doi.org/10.1145/3394486.3403047
https://doi.org/10.1007/978-981-15-9519-6_4
https://doi.org/10.1007/978-981-15-9519-6_4
https://doi.org/10.18653/v1/2021.acl-long.362
https://doi.org/10.18653/v1/2021.acl-long.362
https://doi.org/10.18653/v1/2021.acl-long.362
https://doi.org/10.1145/3488560.3498377
https://doi.org/10.1145/3488560.3498377
https://doi.org/10.1145/3447548.3470825
https://doi.org/10.1145/3447548.3470825
https://www.amazon.science/publications/opentag-open-attribute-extraction-from-product-profiles
https://www.amazon.science/publications/opentag-open-attribute-extraction-from-product-profiles

