@inproceedings{fu-etal-2022-entity,
title = "Entity-level Sentiment Analysis in Contact Center Telephone Conversations",
author = "Fu, Xue-yong and
Chen, Cheng and
Laskar, Md Tahmid Rahman and
Gardiner, Shayna and
Hiranandani, Pooja and
Tn, Shashi Bhushan",
editor = "Li, Yunyao and
Lazaridou, Angeliki",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-industry.49/",
doi = "10.18653/v1/2022.emnlp-industry.49",
pages = "484--491",
abstract = "Entity-level sentiment analysis predicts the sentiment about entities mentioned in a given text. It is very useful in a business context to understand user emotions towards certain entities, such as products or companies. In this paper, we demonstrate how we developed an entity-level sentiment analysis system that analyzes English telephone conversation transcripts in contact centers to provide business insight. We present two approaches, one entirely based on the transformer-based DistilBERT model, and another that uses a neural network supplemented with some heuristic rules."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-etal-2022-entity">
<titleInfo>
<title>Entity-level Sentiment Analysis in Contact Center Telephone Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xue-yong</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Tahmid</namePart>
<namePart type="given">Rahman</namePart>
<namePart type="family">Laskar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shayna</namePart>
<namePart type="family">Gardiner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pooja</namePart>
<namePart type="family">Hiranandani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shashi</namePart>
<namePart type="given">Bhushan</namePart>
<namePart type="family">Tn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angeliki</namePart>
<namePart type="family">Lazaridou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Entity-level sentiment analysis predicts the sentiment about entities mentioned in a given text. It is very useful in a business context to understand user emotions towards certain entities, such as products or companies. In this paper, we demonstrate how we developed an entity-level sentiment analysis system that analyzes English telephone conversation transcripts in contact centers to provide business insight. We present two approaches, one entirely based on the transformer-based DistilBERT model, and another that uses a neural network supplemented with some heuristic rules.</abstract>
<identifier type="citekey">fu-etal-2022-entity</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-industry.49</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-industry.49/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>484</start>
<end>491</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Entity-level Sentiment Analysis in Contact Center Telephone Conversations
%A Fu, Xue-yong
%A Chen, Cheng
%A Laskar, Md Tahmid Rahman
%A Gardiner, Shayna
%A Hiranandani, Pooja
%A Tn, Shashi Bhushan
%Y Li, Yunyao
%Y Lazaridou, Angeliki
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F fu-etal-2022-entity
%X Entity-level sentiment analysis predicts the sentiment about entities mentioned in a given text. It is very useful in a business context to understand user emotions towards certain entities, such as products or companies. In this paper, we demonstrate how we developed an entity-level sentiment analysis system that analyzes English telephone conversation transcripts in contact centers to provide business insight. We present two approaches, one entirely based on the transformer-based DistilBERT model, and another that uses a neural network supplemented with some heuristic rules.
%R 10.18653/v1/2022.emnlp-industry.49
%U https://aclanthology.org/2022.emnlp-industry.49/
%U https://doi.org/10.18653/v1/2022.emnlp-industry.49
%P 484-491
Markdown (Informal)
[Entity-level Sentiment Analysis in Contact Center Telephone Conversations](https://aclanthology.org/2022.emnlp-industry.49/) (Fu et al., EMNLP 2022)
ACL
- Xue-yong Fu, Cheng Chen, Md Tahmid Rahman Laskar, Shayna Gardiner, Pooja Hiranandani, and Shashi Bhushan Tn. 2022. Entity-level Sentiment Analysis in Contact Center Telephone Conversations. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 484–491, Abu Dhabi, UAE. Association for Computational Linguistics.