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Abstract

Online relevance matching is an essential task
of e-commerce product search to boost the util-
ity of search engines and ensure a smooth user
experience. Previous work adopts either classi-
cal relevance matching models or Transformer-
style models to address it. However, they ig-
nore the inherent bipartite graph structures that
are ubiquitous in e-commerce product search
logs and are too inefficient to deploy online.
In this paper, we design an efficient knowl-
edge distillation framework for e-commerce rel-
evance matching to integrate the respective ad-
vantages of Transformer-style models and clas-
sical relevance matching models. Especially
for the core student model of the framework,
we propose a novel method using k-order rele-
vance modeling. The experimental results on
large-scale real-world data (the size is 6∼174
million) show that the proposed method sig-
nificantly improves the prediction accuracy in
terms of human relevance judgment. We deploy
our method to JD.com online search platform.
The A/B testing results show that our method
significantly improves most business metrics
under price sort mode and default sort mode.

1 Introduction

Relevance matching (Guo et al., 2016; Rao et al.,
2019; Wang et al., 2020) is an important task in the
field of ad-hoc information retrieval (Zhai and Laf-
ferty, 2017), which aims to return a sequence of in-
formation resources related to a user query (Huang
et al., 2020; Chang et al., 2021; Sun and Duh,
2020). Generally, texts are the dominant form of
user queries and returned information resources.
Given two sentences, the target of relevance match-
ing is to estimate their relevance score and then
judge whether they are relevant or not. However,
text similarity does not mean semantic similarity.
For example, while “mac pro 1.7GHz” and “mac
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Figure 1: Shortcoming of the existing relevance match-
ing model. Here we take the ARC-I model as an exam-
ple. The right part shows the ground truth of queries
and item titles. The left part shows two problematic ex-
amples in ARC-I, which deviate from the ground truth.

lipstick 1.7ml” look alike, they describe two differ-
ent and irrelevant products. Therefore, relevance
matching is important, especially for long-term
user satisfaction of e-commerce search (Niu et al.,
2020; Xu et al., 2021; Zhu et al., 2020).

Recently, Transformer-style models (e.g.,
BERT (Devlin et al., 2019) and ERNIE (Sun et al.,
2019b)) have achieved breakthroughs on many
NLP tasks and shown satisfactory performance on
relevance matching, but they are hard to deploy
to the online environment due to their high time
complexity. Moreover, these methods cannot deal
with the abundant context information (i.e., the
neighbor features in a query-item bipartite graph)
in e-commerce product search. Last but not least,
when applied to real-world scenarios, existing
classical relevance matching models directly use
user behaviors as labeling information (Figure 1).
However, this solution is not directly suitable
for relevance matching because user behaviors
are often noisy and deviate from relevance
signals (Mao et al., 2019; Liu and Mao, 2020).

In this paper, we propose to incorporate bipar-
tite graph embedding into the knowledge distilla-
tion framework (Li et al., 2021; Dong et al., 2021;
Rashid et al., 2021; Wu et al., 2021b; Zhang et al.,
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2020) to solve the relevance matching problem
in the scene of e-commerce product search. We
adopt BERT (Devlin et al., 2019) as the teacher
model in this framework. Also, we design a novel
model called BERM, Bipartite graph Embedding
for Relevance Matching (BERM), which acts as
the student model in our knowledge distillation
framework. This model captures the 0-order rel-
evance using a word interaction matrix attached
with positional encoding and captures the higher-
order relevance using the metapath embedding with
graph attention scores. For online deployment, it is
further distilled into a tiny model BERM-O.

Our main contributions are as follows:

• We formalize the k-order relevance problem in
a bipartite graph (Section 2.1) and address it by
a knowledge distillation framework with a novel
student model called BERM.

• We apply BERM to the e-commerce product
search scene with abundant context information
(Section 2.4) and evaluate its performance (Sec-
tion 3). The results indicate that BERM outper-
forms the state-of-the-art methods.

• To facilitate online applications, we further distill
BERM into a faster model, i.e., BERM-O. The
results of online A/B testing indicate that BERM-
O significantly improves most business metrics
under price sort mode and default sort mode.

2 Method

2.1 Problem Definition

We first give the definition of the bipartite graph:

Definition 1 Bipartite Graph. Given a graph G =
(U ,V, E , A,R), it contains two disjoint node sets
U : {u1, u2, · · · , un} and V : {v1, v2, · · · , vn′}.
For edge set E : {e1, · · · , em}, each edge ei con-
nects uj in U and vk in V . In addition, there is a
node type mapping function f1 : U ∪ V → A and
an edge type mapping function f2 : E → R. Such
a graph G is called a bipartite graph.

Example 1 Given a search log, a query-item bi-
partite graph is built as shown in Figure 1, where
A= {Query, Item} and R= {Click}.

In a bipartite graph, we use the metapath and
metapath instance to incorporate the neighboring
node information into relevance matching. They
are defined as follows:

Definition 2 Metapath and Metapath In-
stance in Bipartite Graph. Given a bipar-
tite graph G=(U ,V, E ,A,R), the metapath
Pi=a1

r1→ a2
r2→· · · rl→al+1 (aj ̸=aj+1, 1⩽j⩽l) is

a path from a1 to al+1 successively through
r1, r2, · · · , rl (aj∈A, rj∈R). The length of Pi is
denoted as |Pi| and |Pi|=l. For brevity, the set of
all metapaths on G can be represented in regular
expression as P G=(aa′)+(a|ε)|(a′a)+(a′|ε)
where a, a′∈A and a̸=a′. The metapath instance
p is a definite node sequence instantiated from
metapath Pi. All instances of Pi is denoted as
I(Pi), then p∈I(Pi).

Example 2 As shown in Figure 1, an instance of
metapath “Query-Item-Query” is “q2-i3-q3”.

Definition 3 k-order Relevance. Given a bipar-
tite graph G = (U ,V, E ,A,R), a function F k

rel :
U × V → [0, 1] is called a k-order relevance func-
tion on G if F k

rel(ui, vj) = G(Φ(ui),Φ(vj)|Ck),
where Φ(·) is a function to map each node to
a representation vector, G(.) is the score func-
tion, ui∈U , vj∈V , and context information Ck =⋃

IPi
⊆I(Pi),Pi∈PG ,|Pi|=k IPi .

Many existing relevance matching mod-
els (Huang et al., 2013; Shen et al., 2014; Hu
et al., 2014a) ignore context information Ck and
only consider the sentences w.r.t. the query and
item to be matched, which corresponds to 0-order
relevance (for more details, please see the “Related
Work” part in Appendix 4). We call it context-free
relevance matching in this paper. Considering that
both the 0-order neighbor (i.e., the node itself)
and k-order neighbor (k ⩾ 1) are necessary for
relevance matching, we argue that a reasonable
mechanism should ensure that they can cooperate
with each other. Then the research objective of our
work is defined as follows:

Definition 4 Contextual Relevance Matching.
Given a bipartite graph G = (U ,V, E ,A,R), the
task of contextual relevance matching is to deter-
mine the context information Ck on G and learn
the score function G(·) .

2.2 Overview

We propose a complete knowledge distillation
framework (Figure 2), whose student model in-
corporates the context information, for contextual
relevance matching in e-commerce product search.
The main components of this framework are de-
scribed as follows:
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Figure 2: The e-commerce knowledge distillation framework proposed in our work. Three models are used in this
framework: teacher model BERT, student model BERM, and online model BERM-O.

• Graph construction. We first construct a raw bi-
partite graph G based on the search data collected
from JD.com. Then we construct a knowledge-
enhanced bipartite graph G′ with the help of
BERT, which is fine-tuned by the human-labeled
relevance data.

• Student model design. We design a novel stu-
dent model BERM corresponding to the score
function G(·) in Definition 4. Specifically, macro
and micro matching embeddings are derived in
BERM to capture the sentence-level and word-
level relevance matching signal, respectively.
Also, based on the metapaths “Q-I-Q” and
“I-Q-I”, we design a node-level encoder and
a metapath-instance-level aggregator to derive
metapath embeddings.

• Online application. To serve online search, we
conduct further distillation to BERM and obtain
BERM-O, which is easy to be deployed online.

2.3 Bipartite Graph Construction

We introduce the external knowledge from BERT
to refine the raw user behavior graph G into a
knowledge-enhanced bipartite graph G′. The whole
graph construction includes the following phases.

Fine-tuning BERT. We use the BERT model
as the teacher model in our framework. BERT is
pre-trained on a large text corpus and fine-tuned on
our in-house data where the positive examples and
negative examples are human-labeled and cover
various item categories. The fine-tuned BERT is
equipped with good relevance discrimination and
thus acts as an expert in filtering noisy data. For
each example pair pi in the transfer set Stransfer,
we use BERT to predict its score yi as the training
label of the student model BERM.

Behavior graph construction. The user behav-
ior graph G is built on the user search log over six
months which records click behaviors and purchase

behaviors as well as their frequencies. Each edge in
G represents an existing click behavior or purchase
behavior between the given query and item.

Knowledge-enhanced graph refinement. The
click behavior edges are dense and highly noisy, so
we leverage the fine-tuned BERT model to refine
G. Specifically, we retain all the raw purchase
behavior edges, and meanwhile use the knowledge
generated by the fine-tuned BERT to refine the
click behavior edges. We set two thresholds α and
β to determine which raw edges are removed and
which new edges are added. This strategy helps
remove the noise in user behaviors, and at the same
time retrieve the missing but relevant neighbors
which cannot be captured by user behaviors. To
preserve important neighbors, for each anchor node,
we rank its 1-hop neighbors with the priority of
“purchase>high click>low click” and select the
top two of them as the final neighbor list, i.e., the
neighbor list of a query node Q is represented as
[Itop1, Itop2] and the neighbor list of a query node I
is represented as [Qtop1, Qtop2]. The algorithm of
graph construction is provided in Appendix A.

2.4 BERM Model
In this part, we describe BERM in detail, includ-
ing 0-order relevance modeling, k-order relevance
modeling, and overall learning objective.

2.4.1 0-order Relevance Modeling
The whole structure of BERM includes both the
0-order relevance modeling and k-order relevance
modeling. This subsection introduces the 0-order
relevance modeling which captures sentence-level
and word-level matching signals by incorporating
the macro matching embedding and micro match-
ing embedding, respectively.

Macro and micro matching embeddings. Each
word is represented by a d-dimensional embedding
vector, which is trained by Word2Vec (Mikolov
et al., 2013). The i-th word’s embedding of query
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Figure 3: Calculation process of metapath embeddings.

Q (or item title I) is denoted as Ei
Q∈Rd (or Ei

I∈Rd).
To capture sentence-level and word-level match-
ing signals, we employ macro matching embed-
ding and micro matching embedding, respectively.
For the macro matching embedding, taking query
Q with lQ words and item I with lI words as
examples, their macro embeddings EQ

seq,E
I
seq∈Rd

are calculated by the column-wise mean value of
EQ∈RlQ×d,EI∈RlI×d:

EQ
seq=

1

lQ

lQ∑
i=1

Ei
Q, EI

seq=
1

lI

lI∑
i=1

Ei
I . (1)

For the micro matching embedding, we first build
an interaction matrix Mint∈RlQ×lI whose (i, j)-th
entry is the dot product of Ei

Q and Ej
I :

Mint=
{
mi,j

int

}
lQ×lI

, mi,j
int=⟨Ei

Q,E
j
I ⟩ . (2)

Then the micro matching embedding Eint∈RlQlI is
the vectorization of Mint, i.e., Eint = vec(Mint).

2.4.2 k-order Relevance Modeling
The k-order relevance model contains a node-level
encoder and a metapath-instance-level aggregator.

Node-level encoder. The input of the node-level
encoder is node embeddings and its output is an
instance embedding (i.e., the embedding of a meta-
path instance). Specifically, to obtain the instance
embedding, we integrate the embeddings of neigh-
boring nodes into the anchor node embedding with
a mean encoder. Taking “Q-Itop1-Qtop1” as an ex-
ample, we calculate its embedding EQ-Itop1-Qtop1∈Rd

as follows:

EQ-Itop1-Qtop1=MEAN(EQ
seq,E

Itop1
seq ,E

Qtop1
seq ). (3)

The metapath instance bridges the communication
gap between different types of nodes and can be
used to update the anchor node embedding from
structure information.

Metapath-instance-level aggregator. The in-
puts of the metapath-instance-level aggregator are
instance embeddings and its output is a metapath
embedding. Different metapath instances convey
different information, so they have various effects
on the final metapath embedding. However, the
mapping relationship between the instance embed-
ding and metapath embedding is unknown. To
learn their relationship automatically, we introduce
the “graph attention” mechanism to generate metap-
ath embeddings (Wu et al., 2021a; Liu et al., 2022).
Taking metapath “Q-I-Q” as an example, we use
graph attention to represent the mapping relation-
ship between “Q-I-Q” and its instances. The fi-
nal metapath embedding EQ-I-Q∈Rd is calculated
(EI-Q-I∈Rd is calculated similarly) by accumulat-
ing all instance embeddings with attention scores
Att1,Att2,Att3,Att4∈R+:

EQ-I-Q=σ(Att1·EQ-Itop1-Qtop1+Att2·EQ-Itop1-Qtop2

+Att3·EQ-Itop2-Qtop1+Att4·EQ-Itop2-Qtop2),
(4)

where σ(·) is the activation function of LeakyReLU.
Though Atti can be set as a fixed value, we adopt a
more flexible way, i.e., using the neural network to
learn Atti automatically. Specifically, we feed the
concatenation of the anchor node embedding and
metapath instance embedding into a one-layer neu-
ral network (its weight is Watt∈R6d×4 and its bias
is batt∈R1×4) with a softmax layer, which outputs
an attention distribution:

(Atti)1≤i≤4=softmax(Econcat ∗Watt + batt), (5)

Econcat=[EQ
seq|EI

seq|EQ-Itop1-Qtop1 |EQ-Itop1-Qtop2

|EQ-Itop2-Qtop1 |EQ-Itop2-Qtop2 ].
(6)

The above process is shown in Figure 3.
Embedding fusion. By the 0-order and k-

order relevance modeling, three types of em-
beddings are generated, including macro match-
ing embedding (EQ

seq,EI
seq∈Rd), micro match-

ing embedding (Eint∈RlQlI ), and metapath em-
bedding (EQ-I-Q,EI-Q-I∈Rd). We concate-
nate them together and feed the result to
a three-layer neural network (its weights are
W0∈R(4d+lQlI)×d,W1,W2∈Rd×d,W3∈Rd×1 and bi-
ases are b0, b1, b2∈R1×d, b3∈R1×1), which outputs
the final relevance estimation score ŷi:

ŷi = Sigmoid(E3 ∗W3 + b3), (7)

Ej+1 = ReLU(Ej ∗Wj+bj),E0 = Eall, j = 0, 1, 2, (8)

Eall = [EQ
seq|EI

seq|Eint|EQ-I-Q|EI-Q-I ]. (9)
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2.4.3 Overall Learning Objective
We evaluate the cross-entropy error on the estima-
tion score ŷi and label yi (note that yi∈[0, 1] is
the score of the teacher model BERT), and then
minimize the following loss function:

L=−
ñ∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (10)

where ñ is the number of examples. We also ana-
lyze the complexities of BERT, BERM, and BERM-
O in Appendix C.

3 Experiments

In this section, we present the offline and online
experimental results of BERM *.

3.1 Experimental Setting

Datasets. We collect three datasets from the search
platform of JD.com, including the “Electronics”
category (Data-E), all-category (Data-A), and sam-
pled all-category (Data-S). In the platform, there
are mainly three different levels of item categories:
Cid1 (highest level, e.g., “Electronics”), Cid2 (e.g.,
“Mobile phone”), and Cid3 (lowest level, e.g., “5G
phone”). Data-A, Data-S, and Data-E have differ-
ent data distributions. Specifically, Data-A covers
all first-level categories Cid1 in the platform; Data-
S is generated by uniformly sampling 5,000 items
from Cid1; Data-E only focuses on the category of
“Electronics” in Cid1. Details of Data-E, Data-A,
and Data-S are reported in Table 1.

For the training data Strain (also called Stransfer),
the collected user behaviors include click and pur-
chase. For the testing data Stest, whose queries
are disjointed with those of Strain, we use human
labeling to distinguish between relevant and irrele-
vant items. Specifically, editors are asked to assess
the relevance scores between queries and items. In
JD.com platform, the candidate set of relevance
scores is {1, 2, 3, 4, 5}, where 5 means most rele-
vant and 1 means least relevant. To simplify it, we
use binary labeling including the positive label (i.e.,
4 or 5) and negative label (i.e., 1, 2, or 3).

Evaluation Metrics. To measure the perfor-
mance of baseline methods and our BERM, we use
three kinds of evaluation metrics, including Area
Under the receiver operating characteristic Curve
(AUC), F1-score, and False Negative Rate (FNR).

*We provide the description of baselines, implementation
details, and additional experiments in Appendix D.1, D.2, E
(Code URL: https://github.com/Young0222/EMNLP-BERM).

Table 1: Statistics of the used datasets.

Set Name Data-E Data-A Data-S

Strain

# Example 6,369,396 174,863,375 11,397,439
# Nodequery 398,824 5,952,020 3,284,480
# Nodeitem 728,405 49,517,217 1,307,557

# Edge 5,070,460 159,205,320 7,525,355
# Click 1,471,079,596 5,109,731,591 1,431,899,847

# Purchase 33,285,887 322,151,488 118,495,170

Stest

# Example 30,563 39,743 39,743
# Nodequery 3,374 3,108 3,108
# Nodeitem 16,137 30,097 30,097

# Edge 18,988 30,661 30,661

Table 2: Comparisons on Data-E and Data-S. In each
column, the best result is bolded and the runner-up is
underlined. The symbol of “↓” represents that the lower
value corresponds to better performance. “I, II, III” rep-
resent the representation-focused, interaction-focused,
and both-focused relevance matching models, respec-
tively. “IV” represents the graph neural network models.

Model Data-E Data-S
AUC F1-score FNR(↓) AUC F1-score FNR(↓)

I
DSSM 0.6246 0.6923 0.9953 0.8219 0.8691 1.0000

MVLSTM 0.8602 0.8055 0.3416 0.7877 0.8857 0.7802
ARC-I 0.8343 0.7949 0.3857 0.6919 0.8750 0.9388

II

DRMM 0.6720 0.6891 0.7692 0.6781 0.8722 0.9401
MatchPyramid 0.7826 0.7481 0.5615 0.7859 0.8786 0.8475

ARC-II 0.8128 0.7864 0.4377 0.7606 0.8784 0.9076
K-NRM 0.7462 0.7291 0.6510 0.7314 0.8733 0.9081

DRMM-TKS 0.7678 0.7383 0.5462 0.7793 0.8789 0.7893
Conv-KNRM 0.8369 0.7879 0.3469 0.8029 0.8789 0.8913

ESIM 0.8056 0.7769 0.3373 0.7987 0.8623 1.0000

III Duet 0.7693 0.7219 0.8173 0.7968 0.8754 0.9458
BERT2DNN 0.8595 0.8037 0.3464 0.8313 0.9061 0.4450

IV

GAT 0.7526 0.7361 0.7529 0.7411 0.8746 0.9234
GraphSAGE-Mean 0.7493 0.7330 0.7422 0.7406 0.8719 0.9119
GraphSAGE-LSTM 0.7588 0.7509 0.6536 0.7529 0.8743 0.8652

TextGNN 0.8310 0.8029 0.4525 0.8277 0.8779 0.7549
GEPS 0.8405 0.8037 0.4892 0.8254 0.8794 0.6340

BERM (ours) 0.8785 0.8256 0.2966 0.8758 0.9079 0.3625

The low value of FNR indicates the low probabil-
ity of fetching irrelevant items, which is closely
related to the user’s search experience. Therefore,
we include it in the evaluation metrics.

3.2 Offline Performance

We compare BERM with 12 state-of-the-art rele-
vance matching methods and 5 graph neural net-
work models on our in-house product search data.
The results are shown in Table 2. Because some
baseline methods (e.g., DRMM and ESIM) have
high time complexities, we use Data-E and Data-S
for training and testing models.

As shown in Table 2, BERM outperforms all
the baselines according to the metrics of AUC, F1-
score, and FNR. More specifically, we have the
following findings: 1) Compared to the second-
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Table 3: Cases of e-commerce product search. “yi” is the prediction score of the teacher model BERT and “ŷi” is
the relevance estimation score of the student model BERM.

Query Item title Human labeling yi ŷi
whistle Li Ning whistle for basketball or volleyball game Positive 0.9961 0.9681

women’s dance shoe Sansha modern dance shoe P22LS (black, women) Positive 0.9973 0.9908
violin adult FineLegend 1/8 violin FLV1114 Positive 0.9950 0.9769

skating knee panels RMT sports knee panels (black, L size) Positive 0.9652 0.9841
DJI g1200a DJI Mavic Mini unmanned aerial vehicle Negative 0.0049 0.0514

Berkshire Hathaway Letters to Shareholders The Snowball: Warren Buffett and the Business of Life Negative 0.0258 0.0874
My brother called Shun Liu, ZHU SU JIN Brothers: A Novel; Author: Yu Hua Negative 0.1624 0.0263

nissan thermos cup Disney thermos cup 500ML Negative 0.4938 0.2513
java web exercises JSP project development Case Full Record Negative 0.5106 0.3111

best method MVLSTM (BERT2DNN), BERM sur-
passes it 1.83% (4.45%) according to AUC on Data-
E (Data-S). Furthermore, BERM achieves the low-
est value of FNR on both Data-E and Data-S. This
implies that BERM can easily identify irrelevant
items so that it can return a list of satisfactory items
in the real-world scene. 2) The collected training
data have imbalanced classes (i.e., the positive ex-
amples are far more than the negative examples),
which poses a challenge to model learning. Most
baselines are sensitive to class imbalance. Since
BERM learns explicit node semantics by integrat-
ing the neighboring node information, our method
is robust when the data are imbalanced.

3.3 Case Study

Apart from the above quantitative analysis, we con-
duct qualitative analysis based on some cases of
e-commerce product search. For these cases, we
list the query phrase, item title, human labeling,
score of BERT, and score of BERM in Table 3. We
have the following empirical conclusions: 1) Most
of the student’s scores are close to the teacher’s,
which indicates the success of the proposed knowl-
edge distillation framework. 2) Some cases im-
ply that context information is necessary for rele-
vance matching. For example, for the query “nissan
thermos cup”, the teacher model cannot explicitly
judge whether or not the item entitled “Disney ther-
mos cup 500ML” is relevant to it. With the help
of context information in the query-item bipartite
graph, BERM can recognize that this query is re-
lated to “nissan”, rather than “Disney”.

3.4 Deployment & Online A/B Testing

We conduct further distillation to BERM and ob-
tain a lighter model BERM-O whose basic struc-
ture is a two-layer neural network. The process
of further distillation is almost the same as the
first knowledge distillation. The transfer set gener-

Table 4: Online performance of BERM-O under price
sort mode and default sort mode.

Metric Price sort mode Default sort mode
Improvement P-value Improvement P-value

UV-value 5.713% 3.20e-2 0.5013% 1.10e-1
UCVR 1.540% 7.81e-2 0.3058% 1.75e-2
CVR 1.829% 1.01e-2 0.1218% 1.60e-1
RPM 5.587% 3.03e-2 0.6886% 2.32e-2

ated by further distillation has graph-context labels.
To further evaluate BERM-O’s performance in the
real search scene, we deploy it to JD.com online
search platform. On this platform, there are about
one hundred million daily active users (DAU) and
two billion items. It processes over 150 million
search queries per day. The online baseline group
BERT2DNN (Jiang et al., 2020) and control group
BERM-O are deployed in a cluster, where each
node is with 64 core Intel(R) Xeon(R) CPU E5-
2683 v4 @ 2.10GHz, 256GB RAM as well as 4
NVIDIA TESLA P40 GPU cards. For both groups,
the only needed input data are queries and item
titles, which can be easily caught from the online
environment. Since BERM-O is lighter than BERT
or BERM, deploying it to the online search chain
requires less engineering work in the system.

Online results. We compare BERM-O with
BERT2DNN (Jiang et al., 2020) which is our online
baseline model using knowledge distillation with-
out context information. The results of A/B testing
are reported in Table 4. These results are from
one observation lasting more than ten days. Four
widely-used online business metrics are adopted
1) conversion rate (CVR): the average order num-
ber of each click behavior, 2) user conversion rate
(UCVR): the average order number of each user, 3)
unique visitor value (UV-value): the average gross
merchandise volume of each user, and 4) revenue
per mile (RPM): the average gross merchandise vol-
ume of each retrieval behavior. The results show
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that BERM-O outperforms BERT2DNN in the plat-
form according to all of the business metrics. For
example, BERM-O significantly improves 5.7%
(relative value) of UV-value under price sort mode.

4 Related Work

4.1 Classical Relevance Matching Models

The classical relevance matching models use the
deep learning technique to learn vector repre-
sentations containing the semantics of words or
sequences. The prevailing methods are either
representation-focused (e.g., DSSM (Huang et al.,
2013), CDSSM (Shen et al., 2014), and ARC-
I (Hu et al., 2014b)) or interaction-focused (e.g.,
MatchPyramid (Pang et al., 2016a), ARC-II (Hu
et al., 2014b), and ESIM (Chen et al., 2017)).
The representation-focused methods learn the low-
dimensional representations of both sentences and
then predict their relationship by calculating the
similarity between the two representations. The
interaction-focused methods learn an interaction
representation of both sentences based on the cal-
culation from word-level to sentence-level.

However, the above methods ignore the inherent
context information contained in search logs (Qin
et al., 2022; Roßrucker, 2022). In this work, we
incorporate the advantages of representation-based
and interaction-based embeddings into BERM,
which is focused on contextual relevance matching.

4.2 Transformer-style Models

More recently, Transformer-based models (Chen
et al., 2021; Chi et al., 2021; Lin et al., 2021;
Reid et al., 2021) have achieved breakthroughs on
many NLP tasks and reached human-level accu-
racy. The representative models include BERT (De-
vlin et al., 2019), ERNIE (Sun et al., 2019b),
and RoBERTa (Liu et al., 2019b). Additionally,
GRMM (Zhang et al., 2021) and GHRM (Yu et al.,
2021) use graph information to enforce the rele-
vance matching model for information retrieval.

However, the multi-layer stacked Transformer
structure in these models leads to high time com-
plexity, so they are hard to deploy online. In this
work, we use BERT to generate the supervised in-
formation of BERM and refine the noisy behavior
data. Also, GRMM and GHRM are essentially
different from ours in the definition of graphs. In
their constructed graph, nodes are unique words
and edges are the co-occurrent relationships. In
this work, we leverage query phrases (or item ti-

tles) as nodes and user behaviors as edges, which
is more suitable for the product search problem.

4.3 Online Knowledge Distillation Methods

Knowledge distillation is firstly proposed in (Hin-
ton et al., 2015). Its main idea is to transfer the
knowledge generated by a massive teacher model
into a light student model. Because of the low com-
plexity of the student model, it is easy to deploy
the student model to the online platform. Con-
sidering the strong semantic understanding abil-
ity of BERT, some studies exploit the potential
of BERT as the teacher model of knowledge dis-
tillation. Two types of design principles are gen-
eral: isomorphic principle and isomeric principle.
Specifically, the distillation methods that follow
the isomorphic principle use the same model ar-
chitecture for teacher and student models, such as
TinyBERT (Jiao et al., 2020), BERT-PKD (Sun
et al., 2019a), MTDNN (Liu et al., 2019a), and Dis-
tilBERT (Sanh et al., 2019). As a more advanced
design principle, the isomeric principle uses dif-
ferent model architectures for teacher and student
models, such as Distilled BiLSTM (Tang et al.,
2019) and BERT2DNN (Jiang et al., 2020).

Although the above methods reduce the total
time costs by learning a light student model, they
ignore the context information in the real search
scene. Our proposed knowledge distillation frame-
work follows the isomeric principle and further in-
tegrates context information into the student model
by bipartite graph embedding.

5 Conclusions and Future Work

In this paper, we propose the new problem of con-
textual relevance matching in e-commerce product
search. Different from the previous work only us-
ing the 0-order relevance modeling, we propose a
novel method of the k-order relevance modeling,
i.e., employing bipartite graph embedding to ex-
ploit the potential context information in the query-
item bipartite graph. Compared to the state-of-the-
art relevance matching methods, the new method
BERM performs robustly in the experiments. We
further distill BERM into BERM-O and deploy
BERM-O to JD.com online e-commerce product
search platform. The results of A/B testing indicate
that BERM-O improves the user’s search experi-
ence significantly. In the future, we plan to apply
our method to other e-commerce applications such
as recommender systems and advertisements.
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A Graph Construction Algorithm

We provide the complete algorithm of graph con-
struction in Algorithm 1.

B Word Embedding in E-commerce
Scene

In this part, we introduce the details of word embed-
ding generation used in this work. In e-commerce
scene, the basic representation of a query or an
item is an intractable problem. On one hand, it
is infeasible to represent queries and items as in-
dividual embeddings due to the unbounded entity
space. On the other hand, product type names (like
“iphone11”) or attribute names (like “256GB”) have
special background information and could contain
complex lexicons such as different languages and
numerals. To address these problems, we adopt
word embedding in BERM, which dramatically re-
duces the representation space. Also, we treat con-
tiguous numerals, contiguous English letters, or sin-
gle Chinese characters as one word and only retain
the high-frequency words (such as the words oc-
curring more than fifty times in a six-month search
log) in the vocabulary. The final vocabulary is only
in the tens of thousands, which saves memory con-
sumption and lookup time of indexes by a large
margin.

C Complexity Analysis

In this section, we analyze the time and space com-
plexities of BERT (teacher model), BERM (student
model), and BERM-O (online model).

C.1 Time Complexity

For the lookup operation on the static vocabulary
table (i.e., a word embedding table whose size is
nw), the time complexities of BERT, BERM, and
BERM-O are the same, i.e., O(nw). For the model
calculation part, BERT uses Transformer networks.
We denote the word embedding size, head num-
ber, network number, query length, and item length
as d1, h1, k1, lQ, lI , respectively. For the one-layer
multi-head attention mechanism, the complexity
of linear mapping (input part) is O( 1

h1
(lQ + lI)d

2
1),

the complexity of attention operation is O(h1l2Qd+
hl2Id1), and the complexity of linear mapping (out-
put part) is O((lQ + lI)d

2
1). Therefore, the total

model calculation complexity of k1-layer BERT
is O(h1+1

h1
(lQ + lI)d

2
1k1 + (l2Q + l2I )h1d1k1). For the

student model BERM, we denote the word em-

Algorithm 1 Bipartite Graph Construction
Input: Thresholds α and β; Collected dataset Sinput= {pi}ñ

(note that ñ is the number of examples); Raw user behav-
ior graph G=(U ,V, E ,A,R) where E= {e1, · · · , em},
A= {Query, Item}, R= {Click, Purchase}.

Output: Transfer set Stransfer= {pi; yi}ñ where yi is the
training label of query-item pair pi (yi∈ [0, 1]); Refined
bipartite graph G′=(U ,V, E ′,A,R).

1: Initialize E ′: E ′=E .
2: Fine-tune BERT on the human-labeled data.
3: Use the fine-tuned BERT to predict on Sinput and then

obtain Stransfer= {pi; yi}ñ.
4: for pi, yi in Stransfer do
5: Build an edge between the pair pi and denote it as

ei=edge(pi).
6: if ei∈E then
7: if f2(ei)=Purchase then
8: continue;
9: else if yi < α then

10: E ′=E ′ \ {ei}
11: end if
12: else if yi > β then
13: E ′=E ′ ∪ {ei}
14: end if
15: end for

bedding size, hidden size, and network number as
d, h2, k2, respectively. The complexity of calculat-
ing micro matching embedding is O(lQlId), which
is far more than that of calculating micro matching
embedding. The complexity of k2-layer DNN is
O(h2dk2). Therefore, the total model calculation
complexity of k2-layer BERM is O(lQlId+h2dk2).
For the online model BERM-O, we denote the word
embedding size, hidden size, and network num-
ber as d3, h3, k3, respectively. The model calcula-
tion complexity of k3-layer BERM-O is O(d3h3k3).
Note that the complexity of BERM-O is indepen-
dent of lQ and lI because BERM-O only receives
sentence embeddings and does not calculate word-
level matching signals. Based on the above analy-
sis, we can conclude that BERM is more efficient
than BERT and meanwhile BERM-O has more ad-
vantages than BERM on time complexity.

C.2 Space Complexity

The storage of the static vocabulary table takes
up the majority of the total space storage. There-
fore, the space complexities of BERT, BERM, and
BERM-O are the same, i.e., O(nwd).

D Details of Experimental Setups

D.1 Baselines

The model BERM is compared with some state-of-
the-art models. Like BERM, these models are used
as the student model of the proposed knowledge dis-
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tillation framework. We adopt the hyper-parameter
settings recommended by the original papers for all
the methods. According to the formulation process
of embedding, these methods can be divided into
the following three types:

• Three representation-focused relevance matching
methods: DSSM (Huang et al., 2013), MVL-
STM (Wan et al., 2016), and ARC-I (Hu et al.,
2014b). They learn the low-dimension represen-
tations of both sentences w.r.t. a query and an
item, and then predict their relationship by calcu-
lating the similarity (such as cosine similarity) of
representations.

• Seven interaction-focused relevance matching
methods: DRMM (Guo et al., 2016), Match-
Pyramid (Pang et al., 2016b), ARC-II (Hu et al.,
2014a), K-NRM (Xiong et al., 2017), DRMM-
TKS (Guo et al., 2016), Conv-KNRM (Xiong
et al., 2017), and ESIM (Chen et al., 2017). They
learn an interaction representation of both sen-
tences based on the interaction calculation from
word-level to sentence-level.

• Two integrated relevance matching methods:
Duet (Mitra et al., 2017) and BERT2DNN (Jiang
et al., 2020). They combine the features of the
above two types of methods into themselves.

• Five graph neural network models:
GAT (Veličković et al., 2018), GraphSAGE-
Mean (Hamilton et al., 2017), GraphSAGE-
LSTM (Hamilton et al., 2017), TextGNN (Zhu
et al., 2021), and GEPS (Zhang et al., 2019).
They aggregate the neighbor information from
the query graph or item graph to update the
embedding of the anchor node.

D.2 Implementation Details
Here we introduce the implementation details of
the whole knowledge distillation framework as fol-
lows:

• Teacher model. For the teacher model, we adopt
BERT-Base* with a 12-layer (k1=12) Trans-
former encoder where the word embedding size
d1 is 768 and head number h1 is 12. We pre-
train BERT-Base on a human-labeled dataset
with 380,000 query-item pairs. The fine-tuned
BERT-Base is then used as an expert to refine
the noisy click behavior data from Strain. The

*https://github.com/google-research/bert

refinement rule is: if the prediction score yi of
BERT-Base is less than α (the default value of α
is 0.3), then the raw edge is deleted; if the score
is larger than β (the default value of β is 0.7),
then a new edge is added.

• Student model. For the student model, we adopt
the proposed BERM model. We implement
BERM in TensorFlow 2.0 with the high-level
Estimator API. For each input query phrase Q
or item title I , we split it into several words and
then truncate or pad its length to 10 or 65words
(i.e., lQ=10, lI=65). Each word embedding is
acquired by the lookup operation on a static vo-
cabulary table whose total size nw is 39,846.
This table is generated by pre-training two billion
search data with the tool of Word2Vec. The size d
of pre-trained embeddings or trained embeddings
is 128.

• Training details. We use Lazy-Adam as the
optimizer and its learning rate is 0.001. To reduce
the overfitting of the training data, we use L2
regularization on each layer of neural networks.
For Data-E, we set the training epoch as 20. For
Data-A and Data-S, we set the training epoch as
3.

E Additional Experiments

We conduct some additional experiments, includ-
ing ablation studies (Section E.1) and sensitivity
analysis (Section E.2). In these experiments, we
adopt Data-E and Data-A consistently.

E.1 Ablation Study

E.1.1 Integration of Embeddings
There are three types of components in the com-
plete BERM: the representation-based embeddings
EQ

seq,EI
seq, interaction-based embedding Eint, and

metapath embeddings EQ-I-Q,EI-Q-I . To further
examine the importance of each component in the
final embedding of BERM, we remove one or two
components from it (Equation 9) at a time and
examine how the change affects its overall perfor-
mance.

The corresponding results on Data-E and Data-A
are reported in Table 5 and 6. We have the follow-
ing empirical observation and analysis:

• In general, the both-component setting outper-
forms the single-component setting but is worse
than the triple-component setting (i.e., BERM).
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Table 5: Ablation study on Data-E. In each column, the
best result is bolded.

Model Data-E
AUC F1-score FNR(↓)

EQ
seq,E

I
seq 0.8537 0.8044 0.3560

Eint 0.8595 0.8037 0.3464
EQ-I-Q,EI-Q-I 0.8430 0.8173 0.2995
EQ

seq,E
I
seq,Eint 0.8638 0.8086 0.3331

Eint,EQ-I-Q,EI-Q-I 0.8761 0.8221 0.2758
EQ

seq,E
I
seq,EQ-I-Q,EI-Q-I 0.8656 0.8190 0.2922

BERM 0.8785 0.8256 0.2966

Table 6: Ablation study on Data-A. In each column, the
best result is bolded.

Model Data-A
AUC F1-score FNR(↓)

EQ
seq,E

I
seq 0.8067 0.8660 0.3697

Eint 0.8289 0.9084 0.4459
EQ-I-Q,EI-Q-I 0.8500 0.9114 0.4110
EQ

seq,E
I
seq,Eint 0.8776 0.9070 0.4743

Eint,EQ-I-Q,EI-Q-I 0.8824 0.9099 0.3705
EQ

seq,E
I
seq,EQ-I-Q,EI-Q-I 0.8750 0.9094 0.3753

BERM 0.8862 0.9107 0.3673

It demonstrates that different components in
BERM have different positive effects on the over-
all performance and they cannot replace each
other.

• The introduction of k-order relevance modeling
can bring stable advancement to each 0-order
relevance model. For example, the combination
of “EQ

seq,EI
seq,EQ-I-Q,EI-Q-I” surpasses the com-

bination of “EQ
seq,EI

seq” 6.83% according to the
metric of AUC on Data-A. This demonstrates
that applying metapath embedding to relevance
matching can make effective use of the neigh-
boring nodes’ information in the user behavior
graph.

E.1.2 Effect of the Intermediate Node

The metapath defined in BERM includes the in-
termediate node. To further investigate the effect
of the intermediate node, we compare the perfor-
mances of BERM with the intermediate node (i.e.,
“Q-I-Q” and “I-Q-I”) and BERM without the in-
termediate node (i.e., “Q-Q” and “I-I”) on Data-E
and Data-A in Figure 4. We observe that BERM
with the intermediate node performs better than the
other one. We infer that the intermediate node has
strong semantic closeness to the anchor node and
thus it is helpful for accurate semantic recognition.

(a) Data-E (b) Data-A

Figure 4: Effect of the intermediate node. The red (blue)
bar represents BERM with (without) the intermediate
node.

(a) AUC of Data-E (b) F1-score of
Data-E

(c) FNR of Data-E

(d) AUC of Data-A (e) F1-score of
Data-A

(f) FNR of Data-A

Figure 5: Effect of different values of α and β. (a), (b),
and (c) are the results of Data-E; (d), (e), and (f) are the
results of Data-A. The red (blue) color corresponds to
the high (low) value.

E.2 Sensitivity Analysis

E.2.1 Thresholds α and β

In BERM, α decides how many edges of the noisy
click behavior should be deleted and β decides how
many hidden useful edges should be retrieved. To
investigate the sensitivity of α and β, we conduct
experiments with 16 different hyper-parameter set-
tings where α ranges from 0.2 to 0.5 and β ranges
from 0.5 to 0.8. We apply the three-order curve
interpolation method to show the final results in
Figure 5. In general, the results of BERM are ro-
bust to the change of hyper-parameter α and β on
either Data-E or Data-A. For example, the maxi-
mum error of AUC is no more than 1%. So we
conclude that user behaviors play a major role in
the performance of BERM and the knowledge from
BERT provides auxiliary effects for it.
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Table 7: Effect of different neighbor selection strategies
on Data-E.

Rate Click+BERT’s score Purchase+BERT’s score
AUC F1-score FNR(↓) AUC F1-score FNR(↓)

λ = 0.0 0.8785 0.8256 0.2966 0.8785 0.8256 0.2966
λ = 0.2 0.8779 0.8237 0.2834 0.8777 0.8236 0.2810
λ = 0.4 0.8770 0.8200 0.3198 0.8756 0.8214 0.3068
λ = 0.6 0.8670 0.8085 0.4000 0.8696 0.8045 0.3694
λ = 0.8 0.8679 0.8101 0.3901 0.8660 0.8105 0.3262
λ = 1.0 0.8656 0.8091 0.3850 0.8671 0.8109 0.3727

Table 8: Effect of different neighbor selection strategies
on Data-A.

Rate Click+BERT’s score Purchase+BERT’s score
AUC F1-score FNR(↓) AUC F1-score FNR(↓)

λ = 0.0 0.8862 0.9107 0.3673 0.8862 0.9107 0.3673
λ = 0.2 0.8849 0.9113 0.3794 0.8830 0.9117 0.3831
λ = 0.4 0.8821 0.9112 0.4016 0.8818 0.9100 0.4131
λ = 0.6 0.8779 0.9068 0.4793 0.8783 0.9064 0.4844
λ = 0.8 0.8802 0.9076 0.4676 0.8790 0.9084 0.4683
λ = 1.0 0.8792 0.9077 0.4671 0.8787 0.9079 0.4716

E.2.2 Threshold k

Here we evaluate the effect of k on the performance
of BERM by sampling neighboring nodes with dif-
ferent hops from the bipartite graph. The compar-
ison results on Data-E and Data-S are shown in
Figure 6. We can see that the BERM with k=2
achieves the best performance among them. When
k is too large such as k=5, many distant neigh-
bors are aggregated into the anchor nodes, then
it leads to the performance degradation of BERM
due to lots of noise gathering in these distant neigh-
bors. Therefore, we conclude that 2-order rele-
vance matching modeling is the optimal choice for
our e-commerce scene.

E.2.3 Selection of Neighbor Structure

In BERM, the selection of neighbor structure di-
rectly affects which context information is transmit-
ted to the anchor node. A good selection strategy
can aggregate valuable neighboring node informa-
tion to enrich the anchor node’s representation. To
investigate the effect of different neighbor struc-
ture selection strategies on BERM and seek a rela-
tively optimal solution, we use different values of
hyper-parameter λ to control the ratio between user
behavior and BERT’s score. Specifically, we calcu-
late a new score Scorenew(Q, I) = λ·User(Q, I) +
(1−λ)·Score(Q, I) where User(Q, I) is the
user behavior feature (e.g., for click behavior,
User(Q, I)=1 if click behavior happens between
query Q and item I). The addition and dele-

Figure 6: The effect of different k.

tion of edges refer to Scorenew(Q, I), rather than
Score(Q, I). We report the results with different λ
in Table 7 and 8. From them, we can conclude that:

• Using BERT’s score is better than using user be-
haviors for the selection of neighbors. Therefore,
the value of AUC or F1-score gradually decreases
with the increase of λ; the value of FNR increases
with the increase of λ. The optimal λ is located
in the interval [0.0, 0.2].

• According to the metric of FNR, the purchase be-
havior is better than the click behavior on Data-E.
The reason for it is that purchase behaviors reveal
more accurate semantic relevance information
than click behaviors. However, the purchase be-
havior is worse than the click behavior on Data-A.
We guess that it is caused by the sparsity of pur-
chase behaviors in the dataset of all categories.


