@inproceedings{qian-etal-2022-distinguish,
title = "Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants",
author = "Qian, Cheng and
Qi, Haode and
Wang, Gengyu and
Kunc, Ladislav and
Potdar, Saloni",
editor = "Li, Yunyao and
Lazaridou, Angeliki",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-industry.51",
doi = "10.18653/v1/2022.emnlp-industry.51",
pages = "502--511",
abstract = "Out of Scope (OOS) detection in Conversational AI solutions enables a chatbot to handle a conversation gracefully when it is unable to make sense of the end-user query. Accurately tagging a query as out-of-domain is particularly hard in scenarios when the chatbot is not equipped to handle a topic which has semantic overlap with an existing topic it is trained on. We propose a simple yet effective OOS detection method that outperforms standard OOS detection methods in a real-world deployment of virtual assistants. We discuss the various design and deployment considerations for a cloud platform solution to train virtual assistants and deploy them at scale. Additionally, we propose a collection of datasets that replicates real-world scenarios and show comprehensive results in various settings using both offline and online evaluation metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qian-etal-2022-distinguish">
<titleInfo>
<title>Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cheng</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haode</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gengyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ladislav</namePart>
<namePart type="family">Kunc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saloni</namePart>
<namePart type="family">Potdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angeliki</namePart>
<namePart type="family">Lazaridou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Out of Scope (OOS) detection in Conversational AI solutions enables a chatbot to handle a conversation gracefully when it is unable to make sense of the end-user query. Accurately tagging a query as out-of-domain is particularly hard in scenarios when the chatbot is not equipped to handle a topic which has semantic overlap with an existing topic it is trained on. We propose a simple yet effective OOS detection method that outperforms standard OOS detection methods in a real-world deployment of virtual assistants. We discuss the various design and deployment considerations for a cloud platform solution to train virtual assistants and deploy them at scale. Additionally, we propose a collection of datasets that replicates real-world scenarios and show comprehensive results in various settings using both offline and online evaluation metrics.</abstract>
<identifier type="citekey">qian-etal-2022-distinguish</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-industry.51</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-industry.51</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>502</start>
<end>511</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants
%A Qian, Cheng
%A Qi, Haode
%A Wang, Gengyu
%A Kunc, Ladislav
%A Potdar, Saloni
%Y Li, Yunyao
%Y Lazaridou, Angeliki
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F qian-etal-2022-distinguish
%X Out of Scope (OOS) detection in Conversational AI solutions enables a chatbot to handle a conversation gracefully when it is unable to make sense of the end-user query. Accurately tagging a query as out-of-domain is particularly hard in scenarios when the chatbot is not equipped to handle a topic which has semantic overlap with an existing topic it is trained on. We propose a simple yet effective OOS detection method that outperforms standard OOS detection methods in a real-world deployment of virtual assistants. We discuss the various design and deployment considerations for a cloud platform solution to train virtual assistants and deploy them at scale. Additionally, we propose a collection of datasets that replicates real-world scenarios and show comprehensive results in various settings using both offline and online evaluation metrics.
%R 10.18653/v1/2022.emnlp-industry.51
%U https://aclanthology.org/2022.emnlp-industry.51
%U https://doi.org/10.18653/v1/2022.emnlp-industry.51
%P 502-511
Markdown (Informal)
[Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants](https://aclanthology.org/2022.emnlp-industry.51) (Qian et al., EMNLP 2022)
ACL