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Abstract

Recently, knowledge-enhanced pre-trained lan-
guage models (KEPLMs) improve context-
aware representations via learning from struc-
tured relations in knowledge graphs, and/or
linguistic knowledge from syntactic or depen-
dency analysis. Unlike English, there is a lack
of high-performing open-source Chinese KE-
PLMs in the natural language processing (NLP)
community to support various language under-
standing applications. In this paper, we re-
visit and advance the development of Chinese
natural language understanding with a series
of novel Chinese KEPLMs released in vari-
ous parameter sizes, namely CKBERT (Chi-
nese knowledge-enhanced BERT). Specifically,
both relational and linguistic knowledge is ef-
fectively injected into CKBERT based on two
novel pre-training tasks, i.e., linguistic-aware
masked language modeling and contrastive
multi-hop relation modeling. Based on the
above two pre-training paradigms and our in-
house implemented TorchAccelerator, we have
pre-trained base (110M), large (345M) and
huge (1.3B) versions of CKBERT efficiently on
GPU clusters. Experiments demonstrate that
CKBERT outperforms strong baselines for Chi-
nese over various benchmark NLP tasks and in
terms of different model sizes. 1

1 Introduction

Pre-trained Language Models (PLMs) such as
BERT (Devlin et al., 2019) are pre-trained by self-
supervised learning on large-scale text corpora
to capture the rich semantic knowledge of words
(Li et al., 2021; Gong et al., 2022), improving
various downstream NLP tasks significantly (He
et al., 2020; Xu et al., 2021; Chang et al., 2021).
Although these PLMs have stored much internal
knowledge (Petroni et al., 2019, 2020), they can

∗ Corresponding author.
1All the codes and model checkpoints have been released

to public in the EasyNLP framework (Wang et al., 2022).
URL: https://github.com/alibaba/EasyNLP.

hardly understand external background knowledge
from the world such as factual and linguistic knowl-
edge (Colon-Hernandez et al., 2021; Cui et al.,
2021; Lai et al., 2021).

In the literature, most approaches of knowledge
injection can be divided into two categories, includ-
ing relational knowledge and linguistic knowledge.
(1) Relational knowledge-based approaches inject
entity and relation representations in Knowledge
Graphs (KGs) trained by knowledge embedding al-
gorithms (Zhang et al., 2019; Peters et al., 2019) or
convert triples into sentences for joint pre-training
(Liu et al., 2020; Sun et al., 2020). (2) Linguis-
tic knowledge-based approaches extract semantic
units from pre-training sentences such as part-of-
speech tags, constituent and dependency syntactic
parsing, and feed all linguistic information into var-
ious transformer-based architectures (Zhou et al.,
2020; Lai et al., 2021). We observe that there
can be three potential drawbacks. (1) These ap-
proaches generally utilize a single source of knowl-
edge (i.e., inherent linguistic knowledge), which
ignore important knowledge from other sources (Su
et al., 2021) (i.e., relational knowledge from KGs).
(2) Training large-scale KEPLMs from scratch re-
quires high-memory computing devices and is time-
consuming, which brings significant computational
burdens for users (Zhang et al., 2021, 2022). (3)
Most of these models are pre-trained in English
only. There is a lack of powerful KEPLMs for
understanding other languages (Lee et al., 2020;
Pérez et al., 2021).

To overcome the above problems, we release a
series of Chinese KEPLMs named CKBERT (Chi-
nese knowledge-enhanced BERT), with heteroge-
neous knowledge sources injected. We particularly
focus on Chinese as it is one of the most widely spo-
ken languages other than English. The CKBERT
models are pre-trained by two well-designed pre-
training tasks as follows:

• Linguistic-aware Masked Language Mod-

https://github.com/alibaba/EasyNLP


571

eling (LMLM): LMLM is substantially ex-
tended from Masked Language Modeling
(MLM) (Devlin et al., 2019) by introducing
two key linguistics tokens derived from de-
pendency syntactic parsing and semantic role
labeling. We also insert unique markers for
each linguistic component among contiguous
tokens. The goal of LMLM is to predict both
randomly selected tokens and linguistic to-
kens masked in the pre-training sentences.

• Contrastive Multi-hop Relation Modeling
(CMRM): We sample fine-grained subgraphs
from a large-scale Chinese KG by multi-hop
relations to compensate for understanding
the background knowledge of target entities.
Specifically, we construct positive triples for
matched target entities via retrieving one-hop
entities in the corresponding subgraphs. Neg-
ative triples are sampled from unrelated multi-
hop entities through the relation paths in the
KG. The CMRM task is proposed to pull the
semantics of similar entities close and push
away those with irrelevant semantics.

Based on the above heterogeneous knowledge
pre-training tasks, we produce various sizes of CK-
BERT models to meet the inference time and ac-
curacy requirements of different real-world scenar-
ios (Brown et al., 2020; Chowdhery et al., 2022),
including base (110M), large (345M) and huge
(1.3B). The models are pre-trained using our in-
house implemented TorchAccelerator that effec-
tively transforms PyTorch eager execution to graph
execution on distributed GPU clusters, boosting
the training speed by 40% per sample with our
advanced compiler technique based on Acceler-
ated Linear Algebra (XLA). In the experiments, we
compare CKBERT against strong baseline PLMs
and KEPLMs on various Chinese general and
knowledge-related NLP tasks. The results demon-
strate the improvement of CKBERT compared to
SoTA models.

2 Related Work

We briefly summarize the related work on the fol-
lowing two aspects: PLMs and KEPLMs.

2.1 PLMs

Following BERT (Devlin et al., 2019), many PLMs
have been proposed to improve performance in var-
ious NLP tasks. Several approaches extend BERT

by employing novel token-level and sentence-level
pre-training tasks. Notable PLMs include ERNIE-
Baidu (Sun et al., 2019), MacBERT (Cui et al.,
2020) and PERT (Cui et al., 2022) for Chinese
NLU downstream tasks. Other models boost the
performance by changing the internal encoder ar-
chitectures. For example, XLNet (Yang et al.,
2019) utilizes Transformer-XL (Dai et al., 2019)
to encode long sequences by the permutation in
language tokens. Sparse self-attention (Cui et al.,
2019) replaces the self-attention mechanism with
more interpretable attention units. Yet, other PLMs
such as MT-DNN (Liu et al., 2019) combine self-
supervised pre-training with the multi-task super-
vised learning to improve the performance of vari-
ous GLUE tasks (Wang et al., 2019).

2.2 KEPLMs

These models use structured knowledge or linguis-
tic semantics to enhance the language understand-
ing abilities of PLMs. We summarize recent KE-
PLMs grouped into the following four types: (1)
Knowledge-enhancement by linguistic semantics.
These works use the linguistic information already
available in the pre-training sentences to enhance
the understanding ability of PLMs. Lattice-BERT
(Lai et al., 2021) pre-trains a Chinese PLM over a
word lattice (Buckman and Neubig, 2018) structure
to exploit multi-granularity inputs. (2) Knowledge-
enhancement by entity embeddings. For exam-
ple, ERNIE-THU (Zhang et al., 2019) injects en-
tity embeddings into contextual representations via
knowledge-encoders stacked by the information
fusion module. (3) Knowledge-enhancement by
entity descriptions. These approaches learn entity
embeddings by knowledge descriptions. For ex-
ample, pre-training corpora and entity descriptions
in KEPLER (Wang et al., 2021) are encoded into
a unified semantic space within the same PLM.
(4) Knowledge-enhancement by converted triplet’s
texts. K-BERT (Liu et al., 2020) and CoLAKE
(Sun et al., 2020) convert relation triplets into texts
and insert them into training samples without using
pre-trained embeddings. In this paper, we argue
that aggregating heterogeneous knowledge infor-
mation can further benefit the context-aware repre-
sentations of PLMs.

3 Model

In this section, we elaborate the techniques of the
proposed CKBERT model. The main architecture
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AGT: agent

ADV: adverbial

We all know that more practice is the only way to truly improve oral pronunciation.

we know
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Figure 1: Model overview. The LMLM task is not only able to perform random masked token prediction (similar to
BERT) but also to predict masked linguistic-aware tokens. The CMRM task injects external relation triples into
PLMs through neighboring multi-hop relations. (Best viewed in color.)

of CKBERT is firstly presented in Figure 1.

3.1 Model Architecture

It accepts a sequence of M WordPiece tokens (Wu
et al., 2016), (x1, x2, ..., xM ) as input, and com-
putes the D-dimensional contextual representations
Hi ∈ RM×D by successively stacking N trans-
former encoder layers. We do not modify the ar-
chitecture here to guarantee that CKBERT can be
seamlessly integrated into any industrial applica-
tions that BERT supports with better performance.2

3.2 Linguistic-aware Masked Language
Modeling (LMLM)

In BERT pre-training, 15% of all token positions
are randomly masked for prediction. However, ran-
dom masked tokens may be unimportant units such
as conjunctions and prepositions (Clark et al., 2019;
Hao et al., 2021). We reconstruct the input sen-
tences and mask more tokens based on linguistic
knowledge so that CKBERT can better understand
the semantics of important tokens in pre-training
sentences. Specifically, we use the following three
steps to mask the linguistic input units:

• Recognizing Linguistic Tokens: We first use
2Without loss of generality, we focus on the transformer

encoder architecture only; yet our work can also be extended
model architectures with slight modification.

the off-the-shelf tool3 to recognize important
units in pre-training sentences, including de-
pendence grammar and semantic dependency
parsing. The extracted relations here serve
as important sources of linguistic knowledge,
including “subject-verb”, “verb-object” and
“adverbial” for dependence grammar and “non-
agent” for semantic dependency parsing.

• Reconstructing Input Sentences: In addi-
tion to the original input form, based on the
subjects and objects of the extracted linguis-
tic relations, we insert special identifiers for
each lexicon unit between words spans to give
explicit boundary information for model pre-
training. For example, we add [DEP] and
[/DEP] for dependence grammar and [SDP]
and [/SDP] for dependency parsing tokens.

• Choosing Masked Tokens: We choose 15%
of token positions from the reconstructed in-
put sentence for masking, using the special
token [MASK]. Among these tokens, we assign
40% of the positions to randomly selected to-
kens and the rest to linguistic tokens. Note
that these special identifiers ([DEP], [/DEP],
[SDP] and [/SDP]) are also treated as normal
tokens for masking, thus the model needs to

3http://ltp.ai/

http://ltp.ai/
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be aware of predicting word boundaries rather
than simply filling in masks based on contexts.

After input sentences are processed, for LMLM,
let Ω = (m1,m2,m3, ..., γK−1, γK) denote the
indexes of the masked tokens in the sentence X ,
where mi is an index of a randomly masked token,
γi is an index of a selected linguistic-aware masked
token and K is the total number of masked tokens.
Let XΩ denote the set of masked tokens in X , and
X−Ω denote the set of observed (unmasked) tokens.
The objective of LMLM is as follows:

Lmlm(XΩ|X−Ω) =
1

K

K∑
k=1

log p(xmk|γk |X−Ω; θ)

(1)

where xmk|γk denotes the randomly selected tokens
or the linguistic tokens. θ represents the parameter
collection of our model.

3.2.1 Contrastive Multi-hop Relation
Modeling (CMRM)

In addition to LMLM, we further inject relation
triples into CKBERT to make it understand the
background factual knowledge of entities. For an
entity in the pre-training sentence, we construct
positive and negative relation triples as follows:

• Positive Triples: We employ entity linking
to link an entity in the pre-training sentence
to the target entity et in the KG. The relation
triples w.r.t. the one-hop entities are viewed
as candidate positive triples. Next, we choose
a relation triple randomly from the candidates
as a positive sample, denoted as tp.

• Negative Triples: Because the semantic sim-
ilarity between the positive triple tp and the
relation triples along the KG paths decreases,
we construct L candidate negative triples
(t1n, t

2
n, ..., t

L
n ) by making multiple hops start-

ing from the target entity et. For example, in
Fig. 1, we take the target entity e0 as the
starting node and retrieve the nodes along
the edges. We obtain the ending node eend
with multi-hop relations Hop(G, e0, eend, r),
where Hop(·) means the shortest distance be-
tween e0 and eend in KG G. Here, we regard
a triple to be negative tn if Hop(·) > 1 and
is no larger than a small threshold δ4. In this

4If the threshold for the number of hops δ is too large,
the model can easily distinguish the positive and negative
triples due to the large semantic gaps. For effective contrastive
learning, good negative triples should be “hard negatives”.

paper, we set δ = 3. Hence, there are four
negative triples for e0 in Figure 1. A sample
three-hop path is e0 → e2 → e6 → e9.

The CMRM task is designed for pulling similar
relational triples of the target entity closely and
pushing unrelated multi-hop relational triples away,
in order to enhance the external background knowl-
edge of the target entity from the KG. Concretely,
after the positive sample tp and negative samples
(t1n, t

2
n, ..., t

L
n ) of the target entity et are retrieved,

the context-aware representations of the target en-
tity et can be obtained as follows:

het = LN
(
σ
(
fsp

(
heit , . . . , hejt

)
W1

))
(2)

where het is the hidden representation of the target
entity et constructed by the entity’s token repre-
sentations

(
heit , . . . , hejt

)
, as an entity can have

multiple tokens in the pre-training sentence. fsp
is the self-attentive pooling operator (Lin et al.,
2017), σ(·) non-linear activation function GELU
(Hendrycks and Gimpel, 2016) and LN (·) is the
LayerNorm function (Ba et al., 2016). W1 is the
learnable weight matrix.

Meanwhile, as relation triples can be viewed
as natural sentences via concatenating the triple’s
tokens together, following Liu et al. (2020); Sun
et al. (2020), we convert the triples into sentences
to generate the representations obtained by the
shared encoder θ (which is the transformer encoder
of our CKBERT model). Hence, the representa-
tions of the positive triple htp and the negative
triples (ht1n , ht2n , ..., htLn ) can also be derived. For
the CMRM task, we employ InfoNCE (van den
Oord et al., 2018) as the loss function to calculate
the similarity as follows:

Lcl = − log
exp

(
cos

(
het , htp

)
/τ

)∑L
l=1 exp

(
cos

(
het , htln

)
/τ

) (3)

where cos(·, ·) denotes the cosine function to calcu-
late the similarity between entity and relation repre-
sentations, and τ is a pre-defined hyper-parameter.

3.3 Optimization of Model Pre-training

For model training optimization, we first give the
total loss function for pre-training CKBERT based
on our two novel pre-training tasks as follows:

Ltotal = Lmlm + Lcl (4)
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Model Text Classification Question Answering Total

AFQMC TNEWS IFLYTEK OCNLI WSC CSL CMRC CHID C3 Score

BERT 72.73 55.22 59.54 66.53 72.49 81.77 73.40 79.19 57.91 69.72
MacBERT 69.90 57.93 60.35 67.43 74.71 82.13 73.55 79.51 58.89 70.28

PERT 73.61 54.50 57.42 66.70 76.07 82.77 73.80 80.19 58.03 70.18

ERNIE-Baidu 73.08 56.22 60.11 67.48 75.79 82.14 72.86 80.03 57.63 69.83
Lattice-BERT 72.96 56.14 58.97 67.54 76.10 81.99 73.47 80.24 57.80 70.29

K-BERT 73.15 55.91 60.19 67.83 76.21 82.24 72.74 80.29 57.48 70.35
ERNIE-THU 72.88 56.59 59.33 67.95 75.82 82.35 72.96 80.22 56.30 69.98

CKBERT-base 73.17 56.44 60.65 68.53 76.38 82.63 73.55 81.69 57.91 71.36

CKBERT-large 74.75 55.86 60.62 70.57 78.90 82.30 73.45 82.34 58.12 72.23
CKBERT-huge 75.03 59.72 60.96 78.26 85.16 89.47 77.25 97.73 86.59 78.91
CKBERT-huge 77.05 61.16 61.19 82.80 87.14 94.23 80.40 97.91 87.26 81.02(Ensemble)

Table 1: Performance of tasks on the CLUE 1.1 testing sets (%). The “Total Score” is the weighted averaged score
of the nine tasks generated by the official website automatically. All the baseline models are base models (with the
same or similar parameter size as that of BERT-base).

Here, we pre-train a series of CKBERT models on
distributed GPU clusters, with codes in PyTorch.
As PyTorch employs eager execution for tensor
computation, it lacks graph-based intermediate rep-
resentations of models, hindering deeper optimiza-
tion (Paszke et al., 2019).

Inspired by LazyTensor (Suhan et al., 2021) and
Pytorch/XLA on cloud TPUs5, we develop the Tor-
chAccelerator toolkit for Pytorch training accel-
eration on GPU clusters. Through XLA custom
function and code parsing with an abstract syn-
tax tree (AST), we improve the completeness and
performance of the transformation from eager exe-
cution to graph execution. A computational graph
is generated by TorchAccelerator. The operators
on the graph will be fused. By fusing operators, the
kernel launch overhead can be reduced. Moreover,
fewer intermediate results are written to memory
thus reducing the memory bandwidth usage. The
effectiveness of computation is also improved by
multi-stream optimization and asynchronous trans-
mission of tensors. Since the implementation of
TorchAccelerator is not our major focus, more de-
tails will be presented in our future work.

4 Experiments

We present comprehensive evaluation results of
CKBERT. Due to space limitation, the details of
data sources, baselines and hyper-parameter set-
tings are shown in Appendices A, B, C.

5https://github.com/pytorch/xla

4.1 General Experimental Results

We evaluate CKBERT over a widely-used Chinese
benchmark CLUE (Xu et al., 2020) and knowledge-
intensive tasks to evaluate the influence of knowl-
edge injection in CKBERT.

4.1.1 Results of CLUE Benchmark
The CLUE benchmark contains nine text classifi-
cation and question answering tasks. Specifically,
the text classification tasks contain various text
task types, including the classification of short sen-
tences and long sentence pairs. The results of all
tasks are shown in Table 1.

From the results, we have the following obser-
vations. (1) The performance of KEPLMs has a
large gap over BERT. It indicates that the injection
of different knowledge sources enables the models
to perform better semantic reasoning compared to
pre-training on texts only. (2) The performance of
CKBERT is further improved compared to previous
strong baseline KEPLMs under the same parameter
size in most cases. From this phenomenon, we be-
lieve that the heterogeneous knowledge sources in-
jected into the PLMs benefit the model’s results. (3)
The larger the number of parameters in the model,
the more effective the heterogeneous knowledge
fusion is for downstream tasks. The huge model
of CKBERT (1.3B parameters) outperforms base
(110M) by a large margin, which is suitable for
applications that require high prediction accuracy.
We also build an ensemble of the huge models
(denoted as CKBERT-huge (Ensemble)) from dif-
ferent checkpoints. The performance can be further
improved by more than 2.0%.

https://github.com/pytorch/xla
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Model MSRA Weibo Onto. Resu.

BERT 95.20 54.65 81.61 94.86
MacBERT 95.07 54.93 81.96 95.22

PERT 94.99 53.74 81.44 95.10

ERNIE-BD 95.39 55.14 81.17 95.13
Lat.-BERT 95.28 54.99 82.01 95.31
K-BERT 94.97 55.21 81.98 94.92

ERNIE-THU 95.25 53.85 82.03 94.89

CKBERT-base 95.35 55.97 82.19 95.68

CKBERT-large 95.98 57.09 82.43 96.08
CKBERT-huge 96.79 58.66 83.87 97.19

Table 2: Performance of CKBERT and baselines over
four public Chinese NER datasets in term of F1 (%).

4.1.2 Results of NER
We further evaluate CKBERT over the four pub-
lic NER datasets, including MSRA (Levow, 2006),
Weibo (Peng and Dredze, 2015), Ontonotes 4.06,
and Resume (Yang et al., 2017). The detailed statis-
tics including the split sizes of training, develop-
ment, and testing sets are described in Appendix A.
The models are stacked by the CKBERT encoder
and a softmax linear layer, whose parameters are
initialized randomly. The entities recognized in
the samples are labeled by the B/I/O/S tags. This
transforms the NER task into a 4-class classifica-
tion task for each token.

Table 2 shows the performance of various mod-
els on four NER datasets. It can be seen that KE-
PLMs outperform vanilla PLMs. In addition, our
CKBERT model (base) with linguistic and exter-
nal knowledge achieves a large gap performance
compared to baselines. We believe that heteroge-
neous knowledge sources play an important role as
described in the ablation study (See Section 4.2).

4.2 Ablation Study

In this part, we evaluate the effectiveness of two
important model components of CKBERT on rep-
resentative tasks. Specifically, We introduce sev-
eral variants of CKBERT removing certain com-
ponents. CKBERT-LMLM means that we remove
the LMLM task and only learns the CMRM task
during pre-training. CKBERT-CMRM remove the
CRMR task and only perform the LMLM task. We
also provide the results of continual pre-training of
BERT-base to remove the influence of additional
data sources of plain texts. The performance of
those variants and CKBERT on the testing sets of
these datasets are shown in Table 3.

6https://catalog.ldc.upenn.edu/LDC2013T19

Model AFQ. IFLY. CMRC Weibo

BERT-large-con. 73.96 60.35 73.42 56.12
CKBERT-large 74.75 60.62 73.45 57.09

w/o. LMLM 73.56 60.38 73.2 56.48
w/o. CMRM 72.96 59.38 74.8 56.72

Table 3: The performance of models for ablation study.
“AFQ.” and “IFLY.” refer to AFQMC and IFLYTEX,
respectively (%).

From the results, we can see that (1) Compar-
ing CKBERT-large to BERT-large (continual pre-
trained with the same pre-training data), the explicit
heterogeneous knowledge is more useful than the
implicit text corpus for various downstream tasks.
(2) We also find that the LMLM pre-training task
benefits the QA and NER tasks more, whereas the
CMRM task improves the performance of plain
NLU task (i.e., text classification) significantly. We
conjecture that the main reason behind this phe-
nomenon is that the external background knowl-
edge can easily boost the performance due to the
shallow semantics of these simple tasks (Yang et al.,
2021).

4.3 Results of TorchAccelerator

We investigate to what extent the pre-training speed
is improved when our framework is integrated with
TorchAccelerator. Figure 2 shows the comparison
results between TorchAccelerator and Torch Native
with AMP (Automatic Mixed Precision) 7. The
metric “samples/s” means how many samples are
computed by the model in each second. Note that
we increase the batch size as large as possible to
increase the GPUs’ memory utilization and occu-
pancy to 100%, and thus the experiments w/ and
w/o. TorchAccelerator consume the same amount
of computational resources. The underlying GPU
is Tesla V100 32GB.

From the results, our observations are as follows.
(1) When we only use TorchAccelerator without
AMP, the training speed increases slightly. (2) The
training speed can have a large improvement with
the interaction between TorchAccelerator and AMP
(+40%). This is because the kernel fusion of XLA
in TorchAccelerator largely reduces the amount of
memory access operations, which are the perfor-
mance bottleneck when AMP is applied. Hence,
our TorchAccelerator effectively reduces the con-
sumption of resources and time during pre-training.

7https://github.com/NVIDIA/apex

https://catalog.ldc.upenn.edu/LDC2013T19
https://github.com/NVIDIA/apex
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Figure 2: Training speed comparison between TorchAc-
celerator (TA) and Torch Native (TN).

5 Conclusion and Future Work

In this paper, we propose a novel series of Chi-
nese KEPLMs named CKBERT to inject the hetero-
geneous sources including linguistic and external
knowledge into the PLMs. Specifically, we design
two novel pre-training tasks including linguistic-
aware MLM and contrastive multi-hop relation
modeling, and accelerate model pre-training by
TorchAccelerator. The experiments show that our
CKBERT outperforms various strong baselines in-
cluding general PLMs and KEPLMs significantly
over knowledge-intensive and natural language un-
derstanding tasks. Future work includes (1) inte-
grating more knowledge sources into PLMs to fur-
ther improve the performance of downstream tasks;
(2) exploring heterogeneous knowledge injection to
generative KEPLMs and other languages; and (3)
enriching the functionalities of TorchAccelerator
and releasing it to public.

Ethical Considerations

Our contribution in this work is fully methodolog-
ical, namely a novel series of KEPLMs, achiev-
ing the performance improvement of downstream
tasks with different parameter sizes. Hence, there
is no explicit negative social influences in this
work. However, transformer-based models may
have some negative impacts, such as gender and so-
cial bias. Our work would unavoidably suffer from
these issues. We suggest that users should carefully
address potential risks when the CKBERT models
are deployed online.

Acknowledgments

This work has been supported by Alibaba Group
through Alibaba Innovative Research Program and
Alibaba Research Intern Program.

References
Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Jacob Buckman and Graham Neubig. 2018. Neural
lattice language models. Trans. Assoc. Comput. Lin-
guistics, 6:529–541.

Tyler A. Chang, Yifan Xu, Weijian Xu, and Zhuowen
Tu. 2021. Convolutions and self-attention: Re-
interpreting relative positions in pre-trained language
models. In ACL, pages 4322–4333.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of bert’s attention. In ACL, pages
276–286.

http://arxiv.org/abs/1607.06450
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1162/tacl_a_00036
https://doi.org/10.1162/tacl_a_00036
https://doi.org/10.18653/v1/2021.acl-long.333
https://doi.org/10.18653/v1/2021.acl-long.333
https://doi.org/10.18653/v1/2021.acl-long.333
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828


577

Pedro Colon-Hernandez, Catherine Havasi, Jason B.
Alonso, Matthew Huggins, and Cynthia Breazeal.
2021. Combining pre-trained language models and
structured knowledge. CoRR, abs/2101.12294.

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei
Zhang. 2019. Fine-tune BERT with sparse self-
attention mechanism. In EMNLP, pages 3546–3551.

Leyang Cui, Sijie Cheng, Yu Wu, and Yue Zhang. 2021.
On commonsense cues in BERT for solving common-
sense tasks. In ACL, pages 683–693.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for chinese natural language processing. In
EMNLP, volume EMNLP 2020 of Findings of ACL,
pages 657–668. Association for Computational Lin-
guistics.

Yiming Cui, Ziqing Yang, and Ting Liu. 2022. PERT:
pre-training BERT with permuted language model.
CoRR, abs/2203.06906.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In ACL, pages 2978–
2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Zheng Gong, Kun Zhou, Xin Zhao, Jing Sha, Shi-
jin Wang, and Ji-Rong Wen. 2022. Continual pre-
training of language models for math problem un-
derstanding with syntax-aware memory network. In
ACL, pages 5923–5933.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-
attention attribution: Interpreting information inter-
actions inside transformer. In AAAI, pages 12963–
12971.

Yun He, Ziwei Zhu, Yin Zhang, Qin Chen, and James
Caverlee. 2020. Infusing disease knowledge into
BERT for health question answering, medical in-
ference and disease name recognition. In EMNLP,
pages 4604–4614.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (gelus). arXiv:1606.08415.

Yuxuan Lai, Yijia Liu, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2021. Lattice-bert: Leverag-
ing multi-granularity representations in chinese pre-
trained language models. In NAACL, pages 1716–
1731.

Hyunjae Lee, Jaewoong Yoon, Bonggyu Hwang,
Seongho Joe, Seungjai Min, and Youngjune Gwon.
2020. Korealbert: Pretraining a lite BERT model
for korean language understanding. In ICPR, pages
5551–5557.

Gina-Anne Levow. 2006. The third international
chinese language processing bakeoff: Word seg-
mentation and named entity recognition. In
SIGHAN@COLING/ACL, pages 108–117.

Bai Li, Zining Zhu, Guillaume Thomas, Yang Xu, and
Frank Rudzicz. 2021. How is BERT surprised? layer-
wise detection of linguistic anomalies. In ACL, pages
4215–4228.

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In ICLR.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-BERT: en-
abling language representation with knowledge graph.
In AAAI, pages 2901–2908.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In ACL, pages
4487–4496.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In NeurIPS, pages 8024–8035.

Nanyun Peng and Mark Dredze. 2015. Named en-
tity recognition for chinese social media with jointly
trained embeddings. In EMNLP, pages 548–554.

Juan Manuel Pérez, Damián Ariel Furman,
Laura Alonso Alemany, and Franco Luque.
2021. Robertuito: a pre-trained language model for
social media text in spanish. CoRR, abs/2111.09453.

Matthew E. Peters, Mark Neumann, Robert L. Logan
IV, Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. 2019. Knowledge enhanced contex-
tual word representations. In EMNLP, pages 43–54.

Fabio Petroni, Patrick S. H. Lewis, Aleksandra Piktus,
Tim Rocktäschel, Yuxiang Wu, Alexander H. Miller,
and Sebastian Riedel. 2020. How context affects
language models’ factual predictions. In AKBC.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models as
knowledge bases? In EMNLP, pages 2463–2473.

Yusheng Su, Xu Han, Zhengyan Zhang, Yankai Lin,
Peng Li, Zhiyuan Liu, Jie Zhou, and Maosong Sun.
2021. Cokebert: Contextual knowledge selection and
embedding towards enhanced pre-trained language
models. AI Open, 2:127–134.

http://arxiv.org/abs/2101.12294
http://arxiv.org/abs/2101.12294
https://doi.org/10.18653/v1/D19-1361
https://doi.org/10.18653/v1/D19-1361
https://doi.org/10.18653/v1/2021.findings-acl.61
https://doi.org/10.18653/v1/2021.findings-acl.61
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.48550/arXiv.2203.06906
https://doi.org/10.48550/arXiv.2203.06906
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://aclanthology.org/2022.acl-long.408
https://aclanthology.org/2022.acl-long.408
https://aclanthology.org/2022.acl-long.408
https://ojs.aaai.org/index.php/AAAI/article/view/17533
https://ojs.aaai.org/index.php/AAAI/article/view/17533
https://ojs.aaai.org/index.php/AAAI/article/view/17533
https://doi.org/10.18653/v1/2020.emnlp-main.372
https://doi.org/10.18653/v1/2020.emnlp-main.372
https://doi.org/10.18653/v1/2020.emnlp-main.372
https://arxiv.org/pdf/1606.08415.pdf
https://arxiv.org/pdf/1606.08415.pdf
https://doi.org/10.18653/v1/2021.naacl-main.137
https://doi.org/10.18653/v1/2021.naacl-main.137
https://doi.org/10.18653/v1/2021.naacl-main.137
https://doi.org/10.1109/ICPR48806.2021.9412023
https://doi.org/10.1109/ICPR48806.2021.9412023
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://doi.org/10.18653/v1/2021.acl-long.325
https://doi.org/10.18653/v1/2021.acl-long.325
https://openreview.net/forum?id=BJC_jUqxe
https://openreview.net/forum?id=BJC_jUqxe
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.18653/v1/d15-1064
https://doi.org/10.18653/v1/d15-1064
https://doi.org/10.18653/v1/d15-1064
http://arxiv.org/abs/2111.09453
http://arxiv.org/abs/2111.09453
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.24432/C5201W
https://doi.org/10.24432/C5201W
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.1016/j.aiopen.2021.06.004
https://doi.org/10.1016/j.aiopen.2021.06.004
https://doi.org/10.1016/j.aiopen.2021.06.004


578

Alex Suhan, Davide Libenzi, Ailing Zhang, Parker
Schuh, Brennan Saeta, Jie Young Sohn, and Denys
Shabalin. 2021. Lazytensor: combining eager ex-
ecution with domain-specific compilers. CoRR,
abs/2102.13267.

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo,
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020.
Colake: Contextualized language and knowledge em-
bedding. In COLING, pages 3660–3670.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng,
Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu,
Hao Tian, and Hua Wu. 2019. ERNIE: enhanced
representation through knowledge integration. CoRR,
abs/1904.09223.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting
Liu, Lei Li, Jianing Wang, Ming Wang, Jun Huang,
and Wei Lin. 2022. Easynlp: A comprehensive and
easy-to-use toolkit for natural language processing.
CoRR, abs/2205.00258.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans.
Assoc. Comput. Linguistics, 9:176–194.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020.
CLUE: A chinese language understanding evaluation
benchmark. In COLING, pages 4762–4772.

Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun
Shou, Ming Gong, Wanjun Zhong, Xiaojun Quan,
Daxin Jiang, and Nan Duan. 2021. Syntax-enhanced
pre-trained model. In ACL, pages 5412–5422.

Jian Yang, Gang Xiao, Yulong Shen, Wei Jiang, Xinyu
Hu, Ying Zhang, and Jinghui Peng. 2021. A survey
of knowledge enhanced pre-trained models. CoRR,
abs/2110.00269.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural
reranking for named entity recognition. In RANLP,
pages 784–792.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NIPS, pages 5754–5764.

Taolin Zhang, Chengyu Wang, Nan Hu, Minghui Qiu,
Chengguang Tang, Xiaofeng He, and Jun Huang.
2022. DKPLM: decomposable knowledge-enhanced
pre-trained language model for natural language un-
derstanding. In AAAI, pages 11703–11711.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: enhanced
language representation with informative entities. In
ACL, pages 1441–1451.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian
Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji,
Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng,
Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan
Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao
Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, and Maosong
Sun. 2021. CPM: A large-scale generative chinese
pre-trained language model. AI Open, 2:93–99.

Junru Zhou, Zhuosheng Zhang, Hai Zhao, and Shuail-
iang Zhang. 2020. LIMIT-BERT : Linguistics in-
formed multi-task BERT. In EMNLP, volume
EMNLP 2020 of Findings of ACL, pages 4450–4461.

A Data Statistics
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The pre-training corpora after pre-processing con-
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kens (6.2 GB). We also perform simple data pre-
processing on the these corpora to improve the
quality of the data, including removing incorrect
characters and non-Chinese characters, etc. Our
KG data is downloaded from the largest authorita-
tive Chinese KG website OpenKG 8. The number
of entities and triples of OpenKG are 16,474,936
and 140,883,574, respectively. The total number of
relation types is 480,882.

A.2 Statistics of Downstream Tasks
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Dataset # Train # Dev # Test Task Metric

AFQMC 34,334 4,316 3,861 TC Acc@1

TNEWS 53,360 10,000 10,000 TC Acc@1

IFLYTEK 12,133 2,599 2,600 TC Acc@1

OCNLI 50,000 3,000 3,000 TC Acc@1

WSC 1,244 304 2573 TC Acc@1

CSL 20,000 3,000 3,000 TC Acc@1

CMRC 10,142 1,002 3,219 QA F1

CHID 84,709 3,218 3,231 QA Acc@1

C3 11,869 3,816 3,892 QA Acc@1

MSRA 40,000 6,675 4364 NER F1

Resume 3,821 462 476 NER F1

Weibo 1,350 264 262 NER F1

Ontonotes 15,740 4300 4345 NER F1

Table 4: The data statistics and evaluation metrics used in the experiments.

Model nparam. Nlayer Nhead Dhead Dff Dmodel

CKBERT-base 110M 12 12 64 3072 768
CKBERT-large 345M 24 16 64 4096 1024
CKBERT-huge 1.3B 24 8 256 8192 2048

Table 5: The overview of hyper-parameters settings of our model architectures. nparam. means the total parameters
of our model. Nlayer is the number of model layers. Nhead is the number of attention heads in each layer. Dhead is
the hidden dimension of attention heads. Dff is the intermediate dimension of FFN layers. Dmodel is the output
dimension of the model.

Recognition (NER). The statistics of dataset sizes
are shown in Table 4. The result metrics used in
our models are different among tasks. We use the
Acc@1 for text classification, F1 for NER. For
QA tasks, since CHID and C3 tasks are multiple
choices, we use Acc@1 as the metric for the two
tasks and F1 for CMRC.

B Baselines

In this work, we compare CKBERT with general
PLMs and KEPLMs with knowledge triples in-
jected, pre-trained on our text corpora:

B.1 General PLMs

We use three strong Chinese BERT-style models as
baselines, namely BERT-base (Devlin et al., 2019),
MacBERT (Cui et al., 2020) and PERT (Cui et al.,
2022). All the model weights are initialized from

Cui et al. (2020).

B.2 KEPLMs

We employ three SoTA KEPLMs continually pre-
trained on our pre-training corpora as our baseline
models, including ERNIE-Baidu (Sun et al., 2019),
ERNIE-THU (Zhang et al., 2019) and K-BERT
(Liu et al., 2020). For a fair comparison, KEPLMs
using other resources rather than the KG triples are
excluded in this work. All the baseline KEPLMs
are injected by the same KG triples during pre-
training.

C Hyper-parameters Settings

C.1 Hyper-parameters of Pre-training

For optimization, we set the learning rate as 5e-5,
the max sequence length as 128, and the batch size
as 20. The hidden dimension of the text encoder is
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Dataset AFQMC TNEWS IFLY. OCNLI WSC CSL CMRC

BS 4 12 4 32 32 16 16

Epoch 10 10 10 50 50 10 10

LR 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5

MSL 256 128 256 128 128 256 512

Dataset CHID C3 MSRA Resume Weibo Ontonotes

BS 4 4 32 32 32 32

Epoch 15 15 10 10 10 10

LR 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5

MSL 192 512 128 128 128 128

Table 6: The important fine-tuning hyper-parameters used in our CKBERT models. “BS”, “LR”, and “MSL”
indicate the batch size, the learning rate and the max sequence length, respectively.

768. The temperature hyper-parameter τ is set to
0.5. The number of negative samples L is 3. During
pre-training, all the experiments are conducted on
15 servers, each with 8 Tesla V100 GPUs (32GB).

C.2 Hyper-parameters of Model
Architectures

Table 5 shows the hyper-parameters settings of our
CKBERT models w.r.t. the model architectures,
including base (110M), large (345M) and huge
(1.3B).

C.3 Hyper-parameters of Fine-tuning
Table 6 shows the hyper-parameters settings for
fine-tuning. For fair comparison, we set a unified
set of important hyper-parameters for each task,
including the batch size, the learning epoch, the
learning rate and the max sequence length.


