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Abstract
In a live streaming chat on a video streaming
service, it is crucial to filter out toxic comments
with online processing to prevent users from
reading comments in real-time. However, re-
cent toxic language detection methods rely on
deep learning methods, which can not be scal-
able considering inference speed. Also, these
methods do not consider constraints of com-
putational resources expected depending on a
deployed system (e.g., no GPU resource). This
paper presents an efficient method for toxic
language detection that is aware of real-world
scenarios. Our proposed architecture is based
on partial stacking that feeds initial results with
low confidence to meta-classifier. Experimen-
tal results show that our method achieves a
much faster inference speed than BERT-based
models with comparable performance.

1 Introduction

With the rapid growth of online social platforms,
posting text comments to a content have become
a familiar part of people’s lives for growing hu-
man connection and advertising purposes. How-
ever, these comments can include toxic language,
which can be harmful or offensive to others. Toxic
comments lead to damages of the user experience,
human well-being, and even product promotion.
Particularly, toxic language is a very common prob-
lem in live feeds on video streaming services (e.g.,
YouTube) (Liebeskind et al., 2021). Toxic com-
ments can appear more frequently in live broad-
casting, since users tend to impulsively post com-
ments in real-time with less introspection during
live streaming (Gao et al., 2020). It is not possible
to manually rule out toxic comments from a large
number of comments continuously posted across
multiple live feeds. We aim for an automatic de-
tection system to address toxic comments, such as
Figure 1.

To capture powerful latent features for detect-
ing toxic language, recent existing methods rely on

Figure 1: Diagram of Toxic Comment Detection System

deep learning techniques such as BERT. Although
the techniques have performed well on the task,
the following issues can be raised when assuming
application to comments on live streaming.
1. Inference Speed: During live streaming, many
posted comments can stream to all viewers in real-
time. To promptly prevent both viewers and video
contributors from reading toxic comments, on-
line processing should be crucial. However, deep
learning-based methods might not be scalable for
online processing due to slow inference speed.
2. Computation Resource: A computational
resource-friendly method is essential from an in-
dustry point of view. Even if the inference speed is
satisfied with one or more GPUs at the PoC phase,
there should be computational resource constraints,
depending on the requirements of a deployed sys-
tem when assuming real-world operations, such as
API on a mobile application.

To make up for the above two issues, we propose
an efficient method for toxic comment detection on
live streaming chat. Our target includes offensive,
insulting, and obscene expressions, similar to the
expressions used by Leite et al. (2020). We han-
dle Japanese comments since our method is meant
to be deployed on a Japanese live streaming ser-
vice. Our proposed architecture is a stacking-based
two-layer classification model in which detection
results with lower confidence scores in fastText
classification are re-classified by LightGBM with
five features. Thus, our method does not require
a GPU environment. That enables a developer to
facilitate deploying a system with low computation
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resources and enough reproducibility. Experimen-
tal results show that our method achieves up to 17
times faster inference speed than several BERT-
based methods with a comparable F1 score under
an online processing setting.

2 Related Work

Many methods for toxic comment detection have
been proposed, mainly for Twitter (Leite et al.,
2020; Fehn Unsvåg and Gambäck, 2018; An et al.,
2021; ElSherief et al., 2021; Founta et al., 2019)
and comments to online news articles (Jigsaw,
2019; Baldini et al., 2022). Traditional methods use
lexical patterns based on offensive words (Hosseini
et al., 2017; Gröndahl et al., 2018) and opinion
words (Pouran Ben Veyseh et al., 2022). Since
malicious viewers create various toxic words in
diverse writing styles, this approach is not robust
to variants of words in the lexicon. In addition, it is
costly to regularly update the lexicon to keep a de-
ployed toxic detection system accurate (Nejadgholi
et al., 2022).

In recent years, many methods utilize deep
learning-based methods such as BERT and LSTM,
using sentiment information (Brassard-Gourdeau
and Khoury, 2019; Zhou et al., 2021; Cao et al.,
2020; Pouran Ben Veyseh et al., 2022), topic
contents (Almerekhi et al., 2020; Bose et al.,
2021), and context information such as text
replies (Dahiya et al., 2021; Bhat et al., 2021) and
attention-based context vectors (Chakrabarty et al.,
2019). Baldini et al. (2022) explored how BERT-
based models affect the relationship between per-
formance and fairness for toxic comment detection.
Here, fairness means equalized performance across
various sensitive groups such as religion and race.
However, none of the studies in this section ex-
plore performance that consider inference speed
and computational resources for toxic comment
detection for real-world applications.

Comment characteristics in video live stream-
ing chats are fundamentally different from Twitter
posts and news articles. There is no information
on replies (i.e., parent-child relationship) in live
streaming chats. Moreover, the comments are of-
ten short, which lacks context and topic informa-
tion. According to Yousukkee and Wisitpongphan
(2021), 63% of messages in live streaming chats on
YouTube contained fewer words than the average
word count of 8 with standard deviations of 7.

In video live streaming chat on Twitch1, Gao
et al. (2020) applied a fine-tuned RoBERTa model
to toxic comment detection. We show the efficiency
of our method by making a comparison with vari-
ous BERT-based models.

Edge computing can be an applicable solution
to address latency and scalability challenges for
NLP services with deep learning (Chen and Ran,
2019; Han et al., 2020). There is a wide range of
deployed candidates for edge computing architec-
tures and deep learning models. The deployment
should be carefully considered to accomplish sys-
tem requirements. Thus, we leave the applicability
of deep learning with edge-computing in our task
for future research.

3 Data Collection

We create annotated data for toxic comment detec-
tion on the video live streaming domain. We use
“NicoNico-Doga comment data” (DWANGO Co.,
2021-12-22) provided by the National Institute of
Informatics2. NicoNico-Doga is one of the largest-
scale Japanese video streaming services. In the
whole dataset, we used the file lists from 0000.zip
to 0005.zip, and labeled them as toxic/non-toxic
comments via human annotation. In total, 168,071
comments were annotated, which comprise 21,156
toxic comments and 146,915 non-toxic comments.
We randomly divided the annotated dataset into a
training set, development set, and test set at a ratio
of 80%, 10%, and 10%, respectively. The statistics
are shown in Table 1. To evaluate inter-annotator
agreement, additional two Japanese annotators in-
dependently identified a toxic or non-toxic label to
2,122 comments from scratch. The inter-annotator
agreement was κ = 0.77, which indicated substan-
tial agreement. Figure 2 shows the distribution of
comments divided by word count in our dataset.
The distribution of our dataset is similar to one
reported in Yousukkee and Wisitpongphan (2021)
on YouTube live stream. In our dataset, 67% of
comments contained fewer words than the average
word count of 7 with standard deviations of 6.

4 Proposed method

4.1 Overview
Our task is to classify posted comments as toxic or
non-toxic. As mentioned in §1, we assumed that

1https://www.twitch.tv
2https://www.nii.ac.jp/dsc/idr/nico/

nicocomm-apply.html

https://www.twitch.tv
https://www.nii.ac.jp/dsc/idr/nico/nicocomm-apply.html
https://www.nii.ac.jp/dsc/idr/nico/nicocomm-apply.html
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Figure 2: Number of comments divided by word count in our dataset

Toxic Non-toxic Total
Train 16,925 117,532 134,457
Dev 2,116 14,692 16,808
Test 2,115 14,691 16,806
Total 21,156 146,915 168,071

Table 1: Statistics of dataset

online processing should be crucial for comments
posted continuously in live streaming, and com-
putational resources are constrained depending on
the specification of the deployed system. Thus, we
design a model architecture under the following
two limitations for a deployed system.

• Avoid using a GPU resource

• Avoid using a deep learning model

Figure 3 shows the architecture of our proposed
method, which comprises two layers. We first use
fastText classification model (Joulin et al., 2017)
as described in §4.2 in order to prioritize fast infer-
ence speed. Our preliminary experiments with our
dataset showed that the lower the prediction proba-
bility for the fastText classification, the lower the
F1 score. Thus, there is much room for improve-
ment in results of lower prediction probability as
described in the triangle area in Figure 4. The re-
sults motivate us to utilize another classification
model for the case where the fastText model has
less confidence.

After getting classification results by the fast-
Text, we use the stacking technique (Džeroski and
Ženko, 2004). This technique is a simple but effec-
tive way that predictions of different classifiers are
fed to a meta-level classifier to generate final re-
sults. For efficiency, the second classifier is applied
only to the first results with lower confidence. We

Figure 3: Model Architecture

Figure 4: Macro F1-score by prediction probability for
fastText classification model

will describe the meta classifier and used features
in §4.3.

4.2 First layer: fastText classification model
The model is a simple neural network with only
one layer. The bag-of-words representation is first
fed into a lookup layer to obtain a word represen-
tation for every word. The model takes an average
of word representations into a text representation,
which is in turn fed to a linear classifier. We use
the softmax function to compute the probability
distribution over the two classes. We calculate con-
fidence score of classification result by Equation (1)

Conf(c) = max{P(y = 1|c),P(y = 0|c)} (1)
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Input comments are fed to the meta-level classifier
if the confidence score is equal to or less than the
threshold θ. Otherwise, we use fastText prediction
as output.

4.3 Second layer: Meta-level Classification

As meta classifier, we select a LightGBM (Ke et al.,
2017), gradient boosting decision tree-based model.
The advantage of using LightGBM is its efficiency
and interpretability. Error analysis is indispensable
to keep a deployed system performance accurate
for future data. LightGBM enables us to facilitate
detecting a cause of an error through tracing deci-
sion flow. For the model training, we propose five
features from three perspectives.

Two Lexicon features: #Black words and #Gray
words Unlike existing studies, we make a lexical
feature considering certainty for toxic words. The
more a comment includes toxic words, the more the
text is likely to be toxic. However, whether or not a
word is associated with being toxic depends on con-
text. For example, the Japanese word “くそ (sh*t)”
has two word meanings, which are “very” and a
literal toxic word. If a comment uses the word with
the former meaning, a system can incorrectly iden-
tify the comment as a toxic comment. To alleviate
this problem, toxic words are divided into two cat-
egories in terms of certainty, called “black words”
and “gray words” in this paper. Black words are
words considered toxic regardless of the context.
Gray words are words that are not considered toxic
based on the context. Based on those ideas, we use
the number of black words and the number of gray
words in a comment as feature values. We man-
ually created 1,338 black words and 1,614 gray
words.

fastText Prediction We use the prediction label
as a feature value. Our preliminary experiments
show that fastText classification model tends to
return a low confidence score when ground-truth is
a “toxic” label, as illustrated in Figure 5. To utilize
this empirical finding, we also use the confidence
score ∈ (0.5,1] computed in §4.2.

SVM Prediction As a third perspective, we
use prediction results of Support Vector Machine
(SVM) trained with TF-IDF weighting scheme. For
each word w in a comment c, TF-IDF is calculated

Figure 5: Ratio of toxic comments by confidence score

by the Equation (2).

TF-IDF(w, c) =
fw,c∑

w′∈c fw′,c
· log N

df(w) + 1
(2)

where fw,c denotes frequency of w in c. df(w) de-
notes the number of documents in which w appears.
N is the total number of comments.

5 Experiments

5.1 Settings
We did experiments with the annotated dataset in
§3 to show the effectiveness and the efficiency of
our method. Model trainings were conducted on
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz with
a single processor. RAM size is 26GB. Cache
memory consists of 32KB for L1d, 32KB for L1i,
1024KB for L2, and 28,160KB for L3. The model
implementation is as follows:

fastText classification To get the word represen-
tations, we create a pre-trained model using the
fastText module (Bojanowski et al., 2017) with
all the comments in §3. For pre-processing, this
data is tokenized by the Japanese morphological
analyzer MeCab (Kudo, 2006). Additionally, a
word was lemmatized and half-width characters
were converted to full-width. Hyperparameters for
the pre-training are as follows: The number of di-
mensions for word representation is 300. We used
skip-gram to train word representation. The thresh-
old θ in §4.2 was determined with development set
(θ = 0.98).

SVM We calibrated the prediction results using
a calibrated ClassifierCV3 provided by scikit-learn

3https://scikit-learn.org/stable/
modules/generated/sklearn.calibration.
CalibratedClassifierCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html
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to remove the effect of bias in the unbalanced data.

LightGBM This model was optimized with op-
tuna (Akiba et al., 2019).

As baseline models, we used each component of
our method and existing pre-trained BERT-based
models. We used the BERT-base4 and BERT-large5

models pre-trained from Japanese Wikipedia. Addi-
tionally, it is essential to compare with light BERT
models for a fair evaluation of inference speed.
Over the last couple of years, variants of BERT
have been proposed to make the model size light
and inference speed efficient. Specifically, we tried
Distil-BERT6 (Sanh et al., 2019), ALBERT7 (Lan
et al., 2019), and Poor-Man’s BERT (Sajjad et al.,
2020). Poor-Man’s BERT is the method that re-
moves some layers from an original BERT. Their
experimental results showed that dropping the top
layers works consistently well across different tasks
when dropping 4 and 6 layers. Following those find-
ings, we removed the top 4 layers in the BERT-base
that we used.

For fine-tuning and testing for BERT-based meth-
ods, we used a single 32GB NVIDIA-V100 GPU.
The batch size for fine-tuning was 16. We set batch
size for inference to 1, since we assumed online
processing at the inference phase. Another possible
way of improving inference speed would be adjust-
ing the maximum length of an input sequence. We
explored the relationship between performance and
inference speed on variation of the length (4, 8, 16,
32, and 64). We evaluated the average inference
time over 10 trials.

5.2 Results
Table 2 shows classification results of our method
obtained with the threshold optimized in terms
of Macro F1 score. Our method achieved 0.942
in terms of average of Macro F1 across the two
classes. Table 3 shows results and the effectiveness
of each component. Looking at Table 3, one can
see that our stacking-based method outperformed
fastText single classification model by 3.3 points
and the remaining ones as well. We observed that
24% of test samples proceeded to the meta-level

4https://huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking

5https://huggingface.co/cl-tohoku/
bert-large-japanese

6https://huggingface.
co/bandainamco-mirai/
distilbert-base-japanese

7https://huggingface.co/ALINEAR/
albert-japanese-v2

Precision Recall Macro F1
Non toxic 0.981 0.991 0.986
Toxic 0.931 0.867 0.898
Macro Avg. 0.956 0.929 0.942

Table 2: Classification performance

Method Macro F1
fastText classification 0.919
Black words 0.905
Gray words 0.860
SVM 0.905
Our method 0.942

w/o SVM prediction 0.940
w/o graywords 0.938
w/o fastText probability 0.937
w/o blackwords 0.933
w/o fastText prediction 0.932

Table 3: Performance Comparison and Ablation Study

classifier. In Table 3, our ablation study showed
that our five features contributed to enhancing F1
score, especially black words and fastText predic-
tion. Thus, we believe that each of our proposed
features was independently effective for toxic lan-
guage detection tasks, and that the improvement
was even greater when used together.

Table 4 shows the comparison between our
method and BERT-based methods on various con-
figurations. The average inference time for our
method was 22.9 seconds for 16,807 test samples,
with a standard deviation of 1.18. In the Table,
we put QPS score (i.e., Throughput), the number
of comments which can be processed per a sec-
ond. Looking at the table, our method achieved
much faster inference speed (734QPS±41) than
any other BERT configurations. We found that the
differences in inference speed between our method
and BERT models were statistically significant at
the 1% level, irrespective of the configurations by
the two-tailed paired t-test for statistical testing.

BERT-large and ALBERT yielded slightly bet-
ter performance than our method when the maxi-
mum sequence length was 64 (F1 = 0.948) and 32
(F1 = 0.943), respectively. However, these models
sacrificed inference speed. For instance, the infer-
ence speed (47QPS±6) of BERT-large is 1.7 times
slower than BERT-base (82QPS±4) and 15.6 times
much slower than our method. On the other hand,
if attaching great importance to inference speed,

https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/cl-tohoku/bert-large-japanese
https://huggingface.co/cl-tohoku/bert-large-japanese
https://huggingface.co/bandainamco-mirai/distilbert-base-japanese
https://huggingface.co/bandainamco-mirai/distilbert-base-japanese
https://huggingface.co/bandainamco-mirai/distilbert-base-japanese
https://huggingface.co/ALINEAR/albert-japanese-v2
https://huggingface.co/ALINEAR/albert-japanese-v2
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F1 QPS max_len = 4 max_len = 8 max_len = 16 max_len = 32 max_len = 64
F1 QPS F1 QPS F1 QPS F1 QPS F1 QPS

BERT-base 0.775 89±3 0.882 86±6 0.931 84±5 0.936 84±3 0.937 82±4
BERT-large 0.783 50±2 0.891 48±2 0.939 48±2 0.943 47±2 0.948 47±2
Distil-BERT 0.773 145±6 0.878 144±4 0.923 134±9 0.924 134±9 0.928 131±7
ALBERT 0.699 81±5 0.866 84±4 0.928 79±4 0.943 78±3 0.938 79±2
Poor Man’s BERT 0.774 114±7 0.882 115±9 0.930 112±4 0.936 112±6 0.935 109±6
Our method 0.942 734±41

Table 4: Relationship between Macro-F1 and inference speed on various configurations

Distil-BERT achieved the highest inference speed
(145QPS±6) of all the BERT-based settings when
the maximum sequence length was 4, but F1-score
dramatically went down to 0.773. It seems that
Poor-Man’s BERT and Distil-BERT had harmo-
nized results of BERT settings when the maximum
length was 32 or 64. However, all of the values did
not reach those for our method. Thus, we believe
that our method is intended for real-world deploy-
ment in terms of low-cost computational resources
with the comparable F1 score.

5.3 Error Analysis
To understand the difference between our method
and the BERT-large, we analyzed error cases where
the BERT-large made correct predictions whereas
our method failed. We describe a cause of an error
with the example comments in Table 5. In the Ta-
ble, we input English translation from the original
Japanese in parenthesis. On ethical grounds, some
parts were replaced with “*”.

The total number of our target errors was 195, di-
vided into 61 false positives and 134 false negatives.
In the false positives, 39 cases (64%) contained our
gray word. Thus, we suspected that the gray word
affects classification results for some patterns. We
observed two cases in which the gray word can be
noise.

recognized sub-word In the comment (a) in Ta-
ble 5, the word “きめつ” (kimestu) is not a toxic
word but just a title of Japanese animation. Our
method mistakenly identified the sub-word “きめ
(gross)” in the word as a gray word.

recognized without Word Sense Disambiguation
In the comment (b), the word “はげ” is often used
as the toxic word “bald”. However, this word is
sometimes also used as abbreviation of “はげしく
(strongly)”. In this context, the word had the latter
meaning and thus should not be identified as a gray
word.

In the false negatives, 96 errors (72%) were clas-
sified as a non-toxic comment for both SVM and

fastText classification models despite the presence
of gray words. Of the 96 errors, we identified that
39 cases (41%) would be due to either of the two
causes.

Coarse-grained tokenization When the same
word is written consecutively, such as the comment
(c), the MeCab tokenizer did not split that phrase
into a finer-grained word unit. We consider that our
method could not capture a feature of being toxic
due to a coarse-grained token with useless TF-IDF
value and word representation.

lol (laugh out loud) slang expression SVM was
trained so that the word “w (lol)” can contribute to
being non-toxic, rather than toxic, since the word
also appears in a non-toxic context. As a result,
even though a gray word is included in a comment,
the comment was not identified as a toxic com-
ment if the expression is used many times in the
comment (d).

Input Gold Ours
(a)だから、きめついらんよ N T(I told we don’t need kimetsu)
(b)はげど！ N T(Strongly agreed!)
(c)エロエロエロエロ T N(EroticEroticErotic)
(d)タグまじかｗ*ねｗｗ復帰スンナｗ

T N(tag is serious?lol fu**k off and die lol lol
don’t come back lol)

Table 5: Error cases (T: Toxic, N: Non-toxic)

6 Conclusion

Although many methods have been proposed to
detect toxic comments on online social platforms,
these methods have paid no attention to inference
speed and constraints of computational resources
for real-world applications. We presented a fast
and computational resource-friendly method. Our
method does not require GPU resources, which
faclitate being adjustable with a requirement of a
deployed system. We proposed a two-layer clas-
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sification model that efficiently utilizes stacking
techniques with five features. Experimental results
showed that all of the proposed features were ef-
fective independently. Under the online processing
setting, our method achieved a much faster infer-
ence speed than fine-tuned BERT-based methods,
with the comparable F1 score. Our method is going
to be deployed on our service soon. We leave the
issues raised in error analysis for future research.
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