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Abstract

Biomedical information retrieval has often been
studied as a task of detecting whether a system
correctly detects entity spans and links these
entities to concepts from a given terminology.
Most academic research has focused on evalu-
ation of named entity recognition (NER) and
entity linking (EL) models which are key com-
ponents to recognizing diseases and genes in
PubMed abstracts. In this work, we perform a
fine-grained evaluation intended to understand
the efficiency of state-of-the-art BERT-based
information extraction (IE) architecture as a
biomedical search engine. We present a novel
manually annotated dataset of abstracts for dis-
ease and gene search. The dataset contains
23K query-abstract pairs, where 152 queries
are selected from logs of our target discovery
platform and PubMed abstracts annotated with
relevance judgments. Specifically, the query
list also includes a subset of concepts with at
least one ambiguous concept name. As a base-
line, we use off-she-shelf Elasticsearch with
BM25. Our experiments on NER, EL, and re-
trieval in a zero-shot setup show the neural IE
architecture shows superior performance for
both disease and gene concept queries.

1 Introduction

The amount of text data being produced is over-
whelming, especially in biomedicine; PubMed1

covers over 33 million articles from biomedical and
life sciences journals and other texts, with about 1.5
million added each year. Meanwhile, many of these
articles are about specific entities (e.g. proteins, dis-
eases, chemicals), i.e., entity-centric. In general,
entities are central to many search queries; e.g.,
(Guo et al., 2009) demonstrated that 71% of search
queries contained named entities, while (Xiong
et al., 2017) found that more than half of the traf-
fic in the Allen Institute’s scholar search engine is
about research concepts.

1https://pubmed.ncbi.nlm.nih.gov

Figure 1: Publication page for the ‘Huntington
disease’ query in our target discovery platform
PandaOmics (https://pandaomics.com/).

The use of automatic natural language process-
ing (NLP) methods is imperative for information
retrieval (IR) or information extraction (IE) from
a large volume of biomedical texts. Several ef-
forts have been made in the past years on entity
extraction from scientific publications (Kim et al.,
2013; Lee et al., 2016; Allot et al., 2018; Mohan
et al., 2018, 2021; Wang and Lo, 2021). For exam-
ple, Biomedical Entity Search Tool (BEST) uses
a dictionary-based indexing strategy to extract ten
types of biomedical entities including genes, dis-
eases, drugs, and chemical compounds (Lee et al.,
2016), while (Kim et al., 2013; Mohan et al., 2021)
adopt machine learning for disease and gene extrac-
tion and linking. However, recent works on Bidi-
rectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019) showed that the
generalization ability of BERT-based named entity
recognition (NER) and entity linking (EL) models
is influenced by domain shift or whether the test en-

https://pubmed.ncbi.nlm.nih.gov
https://pandaomics.com/
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tity/term has been seen in the training set (Miftahut-
dinov et al., 2020; Tutubalina et al., 2020; Kim and
Kang, 2022). Recently, (Soni and Roberts, 2021)
compared two commercial search engines with aca-
demic prototypes evaluated in the TREC-COVID
challenge (Roberts et al., 2020; Voorhees et al.,
2021). Their evaluation showed that commercial
search engines from Amazon (CORD-19 Search)
and Google (COVID-19 Research Explorer) fail
to outperform decades-old IR approaches. In par-
ticular, the best run (from sabir) was achieved by
a SMART system (Buckley, 1985) and used no
machine learning or biomedical knowledge. A sim-
ilar observation has been made for general-domain
information retrieval (Thakur et al., 2021), where
more efficient approaches e.g. based on dense or
sparse embeddings can substantially underperform
traditional lexical models like BM25 (Robertson
and Zaragoza, 2009).

In this paper, we describe the design and eval-
uation of a BERT-based IE system as an entity-
centric search engine for a target discovery plat-
form PandaOmics2. In particular, we seek to an-
swer the following research question: considering
near excellent performance on NER and EL (Mif-
tahutdinov et al., 2021; Lee et al., 2019), are there
models capable of finding relevant publications for
disease and gene queries from diverse biomedical
subdomains as real-world applications? To help
answer this question, we develop a novel search
collection of PubMed abstracts for disease and gene
queries with corresponding relevance judgments.
We evaluate the IE pipeline with two trained BERT-
based models for NER and EL and standard docu-
ment retrieval model BM25 with off-the-shelf Elas-
ticsearch software. We perform error analysis on
the models’ predictions to shed light on future work
directions.

2 Dataset

This section describes our dataset, including
queries, and the process of collecting relevance
assessments. Table 1 shows statistics of our dataset.

2.1 Queries

In our target discovery platform PandaOmics, a
user can enter a gene name or gene symbol like
‘PSEN1’ (ENSG00000080815) and retrieve all rel-
evant publications and the associated diseases in-

2https://pandaomics.com/

Figure 2: Task design in our in-house annotation tool
with search by disease concept identifier. An annotator
selects an abstract and choose one of three labels (rel-
evant/true (green), nonrelevant/false (red), or doubtful
(yellow).

cluding Alzheimer’s disease (EFO:0000249). An
autocomplete feature displays suggestions from
disease or gene dictionaries as user search terms.
Conversely, the user can enter the disease name
‘Alzheimer’s disease’ to retrieve publications for
this concept and the associated targets. These as-
sociations are relying on Omics datasets and on
a collection of AI-based scores that are based on
molecular data and previously published text-based
data (see (Ozerov et al., 2016) for more details).
As a disease terminology source, we use an inter-
nal knowledge base that contains 15,051 concept
unique identifiers (CUIs) based on an experimental
factor ontology (EFO)3 (Malone et al., 2010). As
a gene terminology source, we use an an internal
knowledge base with 28,227 CUIs from Ensembl
(Hubbard et al., 2002). We recall that each concept
consists of atoms (concept names); all of the atoms
within a concept are synonymous (NLM, 2016).
As test queries for our dataset, we use the most
frequent queries from the platform’s logs. These
queries are disease CUIs and gene CUIs. In addi-
tion, our annotators selected a list of concepts with
at least one ambiguous concept name (see Table 2
for examples).

2.2 Relevance Assessments

2.2.1 Pooling
Following standard practice of IR collection build-
ing, we employ a pooling approach (Lipani et al.,

3https://www.ebi.ac.uk/efo/

https://pandaomics.com/
https://www.ebi.ac.uk/efo/
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Subset #queries avg. number of texts per query
relevant label nonrelevant label doubtful label

Disease CUI 73 94.86 63.57 9.78
Gene CUI 79 109.39 21.62 5.93

Ambiguous 27 45.94 11.58 0.53
Total 152 102.41 41.76 7.78

Table 1: Summary of statistics of the proposed dataset.

CUI Ambiguous
concept name

Term Reason Comment

EFO_0000341 coad chronic obstructive
pulmonary disease

same_synonyms abbreviation refers to another
disease: colon adenocarci-
noma (COAD)

EFO_1001998 crps complex regional
pain syndrome

same_synonyms abbreviation refers to another
disease: ‘Colorectal polyps’

EFO_1001998 crps complex regional
pain syndrome

same_synonyms abbreviation refers to another
disease: ‘chronic regional
pain syndrome’

EFO_0000341 dops chronic obstructive
pulmonary disease

refers_to_another abbreviation refers to another
term: direct observation of
procedural skills (DOPS)

EFO_0002508 parkinson’s dis-
ease

parkinson’s disease refers_to_another author’s surname

ENSG00000170345 fos fos refers_to_another refers to fosfomycin

Table 2: A sample of concepts with at least one ambiguous concept name.

2016; Lipani, 2016; Hasibi et al., 2017; Thakur
et al., 2021), and combine retrieval results from
two main sources:

1. we obtained retrieval results from Elastic-
search; see Sect. 3.2 for the description of
this system. Results are pooled from these
runs up to depth 100.

2. we obtained retrieval results from PubMed.
Results are pooled from these runs up to depth
100, excluding abstracts from the first system.

The final assessment pool contains 23,099 query-
abstract pairs (152 abstracts per query on average).

2.2.2 Collecting Relevance Judgments
For each query-abstract pair, we collected the rele-
vance judgments by 2 annotators with biomedical
degrees using an in-house annotation tool (Fig. 2).
An expert annotator with Ph.D. in biology created
a list of queries from logs of our target discovery
platform PandaOmics. All annotators are paid biol-
ogists in the company. An expert annotator wrote
annotation guidelines and educated annotators.

Each annotator selected a disease or gene query
from the list of selected identifiers, an abstract with

information about the publication year and journal.
Abstracts were presented in random order. An-
notators were then asked to: (i) judge relevance
on a 3-point scale: “relevant”, “nonrelevant”, or
“doubtful”, and (ii) categorize the reason for rele-
vance/nonrelevance.

We note that annotators were asked to consider
EFO hierarchy during relevance annotation for dis-
ease queries. According to the annotation guide-
lines, only the synonyms belonging to the required
level of the hierarchy are relevant. Those terms that
are higher in the hierarchy are “wider terms”, and
those that are lower represent a “narrower case”.
E.g., while annotating a text for the “prostate ade-
nocarcinoma” query, “prostate cancers” is wider
than the term of interest; for the “prostate cancer”
query, the “prostate adenocarcinoma” is narrower
than the term of interest. Further, we provide a
summary of guidelines illustrated with examples.

Relevance The publication relevance to a
gene/disease can be determined as true when the
gene/disease of interest (its main name or any syn-
onym) is present in the same meaning in an abstract.
The term in the abstracts should belong to a dis-
ease/gene ontology (and not to any other category,
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Figure 3: Statistics of Relevance reasons.

e.g. name of a clinical trial, institution, founda-
tion, etc). In particular, there are six reasons for
relevance:

1. synonym in text – one of the synonyms is
precisely present in an abstract;

2. new synonym – new synonym for the term of
interest, which is absent in our synonyms list,
was found;

3. term by fragments - an entity is annotated
by several fragments of text if: (i) a term is
either from the disease of gene ontology; (ii)
both fragments are in the same sentence; (iii)
the parts of the term are logically connected
(according to the author’s logic). E.g., the text
“...secondary diabetic complications, such
as retinopathy, neuropathy, and nephropa-
thy” (pmid 33109031) should be annotated
as TRUE for “diabetic retinopathy”;

4. enumeration - an entity is annotated by frag-
ments which are separated only with punctu-
ation marks or conjunctions. E.g., the text
“asthma-wheezing” (pmid 33276583) should
be annotated as a true for both “asthma” and
“wheezing”, while “AKT1-mTORC1 Axis”
(pmid 32404972) should be annotated as
TRUE for “AKT1”;

5. suffix/prefix - an entity was annotated as a
part of a word with a suffix/prefix. E.g., we an-
notate “obesity-induced NAFLD” as a match
for “obesity” and add “-induced” as a suf-
fix (we note that there is no “obesity-induced
NAFLD“ term in the ontology);

6. complicated case – a term is encountered in
abstract by fragments separated in different

Figure 4: Statistics of Nonrelevance reasons.

sentences, and there is a logical link between
them.

Detailed distribution of relevance reasons are
given in Fig. 3.

Nonrelevance Nonrelevance of a gene/disease
is determined as either no link between the
gene/disease and a publication abstract or a
wrongly identified relation. The first means the
gene/disease is not mentioned in an abstract. The
second means that gene/disease is incorrectly
linked to an abstract because of one of the follow-
ing six reasons:

1. no results – no results for the term of interest
were found in a publication;

2. refers to another – gene/disease name (or
its abbreviation) is a synonym of some other
term, or has some other meanings, which are
outside of the ontology (e.g., abbreviation
COAD for colon adenocarcinoma refers to an-
other term “anaerobic co-digestion (co-AD)”,
an abbreviation for Non-alcoholic steatohep-
atitis refers to another term “Nash equilib-
ria”);

3. gene/disease name (or its abbreviation) refers
to another term within the ontology (gives
collisions) because of: (i) same synonyms
(e.g., abbreviation COAD for Chronic obstruc-
tive pulmonary disease refers to another dis-
ease “colon adenocarcinoma”); (ii) refers to a
wider term – publication abstract was found
by a wider disease term, which refers not
only to a disease of interest, and may give
additional non-relevant results (e.g, colon can-
cer is wider term for colon adenocarcinoma);
(iii) narrower case – publication abstract was
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found by more specific term (e.g., Alzheimer’s
disease is a narrower case for neurodegener-
ative disease); (iv) preprocessing issue - ei-
ther ignored punctuation mark (“background:
retinopathy”, “ER-breast cancer”) or is a part
of a longer term ("Non-small cell lung carci-
noma", “Traf2- and Nck-interacting kinase”).

Detailed distribution of nonrelevance reasons is
given in Fig. 4.

We note that our definition of nonrelevance dif-
fers from Pubmed search primarily because of the
consideration of the concept hierarchy. PubMed
search uses Best Match (Fiorini et al., 2018) trained
on the user-click information from PubMed search
logs. We believe that distinguishing more narrow
concepts from broader ones is crucial for target
discovery objectives.

Doubtful This category includes publications
that mention disease/gene of interest only in key-
words/MeSH terms without an abstract match.
PubMed articles are manually associated with au-
thor keywords and MeSH (Medical Subject Head-
ings) (Lipscomb, 2000) as standardized keywords.
The reasons for this label are the same as for the
relevance label with synonym in MeSH/keywords
and excluding the “complicated case” category. In
97.65% and 1.6% cases, the annotator associated
texts with the synonym in MeSH/keywords and
new synonym reasons, respectively.

In 91% and 80% of pairs, two annotators agreed
on a relevance label and decision reasons, respec-
tively. When annotators disagreed, the expert an-
notator was asked to decide whether the relevance
labels among with reasons selected by one of the
annotators were in fact correct. After this proce-
dure, we obtained the dataset for entity search with
73 disease queries, 79 gene queries, and 23,099
annotated query-entity pairs.

3 Models

The goal of our work is to evaluate retrieval models
in a zero-shot setup, with no available training data
to train the IR system.

3.1 BERT-based IE pipeline
In our work, we have focused on the extraction
of two entity types: disease and gene. Though,
we design our IE system with the simplicity of
scaling to new entities in mind. The system con-
sists of pipelines, each for a different entity type.

The pipelines incorporate two sub-modules: (i)
NER sub-module; (ii) EL sub-module. These sub-
modules are applied successively. The first one
extracts entities of interest the second one links
extracted entities with concepts from given knowl-
edge bases. Taken all together it means that the pro-
cessing of different types of entities is independent
and could be trained and applied separately. As
a pretrained transformer model, we use BioBERT
base v1.1. (Lee et al., 2019).

Named Entity Recognition In this paper, for re-
producibility reasons, we decided to analyze mod-
els trained on publicly available academic datasets.
Specifically, we train BioBERT on combination of
NCBI and CDR Diseases datasets (Doğan et al.,
2014; Li et al., 2016) for disease entities and on
DrugProt dataset (Miranda et al., 2021) for gene en-
tities. To join the NCBI and CDR Disease datasets,
we utilized predefined train/test subsets and com-
bined the datasets within these splits. Thus, the
train part of NCBI was combined with the CDR
Disease train sets. A similar procedure was carried
out to obtain the test part of the combined dataset.
We adopted model training hyper-parameters from
(Lee et al., 2019). Our model achieves 88.43% and
90.39% of the F-measure on official test sets of
disease and gene entities, respectively.

Entity Linking For linking extracted entities
to corresponding concepts from dictionaries, we
employ state-of-the-art Drug and disease Inter-
pretation Learning with Biomedical Entity Rep-
resentation Transformer (DILBERT) (Miftahutdi-
nov et al., 2021). This model is based on
metric learning and negative sampling, specifi-
cally, triplet constraints. Given an entity men-
tion m, a positive concept name cg and a nega-
tive concept name cn, triplet loss tunes the net-
work such that the distance between m and cg is
smaller than the distance between m and cn. De-
tails on overall architecture, configuration, hyper-
parameter search, and evaluation strategies are
presented in (Miftahutdinov et al., 2021). The
code is publicly available at https://github.
com/insilicomedicine/DILBERT. We note that
the advantage of DILBERT architecture is the abil-
ity to search for the closest concept in a different
terminology without retraining the model (cross-
terminology use).

Similar to NER, we train models on publicly
available academic datasets: CDR Diseases (Li

https://github.com/insilicomedicine/DILBERT
https://github.com/insilicomedicine/DILBERT
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et al., 2016) and BC2GN Genes (Morgan et al.,
2008). The models are evaluated on refined test
sets without entity overlap between train/test
sets from (Tutubalina et al., 2020). These sets
are publicly available at https://github.com/
insilicomedicine/Fair-Evaluation-BERT.
Our model achieves 75.8% and 82.4% of accuracy
on the refined test sets of diseases and genes,
respectively.

Details on models’ configurations, speed perfor-
mance and system deployment are presented in
Appendices A and B.

3.2 Elasticsearch BM25

We utilized a popular search engine framework
Amazon Elasticsearch/OpenSearch Service4 that
uses OpenSearch v.1.05. OpenSearch is a fork of
open source Elasticsearch 7.106. OpenSearch uses
BM25 (Robertson and Zaragoza, 2009) to calcu-
late relevance scores. BM25 is a commonly-used
bag-of-words retrieval function based on token-
matching between two high-dimensional sparse
vectors with TF-IDF token weights. We note that
(Thakur et al., 2021) recently showed that many
approaches with sparse, dense late-interaction ar-
chitectures outperform BM25 on in-domain evalu-
ation, yet perform poorly on zero-shot setup.

4 Evaluation

For evaluation, we use precision, recall, and F-
measure. We calculate the precision as a fraction
of relevant documents among all retrieved docu-
ments. As well the recall is calculated as a fraction
of relevant documents from all possibly relevant
documents in the dataset. For experiments, we use
query-document pairs with relevant and nonrele-
vant labels excluding the doubtful category.

Tables 3 and 4 present the performance of the
BERT-based pipeline compared to BM25 on the
full set of queries and the subset of concept with
ambiguous names, respectively. Several observa-
tions can be made based on Tables 3 and 4. First,
the BERT-based system outperformed BM25 on
both sets of the dataset and both types of entities.
As expected, the performance difference between
the two models is larger on the subset with am-
biguous concept names. Third, for the BERT-based
pipeline, precision is higher than recall.

4https://aws.amazon.com/opensearch-service/
5https://opensearch.org/
6https://www.elastic.co/

Model P R F
Queries with Disease CUIs

BERT-based 93.97 84.41 88.93
Elasticsearch BM25 82.19 83.33 82.76

Genes
BERT-based 92.24 85.45 88.71
Elasticsearch BM25 89.92 79.93 84.63

Both
BERT-based 92.99 84.99 88.81
Elasticsearch BM25 86.23 81.44 83.77

Table 3: IR metrics on the full set of queries.

Model P R F
Queries with Disease CUIs

BERT-based 97.72 93.81 95.73
Elasticsearch BM25 75.67 96.72 84.91

Genes
BERT-based 93.02 93.85 93.43
Elasticsearch BM25 79.58 68.88 73.85

Both
BERT-based 94.9 93.83 94.37
Elasticsearch BM25 77.59 80.39 78.96

Table 4: IR metrics on the subset of queries with am-
biguous concepts.

In addition, we investigate search precision fur-
ther by developing a dataset for out-of-domain ab-
stract detection. Approximately 30,000 records are
included in the PubMed journal list. These journals
publish papers not only about biological entities,
but also on cultural topics, economics and econo-
metrics, artificial intelligence, law, linguistics and
language, and so on (out-of-domain categories for
us). Our expert annotator manually selected out-of-
domain journals on which we expect the IE system
to return zero results. We randomly select 58,790
abstracts from these journals, where each abstract
includes at least one gene of disease concept re-
trieved by Elasticsearch. In 90% of these abstracts,
the BERT-based system did not find any entities.

Error Analysis For error analysis of the BERT-
based IE system, we reviewed a sample of 152
false positive (FP) documents and 168 false neg-
ative (FN) results. Table 5 provides summary on
error categories for FPs. As shown in Table 5, the
most frequent category of errors (58%) is related
to the ontology hierarchy. Wider cases can also
be attributed to a gene when the gene family is
mentioned (e.g., Akt (there are Akt1/2/3), ERK

https://github.com/insilicomedicine/Fair-Evaluation-BERT
https://github.com/insilicomedicine/Fair-Evaluation-BERT
https://aws.amazon.com/opensearch-service/
https://opensearch.org/
https://www.elastic.co/
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Reason N %
wider term 88 58
refers to another 34 22
synonym in MeSH/keywords 17 11
same synonym 11 7
preprocessing issue 1 1
synonym in the text 1 1

Table 5: Error analysis of IR results on the false positive
sample (152 texts).

Reason Model N
not found - 48
largest text span exists NER 23
not recognized NER 6
abbreviation NER 5
wrong recognition NER 1
wrong mapping EL 2
largest text span
rule/wrong mapping

NER/EL 15

Table 6: Error analysis of NER and EL predictions on
the false negative (FN) sample (100 texts).

(there are ERK1/2)). For FNs, 60% of errors (100
abstracts) fell into the synonym in the text cate-
gory. These documents were additionally analyzed
to detect which model (NER or EL) predicted in-
correctly (see Table 6). As shown in Table 6, in
23% cases, the NER model predicts a shorter en-
tity which is also known as a boundary problem.
E.g., in the text “external validation of the Nonal-
coholic [Steatohepatitis]predicted Scoring System
in patients” (pmid 33248101) Nonalcoholic Steato-
hepatitis was mapped to just Steatohepatitis due
to NER predictions. Mapping errors are often re-
lated to the presence of numbers in gene names
or abbreviations. E.g., in a text “orphan nuclear
receptor [Nr4a1] mediates perinatal neuroinflam-
mation” (pmid 32606386) entity Nr4a1 mapped to
the Nr4a2 gene instead. For FPs, we additionally
analyze 22% of errors (34 abstracts) from the refers
to another category. The NER and EL models cause
errors in 16 and 11 documents, respectively.

5 Conclusion and Future Work

In this work, we present a comprehensive evalua-
tion of a biomedical entity-centric search engine
based on BERT models for disease and gene ex-
traction and linking. This engine is a part of a
target discovery platform, where users can return
a list of relevant publications given a disease or

gene concept query. We evaluate BERT models
on two information extraction tasks, entity-centric
information retrieval, and out-of-domain abstract
detection. Moreover, we present an error analysis
for both retrieval and extraction tasks.

This work suggests several interesting directions
for future research. We plan to conduct similar
studies on other text sources such as full publica-
tion texts and patents. Moreover, we plan to expand
the list of entity types with pathways and biological
processes. To extract explicit associations between
drug targets and diseases, we plan to add relation
extraction/event detection models and study knowl-
edge graph completion with novel disease-gene
edges.

6 Ethics Statement

We outline potential ethical issues with our work
below. First, our work focuses on a comprehensive
evaluation of the information extraction pipeline
for retrieval of relevant scientific texts given queries
of disease and gene concepts. Consequently, the
developed BERT-based models could reflect many
domain-specific biases exhibited by language mod-
els. For example, (Sung et al., 2021) showed that
predictions on factual triples tend to be highly
biased towards a few objects (e.g., “headache”,
“pain”, or “ESR1”). Since pretrained language
models are used for initialization, it is possible
to reflect biased patterns in open-world applica-
tions. Second, our NLP engine is a part of the tar-
get discovery platform PandaOmics which intend
to identify targets (genes/proteins) through deep
feature selection, causality inference, and de novo
pathway reconstruction (Ozerov et al., 2016). We
use the NLP engine to assess the targets’ novelty
and disease association via the analysis of research
publications. The imperfect completeness of the
extracted information can be especially reflected
in the small number of publications in the search
results about rare diseases, making it difficult for
subsequent analysis. Third, we use EFO and En-
sembl as primary resources with disease hierarchy
and concepts’ synonyms. For example, (Miftahut-
dinov et al., 2021) demonstrated that degradation
in the accuracy from the full disease dictionary to
a 30% of the dictionary is significant for disease
linking in clinical trials. Moreover, consistent de-
scription of these entities has numerous differing
standards and opportune incorporation of new hu-
man disease terms and targets is still necessary.
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A System deployment

Our system is packaged in a docker container,
which is run by schedule. Since the container is
self-contained any scheduler could be used. The
pipeline of documents processing in service is as
follows: (i) load to the local storage previously
unlabeled documents from a database (ii) extract
and link entities from documents using the BERT-
based pipeline (iii) upload the labeled documents
to the database. We store our documents in Mon-
goDB (https://www.mongodb.com). The service
is implemented substantially on python, with en-
trypoints written in shell. To load/upload docu-
ments from/toMongoDB we use PyMongo library
(https://pymongo.readthedocs.io). After the
labeled documents are loaded to the MongoDB we
utilize Elasticsearch as a search index. Customers
of the drug discovery platform send concept CUI
as a query, afterward, the backend retrieve all doc-
uments containing specified CUI and transfer them
to the frontend.

B Configuration details and speed
performance

For NER and EL encoders, we apply the fine-tuned
on downstream task BioBERT v1.1 with 12 heads,
12 layers, 768 hidden units per layer, and a total
of 110M parameters. We train our NER model
using AdamW (Loshchilov and Hutter, 2018) opti-
mizer for 20 epochs with a batch size equal to 48
and learning rate equal to 5e-5. The EL model is
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trained with the same optimizer and learning rate
for 5 epochs and batch size equal to 32. At the
inference and training time, we restrict the length
of the sequence up to 128 sub-tokens for entity
recognition and up to 28 sub-tokens for linking.

For NER sub-module we use Huggingface
python library (https://huggingface.co), for
EL we apply sentence-transformers library (https:
//www.sbert.net). At the inference time, the
EL model uses the FAISS library (Johnson et al.,
2019) with GPU support for a fast nearest neighbor
search by comparing vectors with Euclidean dis-
tance. Embeddings of all terminologies’ concepts
are indexed.

We note that deployed models are trained on
in-house datasets with similar parameters and eval-
uation metrics that are not publicly available due
to company policy.

We profiled retrieval speed on a server with Intel
Xeon CPU E5-2660 2.00GHz and 256GB memory.
First, we precomputed all embeddings for all con-
cepts (500 thousand). On a single Nvidia TITAN
X GPU, it takes about 7 minutes to compute all em-
beddings. Given that all embeddings are indexed
on Nvidia TITAN X GPU using IndexFlatL2 index
type 5 thousand documents processing takes 390
seconds, which is 0.08 seconds per document.
Most of this time, specifically 359 seconds, is
taken by the NER sub-module.
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