










Dialogue Context

[USER] Turn on ben’s light.
[DEVICE] I’m sorry I couldn’t find the device.
[USER] Turn on benny’s light.
[DEVICE] Okay.

[USER] Play calen playlist.
[DEVICE] I could not find that on Amazon Music.
[USER] Play scars.
[DEVICE] Here’s Scars , by James Bay , on Amazon Music.

User Query Turn ben’s light on pink Play playlist karen
Rewrite Label Turn benny’s light on pink Play playlist callen
DPR-EC Turn brecken’s light on pink 7 Play playlist cameron 7
PENTATRON-N Turn britney’s light on pink 7 Play playlist carrie 7
PENTATRON-C Turn benny’s light on pink 4 Play playlist carrie 7
PENTATRON-CC Turn benny’s light on pink 4 Play playlist callen 4

Table 2: Two examples to showcase the importance of full contextualization and personalization.

Figure 6: In this figure, we illustrate the importance of
contextual information and training with hard negatives
in boosting the performance of our system.

Figure 7: Performance of different versions of PEN-
TATRON with respect to different system activation
thresholds τ1 and τ2.

tion and multi-tasking bring further improvement.
There is also some gain by adding task markers in
the multi-task settings.

Figure 6 presents an ablation that shows the bene-
fits of hard negative sampling. To further stress test
our system, we also swept over different thresh-
olds, summarized in Figure 7. We could notice
that the general trend is consistent using different
thresholds.

In sweeping across thresholds in our empirical
studies (Figure 8), we observe interesting trends.
In particular, that when τ1 = τ2, the personalized
model that does not utilize contextual information
suffers from noisy predictions when the thresholds

are equal since the top-2 retrieved entities are se-
mantically very similar and the model finds it diffi-
cult to disambiguate. However, with the contextual
information, we see consistent improvements in
accuracy as we tighten thresholds.

Figure 8: Demonstrating the value of contextual infor-
mation with appropriate multitasking design.

We illustrate the benefits of our approach on
a generic dialog in Table 3. In the left example
from HomeAutomation domain, the device name in
the source query is incorrect which will make this
task-oriented dialogue system fail. PENTATRON-
C and PENTATRON-CC could generate the cor-
rect rewrite by leveraging dialogue context and
user’s personalized index which contains user’s
registered device name. A similar trend can be ob-
served in the right example from Music domain.
Besides, the right example also illustrates the bene-
fits from multi-task learning by comparing the pre-
diction from PENTATRON-C and PENTATRON-
CC. Both the video name ‘carrie’ and playlist
name ‘callen’ exist in user’s personalized index.
With the help of contrastive representation learn-
ing, PENTATRON-CC could learn to retrieve a
Music domain entity which is the correct one here.

Visualization: We analyze the benefits of our
design using t-SNE (Van der Maaten and Hinton,
2008). The results are presented in Figures 9 and
10. We clearly observe that multi-tasking enables
domain disambiguation via implicitly clustering the
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queries by domains, thus contributing positively to
entity prediction accuracy and, in turn, improving
the query rewrite quality. In particular, we observe
that Music, Video and Knowledge domains im-
mensely benefit from multi-tasking.

Figure 9: In the absence of the auxiliary task, queries
across domains are interspersed which leads to lower
accuracy due ambiguity in the rewrite domain. Here,
the blue cluster denotes Knowledge domain queries, the
orange cluster denotes Music domain queries and the
green cluster denotes Video domain queries.

Figure 10: Multi-tasking to predict the rewrite domain,
in addition to predicting the correct entity, leads to
higher accuracy due to domain disambiguation arising
from the implicit clustering effect.

4.4 Online Performance

A/B Experimentation: At the time of writing
this, we deployed a static (request, rewrite) look-
up table computed using PENTATRON-N to serve
real users. With a p-value < 0.05, we observe
a significant improvement, of 47.5%, in the user
experience measured using the model-based (Gupta
et al., 2021) assessment used for dataset selection in
Section 4.1 on the treatment group as compared to
the control group. Moreover, other friction metrics
such as the turn error rate have improved over 40%

throughout the A/B duration. Successive version
upgrade deployments are ongoing.

Latency: To investigate the deployment in a real-
time inference service, we performed extensive
load tests implemented with a Flask endpoint. We
store all objects in the main memory. On a c5.9x-
large instance on AWS cloud, at 120 queries per
second hitting the PENTATRON system, we ob-
served a P90 latency of less than 30ms for the end-
to-end execution.

5 Conclusions and Future Directions

In this work, we build a system called PENTA-
TRON which significantly improves user experi-
ence in intelligent devices by operating on entities
and reducing friction in multi-turn dialogues. There
are several future directions we plan to work on,
including operationalizing large-scale unbiased per-
sonalized and context-aware systems, and design-
ing self-learning (Ponnusamy et al., 2020; Roshan-
Ghias et al., 2020) using techniques such as rein-
forcement learning. We also plan to investigate
the utility of a multi-level index to improve entity
coverage and mitigate the cold-start problem for
new customers. Dynamic index building and de-
ployment in low-latency applications is an ongoing
direction.

Limitations

Our system has the following limitations. Though
personalization offers great benefits, the coverage
of desired entities in our historical index due to
personalization is typically limited. Specifically,
we observe only 20% coverage in our empirical
studies. This can alleviated using a multi-level
index involving clusters of users. We have initial
results on this approach and plan to compile that in
future work.

Next, natural language based prompts should
further improve our system. However, very long
sequence length has concerns with respect latency
and memory on CPU-deployed solutions. A poten-
tial solution to this is to consider low-rank factor-
ization in the attention design.

Finally, in production deployments, large-scale
in-memory index for multiple locales poses cost
challenges. A separate study is warranted to study
hybrid storage mechanisms and high performance
cache design.
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Ethics Statement

To the best of our knowledge, our work is ethical
and has a positive impact on society and human
well-being. In particular, we take pride in empha-
sizing that we handle customer confidentiality and
privacy with critical care. Its design principles are
unbiased.
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