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Abstract
Previous work suggests that performance of
cross-lingual information retrieval correlates
highly with the quality of Machine Transla-
tion. However, there may be a threshold be-
yond which improving query translation quality
yields little or no benefit to further improve the
retrieval performance. This threshold may de-
pend upon multiple factors including the source
and target languages, the existing MT system
quality and the search pipeline. In order to
identify the benefit of improving an MT system
for a given search pipeline, we investigate the
sensitivity of retrieval quality to the presence of
different levels of MT quality using experimen-
tal datasets collected from actual traffic. We
systematically improve the performance of our
MT systems quality on language pairs as mea-
sured by MT evaluation metrics including Bleu
and Chrf to determine their impact on search
precision metrics and extract signals that help
to guide the improvement strategies. Using this
information we develop techniques to compare
query translations for multiple language pairs
and identify the most promising language pairs
to invest and improve.

1 Introduction

Multilingual search capability is essential for mod-
ern e-commerce product discovery (Lowndes and
Vasudevan, 2021; Zhang, 2022). Localization of
e-commerce sites have led users to expect search
engines to handle multilingual queries. Recent pro-
posals of cross-lingual information retrieval handle
multilingual queries, and language-agnostic cross-
borders product indexing has gained traction with
neural search engines (Hui et al., 2017; McDonald
et al., 2018; Nigam et al., 2019a; Lu et al., 2021; Li
et al., 2021), but legacy e-commerce search indices
are still built on monolingual product information
and support for multilingual search is bridged using
Query translation (Nie, 2010; Rücklé et al., 2019;
Saleh and Pecina, 2020; Bi et al., 2020; Jiang et al.,
2020; Zhang and Tan, 2021).

Query translation allows users to look up infor-
mation represented in documents written in a lan-
guages different from the language of the query. It
takes as input the query typed in source or query
language and returns a translated query to the
search engine to retrieve documents in the target
language. It follows that query translation plays
a key role and its output significantly affects the
retrieval results.

Previous studies have demonstrated performance
of CLIR (Cross-Lingual Information Retrieval) cor-
relates highly with the quality of the Machine
Translation (MT), and improving the quality of MT
improves retrieval quality (Goldfarb et al., 2019;
Brynjolfsson et al., 2019). However, these eval-
uations are done separately for each task. This
leaves a large gap in understanding the impact of
improving MT quality iteratively on CLIR perfor-
mance in a real time industrial setting. Since ma-
chine translation is used here as interim application,
the objectives of the retrieval task may have vary-
ing levels of tolerance to the inherent translation
quality. Information retrieval evaluation usually in-
volves human-annotated relevance labels of search
results candidates. In an industry setting, annotat-
ing a representative sample is a time consuming
and expensive task, particularly during iterative
improvement of MT for the search use case. Addi-
tionally, a general-purpose MT evaluation metric
may not necessarily adapt to the query evaluation
for downstream retrieval task.

To address these above concerns, we propose an
MT evaluation framework to build an e-commerce
specific CLIR test set. It exploits behavioural sig-
nals from search retrieval results to evaluate MT
quality for a given query. In order to identify the
benefit of improving an MT system, we further
investigate the sensitivity of retrieval quality to
the presence of different levels of MT quality as
measured by Bleu, and Chrf using experimental
datasets collected from actual traffic. Based on
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these experiments, we recommend the pairs that
are worth continued investment in improving MT
systems for search. Our main contributions are:

• A rank-based evaluation framework to eval-
uate MT in CLIR through ranking-based
search metrics using behavioral signals (from
the store of the target language) as a proxy to
relevance information without any human an-
notation; this framework can be used to create
e-commerce CLIR test set at scale.

• A method to measure the MT launching
impact on the e-commerce CLIR ecosystems
for a given language pair. This can be used
to identify and prioritize the high impact lan-
guage pairs for more investment in the MT
improvement.

• A method to measure the MT improvement
impact on the e-commerce CLIR ecosystems
for a given language pair. It signals the strat-
egy to be used for MT improvement, either a
comprehensive strategy focusing on the over-
all query traffic or a specific one targeting a
smaller percentage of query traffic or a com-
bination of both strategies.

This paper is organized as following: we pro-
pose a rank-based evaluation framework in section
2. We propose two MT impact rates, MT launching
impact rate and MT improvement MT rate respec-
tively in section 3. Section 4 is the experiment
with 12 language pairs from 6 stores. Section 5 is
the results and analysis. We defer related work to
Section 6 where we compare it with our proposed
work. We draw a conclusion in Section 7.

2 Cross-Lingual Information Retrieval
(CLIR) Evaluation Framework for
E-commerce Product Search

Different from static test sets in academia, indus-
trial search applications are dynamic as user queries
and behavioral signals change with world trends.
Moreover, product inventory is dynamic, changes
often and quickly.

A previous study (Sloto et al., 2018) proposes
the traditional Normalized Discounted Cumulative
Gain (nDCG) for CLIR using all search results
from the reference translation as relevance ground
truth to compute nDCG for MT translation (aka
nDCG-MT). However, their approach imposes a
strong assumption that the top-k search results

from reference translation are all relevant to the
query and relevance is inversely scaled by the rank-
ing of the results.

Although behavioral signals from users’ clicks
and purchases are useful proxy (Wu et al., 2018)
to expensive human relevance annotations, these
are dynamic and change according to the product
life cycle and seasonal business trends. These be-
havioral signals need to be updated at regular ca-
dence to accurately represent relevance information
needed to compute search metrics.

We introduce a ranking-based evaluation frame-
work through search ranking metrics using behav-
ioral signals as a proxy to relevance information
without any human annotation; To the best of our
knowledge, there is no systematic study on cross-
lingual information retrieval for e-commerce search
that neither requires ground-truth click/purchase in-
formation nor human annotated relevance data.

Figure 1: Test set creation workflow

Figure 1 illustrates the test sets creation work-
flow for MT evaluation in E-commerce CLIR:

1. Create a sample of query data from the histor-
ical search traffic in the target language (the
language that the search index is built on).
Empirically, we recommend to sample that
queries from the top 30%, bottom 30% and
the middle 40% in frequency bins to better
simulate the user traffic. We refer to these
queries as Qref .

2. To allow computation of traditional relevance
metrics, aggregate the clicks and/or purchase
product IDs associated with the queries, if
they are available. We refer to the prod-
ucts IDs associated with the query and their
click/purchase frequency as Pid and Pfreq.

3. Create human reference translation of the
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search queries sample in the source language
(the language that users will be searching in).
We refer to these human translated queries as
Qsrc.

We propose the following evaluation framework
with the test sets created above to evaluate machine
translation in the context of CLIR for e-commerce
queries.

1. Translate the Qsrc with the MT model in con-
sideration. We refer to these machine trans-
lated queries as Qmt.

2. Search for the candidate products using the
machine translated queries Qmt; retrieving
top-k search result Rmt

3. Use Pid and Pfreq (as ground truth) with Rmt

to compute traditional relevance based metrics
such as nDCG.

3 MT impact in the search ecosystem

3.1 The range of MT impact on search
As mentioned, the downstream search pipeline con-
sists of a large number of components, which al-
together has different levels of tolerance for query
translation quality. Hence, it is important to esti-
mate the range of query translation impact on the
search ecosystem in consideration. With the test
sets from the creation workflow in Section 2, we
propose to measure the rank-based search metrics
such as nDCG of source queries Qsrc as the lower
bound of the MT impact, which serves a baseline
for the impact of MT translated query on search,
and measure the search metrics of human reference
query translations Qref as the upper bound.

3.2 MT launching impact measurement
We expect that launching an MT system in a search
ecosystem of different language pairs can have dif-
ferent levels of positive impact on the search result
quality. Therefore, given a language pair (e.g. enus-
jajp), we propose the MT launching impact rate
to quantify the MT impact on the search ecosys-
tem (e.g. jp). MT launching impact rate (IMT ) is
defined as in Equation 1.

IMT =
∆S

∆T
(1)

∆S = Sadapt − Ssource (2)

∆T = Tadapt − Tsource (3)

where, ∆S is the search result improvement from
source queries Ssource to the query translation from
a fine-tuned MT Sadapt (as Equation 2), Ssource

and Sadapt can be common search metrics such as
nDCG, ∆T is the respective translation quality im-
provement from the source queries Tsource to the
fine-tuned MT query translations Tadapt (as equa-
tion 3), Tsource and Tadapt can be MT evaluation
metrics such as Bleu or Chrf.

We propose the following three groups for lan-
guage pairs based on their MT impact rate:

• High-impact language pairs: Search ecosys-
tems of high-impact language pairs are less
tolerant to languages different from the search
index language, and more sensitive to the
query translation quality. Launching or im-
proving an MT system of those language pairs
in the respective search pipeline is more likely
to improve the search results.

• Medium-impact language pairs: Search
ecosystems of medium-impact language pairs
are somewhat sensitive to the query translation
quality, though not as much as high-impact
language pairs.

• Low-impact language pairs: Search ecosys-
tems of low-impact language pairs are more
robust to different languages and translation
quality, and the presence of an MT in the
search pipeline has less or little impact on
the search result improvement.

3.3 MT improvement impact
We experimented with two improvement strategies
for MT in the e-commerce CLIR product search:
one is comprehensive improvement (CI), the
other is specific improvement (SI). CI usually
focuses on the overall improvement in translation
quality and targets the entire query traffic. The
CI strategies usually involve a change of model
architecture or training techniques, etc; SI usually
focuses on the improvement of the specific aspects
of the query translation quality, and targets a frac-
tion of query traffic. The SI strategies are not nec-
essarily language-agnostic, for example, it can be
solving a smaller transliteration problem in a given
language, or a brand term preservation improve-
ment for a given language pair.

We propose The MT improvement impact rate
to quantify the impact of MT comprehensive im-
provement (Iimprove) on search improvement as in



102

Equation 4, which can provide signals to choose
the right MT improvement strategy for a given lan-
guage pair.

Iimprove =
∆S′

∆T ′ (4)

∆S′ = Sadapt − Sgeneric (5)

∆T ′ = Tadapt − Tgeneric (6)

where, ∆S′ is the search result improvement from
generic MT query translations Sgeneric to the fine-
tuned MT query translations Sadapt (as in Equation
5), Sgeneric and Sadapt can be the common search
metrics such as nDCG; ∆T ′ is the respective trans-
lation quality improvement from generic MT query
translations Tgeneric to the fine-tuned MT query
translations Tadapt (as in Equation 6), Tgeneric and
Tadapt can be MT evaluation metrics such as Bleu
or Chrf.

Language pairs with higher improvement rate
signals both the CI and SI of MT are likely to have
positive impact on search. Those with lower rate
may benefit more from the focusing on SI for a
targeted group of queries from the traffic.

4 Experiment

Language pairs and locales: We selected 12 lan-
guage pairs from 6 stores for our experiments as
seen in Table 1.

Lang pair Store Lang pair Store
esmx-enus US ptpt-eses Spain
ptbr-enus US frca-enca Canada
kokr-enus US nlnl-dede Germany
dede-enus US trtr-dede Germany
mlin-enin India engb-dede Germany
knin-enin India enus-jajp Japan

Table 1: Selected 12 language pairs from 6 stores

Test data: The test data is created as described in
Section 2. The test set comprises 4000 queries (as
reference query translation) per store (e.g. enus),
each query is translated into their respective lan-
guage pairs (e.g. enus -> kokr, enus -> dede). We
have also stored the purchased product IDs asso-
ciated with the queries of the store (e.g. US). We
use sampled purchased product ID associated with
reference queries as relevant product, and the log-
arithm of the frequencies of purchased product as
the relevance score.
Machine Translation (MT) models: We trained
two models per language pair: (i) a generic MT sys-
tem trained on general news and internal crawled

data with (ii) a domain-specific MT that is fined
tuned on human translated search queries and
synthetically generated query translations through
back-translation. These in-house MT models are
trained on proprietary data using vanilla trans-
former architecture (Vaswani et al., 2017) with
Sockeye MT toolkit (Domhan et al., 2020).1

Metric hyper-parameters: We set K to 16 for the
top-k search results, using the top-16 products in
the search results to compute nDCG@16.
MT metrics: Tables 3 and 4 in the appendix
present the MT quality metrics Bleu2 and Chrf; Ta-
ble 5 in the appendix presents search performance
metric normalized nDCG@16.3.
MT launching and improvement impact rates:
With aforementioned metrics, the lower and higher
bounds of nDCG@16 of MT impact are presented
in Table 6. MT launching impact and improvement
rates are computed using nDCG@16 with and Chrf
respectively, as in Table 2 in the appendix.

MT launching
impact

MT improvement
impact

Language
pair

∆nDCG/
∆Bleu

∆nDCG/
∆Chrf

∆nDCG/
∆Bleu

∆nDCG/
∆Chrf

ptpt-eses 0.11 0.15 0.19 0.70
enus-jajp 0.25 0.18 0.78 1.09
engb-dede 0.29 0.32 0.09 0.13
frca-enca 0.31 0.23 0.35 0.60
nlnl-dede 0.47 0.43 0.32 0.69
esmx-enus 0.50 0.34 0.34 0.64
ptbr-enus 0.62 0.56 0.28 1.01
dede-enus 0.62 0.66 0.33 0.61
knin-enin 0.72 0.59 0.19 0.60
trtr-dede 0.85 0.43 0.24 0.43
kokr-enus 0.98 0.49 0.33 0.39
mlin-enin 1.04 0.59 0.74 0.72

Table 2: MT launching impact and improvement impact
rates

5 Results and Analysis

For the MT launching impact, we rank the language
pairs in the descending order according to the MT
launching impact rate as well as the impact range
respectively, as in Table 7 in the appendix. We
observe Bleu and Chrf can give a similar ranking

1For the purpose of this paper, we are less concerned with
the accuracy of the MT models and more interested in the
difference in the MT quality as per measured by traditional MT
metrics and their evaluation based on our proposed framework.
Thus the brevity in the model description.

2SacreBleu version 2.0.0 (Post, 2018)
3Both the nDCG@16 and Chrf are scaled to 0-100 for the

computation convenience
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with small difference, so the following analysis is
based on the MT launching impact from ∆ nDCG/
∆Bleu for simplicity. For the MT improvement
impact rate, we observe that Bleu makes value scale
smaller than Chrf. We will use ∆nDCG/ ∆Bleu
for the following analysis.

Figure 2: Language pairs where the MT have bigger
impact on search pipeline

We observe that MT of language pairs such as
mlin-enin, kokr-enus have higher launching impact
rate and should be labeled as the high-impact lan-
guage pairs. For mlin-enin, the MT launching im-
pact rate is 1.04, which signals one point Bleu in-
crease in translation quality can gain slightly more
than one point of search improvement. Figure 2
(In Figure 2, 3, 4 , “src” refers to source query,
“g” refers to generic mt, “a” refers to the adapted
(fine-tuned) MT, “ref” refers to the human trans-
lation. The axis is scaled according to the Bleu
score from 0-100.) illustrates the higher impact lan-
guage pairs, the range of the MT impact is much
bigger, search ecosystems are very responsive to
the presence of MT system in the search pipeline,
MT and search metrics have similar trending. mlin-
enin has a much higher improvement rate of 0.74,
the ecosystem of the search of this language pair
can potentially benefit from both comprehensive
improvement (CI) and specific improvement (SI)
in the MT. Meanwhile, kokr-enus has a much lower
improvement rate of 0.33, which signals this search
is more likely to benefit from SI than CI.
Language pairs such as nlnl-dede, frca-enca should
be considered as the decent impact language pairs.
As illustrated in Figure 3, both have smaller MT
impact range and the launching impact rates are
high but not quite as the high impact language
pairs. As Bleu and Chrf increase from source
query to generic MT to fine-tuned MT, nDCG@16
increases slower. Both language pairs have relative
lower improvement impact rate which is around
0.3, that signals search of these two language

Figure 3: Language pairs where the MT have decent
impact on search pipeline

pairs are more likely to benefit from SI than CI.
Language pairs such as ptpt-eses, enus-jajp should

Figure 4: Language pairs where the MT have lower
impact on search pipeline

be labeled lower impact language pairs based on
the lower launching impact rate. For ptpt-eses, one
point Bleu increase in translation quality can only
achieve 0.11 point of search improvement. Both
have smaller launching impact range, thus, search
ecosystems are not very responsive to the MT
quality improvement. As Bleu and Chrf increase
from source query to generic MT to fine-tuned
MT, nDCG@16 increases much slower and the
trend line is almost flat as Figure 4. In principle,
low-impact language arcs might not be prioritized
for MT improvement. If there is a need to improve
those MT for search, ptpt-eses has a much lower
MT impact rate of 0.19, so search is likely to
benefit from the SI for the MT, whereas enus-jajp
has much higher improvement rate of 0.78, the
search may still benefit from CI as well as SI.
Figure 5 and 6 in the appendix are the plots for all
other language pairs.

A/B testing: We have also conducted paral-
lel online A/B testing for the following language
pairs: enus-jajp, ptpt-eses, frca-enca, mlin-enin,
nlnl-dede, engb-dede. For each language pair, we
have deployed two fine-tuned MT systems and
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integrated them into the search pipeline for the
designated store, and the MT system with the
comprehensive improvement has higher off-line
MT metrics ( +5 Bleu points on average) than the
baseline model. The A/B testing lasted for 4 weeks
on average for all the experiments. For the high
impact language pairs, the improved MT systems
have seen large increases in business metrics,
such as, Order Product Sales (OPS), composite
contribution profit (CCP), compared to the baseline
model, and have much larger positive impact
on the search result quality. For the low impact
language pairs, we observe much smaller or even
no impact at all. Overall, the A/B testing results
are consistent with the MT launching impact rate
results we have computed. Moreover, for ptpt-eses
and nlnl-dede, we also conducted another round
A/B testing with the same experiment setup except
using MT with specific improvement to compare
with the baseline models. Those two improved
MT enhanced the terminology translation of 3-5%
of query traffic. The results are consistent with
our hypothesis that the MT with SI improvement
has much more impact than the MT with CI
improvement.

6 Related Work

Machine Translation is necessary to bridge the gap
between query translation and cross-lingual infor-
mation retrieval (Bi et al., 2020). Query translation
a key component in large e-commerce stores, pre-
vious studies have demonstrated that better transla-
tion quality improves retrieval accuracy (Goldfarb
et al., 2019; Brynjolfsson et al., 2019).

Queries are naturally short and search engines
usually have preferred word choices and colloca-
tions based on users’ query patterns (Lv and Zhai,
2009; Vechtomova and Wang, 2006). This com-
plicates the evaluation of machine translation for
cross-lingual information retrieval in the context of
‘fitting in well to the search index‘. While machine
translation evaluation is well-studied, translation
evaluation in downstream task requires more at-
tention especially in the e-commerce cross-lingual
information retrieval.

Traditionally, information retrieval evaluation
relies on behavioral signals as ground truth to mea-
sure relevance of search results; mean reciprocal
ranking (MRR), mean average precision (MAP),
normalized discounted cumulative gain (nDCG)
(Järvelin and Kekäläinen, 2002; Wu et al., 2018;

Nigam et al., 2019b).
Previous studies in cross-lingual information re-

trieval (CLIR) evaluation relies on pre-annotated
datasets that are relatively small and specific to
domains outside of e-commerce; for example, the
CLEF eHealth test sets (Saleh and Pecina, 2018;
Suominen et al., 2018; Zhang et al., 2013) and
Wikipedia cross-lingual test set (Sas et al., 2020).
Although Sloto et al. (2018) proposed the nDCG-
MT metric that leveraged on the reference transla-
tion to measure search results relevance, reliance
on the ground truth data is still necessary. In pursuit
of a more effective approach, we integrate CLIR
and MT more closely and evaluate them in an end-
to-end task. Our proposed method allows us to
fully-automate the evaluation and study the impact
of improving MT on CLIR by collecting organic
queries in the target language of the e-commerce
service and use reference results of these queries
as a proxy to human annotation.

7 Conclusion

In this paper, we propose an evaluation framework
for MT in the E-commerce multilingual product
search through ranking-based search metrics us-
ing behavioral signals as proxy relevance informa-
tion without any human notation, which makes it
practical to iteratively improve MT models for the
search use case and evaluate them frequently off-
line. This framework can also be used to create
cross-lingual information retrieval (CLIR) test sets
for e-commerce at scale. We also propose a method
to measure off-line the MT launching impact and
and improvement impact rate on search. The for-
mer can identify the the high-impact language pairs
can be prioritized with more investment in the MT
improvement. These experiments can help select
the most promising improvement strategy either
comprehensive or specific improvement or com-
bination of both to bring a larger impact on the
search performance of a given language pair. We
have experimented with the proposed evaluation
framework and MT impact measuring method on
12 language pairs from 6 stores, and identified the
high language pairs of different impact on search
and assigned potential improvement strategies. The
results are consistent with on-line A/B testing.
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A Appendix

sacreBleu
Language
pair source generic

MT
adapted
MT

trtr-dede 6.4 23.4 28.8
enus-jajp 2.8 21.1 30.6
esmx-enus 2.6 26.6 33.3
kokr-enus 6.02 32.53 38.39
frca-enca 3.77 30.01 40.46
ptbr-enus 3.7 26.8 41.91
mlin-enin 4.41 41.7 47.02
nlnl-dede 14.09 36.87 48.11
dede-enus 6.88 46.74 60.93
ptpt-eses 16.49 33.28 63.08
engb-dede 10.1 45.61 63.08
knin-enin 2.77 52.02 71.27

Table 3: MT metric - Bleu for source queries and query
MT translations

Chrf
language
pair source generic

mt
adapted
mt

dede-enus 30.49 73.82 81.36
engb-dede 33.08 69.68 80.99
enus-jajp 10.49 41.91 48.67
esmx-enus 24.92 65.62 69.19
frca-enca 27.04 69.72 75.85
kokr-enus 10.7 69.79 74.75
mlin-enin 7.64 77.7 83.19
nlnl-dede 42.63 75.34 80.58
ptbr-enus 25.66 64.2 68.33
ptpt-eses 48.37 73.26 81.52
trtr-dede 23.08 64.27 67.3
knin-enin 5.29 82.67 88.62

Table 4: MT metric -Chrf for source queries and query
MT translations
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nDCG@16
Language
pair source generic

MT
adapted
MT ref

enus-jajp 36.2 35.80 43.19 62.30
frca-enca 33.34 40.98 44.64 53.47
trtr-dede 26.8 44.60 45.90 63.90
nlnl-dede 31.11 43.67 47.26 56.76
ptpt-eses 42.53 41.89 47.64 55.65
mlin-enin 4.00 44.38 48.34 58.28
ptbr-enus 27.2 46.71 50.89 60.28
kokr-enus 19.59 49.38 51.29 60.42
dede-enus 17.78 46.91 51.54 60.27
knin-enin 2.90 48.7 52.27 58.28
esmx-enus 37.7 50.6 52.90 69.40
engb-dede 38.54 52.38 53.88 61.91

Table 5: search metric (nDCG@16) of source queries
and query MT and reference translations

Language
pair

lower
bound

upper
bound

impact
range

ptpt-eses 42.53 55.65 13.12
frca-enca 33.34 53.47 20.13
engb-dede 38.54 61.91 23.37
nlnl-dede 31.11 56.76 25.65
enus-jajp 36.20 62.30 26.10
esmx-enus 37.70 69.40 31.70
ptbr-enus 27.20 60.28 33.08
trtr-dede 26.80 63.90 37.10
kokr-enus 19.59 60.42 40.83
dede-enus 17.78 60.27 42.49
mlin-enin 4.00 58.28 54.28
knin-enin 2.90 58.28 55.38

Table 6: The MT impact range (nDCG@16)

MT launching impact

Rank impact
range

∆nDCG/
∆Bleu

∆nDCG/
∆Chrf

1 knin-enin mlin-enin dede-enus
2 mlin-enin kokr-enus knin-enin
3 dede-enus trtr-dede mlin-enin
4 kokr-enus knin-enin ptbr-enus
5 trtr-dede dede-enus kokr-enus
6 ptbr-enus ptbr-enus trtr-dede
7 esmx-enus esmx-enus nlnl-dede
8 enus-jajp nlnl-dede esmx-enus
9 nlnl-dede frca-enca engb-dede
10 engb-dede engb-dede frca-enca
11 frca-enca enus-jajp enus-jajp
12 ptpt-eses ptpt-eses ptpt-eses

Table 7: Language pair ranking based on the MT launch-
ing impact
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Figure 5: MT quality metrics and search metrics.png
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Figure 6: MT quality metrics and search metrics


