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Unsupervised Term Extraction for Highly Technical Domains

Francesco Fusco
IBM Research
ffu@zurich.ibm.com

Abstract

Term extraction is an information extraction
task at the root of knowledge discovery plat-
forms. Developing term extractors that are
able to generalize across very diverse and po-
tentially highly technical domains is challeng-
ing, as annotations for domains requiring in-
depth expertise are scarce and expensive to
obtain. In this paper, we describe the term
extraction subsystem of a commercial knowl-
edge discovery platform that targets highly
technical fields such as pharma, medical, and
material science. To be able to generalize
across domains, we introduce a fully unsu-
pervised annotator (UA). It extracts terms by
combining novel morphological signals from
sub-word tokenization with term-to-topic and
intra-term similarity metrics, computed using
general-domain pre-trained sentence-encoders.
The annotator is used to implement a weakly-
supervised setup, where transformer-models
are fine-tuned (or pre-trained) over the training
data generated by running the UA over large
unlabeled corpora. Our experiments demon-
strate that our setup can improve the predictive
performance while decreasing the inference la-
tency on both CPUs and GPUs. Our annotators
provide a very competitive baseline for all the
cases where annotations are not available.

1 Introduction

Automated Term Extraction (ATE) is the task of
extracting terminology from domain-specific cor-
pora. Term extraction is the most important infor-
mation extraction task for knowledge discovery sys-
tems — whose aim is to create structured knowledge
from unstructured text — because domain specific
terms are the linguistic representation of domain-
specific concepts. To be of use in knowledge dis-
covery systems (e.g., SAGA (Ilyas et al., 2022),
DeepSearch (Dognin et al., 2020)) the term extrac-
tion has to identify individual mentions of terms
to enable downstream components (i.e., the entity

Peter Staar
IBM Research
taa@zurich.ibm.com

Diego Antognini
IBM Research
Diego.Antognini@ibm.com

Wikipedia Text from https://en.wikipedia.org/wiki/JPEG.
(JPEG (/'dzeipea/ JAY-peq)Z is a commonly used method of h
lossy compression for digital images, particularly for those
\_images produced by digital photography. )
Our unsupervised term-extractor annotator
TEXT = JPEG (/'d3e1peg/ JAY-peg)[2] is a commonly used
Method of lossy compression for digital images, particularly
for those images produced by digital photography.

[JPEG] START=0 END=4 Confidence=0.60
[JAY-peg] START=17 END=24 Confidence=0.90
[lossy compression] START=58 END=75 Confidence=0.73
[digital images] START=80 END=94 Confidence=0.93

wigital photography] START=138 END=157 Confidence=0.9y

Figure 1: Our term extractor identifies the same men-
tions as Wikipedia without relying on annotated data.

linker) to use not only the terms, but also their sur-
rounding context. Unlike other applications of term
extraction, such as text classification, where it is
sufficient to extract representative terms for entire
documents or even use generative approaches, term
extraction in knowledge discovery systems has to
be approached as a sequence tagging task.

The largest challenges for term extraction sys-
tems, when used for knowledge discovery, are gen-
eralization across domains and lack of annotated
data. In fact, commercial knowledge discovery plat-
forms are typically required to process large cor-
pora targeting very diverse and often highly tech-
nical domains. Organizing annotation campaigns
for such vertical domains is a costly process as
it requires highly specialized domain experts. An
additional challenge for such platforms are the com-
putational requirements, which must be accounted
for when developing technologies required to sift
through very large and often proprietary corpora.

In this work, we describe an effective term ex-
traction approach used in a commercial knowledge
discovery platform! to extract Wikipedia-like con-
cepts® from text (see Figure 1). Our approach does

"https://ds4sd.github.io.

*The linking from words to Wikilinks is done manu-
ally on Wikipedia, see https://en.wikipedia.org/wiki/
Wikipedia:Manual_of_Style/Linking for more details.

Proceedings of EMNLP 2022 Industry Track, pages 1-8
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not require any human annotation, offers the flexi-
bility to select the right trade-off between accuracy
and inference latency, and enables the deployment
of lightweight models running entirely on CPUs.

At its core, our approach is a weakly supervised
setup (see Figure 2), where transformer models are
fine-tuned (or even entirely pre-trained) using the
weak labels generated by a fully unsupervised term
annotator. The unsupervised annotator (UA) com-
bines novel morphological and semantic signals
to tag sequences of text corresponding to domain-
specific terminology. In fact, in addition to part-of-
speech tagging to identify candidate terms, the UA
exploits sub-word tokenization techniques — com-
monly used in language models to highlight words
that are outside of the common vocabulary — to
indirectly measure the morphological complexity
of a word based on its sub-tokens. To the best of
our knowledge, this is the first work relying on
sub-word tokenization units in the context of term
extraction. To prune the candidate set of terms
the annotator uses two semantic metrics as thresh-
olds: the topic-score and a novel specificity score
that are both computed using representations from
sentence encoders. The unsupervised annotator,
combined with the two-stage weakly supervised
setup, makes our approach particularly attractive
for practical industrial setups because computation-
ally intensive techniques used by the unsupervised
annotator are not paid at inference time. Therefore,
one can improve the annotation quality by using
more expensive techniques (e.g., entity linking to
external knowledge bases), without adding costs at
inference time. The two main contributions of this
paper are summarized as follows:

1. We extract a novel morphology signal from
subword-unit tokenization and we introduce a
new metric called the specificity score. Upon
those signals, we build an unsupervised term-
extractor that offers competitive results when
no annotation is available.

2. We show that by fine-tuning transformer mod-
els over the weak labels produced by the un-
supervised term extractor we decrease the la-
tency and improve the prediction quality.

2 Related work

Automated Term Extraction (ATE) is a natural lan-
guage processing task that has been the subject
of many research studies (Buitelaar et al., 2005;

Lossio-Ventura et al., 2016; Zhang et al., 2018; Ma
et al., 2019; Sajatovi¢ et al., 2019). What we de-
scribe in this work is an effective term extraction
approach that is fully unsupervised and also offers
the flexibility and modularity to deploy and easily
maintain systems in production.

ATE should not be confused with keyphrase ex-
traction (Firoozeh et al., 2020; Mahata et al., 2018;
Bennani-Smires et al., 2018) and keyphrase genera-
tion (Wu et al., 2022; Chen et al., 2020), which
have the goal of extracting, or generating, key
phrases that best describe a given free text doc-
ument. Keyphrases can be seen as a set of tags as-
sociated to a document. In the context of keyphrase
extraction, sentence embedders have been used in
the literature, such as in EmbedRank (Bennani-
Smires et al., 2018) and Key2Vec (Mahata et al.,
2018). In our work, we also rely on sentence
encoders, but we use them to generate training
data for sequence tagging. Therefore, we do not
rely on sentence encoders at runtime to extract ter-
minology from text, enabling the creation of lower
latency systems.

To capture complex morphological structures we
use word segmentation techniques. Word seg-
mentation algorithms such as Byte-Pair Encoding
(Sennrich et al., 2016), word-piece (Schuster and
Nakajima, 2012), and unigram language modeling
(Kudo, 2018) have been introduced to avoid the
problem of out-of-vocabulary words and, more in
general, to reduce the number of distinct symbols
that sequence models for natural language process-
ing have to process. To the best of our knowledge,
we are the first to use the subword-unit tokenization
as a signal to extract technical terms from text.

Our approach builds on the notion of specificity
to find terminology. While there are multiple re-
search works (Caraballo and Charniak, 1999; Ryu
and Choi, 2006) highlighting the importance of
specificity, to the best of our knowledge, this is the
first work using the notion of specificity to extract
terminology from text.

3 The approach

Figure 2 depicts our weakly supervised setup. Start-
ing from a raw text corpus and no labels, our train-
ing workflow produces an efficient sequence tag-
ging model, based on the transformer architecture,
which effectively implements the term extraction.
At the core of the weak labels there is a fully un-
supervised component, called the Unsupervised
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[ Unsupervised Annotator (UA) ] [ Transformer Fine-tuning ]:
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[ Raw Corpus (no labels) ]

Final Model for Inference

Figure 2: Our training workflow consists of 1) generat-
ing training data from raw unlabeled text using our Un-
supervised Annotator, and 2) fine-tuning a transformer-
based model or any sequence tagging model.

Annotator (UA), which, given the raw corpus, pro-
duces a training dataset for sequence labeling. The
resulting dataset is used to train (or fine-tune) a
sequence model that represents the final model for
term annotation used at inference time. Pre-trained
transformer-based models clearly represent a valid
alternative to implement such sequence models.
Moreover, we can avoid pre-training since the UA
potentially generates a large amount of training
data.

From the software engineering standpoint, this
setup is extremely attractive as it makes the archi-
tecture of the term extraction subsystem modular
and very flexible. The modularity comes from de-
coupling the inference component and the unsu-
pervised annotator (UA). The unsupervised anno-
tator can be enhanced with additional and more
computationally demanding subcomponents (e.g.,
an entity linker to an external knowledge base),
without increasing the final inference latency ob-
served by the user. This modularity enables domain
customization with proprietary data (and systems),
which might be available for specific domains or
customers. Since the integration between the Unsu-
pervised Annotator and the inferencing component
is achieved via data (i.e., the training samples for
sequence tagging expressed in IOB format) the ap-
proach enables the smooth transition between a
fully unsupervised setup and a setup where man-
ual annotations augment the ones obtained via the
UA. In practice, in realistic deployments, the un-
supervised annotator is used to boostrap the term
extraction subsystem, while domain specific anno-
tations are added over time by organizing anno-
tation campaigns or by collecting labels through
the interactions of the users with the knowledge
discovery platform.

Having a dedicated component for inferencing,
which is independent from the UA, gives the flex-
ibility to select the right trade-off in terms of ac-
curacy, inference latency, deployment costs, and

3

inferencing infrastructure. This choice is com-
pletely independent from the Unsupervised Anno-
tator, which can be independently improved with-
out taking care of inference latency. Since the
inference component can be built around off-the-
shelf transformer-based models, one can fully lever-
age the optimizations available in modern com-
mercial offerings for inferencing services (e.g.,
Amazon Sagemaker, HuggingFace Infinity). As
Transformer-based models are frequently used
for multiple tasks (e.g., classification, NER, QA)
within a knowledge discovery platform, this of-
ten corresponds to having a very homogeneous
inferencing infrastructure in production. However,
given that the UA can potentially generate a large
amount of training samples, large pre-trained mod-
els are not a necessity, and even alternative architec-
tures such as pQRNN (Kaliamoorthi et al., 2021)
or pNLP-Mixer (Fusco et al., 2022) can be used.

3.1 Unsupervised annotator

Our unsupervised annotator is responsible for pro-
viding accuracy in potentially unseen domains with-
out any training data, as depicted in Figure 1. It
achieves this goal by using a greedy approach that
processes each sentence of a raw corpus using the
following steps:

1. Extract multiword expression candidates. Us-
ing the part-of-speech tags we extract multiword ex-
pression candidates, consisting of sequences of
zero or more adjectives (ADJ) followed by nouns
(NOUN) or proper nouns (PROPNs) sequences.
This chunking step allows us to identify term can-
didates expressed via multiword expressions.

2. Filter candidates by specificity or topic score.
Once the candidate terms, represented as multi-
word expression, are identified, a pruning step is
responsible for filtering out multiword expressions
using two semantic scores: the topic score and the
specificity score. To compute those scores, we rely
on pre-trained sentence encoders to extract embed-
dings from text.

B Topic score. The topic score captures the sim-
ilarity, topic-wise, between a candidate and the
sentence containing it. It is computed as the cosine
similarity between the embedding vector of the
multiword expression and the embedding vector of
the sentence containing it.

B Specificity score (S P). This is the mean of the
pairwise distance, in the embedding space, between
the multiword expressions and all the other word or



multiword expression in the context. Specifically,
given a multiword mw, and the word or multiword
expression wy, ..., Wy in its context, we define the
specificity score S P as:

le dist(w;, mw)
k 9

SP(mw) = 2 (1)
where dist(w;, w;) is the cosine-similarity be-
tween the embedding vectors of w; and w;. Mul-
tiword expressions with a higher score correspond
to more specific terms.

Multiword expressions with a specificity or topic
score below a certain threshold can be filtered out.
Both scores rely on high-quality sentence encoders.
In our implementation we use the pretrained sen-
tence encoders described in Reimers and Gurevych
(2019), but other sentence encoders can be used as
a drop-in replacement.

3. Upgrade single nouns according to morpho-
logical features. At this stage, we could have
nouns that are not part of any multiword expres-
sions, but still relevant. We deal with those cases
separately. For each of those nouns, we have to de-
cide whether to extract them as terms or not. To do
so, we use morphological features. First, we check
if the lemma of the noun is the same as any of the
heads of the multiword expressions. If that is the
case, we upgrade the noun to term. Otherwise, we
segment the word using a subword-unit segmenta-
tion algorithm and a vocabulary trained over a large
general purpose corpus. Subword-unit tokenizers
have been introduced to enable the representation
of any text as a combination of subword units, with
the idea that the most frequent words can be repre-
sented by a small number of subword units, eventu-
ally just one for very common words as in case for
stopwords. For example, the word “sun”, will have
its own entry in the dictionary of subword units,
while the word “paracetamol” will be represented
as the sequence of the following subword units:[
“para’, “##ce”, “#Htam”, “##ol”]. Not suprisingly,
the number of subword units required to represent
a word in a subword-unit tokenization regime is
a very strong morphological signal, which we use
as an indirect measure of the morphological “com-
plexity”, and is extremely cheap to compute. In our
implementation, we simply promote as terms all
the nouns with a number of sub-tokens higher than
a threshold (4 in our case). We use the vocabulary
of the BERT-base model from HuggingFace (Wolf
et al., 2020) and the corresponding tokenizer.

Sentence Terms
Corpus Train Dev  Test Train Dev Test
ACL 828 276 280 2,574 898 930

GENIA 11,127 3,709 3,710
SciencelE 2,516 417 876

48,928 16,217 16,404
6,067 1,052 1,885

Table 1: Number of sentences and terms in the train,
dev, and test set for the datasetst used for evaluation.

4 Experiments

We now assess whether our approach can represent
avalid baseline for term extraction in different tech-
nical domains when annotated data is not available.
We aim to answer the following research questions:

* Does our Unsupervised Annotator generate a
high-quality weakly-annotated dataset from a
unlabeled general-domain corpus?

* Can we train models on the latter to lower the
latency inference and increase the prediction
performance at the same time?

4.1 Datasets

We use three common publicly available term ex-
traction corpora: ACL RD-TEC 2.0 (QasemiZadeh
and Schumann, 2016), GENIA (Kim et al., 2003),
and SciencelE (Augenstein et al., 2017). Each
contains abstracts from scientific articles in differ-
ent domains: natural language processing (ACL),
medicine (GENIA), and computer science, material
science, as well as physics (SciencelE). All tokens
are annotated using the IOB format (short for In-
side, Out and Begin) (Ramshaw and Marcus, 1999).
Since we are only interested in general term extrac-
tion, we did not use multiple class labels, even if
provided in the respective dataset. We create ran-
dom splits of train, dev, and test sets (60/20/20)
for the ACL and GENIA datasets, and we use the
pre-existing data splits for SciencelE corpus.

In terms of preprocessing, we remove nested
terms from the GENIA dataset, since the IOB tag
set does not allow nested term extraction. For the
ACL corpus, some samples have abstracts labeled
by two annotators. In those cases, we selected the
abstract from the first annotator. An overview of
the datasets is given in Table 1.

Since our objective is to study the generalization
of our approach, we need an unlabeled broad cor-
pus from which our Unsupervised Annotator will
annotate the text. Hence, we randomly sampled
500,000 sentences from abstracts from Semantic



ACL

Model (#Params)  exact Fy partial /1 Model (#Params)

exact F partial Fy

GENIA SciencelE

Model (#Params) exact F partial F}

BERT B (110M) 78.69  91.06 BERT B (110M) 70.13  88.19 BERT B (110M) 49.62  66.36
ELECTRA S (14M) 72.84  88.06 ELECTRA S (14M) 67.73  88.04 ELECTRA S (14M) 46.43  68.45
ELECTRA XS (7TM) 50.40  71.61 ELECTRA XS (7TM) 59.86  83.16 ELECTRA XS (7TM) 27.17  51.10
UA (0) 49.95  74.56 UA (0) 45.65  77.16 UA (0) 39.75  64.29

Table 2: Results for the unsupervised annotator (UA) and transformer models fine-tuned on the manually annotated
ACL, GENIA, and SciencelE datasets, respectively. Without using any annotation, the UA performs similarly to

ELECTRA XSmall and even better on the SciencelE.

Scholar (SS). 3 We call our weakly annotated train-
ing set UA-SS. The training sets of the ACL, GE-
NIA, and SciencelE datasets are not used (unless
specified).

4.2 Models

We use transformer-models, fine-tuned with man-
ual annotations, as baselines. We employ pre-
trained transformer models of different sizes:
BERT-base (110M parameters) (Devlin et al.,
2019), ELECTRA Small (14M parameters) (Clark
et al., 2020), and ELECTRA XSmall (7M parame-
ters).

Since our main goal is to compare the models to
each other and across multiple corpora, we priori-
tize comparabability across corpora over compara-
bability with approaches from other studies.

4.3 Experimental settings

We use the pre-trained checkpoints of BERT-base
and ELECTRA Small from HuggingFace (Wolf
et al., 2020). We pre-train ELECTRA XSmall*
from scratch using our Semantic Scholar dataset.
During fine-tuning, we devoted a similar amount
of GPU time to all the models. We pick the best-
performing model in the dev set after 10 epochs

We implemented our Unsupervised Annotator
using the POS tagger of SpaCy (Honnibal et al.,
2020). To compute the specificity and similar-
ity scores we use the sentence embedding model
distilbert-base-nli-mean-tokens from the
sentence transformers library.

The specificity and similarity thresholds used
to generate the training data over abstracts from
Semantic Schoolar have been set to conservative
values. We set the threshold for the specificity
Tsp = 0.05 and the threshold for the similarity

3www.semanticscholar.org/.

“We used 2 attention heads and 4 hidden layers, while us-
ing the same hidden dimension and similarly sized vocabulary.

Spypi.org/project/sentence-transformers/.

Tiopic = 0.1. For the sub-word tokenization we
rely on the tokenizer from BERT-base.

4.4 Results

In Table 2, we first compare the performance (ex-
pressed as exact and partial F scores that count
only exact or partial matches as true positives) of
our fully Unsupervised Annotator to the perfor-
mance obtained by fine-tuning transformer-based
models with the manual annotations present in the
original training sets. Without relying on any hu-
man annotation, our UA delivers comparable or
even better results than the ELECTRA XSmall in
ACL and SciencelE, respectively. These results
show that the UA represents a very competitive
baseline for domains where annotations are not
available.

Further, we are interested in understanding
whether transformer-based models fine-tuned with
human annotations can generalize across domains.
We also evaluate if the availability of weakly super-
vised labels generated by our Unsupervised Anno-
tator over a large and broad corpus (i.e., Semantic
Scholar) could lead to models with higher gener-
alization capabilities. In Table 3 we report the
exact and partial F scores for the ACL, GENIA,
and SciencelE datasets, and the transformer-based
model fine-tuned with the output of our Unsuper-
vised Annotator (UA-SS). This setup simulates the
problem of bootstrapping an annotator for a spe-
cific domain for which in-domain human labels are
not available.

On the ACL corpus, the UA-SS-based model
clearly outperforms the GENIA-based and
SciencelE-based models. On the GENIA corpus,
the UA-SS-based model and the ACL-based model
perform equally well. On the SciencelE corpus,
all models perform equally with a slight tendency
towards the GENIA-based model.

Overall, it can be said that the UA-SS-based
approach is a valid starting point to bootstrap a



ACL GENIA SciencelE
Model (#Params) Fine-tuned on exact Fi  partial exact Fi  partial Fy exact Fi  partial )

UA-SS 58.22 77.36 53.18 79.38 46.79 66.59
B](EFITOE;SC ACL - - 52.05  82.49 AT88  69.97
GENIA 45.97 61.53 — — 48.50 69.84

SciencelE 38.28 54.92 46.91 73.16 — —
UA-SS 58.00 77.41 53.44 80.01 44.68 65.58
ELEC(E\‘})S“” ACL _ - 5084  81.33 4421 6757
GENIA 46.65 67.21 — — 45.79 68.83

SciencelE 42.58 66.02 43.48 76.77 - —
UA-SS 49.83 72.78 45.35 74.83 40.32 62.39
ELECT(I;Q))(S‘“Z‘II ACL - - 31.13 59.99 28.79 58.20
GENIA 29.81 58.17 — — 30.00 59.61

SciencelE 20.60 33.53 39.95 68.63 — —

Table 3: Results for the generalization of multiple transformer models that are fine-tuned on the weakly annotated
dataset based on the Semantic Scholar corpus (annotated with UA, denoted as UA-SS) and evaluated on the ACL,
GENIA, and SciencelE datasets, respectively. Transformer models fine-tuned using our automatically generated
dataset perform better than their counterparts fine-tuned using the other datasets.

system in a no-resource scenario. Table 2 shows
that the F1 score gap between models trained with
in-domain manually annotated data and the UA-SS-
based approach is lower for smaller models.

Now, we compare the Unsupervised Annotator
with the models fine-tuned with its output to eval-
uate our two-step approach in terms of F1 score
and inference latency. Figure 3 reports the aver-
age inference latency for models (fine-tuned with
the UA-SS training data) over sentences from the
ACL dataset with a batch of size 1 using a NVIDIA
Tesla V100 and a single core of a Xeon E5-2690
v4 (similar trends on the other datasets). While
the inference latency has similar orders of mag-
nitude across models with GPU acceleration, the
minimum inference time of 26.6 ms can be ob-
tained on a single CPU core using the ELECTRA
XSmall model. Therefore, our approach is particu-
larly attractive in all cases where inference acceler-
ators (e.g., GPUs) are not available. Additionally,
the results highlight that by fine-tuning over the
output of the UA, the latency can be reduced by 4
to 10 times, while providing comparable or even
better F1 scores. Having the option to generate a
large amount of training data for fine-tuning is an
extremely useful property that enables the creation
of very small models offering low inference times
even without using GPU acceleration.

4.5 Lessons learned

In this work, we have demonstrated that, while the
value of in-domain labels is without any doubt the
best way to increase predictive quality, fully un-

103 CPU
= UA (0M) BERT (MOMb Latency (ms)
= 7 sl dower late, @ 43850
=10 £ 21 | Betigpilency :
g 102 E %f SCtter 7 S(;j—]}(‘\‘\_‘;‘ ° 68.80
= v ELECTRA S (14M) 26.60
= ELECTRA X8 (7M) 282.60
10 I — — —
45 47 49 51 53 55 57 59
F1 Exact Match on ACL
= 7 : AS (14M)| Latency (ms)
£ Betior pricy N\ @ 5230
g 50 e 1 o 5280
= SLECTR/ 7 43.80
= ELECTRA XS (7M) BERT {110M) 3
3 66.40
25 T T

| I T T T
45 47 49 51 53 55 57 59
F1 Exact Match on ACL

Figure 3: Average inference latency on CPU (top) and
GPU (bottom) on the ACL dataset. We note in parenthe-
sis the number of trainable parameters of the models. By
fine-tuning over the output of the UA, we achieve lower
latency and higher F1 scores. The lowest inference la-
tency, 26.6 ms, is achieved on CPU.

supervised approaches are often the only viable
option to bootstrap a term extractor that has to gen-
eralize across very diverse domains. Additionally,
while the practicality of ML solutions is often un-
derestimated, we have shown that having a modular
system can not only provide greater flexibility in
deployments, but can also allow to boost time pre-
dictive performance and inference latency at the
same.

5 Conclusion

In this paper, we described an effective term ex-
traction approach that uses a fully unsupervised



annotator to generate training data to fine-tune
transformer models. This approach reduces the in-
ference time of the unsupervised annotator, without
decreasing its performance, and allows the flexibil-
ity to pick the right trade-off between latency and
F1 score. The latency-optimized models are less
than 30 Megabytes in size, provide inference laten-
cies lower then 30 ms even without GPUs, while
exhibiting a competitive F1 score compared to the
models fine-tuned with manually annotated data.
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Abstract

Recent research has shown that large lan-
guage models pretrained using unsupervised
approaches can achieve significant perfor-
mance improvement on many downstream
tasks. Typically when adapting these language
models to downstream tasks, like a classifi-
cation or regression task, we employ a fine-
tuning paradigm in which the sentence repre-
sentation from the language model is input to a
task-specific head; the model is then fine-tuned
end-to-end. However, with the emergence of
models like GPT-3, prompt-based fine-tuning
has been proven to be a successful approach
for few-shot tasks. Inspired by this work, we
study discrete prompt technologies in practice.
There are two issues that arise with the stan-
dard prompt approach. First, it can overfit on
the prompt template. Second, it requires man-
ual effort to formulate the downstream task as
a language model problem. In this paper, we
propose an improvement to prompt-based fine-
tuning that addresses these two issues. We re-
fer to our approach as DynaMaR — Dynamic
Prompt with Mask Token Representation. Re-
sults show that DynaMaR can achieve an aver-
age improvement of 10% in few-shot settings
and improvement of 3.7% in data-rich settings
over the standard fine-tuning approach on four
e-commerce applications.

1 Introduction

Unsupervised pre-trained Language Models (LMs)
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) have achieved state-of-the-art
performance on many natural language understand-
ing tasks. In general, these models are fine-tuned
for different tasks through the addition of a task-
specific head on top of the [CLS] token representa-
tion (Scao and Rush, 2021).

An alternative method to applying LMs on down-
stream tasks is through discrete prompts. A discrete

*Work done while at Amazon.
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prompt is an additional text phrase inserted along
with the original input text that encapsulates the
task of interest. By adding the prompt, we con-
vert the downstream task into a masked language
(MLM) problem. For example, to classify the sen-
timent of a movie review, “I hate this movie.”, we
can append a prompt to the input to get “I hate this
movie. It was [MASK]”. The pre-trained language
model is thus prompted to identify the sentiment of
the input statement and classify the [MASK] token
as “terrible” instead of “great” (Liu et al., 2021). In
this paper, we call a function that includes a prompt
and its position information a prompt template.

Prompt-based approaches have shown success in
low-data regimes (Petroni et al., 2019; Schick and
Schiitze, 2021; Jiang et al., 2020; Gao et al., 2021;
Lester et al., 2021). Prompt-based fine-tuning is
beneficial in few-shot learning, because it provides
extra task information to the model through the
prompt text (Schick and Schiitze, 2021). However,
when we explore this technique in practice, two
issues have arisen. First, the trained model can
overfit on words or phrases within the prompt and
on the position of the [MASK] token in the prompt
(Zhong et al., 2021). For example, in movie review
sentiment analysis, when we append the prompt,
“Does the user like the movie? [MASK]”, to a neg-
ative review, “This is a bad movie.”, the trained
model is inclined to predict the positive class, be-
cause the word “like” frequently appears in positive
reviews and the masked language model has greater
attention on the words/phrases that are closer to the
mask token as shown in Figure 1. We call this issue
prompt-related overfitting in this work.

We tackle prompt-related overfitting by introduc-
ing a dynamic prompt approach. In this approach,
we create a prompt pool consisting of multiple
prompt templates. To construct this pool, we gener-
ate a set of prompt candidates and filter by a simi-
larity score we propose, called the pairwise prompt
dissimilarity score (detailed in Section 3). We then

Proceedings of EMNLP 2022 Industry Track, pages 9-17
December 9-11, 2020. ©2022 Association for Computational Linguistics



j cisi [CLS]
this this
is is
a a
bad bad
movie movie
does does
user user
like like
the the
movie movie
4 ?
[MASK] - [MASK]
P | sERl [SEP]

Figure 1: BERT Attention Distribution. The figure
shows that the MLM model puts greater attention on
the prompt than the original input.

introduce the dynamic component of the algorithm
by randomly selecting a prompt template from the
pool and applying to the input for each training step.
For example, in the movie review sentiment analy-
sis task, the trained model will randomly see either
“does the user like the movie? [MASK]” or “does
the user dislike the movie? [MASK]” appended
to the original input. This prevents the model to
overfit on spurious correlations between words in
the prompt and the class label.

In addition, as previously mentioned, the stan-
dard prompt-based fine-tuning setup can be inef-
ficient. It requires significant input and answer
engineering to reformulate the downstream tasks
as MLM problems (Liu et al., 2021). This process
is time-consuming especially for tasks with large
numbers of classes. Besides, another disadvantage
of the standard setup is that it cannot be directly
applied to regression problems, as they cannot be
easily converted to MLM problems. To simplify
this process, we fine-tune the model by feeding
the mask token representation into a task-specific
classifier/predictor head instead of the pre-trained
MLM head to avoid the answer engineering pro-
cess, as shown in Figure 2. We refer to our prompt-
based approach with these two improvements as
Dynamic Prompt with Mask Token Representation
(DynaMaR). We apply DynaMaR to both few-shot
and data-rich settings and, for the first time, show
improvement gains across four tasks not only in
few-shot settings but also in data-rich settings.

Our contributions include: (1) proposing Dyna-
MaR, which can be applied without reformulating
downstream tasks into language problems and is
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robust to prompt-related overfitting, (2) showing
DynaMaR can achieve improvements in both few-
shot and data-rich settings, (3) proposing a prompt
dissimilarity score to evaluate the degree of dis-
similarity between two prompt templates and to
help construct a diverse dynamic prompt pool, (4)
demonstrating that a larger dynamic prompt pool
achieves better performance on downstream tasks.

2 Related Work

Our work can be divided into three components:
language model fine-tuning, prompt generation,
and the design of the prompt template.

Language Model Fine-tuning is the main fo-
cus of our work. Recently, a large amount of re-
search has focused on improved language model
finetuning methods (Howard and Ruder, 2018;
Dodge et al., 2020; Lee et al., 2020; Zhang et al.,
2021). These works mainly focus on optimiza-
tion and regularization techniques to stabilize fine-
tuning. In contrast to these works, Gao et al. (2021)
describe the concept of prompt-based fine-tuning
for language models. We adapt and simplify the
core ideas from this work to create a simple yet
efficient prompt-based fine-tuning approach.

Prompt Generation is a key process in prompt-
based fine-tuning. The choice of prompt signifi-
cantly influences performance. The most natural
way to generate prompts is through manual design.
Petroni et al. (2019) employ manually generated
prompts with ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019) models. They evaluate on the
LAMA (LAnguage Model Analysis) benchmark
(Bordes et al., 2013; Nickel et al., 2016) without
fine-tuning and conclude that the model is able
to recall knowledge learned from the pre-training
tasks. While manually crafting prompts is intuitive,
creating effective prompts through manual effort re-
quires time, experience, and expertise. To address
this issue, a number of automatic prompt searching
methods have been proposed. For example, Jiang
et al. (2020) propose a data mining-based method
that searches for a prompt based on the shortest
path between the original inputs and answers. They
also propose paraphrasing-based methods that take
a seed prompt and paraphrase it into several seman-
tically similar expressions. Gao et al. (2021) treat
prompt generation as a text generation task and uti-
lize TS, a sequence-to-sequence pretrained model,
in the template search process. They generate tem-
plates by specifying the position to insert a prompt
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Figure 2: Fine-tuning approach demonstration.

template and then inputting samples into TS to de-
code the templates. These automatic approaches
achieve comparable performance to manually de-
signed prompts. Besides, Logan IV et al. (2021)
propose the null prompt method. Instead of gener-
ating prompts, they concatenate a [MASK] token
with original inputs and it performs competitively
to manually designed prompts. In our experiments,
we utilize the prompt generation methods to create
candidates for the dynamic prompt pool, while also
including the null prompt approach as one of the
baselines.

Prompt Template Design Factors are the fac-
tors that we take into consideration to create a met-
ric that informs how prompts are selected for the
dynamic prompt pool. Numerous previous works
analyze prompt template design factors and the im-
pact of prompt design on performance. Liu et al.
(2021) summarize the factors that influence the
application of prompt-related technologies in lan-
guage models. Logan IV et al. (2021) note that the
order in which the original input and the [MASK]
token are concatenated is an important consider-
ation. Zhong et al. (2021) propose to unify the
prompts into a question-answering format. These
previous works indicate that prompt construction
impacts performance. To this end, we hypothe-
size that diversity in the set of prompt templates
is an important factor in the performance of the
model and propose a prompt dissimilarity score for
measuring diversity.
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3  Our Method: DynaMaR

In this section, we describe details of our approach,
DynaMaR. Before explaining the training process,
we define two concepts: the dynamic prompt pool
and the inference prompt.

Dynamic Prompt Pool is a pool of prompt tem-
plates from which a prompt template will be ran-
domly selected and applied to the input during train-
ing.

Inference Prompt is the prompt template used
during inference. It is selected from the set of tem-
plates in the dynamic prompt pool. In general, it is
the prompt template among those in the dynamic
prompt pool that can achieve the highest perfor-
mance in a fixed prompt setting.