
EMNLP 2022

EMNLP 2022 Industry Track

Proceedings of the Conference

December 7 - 11, 2022

©2022 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-952148-25-5

ii

Organizing Committee

Angeliki Lazaridou, DeepMind
Yunyao Li, Apple

Program Committee

Area Chairs

Alan Akbik, Humboldt-Universität zu Berlin
Jennifer Chu-Carroll, Elemental Cognition
Lisa Anne Hendricks, DeepMind
Marina Danilevsky, IBM Research
Mo Yu, IBM Research
Rishita Anubhai, Amazon
Ruoming Pang, Apple
Sachin Agarwal, Apple
Shimei Pan, UMBC
Srinivas Bangalore, Interactions Corp
Xiaoqiang Luo, Google

Program Committee

Abdalghani Abujabal, Amazon Alexa AI
Abeba Birhane, University College Dublin
Abhishek Singh, Samsung
Ai Ti Aw, Institute for Infocomm Research
Alex Marin, Microsoft Corporation
Alicia Sagae, Research Scientist
Amar Prakash Azad, IBM AI Research
Anastassia Loukina, Grammarly Inc
Anil Ramakrishna, Amazon
Anjishnu Kumar, Amazon Alexa
Ankur Gandhe, Amazon

iii

Ankush Gupta, IBM Research
Anmol Goel, IIIT Hyderabad
Anna Lisa Gentile, IBM Research Almaden
Anusha Balakrishnan, Inflection AI
Aoife Cahill, Dataminr
Aparna Elangovan, The University of Melbourne
Arun Babu, Facebook
Ashish Shenoy, Meta
Aswarth Abhilash Dara, Amazon
Avneesh Saluja, Netflix
Benjamin Rozonoyer, University of Massachusetts Amherst
Bowei Zou, Institute for Infocomm Research
Brian Ulicny, Raytheon BBN Technologies
Budhaditya Deb, Microsoft Corporation
Byung-Hak Kim, AKASA
Chanjun Park, Upstage
Chen Liu, Technische Universität Darmstadt
Cheoneum Park, Hyundai Motor Group
Claudia Borg, University of Malta
Dakuo Wang, IBM Research
Damianos Karakos, Raytheon BBN Technologies
David Melville, Elemental Cognition
David Elson, Google
David Uthus, Google Research
Daxin Jiang, STCA, Microsoft
Deborah Dahl, Conversational Technologies
Deepak Muralidharan, Apple
Dejing Dou, University of Oregon
Derrick Higgins, Illinois Institute of Technology
Deyi Xiong, Tianjin University
Dongchan Kim, Amazon Alexa
Dookun Park, Amazon Alexa
Ehud Reiter, University of Aberdeen
Elio Querze, Bose Corp
Emre Barut, Alexa AI
Enrique Henestroza Anguiano, Ask Media Group
Eshwar Shamanna Girishekar, Amazon
Estevam Hruschka, Megagon Labs - https://megagon.ai/
Ethan Selfridge, LivePerson
Eunah Cho, Amazon, Alexa AI
Fabio Mercorio, University of Milano-Bicocca
Faisal Ladhak, Columbia University
Feifei Pan, Rensselaer Polytechnic Institute
Frank Schilder, Thomson Reuters
Frederic Mailhot, Dialpad, Inc
Geewook Kim, NAVER
Guoyin Wang, Amazon Alexa AI
Han Li, Amazon
Hassan Sawaf, aixplain, inc.
He Xie, Amazon Alexa AI
Hemant Misra, Swiggy (BundlTechnologies)

iv

Hidetaka Kamigaito, Nara Institute of Science and Technology
Honglei Guo, Tsinghua University
ilknur Durgar Elkahlout, TURKCELL
Isabel Trancoso, INESC-ID / IST Univ. Lisbon
Ishan Jindal, IBM Research
Ismini Lourentzou, Virginia Tech
Jacopo Tagliabue, Tooso
Jade Abbott, Retro Rabbit
Jaegul Choo, KAIST
Jaesik Choi, Korea Advanced Institute of Science and Technology
Jaime Lorenzo-Trueba, Amazon
Jared Kramer, Amazon
Jesse Vig, Salesforce Research
Jiangning Chen, Amazon
Jiaze Chen, Bytedance AI Lab
Jie Ma, AWS AI Lab
John Chen, Interactions LLC
Judith Gaspers, Amazon
Jun Seok Kang, Blink Health
Justin Chiu, Rakuten USA
Kai Yu, Shanghai Jiao Tong University
Kalpa Gunaratna, Samsung Research America
Kartik Mehta, Amazon
Kasturi Bhattacharjee, AWS AI, Amazon
Kazuya Kawakami, University of Oxford
Keith Trnka, 98point6
Kfir Bar, College of Management Academic Studies
Khadige Abboud, Amazon Alexa AI
Kunho Kim, Microsoft Corporation
Laurel Orr, Stanford
Lee Becker, Educational Testing Service
Lei Chen, Rakuten
Lei Shu, Google Research
Li Dong, Amazon.com
Liangming Pan, National University of Singapore
Lin Pan, Amazon
Ling Tsou, Zoom Video Communications
Lingjia Deng, Bloomberg L.P.
Lisheng Fu, Amazon
Long Qin, Alibaba
Lorenzo Malandri, University of Milan - Bicocca
Luoxin Chen, Amazon Alexa AI
Lynette Hirschman, MITRE
Maeda Hanafi, IBM
Mahnoosh Mehrabani, Interactions LLC
Marek Suppa, Comenius University in Bratislava
Margot Mieskes, University of Applied Sciences, Darmstadt
MARK SAMMONS, Elemental Cognition
Matthew Mulholland, Educational Testing Service
Michael Flor, Educational Testing Service
Michal Shmueli-Scheuer, IBM Research

v

Mingyue Shang, Amazon
Mohamed Abdelhady, Amazon
Mohamed AlTantawy, Agolo
Mohammad Kachuee, Amazon Alexa AI
Monica Sunkara, Amazon
Narges Tabari, AWS AI Labs, Amazon
Navid Nobani, University of Milano-Bicocca
Ngoc Phuoc An Vo, IBM Research
Nikhil Rasiwasia, Amazon.com
Nikita Bhutani, Megagon Labs
Nitin Madnani, Educational Testing Service
Nyalleng Moorosi, Google AI
Pablo Duboue, Textualization Software Ltd.
Pengfei Liu, Centre for Perceptual and Interactive Intelligence
Pengfei Li, Nanyang Technological University
Peter Grasch, Apple Inc.
Petr Lorenc, Czech Technical University in Prague
Poornima Chozhiyath Raman, Roku
Prasanna kumar Muthukumar, BBN Technologies
Qingkai Zeng, University of Notre Dame
Radhika Gaonkar, Microsoft Search, Assistant and Intelligence
Radityo Eko Prasojo, Pitik.id
Rahul Divekar, Educational Testing Service
Ramy Eskander, Twitter
Rutuja Ubale, Educational Testing Service
Sagnik Ray Choudhury, University of Michigan
Saleh Soltan, Amazon Alexa
Saloni Potdar, IBM Watson, Carnegie Mellon University
Sandesh Swamy, Amazon
Sangameshwar Patil, TRDDC, TCS Research and Innovation
Sanjeev Kumar, Quark.ai
Sanjika Hewavitharana, eBay
Sarah Campbell, Amazon Alexa AI
Sarasi Lalithsena, IBM
Sashank Santhanam, University of North Carolina at Charlotte/ Apple
Saurabh Khanwalkar, Course Hero
Sergio Oramas, Pandora
Shashank Gupta, Microsoft Search, Assistant and Intelligence
Shuangyong Song, JD AI Research
Shuyan Dong, Meta
Siddharth Varia, Amazon
Siddharth Patwardhan, Apple
Sidharth Mudgal, Google, Inc.
Sopan Khosla, Amazon Web Services, Amazon Inc
Sourish Chaudhuri, Google Inc
Spyros Matsoukas, Amazon.com
Stavroula Skylaki, Thomson Reuters Labs
Stephen Pulman, Apple Inc.
Stevie Bergman, DeepMind
Sudarshan R. Thitte, IBM
Sumanth Prabhu, Applied Research Department, Swiggy (BUNDL Technologies), Bangalore, Karnataka,

vi

India - 560103
Sun Kim, Naver; NCBI/NIH
Sunayana Sitaram, Microsoft Research India
Tao Wang, ByteDance AI Lab
Tara Taghavi, Amazon
Tarec Fares, Bloomberg LP
Tilman Becker, DFKI
Tirthankar Dasgupta, Tata Consultancy Services Ltd.
Tong Guo, Meituan
Tong Wang, Amazon
varun embar, Apple Inc.
Varun Kumar, Amazon Alexa
Varun Nagaraj Rao, Princeton University
Victor Soto, Amazon Inc.
Vinayshekhar Bannihatti Kumar, AWS AI
Vitobha Munigala, Research Engineer, IBM Research
Wei Zhu, ECNU
Weiwei Guo, LinkedIn
Wonseok Hwang, LBox
Xian-Ling Mao, Beijing Institute of Technology
Xiao Yang, Meta Platforms
Xiaohu Liu, Amazon
Xiliang Zhu, Dialpad
Xuan Zhu, Amazon
Xuye Liu, University of Waterloo
Yi-Chia Wang, Facebook AI
Yichao Zhou, Google Research
Yinfei Yang, Google
Yoav Katz, IBM Research AI
Youngja Park, IBM T. J. Watson Research Center
Yu Wang, Samsung Research America
Yuanfeng Song, Hong Kong University of Science and Technology, WeBank Co., Ltd
Yuji Matsumoto, Riken Center for Advanced Intelligence Project
Yuval Marton, University of Washington
Ziming Huang, Tencent

vii

Table of Contents

Unsupervised Term Extraction for Highly Technical Domains
Francesco Fusco, Peter Staar and Diego Antognini . 1

DynaMaR: Dynamic Prompt with Mask Token Representation
Xiaodi Sun, Sunny Rajagopalan, Priyanka Nigam, Weiyi Lu, Yi Xu, Iman Keivanloo, Belinda Zeng

and Trishul Chilimbi . 9

A Hybrid Approach to Cross-lingual Product Review Summarization
Saleh Soltan, Victor Soto, Ke Tran and Wael Hamza . 18

Augmenting Operations Research with Auto-Formulation of Optimization Models From Problem De-
scriptions

Rindra Ramamonjison, Haley Li, Timothy Yu, Shiqi HE, Vishnu Rengan, Amin Banitalebi-Dehkordi,
Zirui Zhou and Yong Zhang . 29

Knowledge Distillation based Contextual Relevance Matching for E-commerce Product Search
Ziyang Liu, Chaokun Wang, Hao Feng, Lingfei Wu and Liqun Yang . 63

Accelerating the Discovery of Semantic Associations from Medical Literature: Mining Relations Between
Diseases and Symptoms

Alberto Purpura, Francesca Bonin and Joao Bettencourt-Silva . 77

PENTATRON: PErsonalized coNText-Aware Transformer for Retrieval-based cOnversational uNder-
standing

Niranjan Uma Naresh, Ziyan Jiang, Ankit Ankit, Sungjin Lee, Jie Hao, Xing Fan and Chenlei Guo
90

Machine translation impact in E-commerce multilingual search
Bryan Zhang and amita misra . 99

Ask-and-Verify: Span Candidate Generation and Verification for Attribute Value Extraction
Yifan Ding, Yan Liang, Nasser Zalmout, Xian Li, Christan Grant and Tim Weninger 110

Consultation Checklists: Standardising the Human Evaluation of Medical Note Generation
Aleksandar Savkov, Francesco Moramarco, Alex Papadopoulos Korfiatis, Mark Perera, Anya Belz

and Ehud Reiter . 121

Towards Need-Based Spoken Language Understanding Model Updates: What Have We Learned?
Quynh Do, Judith Gaspers, Daniil Sorokin and Patrick Lehnen . 131

Knowledge Distillation Transfer Sets and their Impact on Downstream NLU Tasks
Charith Peris, Lizhen Tan, Thomas Gueudre, Turan Gojayev, Pan Wei and Gokmen Oz 138

Exploiting In-Domain Bilingual Corpora for Zero-Shot Transfer Learning in NLU of Intra-Sentential
Code-Switching Chatbot Interactions

Maia Aguirre, Manex Serras, Laura García-Sardiña, Jacobo López-Fernández, Ariane Méndez and
Arantza del Pozo . 148

Calibrating Imbalanced Classifiers with Focal Loss: An Empirical Study
Cheng Wang, Jorge Balazs, György Szarvas, Patrick Ernst, Lahari Poddar and Pavel Danchenko155

ix

Unsupervised training data re-weighting for natural language understanding with local distribution ap-
proximation

Jose Garrido Ramas, Dieu-Thu Le, Bei Chen, Manoj Kumar and Kay Rottmann 164

Cross-Encoder Data Annotation for Bi-Encoder Based Product Matching
Justin Chiu and Keiji Shinzato . 171

Deploying a Retrieval based Response Model for Task Oriented Dialogues
Lahari Poddar, György Szarvas, Cheng Wang, Jorge Balazs, Pavel Danchenko and Patrick Ernst179

Tackling Temporal Questions in Natural Language Interface to Databases
Ngoc Phuoc An Vo, Octavian Popescu, Irene Manotas and Vadim Sheinin 189

Multi-Tenant Optimization For Few-Shot Task-Oriented FAQ Retrieval
Asha Vishwanathan, Rajeev Warrier, Gautham Vadakkekara Suresh and Chandra Shekhar Kandpal

198

Iterative Stratified Testing and Measurement for Automated Model Updates
Elizabeth Dekeyser, Nicholas Comment, Shermin Pei, Rajat Kumar, Shruti Rai, Fengtao Wu, Lisa

Haverty and Kanna Shimizu . 208

SLATE: A Sequence Labeling Approach for Task Extraction from Free-form Inked Content
Apurva Gandhi, Ryan Serrao, Biyi Fang, Gilbert Antonius, Jenna Hong, Tra My Nguyen, Sheng

Yi, Ehi Nosakhare, Irene Shaffer, Soundararajan Srinivasan and Vivek Gupta . 216

Gaining Insights into Unrecognized User Utterances in Task-Oriented Dialog Systems
Ella Rabinovich, Matan Vetzler, David Boaz, Vineet Kumar, Gaurav Pandey and Ateret Anaby

Tavor . 228

CoCoID: Learning Contrastive Representations and Compact Clusters for Semi-Supervised Intent Dis-
covery

Qian Cao, Deyi Xiong, Qinlong Wang and Xia Peng . 236

Tractable & Coherent Multi-Document Summarization: Discrete Optimization of Multiple Neural Mod-
eling Streams via Integer Linear Programming

Litton J Kurisinkel and Nancy Chen . 247

Grafting Pre-trained Models for Multimodal Headline Generation
Lingfeng Qiao, Chen Wu, Ye Liu, haoyuan peng, di yin and Bo Ren . 254

Semi-supervised Adversarial Text Generation based on Seq2Seq models
Hieu Le, Dieu-Thu Le, Verena Weber, Chris Church, Kay Rottmann, Melanie Bradford and Peter

Chin . 264

Is it out yet? Automatic Future Product Releases Extraction from Web Data
Gilad Fuchs, Ido Ben-Shaul and Matan Mandelbrod . 273

Automatic Scene-based Topic Channel Construction System for E-Commerce
Peng Lin, Yanyan Zou, Lingfei Wu, Mian Ma, Zhuoye Ding and Bo Long 282

SpeechNet: Weakly Supervised, End-to-End Speech Recognition at Industrial Scale
Raphael Tang, Karun Kumar, Gefei Yang, Akshat Pandey, Yajie Mao, Vladislav Belyaev, Madhuri

Emmadi, Craig Murray, Ferhan Ture and Jimmy Lin . 295

x

Controlled Language Generation for Language Learning Items
Kevin Stowe, Debanjan Ghosh and Mengxuan Zhao. .304

Improving Text-to-SQL Semantic Parsing with Fine-grained Query Understanding
Jun Wang, Patrick Ng, Alexander Hanbo Li, Jiarong Jiang, Zhiguo Wang, Bing Xiang, Ramesh

Nallapati and Sudipta Sengupta . 316

Unsupervised Dense Retrieval for Scientific Articles
Dan Li, Vikrant Yadav, Zubair Afzal and George Tsatsaronis . 323

Learning Geolocations for Cold-Start and Hard-to-Resolve Addresses via Deep Metric Learning
Govind . and Saurabh Sohoney . 332

Meta-learning Pathologies from Radiology Reports using Variance Aware Prototypical Networks
Arijit Sehanobish, Kawshik Kannan, Nabila Abraham, Anasuya Das and Benjamin Odry 342

Named Entity Recognition in Industrial Tables using Tabular Language Models
Aneta Koleva, Martin Ringsquandl, Mark Buckley, Rakeb Hasan and Volker Tresp 358

Reinforced Question Rewriting for Conversational Question Answering
Zhiyu Chen, Jie Zhao, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko and Shervin Malmasi 367

Improving Large-Scale Conversational Assistants using Model Interpretation based Training Sample Se-
lection

Stefan Schroedl, Manoj Kumar, Kiana Hajebi, Morteza Ziyadi, Sriram Venkatapathy, Anil Ramakr-
ishna, Rahul Gupta and Pradeep Natarajan . 381

Improving Precancerous Case Characterization via Transformer-based Ensemble Learning
Yizhen Zhong, Jiajie Xiao, Thomas Vetterli, Mahan Matin, Ellen Loo, Jimmy Lin, Richard Bourgon

and Ofer Shapira . 389

Developing Prefix-Tuning Models for Hierarchical Text Classification
Lei Chen, Houwei Chou and Xiaodan Zhu . 400

PAIGE: Personalized Adaptive Interactions Graph Encoder for Query Rewriting in Dialogue Systems
Daniel Biś, Saurabh Gupta, Jie Hao, Xing Fan and Chenlei Guo . 408

Fast Vocabulary Transfer for Language Model Compression
Leonidas Gee, Andrea Zugarini, Leonardo Rigutini and Paolo Torroni . 419

Multimodal Context Carryover
Prashan Wanigasekara, Nalin Gupta, Fan Yang, Emre Barut, Zeynab Raeesy, Kechen Qin, Stephen

Rawls, Xinyue Liu, Chengwei Su and Spurthi Sandiri . 427

Distilling Multilingual Transformers into CNNs for Scalable Intent Classification
Besnik Fetahu, Akash Veeragouni, Oleg Rokhlenko and Shervin Malmasi 439

Bringing the State-of-the-Art to Customers: A Neural Agent Assistant Framework for Customer Service
Support

Stephen Obadinma, Faiza Khan Khattak, Shirley Wang, Tania Sidhorn, Elaine Lau, Sean Robertson,
Jingcheng Niu, Winnie Au, Alif Munim, Karthik Raja Kalaiselvi Bhaskar, Bencheng Wei, Iris Ren,
Muhammad Waqar, Erin Li, Bukola Ishola, Michael Wang, Griffin Tanner, Yu-Jia Shiah, Sean X. Zhang,
Kwesi Apponsah, Kanishk Patel, Jaswinder Narain, Pandya Deval, Xiaodan Zhu, Frank Rudzicz and
Elham Dolatabadi . 450

xi

Zero-Shot Dynamic Quantization for Transformer Inference
Yousef El-Kurdi, Jerry Quinn and Avi Sil . 461

Fact Checking Machine Generated Text with Dependency Trees
Alex Estes, Nikhita Vedula, Marcus Collins, Matt Cecil and Oleg Rokhlenko 468

Prototype-Representations for Training Data Filtering in Weakly-Supervised Information Extraction
Nasser Zalmout and Xian Li . 477

CGF: Constrained Generation Framework for Query Rewriting in Conversational AI
Jie Hao, Yang Liu, Xing Fan, Saurabh Gupta, Saleh Soltan, Rakesh Chada, Pradeep Natarajan,

Chenlei Guo and Gokhan Tur . 485

Entity-level Sentiment Analysis in Contact Center Telephone Conversations
Xue-Yong Fu, Cheng Chen, Md Tahmid Rahman Laskar, Shayna Gardiner, Pooja Hiranandani and

Shashi Bhushan TN . 494

QUILL: Query Intent with Large Language Models using Retrieval Augmentation and Multi-stage Dis-
tillation

Krishna Srinivasan, Karthik Raman, Anupam Samanta, Lingrui Liao, Luca Bertelli and Michael
Bendersky . 502

Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants
Cheng Qian, Haode Qi, Gengyu Wang, Ladislav Kunc and Saloni Potdar . 512

PLATO-Ad: A Unified Advertisement Text Generation Framework with Multi-Task Prompt Learning
Zeyang Lei, Chao Zhang, Xinchao Xu, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng Wang, Yi

Yang and Shuanglong Li . 522

Dense Feature Memory Augmented Transformers for COVID-19 Vaccination Search Classification
Jai Gupta, Yi Tay, Chaitanya Kamath, Vinh Tran, Donald Metzler, Shailesh Bavadekar, Mimi Sun

and Evgeniy Gabrilovich . 531

Full-Stack Information Extraction System for Cybersecurity Intelligence
Youngja Park and Taesung Lee . 541

Deploying Unified BERT Moderation Model for E-Commerce Reviews
Ravindra Nayak and Nikesh Garera. .550

SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval
Kun Zhou, Yeyun Gong, Xiao Liu, Wayne Xin Zhao, Yelong Shen, Anlei Dong, Jingwen Lu,

Rangan Majumder, Ji-Rong Wen, Nan Duan and Weizhu Chen . 558

Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous
Knowledge Pre-training

Taolin Zhang, junwei dong, Jianing Wang, Chengyu Wang, Ang Wang, Yinghui Liu, jun huang,
Yong Li and XIAOFENG HE . 570

A Stacking-based Efficient Method for Toxic Language Detection on Live Streaming Chat
Yuto Oikawa, Yuki Nakayama and Koji Murakami . 581

End-to-End Speech to Intent Prediction to improve E-commerce Customer Support Voicebot in Hindi and
English

Abhinav Goyal, Anupam Singh and Nikesh Garera .589

xii

PILE: Pairwise Iterative Logits Ensemble for Multi-Teacher Labeled Distillation
Lianshang Cai, Linhao Zhang, Dehong Ma, Jun Fan, Daiting Shi, Yi Wu, Zhicong Cheng, Simiu

Gu and Dawei Yin . 597

A Comprehensive Evaluation of Biomedical Entity-centric Search
Elena Tutubalina, Zulfat Miftahutdinov, Vladimir Muravlev and Anastasia Shneyderman 606

Domain Adaptation of Machine Translation with Crowdworkers
Makoto Morishita, Jun Suzuki and Masaaki Nagata . 616

Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework
Wonjin Yoon, Richard Jackson, Elliot Ford, Vladimir Poroshin and Jaewoo Kang 629

Large-scale Machine Translation for Indian Languages in E-commerce under Low Resource Constraints
Amey Patil and Nikesh Garera . 637

Topic Modeling by Clustering Language Model Embeddings: Human Validation on an Industry Dataset
Anton Eklund and Mona Forsman . 645

xiii

Proceedings of EMNLP 2022 Industry Track, pages 1–8
December 9–11, 2020. ©2022 Association for Computational Linguistics

Unsupervised Term Extraction for Highly Technical Domains

Francesco Fusco
IBM Research

ffu@zurich.ibm.com

Peter Staar
IBM Research

taa@zurich.ibm.com

Diego Antognini
IBM Research

Diego.Antognini@ibm.com

Abstract

Term extraction is an information extraction
task at the root of knowledge discovery plat-
forms. Developing term extractors that are
able to generalize across very diverse and po-
tentially highly technical domains is challeng-
ing, as annotations for domains requiring in-
depth expertise are scarce and expensive to
obtain. In this paper, we describe the term
extraction subsystem of a commercial knowl-
edge discovery platform that targets highly
technical fields such as pharma, medical, and
material science. To be able to generalize
across domains, we introduce a fully unsu-
pervised annotator (UA). It extracts terms by
combining novel morphological signals from
sub-word tokenization with term-to-topic and
intra-term similarity metrics, computed using
general-domain pre-trained sentence-encoders.
The annotator is used to implement a weakly-
supervised setup, where transformer-models
are fine-tuned (or pre-trained) over the training
data generated by running the UA over large
unlabeled corpora. Our experiments demon-
strate that our setup can improve the predictive
performance while decreasing the inference la-
tency on both CPUs and GPUs. Our annotators
provide a very competitive baseline for all the
cases where annotations are not available.

1 Introduction

Automated Term Extraction (ATE) is the task of
extracting terminology from domain-specific cor-
pora. Term extraction is the most important infor-
mation extraction task for knowledge discovery sys-
tems – whose aim is to create structured knowledge
from unstructured text – because domain specific
terms are the linguistic representation of domain-
specific concepts. To be of use in knowledge dis-
covery systems (e.g., SAGA (Ilyas et al., 2022),
DeepSearch (Dognin et al., 2020)) the term extrac-
tion has to identify individual mentions of terms
to enable downstream components (i.e., the entity

JPEG (/ˈdʒeɪpɛɡ/ JAY-peg)[2] is a commonly used method of
lossy compression for digital images, particularly for those
images produced by digital photography.

Wikipedia Text from https://en.wikipedia.org/wiki/JPEG.

Our unsupervised term-extractor annotator
TEXT = JPEG (/ˈdʒeɪpɛɡ/ JAY-peg)[2] is a commonly used
Method of lossy compression for digital images, particularly
for those images produced by digital photography.

[JPEG] START=0 END=4 Confidence=0.60
[JAY-peg] START=17 END=24 Confidence=0.90
[lossy compression] START=58 END=75 Confidence=0.73
[digital images] START=80 END=94 Confidence=0.93
[digital photography] START=138 END=157 Confidence=0.92

Figure 1: Our term extractor identifies the same men-
tions as Wikipedia without relying on annotated data.

linker) to use not only the terms, but also their sur-
rounding context. Unlike other applications of term
extraction, such as text classification, where it is
sufficient to extract representative terms for entire
documents or even use generative approaches, term
extraction in knowledge discovery systems has to
be approached as a sequence tagging task.

The largest challenges for term extraction sys-
tems, when used for knowledge discovery, are gen-
eralization across domains and lack of annotated
data. In fact, commercial knowledge discovery plat-
forms are typically required to process large cor-
pora targeting very diverse and often highly tech-
nical domains. Organizing annotation campaigns
for such vertical domains is a costly process as
it requires highly specialized domain experts. An
additional challenge for such platforms are the com-
putational requirements, which must be accounted
for when developing technologies required to sift
through very large and often proprietary corpora.

In this work, we describe an effective term ex-
traction approach used in a commercial knowledge
discovery platform1 to extract Wikipedia-like con-
cepts2 from text (see Figure 1). Our approach does

1https://ds4sd.github.io.
2The linking from words to Wikilinks is done manu-

ally on Wikipedia, see https://en.wikipedia.org/wiki/
Wikipedia:Manual_of_Style/Linking for more details.

1

not require any human annotation, offers the flexi-
bility to select the right trade-off between accuracy
and inference latency, and enables the deployment
of lightweight models running entirely on CPUs.

At its core, our approach is a weakly supervised
setup (see Figure 2), where transformer models are
fine-tuned (or even entirely pre-trained) using the
weak labels generated by a fully unsupervised term
annotator. The unsupervised annotator (UA) com-
bines novel morphological and semantic signals
to tag sequences of text corresponding to domain-
specific terminology. In fact, in addition to part-of-
speech tagging to identify candidate terms, the UA
exploits sub-word tokenization techniques – com-
monly used in language models to highlight words
that are outside of the common vocabulary – to
indirectly measure the morphological complexity
of a word based on its sub-tokens. To the best of
our knowledge, this is the first work relying on
sub-word tokenization units in the context of term
extraction. To prune the candidate set of terms
the annotator uses two semantic metrics as thresh-
olds: the topic-score and a novel specificity score
that are both computed using representations from
sentence encoders. The unsupervised annotator,
combined with the two-stage weakly supervised
setup, makes our approach particularly attractive
for practical industrial setups because computation-
ally intensive techniques used by the unsupervised
annotator are not paid at inference time. Therefore,
one can improve the annotation quality by using
more expensive techniques (e.g., entity linking to
external knowledge bases), without adding costs at
inference time. The two main contributions of this
paper are summarized as follows:

1. We extract a novel morphology signal from
subword-unit tokenization and we introduce a
new metric called the specificity score. Upon
those signals, we build an unsupervised term-
extractor that offers competitive results when
no annotation is available.

2. We show that by fine-tuning transformer mod-
els over the weak labels produced by the un-
supervised term extractor we decrease the la-
tency and improve the prediction quality.

2 Related work

Automated Term Extraction (ATE) is a natural lan-
guage processing task that has been the subject
of many research studies (Buitelaar et al., 2005;

Lossio-Ventura et al., 2016; Zhang et al., 2018; Ma
et al., 2019; Šajatović et al., 2019). What we de-
scribe in this work is an effective term extraction
approach that is fully unsupervised and also offers
the flexibility and modularity to deploy and easily
maintain systems in production.

ATE should not be confused with keyphrase ex-
traction (Firoozeh et al., 2020; Mahata et al., 2018;
Bennani-Smires et al., 2018) and keyphrase genera-
tion (Wu et al., 2022; Chen et al., 2020), which
have the goal of extracting, or generating, key
phrases that best describe a given free text doc-
ument. Keyphrases can be seen as a set of tags as-
sociated to a document. In the context of keyphrase
extraction, sentence embedders have been used in
the literature, such as in EmbedRank (Bennani-
Smires et al., 2018) and Key2Vec (Mahata et al.,
2018). In our work, we also rely on sentence
encoders, but we use them to generate training
data for sequence tagging. Therefore, we do not
rely on sentence encoders at runtime to extract ter-
minology from text, enabling the creation of lower
latency systems.

To capture complex morphological structures we
use word segmentation techniques. Word seg-
mentation algorithms such as Byte-Pair Encoding
(Sennrich et al., 2016), word-piece (Schuster and
Nakajima, 2012), and unigram language modeling
(Kudo, 2018) have been introduced to avoid the
problem of out-of-vocabulary words and, more in
general, to reduce the number of distinct symbols
that sequence models for natural language process-
ing have to process. To the best of our knowledge,
we are the first to use the subword-unit tokenization
as a signal to extract technical terms from text.

Our approach builds on the notion of specificity
to find terminology. While there are multiple re-
search works (Caraballo and Charniak, 1999; Ryu
and Choi, 2006) highlighting the importance of
specificity, to the best of our knowledge, this is the
first work using the notion of specificity to extract
terminology from text.

3 The approach

Figure 2 depicts our weakly supervised setup. Start-
ing from a raw text corpus and no labels, our train-
ing workflow produces an efficient sequence tag-
ging model, based on the transformer architecture,
which effectively implements the term extraction.
At the core of the weak labels there is a fully un-
supervised component, called the Unsupervised

2

Raw Corpus (no labels)

Unsupervised Annotator (UA)

Generated Annotated Data

Transformer Fine-tuning

Final Model for Inference

Weak SupervisionUnsupervised

Figure 2: Our training workflow consists of 1) generat-
ing training data from raw unlabeled text using our Un-
supervised Annotator, and 2) fine-tuning a transformer-
based model or any sequence tagging model.

Annotator (UA), which, given the raw corpus, pro-
duces a training dataset for sequence labeling. The
resulting dataset is used to train (or fine-tune) a
sequence model that represents the final model for
term annotation used at inference time. Pre-trained
transformer-based models clearly represent a valid
alternative to implement such sequence models.
Moreover, we can avoid pre-training since the UA
potentially generates a large amount of training
data.

From the software engineering standpoint, this
setup is extremely attractive as it makes the archi-
tecture of the term extraction subsystem modular
and very flexible. The modularity comes from de-
coupling the inference component and the unsu-
pervised annotator (UA). The unsupervised anno-
tator can be enhanced with additional and more
computationally demanding subcomponents (e.g.,
an entity linker to an external knowledge base),
without increasing the final inference latency ob-
served by the user. This modularity enables domain
customization with proprietary data (and systems),
which might be available for specific domains or
customers. Since the integration between the Unsu-
pervised Annotator and the inferencing component
is achieved via data (i.e., the training samples for
sequence tagging expressed in IOB format) the ap-
proach enables the smooth transition between a
fully unsupervised setup and a setup where man-
ual annotations augment the ones obtained via the
UA. In practice, in realistic deployments, the un-
supervised annotator is used to boostrap the term
extraction subsystem, while domain specific anno-
tations are added over time by organizing anno-
tation campaigns or by collecting labels through
the interactions of the users with the knowledge
discovery platform.

Having a dedicated component for inferencing,
which is independent from the UA, gives the flex-
ibility to select the right trade-off in terms of ac-
curacy, inference latency, deployment costs, and

inferencing infrastructure. This choice is com-
pletely independent from the Unsupervised Anno-
tator, which can be independently improved with-
out taking care of inference latency. Since the
inference component can be built around off-the-
shelf transformer-based models, one can fully lever-
age the optimizations available in modern com-
mercial offerings for inferencing services (e.g.,
Amazon Sagemaker, HuggingFace Infinity). As
Transformer-based models are frequently used
for multiple tasks (e.g., classification, NER, QA)
within a knowledge discovery platform, this of-
ten corresponds to having a very homogeneous
inferencing infrastructure in production. However,
given that the UA can potentially generate a large
amount of training samples, large pre-trained mod-
els are not a necessity, and even alternative architec-
tures such as pQRNN (Kaliamoorthi et al., 2021)
or pNLP-Mixer (Fusco et al., 2022) can be used.

3.1 Unsupervised annotator

Our unsupervised annotator is responsible for pro-
viding accuracy in potentially unseen domains with-
out any training data, as depicted in Figure 1. It
achieves this goal by using a greedy approach that
processes each sentence of a raw corpus using the
following steps:

1. Extract multiword expression candidates. Us-
ing the part-of-speech tags we extract multiword ex-
pression candidates, consisting of sequences of
zero or more adjectives (ADJ) followed by nouns
(NOUN) or proper nouns (PROPNs) sequences.
This chunking step allows us to identify term can-
didates expressed via multiword expressions.

2. Filter candidates by specificity or topic score.
Once the candidate terms, represented as multi-
word expression, are identified, a pruning step is
responsible for filtering out multiword expressions
using two semantic scores: the topic score and the
specificity score. To compute those scores, we rely
on pre-trained sentence encoders to extract embed-
dings from text.
■ Topic score. The topic score captures the sim-
ilarity, topic-wise, between a candidate and the
sentence containing it. It is computed as the cosine
similarity between the embedding vector of the
multiword expression and the embedding vector of
the sentence containing it.
■ Specificity score (SP). This is the mean of the
pairwise distance, in the embedding space, between
the multiword expressions and all the other word or

3

multiword expression in the context. Specifically,
given a multiword mw, and the word or multiword
expression w1, ..., wk in its context, we define the
specificity score SP as:

SP (mw) =

∑k
i=1 dist(wi,mw)

k
, (1)

where dist(wi, wj) is the cosine-similarity be-
tween the embedding vectors of wi and wj . Mul-
tiword expressions with a higher score correspond
to more specific terms.

Multiword expressions with a specificity or topic
score below a certain threshold can be filtered out.
Both scores rely on high-quality sentence encoders.
In our implementation we use the pretrained sen-
tence encoders described in Reimers and Gurevych
(2019), but other sentence encoders can be used as
a drop-in replacement.

3. Upgrade single nouns according to morpho-
logical features. At this stage, we could have
nouns that are not part of any multiword expres-
sions, but still relevant. We deal with those cases
separately. For each of those nouns, we have to de-
cide whether to extract them as terms or not. To do
so, we use morphological features. First, we check
if the lemma of the noun is the same as any of the
heads of the multiword expressions. If that is the
case, we upgrade the noun to term. Otherwise, we
segment the word using a subword-unit segmenta-
tion algorithm and a vocabulary trained over a large
general purpose corpus. Subword-unit tokenizers
have been introduced to enable the representation
of any text as a combination of subword units, with
the idea that the most frequent words can be repre-
sented by a small number of subword units, eventu-
ally just one for very common words as in case for
stopwords. For example, the word “sun”, will have
its own entry in the dictionary of subword units,
while the word “paracetamol” will be represented
as the sequence of the following subword units:[

“para”, “##ce”, “##tam”, “##ol”]. Not suprisingly,
the number of subword units required to represent
a word in a subword-unit tokenization regime is
a very strong morphological signal, which we use
as an indirect measure of the morphological “com-
plexity”, and is extremely cheap to compute. In our
implementation, we simply promote as terms all
the nouns with a number of sub-tokens higher than
a threshold (4 in our case). We use the vocabulary
of the BERT-base model from HuggingFace (Wolf
et al., 2020) and the corresponding tokenizer.

Sentence Terms

Corpus Train Dev Test Train Dev Test

ACL 828 276 280 2, 574 898 930
GENIA 11, 127 3, 709 3, 710 48, 928 16, 217 16, 404
ScienceIE 2, 516 417 876 6, 067 1, 052 1, 885

Table 1: Number of sentences and terms in the train,
dev, and test set for the datasetst used for evaluation.

4 Experiments

We now assess whether our approach can represent
a valid baseline for term extraction in different tech-
nical domains when annotated data is not available.
We aim to answer the following research questions:

• Does our Unsupervised Annotator generate a
high-quality weakly-annotated dataset from a
unlabeled general-domain corpus?

• Can we train models on the latter to lower the
latency inference and increase the prediction
performance at the same time?

4.1 Datasets

We use three common publicly available term ex-
traction corpora: ACL RD-TEC 2.0 (QasemiZadeh
and Schumann, 2016), GENIA (Kim et al., 2003),
and ScienceIE (Augenstein et al., 2017). Each
contains abstracts from scientific articles in differ-
ent domains: natural language processing (ACL),
medicine (GENIA), and computer science, material
science, as well as physics (ScienceIE). All tokens
are annotated using the IOB format (short for In-
side, Out and Begin) (Ramshaw and Marcus, 1999).
Since we are only interested in general term extrac-
tion, we did not use multiple class labels, even if
provided in the respective dataset. We create ran-
dom splits of train, dev, and test sets (60/20/20)
for the ACL and GENIA datasets, and we use the
pre-existing data splits for ScienceIE corpus.

In terms of preprocessing, we remove nested
terms from the GENIA dataset, since the IOB tag
set does not allow nested term extraction. For the
ACL corpus, some samples have abstracts labeled
by two annotators. In those cases, we selected the
abstract from the first annotator. An overview of
the datasets is given in Table 1.

Since our objective is to study the generalization
of our approach, we need an unlabeled broad cor-
pus from which our Unsupervised Annotator will
annotate the text. Hence, we randomly sampled
500,000 sentences from abstracts from Semantic

4

ACL

Model (#Params) exact F1 partial F1

BERT B (110M) 78.69 91.06
ELECTRA S (14M) 72.84 88.06
ELECTRA XS (7M) 50.40 71.61

UA (0) 49.95 74.56

GENIA

Model (#Params) exact F1 partial F1

BERT B (110M) 70.13 88.19
ELECTRA S (14M) 67.73 88.04
ELECTRA XS (7M) 59.86 83.16

UA (0) 45.65 77.16

ScienceIE

Model (#Params) exact F1 partial F1

BERT B (110M) 49.62 66.36
ELECTRA S (14M) 46.43 68.45
ELECTRA XS (7M) 27.17 51.10

UA (0) 39.75 64.29

Table 2: Results for the unsupervised annotator (UA) and transformer models fine-tuned on the manually annotated
ACL, GENIA, and ScienceIE datasets, respectively. Without using any annotation, the UA performs similarly to
ELECTRA XSmall and even better on the ScienceIE.

Scholar (SS). 3 We call our weakly annotated train-
ing set UA-SS. The training sets of the ACL, GE-
NIA, and ScienceIE datasets are not used (unless
specified).

4.2 Models

We use transformer-models, fine-tuned with man-
ual annotations, as baselines. We employ pre-
trained transformer models of different sizes:
BERT-base (110M parameters) (Devlin et al.,
2019), ELECTRA Small (14M parameters) (Clark
et al., 2020), and ELECTRA XSmall (7M parame-
ters).

Since our main goal is to compare the models to
each other and across multiple corpora, we priori-
tize comparabability across corpora over compara-
bability with approaches from other studies.

4.3 Experimental settings

We use the pre-trained checkpoints of BERT-base
and ELECTRA Small from HuggingFace (Wolf
et al., 2020). We pre-train ELECTRA XSmall4

from scratch using our Semantic Scholar dataset.
During fine-tuning, we devoted a similar amount
of GPU time to all the models. We pick the best-
performing model in the dev set after 10 epochs

We implemented our Unsupervised Annotator
using the POS tagger of SpaCy (Honnibal et al.,
2020). To compute the specificity and similar-
ity scores we use the sentence embedding model
distilbert-base-nli-mean-tokens from the
sentence transformers5 library.

The specificity and similarity thresholds used
to generate the training data over abstracts from
Semantic Schoolar have been set to conservative
values. We set the threshold for the specificity
TSP = 0.05 and the threshold for the similarity

3www.semanticscholar.org/.
4We used 2 attention heads and 4 hidden layers, while us-

ing the same hidden dimension and similarly sized vocabulary.
5pypi.org/project/sentence-transformers/.

Ttopic = 0.1. For the sub-word tokenization we
rely on the tokenizer from BERT-base.

4.4 Results

In Table 2, we first compare the performance (ex-
pressed as exact and partial F1 scores that count
only exact or partial matches as true positives) of
our fully Unsupervised Annotator to the perfor-
mance obtained by fine-tuning transformer-based
models with the manual annotations present in the
original training sets. Without relying on any hu-
man annotation, our UA delivers comparable or
even better results than the ELECTRA XSmall in
ACL and ScienceIE, respectively. These results
show that the UA represents a very competitive
baseline for domains where annotations are not
available.

Further, we are interested in understanding
whether transformer-based models fine-tuned with
human annotations can generalize across domains.
We also evaluate if the availability of weakly super-
vised labels generated by our Unsupervised Anno-
tator over a large and broad corpus (i.e., Semantic
Scholar) could lead to models with higher gener-
alization capabilities. In Table 3 we report the
exact and partial F1 scores for the ACL, GENIA,
and ScienceIE datasets, and the transformer-based
model fine-tuned with the output of our Unsuper-
vised Annotator (UA-SS). This setup simulates the
problem of bootstrapping an annotator for a spe-
cific domain for which in-domain human labels are
not available.

On the ACL corpus, the UA-SS-based model
clearly outperforms the GENIA-based and
ScienceIE-based models. On the GENIA corpus,
the UA-SS-based model and the ACL-based model
perform equally well. On the ScienceIE corpus,
all models perform equally with a slight tendency
towards the GENIA-based model.

Overall, it can be said that the UA-SS-based
approach is a valid starting point to bootstrap a

5

ACL GENIA ScienceIE

Model (#Params) Fine-tuned on exact F1 partial F1 exact F1 partial F1 exact F1 partial F1

BERT Base
(110M)

UA-SS 58.22 77.36 53.18 79.38 46.79 66.59

ACL − − 52.05 82.49 47.88 69.97
GENIA 45.97 61.53 − − 48.50 69.84

ScienceIE 38.28 54.92 46.91 73.16 − −

ELECTRA Small
(14M)

UA-SS 58.00 77.41 53.44 80.01 44.68 65.58

ACL − − 50.84 81.33 44.21 67.57
GENIA 46.65 67.21 − − 45.79 68.83

ScienceIE 42.58 66.02 43.48 76.77 − −

ELECTRA XSmall
(7M)

UA-SS 49.83 72.78 45.35 74.83 40.32 62.39

ACL − − 31.13 59.99 28.79 58.20
GENIA 29.81 58.17 − − 30.00 59.61

ScienceIE 20.60 33.53 39.95 68.63 − −

Table 3: Results for the generalization of multiple transformer models that are fine-tuned on the weakly annotated
dataset based on the Semantic Scholar corpus (annotated with UA, denoted as UA-SS) and evaluated on the ACL,
GENIA, and ScienceIE datasets, respectively. Transformer models fine-tuned using our automatically generated
dataset perform better than their counterparts fine-tuned using the other datasets.

system in a no-resource scenario. Table 2 shows
that the F1 score gap between models trained with
in-domain manually annotated data and the UA-SS-
based approach is lower for smaller models.

Now, we compare the Unsupervised Annotator
with the models fine-tuned with its output to eval-
uate our two-step approach in terms of F1 score
and inference latency. Figure 3 reports the aver-
age inference latency for models (fine-tuned with
the UA-SS training data) over sentences from the
ACL dataset with a batch of size 1 using a NVIDIA
Tesla V100 and a single core of a Xeon E5-2690
v4 (similar trends on the other datasets). While
the inference latency has similar orders of mag-
nitude across models with GPU acceleration, the
minimum inference time of 26.6 ms can be ob-
tained on a single CPU core using the ELECTRA
XSmall model. Therefore, our approach is particu-
larly attractive in all cases where inference acceler-
ators (e.g., GPUs) are not available. Additionally,
the results highlight that by fine-tuning over the
output of the UA, the latency can be reduced by 4
to 10 times, while providing comparable or even
better F1 scores. Having the option to generate a
large amount of training data for fine-tuning is an
extremely useful property that enables the creation
of very small models offering low inference times
even without using GPU acceleration.

4.5 Lessons learned

In this work, we have demonstrated that, while the
value of in-domain labels is without any doubt the
best way to increase predictive quality, fully un-

45 47 49 51 53 55 57 59
F1 Exact Match on ACL

101

102

103

L
at

en
cy

(m
s)

BERT (110M)

ELECTRA S (14M)

Lower latencyBetter F1 score

ELECTRA XS (7M)

L
ow

es
t

la
te

nc
y

UA (0M)

CPU
Latency (ms)

438.50

68.80

26.60

282.60

45 47 49 51 53 55 57 59
F1 Exact Match on ACL

25

50

75

L
at

en
cy

(m
s)

BERT (110M)

ELECTRA S (14M)Lower latencyBetter F1 score

ELECTRA XS (7M)

L
ow

es
t

la
te

nc
y

UA (0M)
GPU

Latency (ms)

52.30

52.80

43.80

66.40

Figure 3: Average inference latency on CPU (top) and
GPU (bottom) on the ACL dataset. We note in parenthe-
sis the number of trainable parameters of the models. By
fine-tuning over the output of the UA, we achieve lower
latency and higher F1 scores. The lowest inference la-
tency, 26.6 ms, is achieved on CPU.

supervised approaches are often the only viable
option to bootstrap a term extractor that has to gen-
eralize across very diverse domains. Additionally,
while the practicality of ML solutions is often un-
derestimated, we have shown that having a modular
system can not only provide greater flexibility in
deployments, but can also allow to boost time pre-
dictive performance and inference latency at the
same.

5 Conclusion

In this paper, we described an effective term ex-
traction approach that uses a fully unsupervised

6

annotator to generate training data to fine-tune
transformer models. This approach reduces the in-
ference time of the unsupervised annotator, without
decreasing its performance, and allows the flexibil-
ity to pick the right trade-off between latency and
F1 score. The latency-optimized models are less
than 30 Megabytes in size, provide inference laten-
cies lower then 30 ms even without GPUs, while
exhibiting a competitive F1 score compared to the
models fine-tuned with manually annotated data.

References
Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lak-

shmi Vikraman, and Andrew McCallum. 2017. Se-
meval 2017 task 10: Scienceie-extracting keyphrases
and relations from scientific publications. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 546–555.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hoss-
mann, Michael Baeriswyl, and Martin Jaggi. 2018.
Simple unsupervised keyphrase extraction using sen-
tence embeddings. In Proceedings of the 22nd Con-
ference on Computational Natural Language Learn-
ing, pages 221–229, Brussels, Belgium. Association
for Computational Linguistics.

Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini.
2005. Ontology Learning from Text: Methods, Eval-
uation and Applications.

Sharon A. Caraballo and Eugene Charniak. 1999. De-
termining the specificity of nouns from text. In 1999
Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Cor-
pora.

Wang Chen, Hou Pong Chan, Piji Li, and Irwin King.
2020. Exclusive hierarchical decoding for deep
keyphrase generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1095–1105, Online. Association
for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Pre-training trans-
formers as energy-based cloze models. In EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Pierre Dognin, Igor Melnyk, Inkit Padhi, Cicero
Nogueira dos Santos, and Payel Das. 2020. Du-
alTKB: A Dual Learning Bridge between Text and

Knowledge Base. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8605–8616, Online. As-
sociation for Computational Linguistics.

Nazanin Firoozeh, Adeline Nazarenko, Fabrice Alizon,
and Béatrice Daille. 2020. Keyword extraction: Is-
sues and methods. Natural Language Engineering,
26(3):259–291.

Francesco Fusco, Damian Pascual, and Peter Staar. 2022.
pNLP-Mixer: an Efficient all-MLP Architecture for
Language. arXiv preprint arXiv:2202.04350.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Ihab F. Ilyas, Theodoros Rekatsinas, Vishnu Konda, Jef-
frey Pound, Xiaoguang Qi, and Mohamed Soliman.
2022. Saga: A platform for continuous construction
and serving of knowledge at scale. In Proceedings
of the 2022 International Conference on Manage-
ment of Data, SIGMOD/PODS ’22, page 2259–2272,
New York, NY, USA. Association for Computing
Machinery.

Prabhu Kaliamoorthi, Aditya Siddhant, Edward Li, and
Melvin Johnson. 2021. Distilling large language
models into tiny and effective students using pqrnn.
CoRR, abs/2101.08890.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. 2003. Genia corpus—a semantically anno-
tated corpus for bio-textmining. Bioinformatics,
19(suppl_1):i180–i182.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Juan Antonio Lossio-Ventura, Clément Jonquet, Math-
ieu Roche, and Maguelonne Teisseire. 2016. Biomed-
ical term extraction: overview and a new methodol-
ogy. Information Retrieval Journal, 19(1-2):59–99.

Dehong Ma, Sujian Li, Fangzhao Wu, Xing Xie,
and Houfeng Wang. 2019. Exploring sequence-to-
sequence learning in aspect term extraction. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3538–
3547, Florence, Italy. Association for Computational
Linguistics.

Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah,
and Roger Zimmermann. 2018. Key2Vec: Auto-
matic ranked keyphrase extraction from scientific
articles using phrase embeddings. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 634–639, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

7

Behrang QasemiZadeh and Anne-Kathrin Schumann.
2016. The acl rd-tec 2.0: A language resource
for evaluating term extraction and entity recognition
methods. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 1862–1868.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Pum-Mo Ryu and Key-Sun Choi. 2006. Taxonomy
learning using term specificity and similarity. In Pro-
ceedings of the 2nd Workshop on Ontology Learning
and Population: Bridging the Gap between Text and
Knowledge, pages 41–48, Sydney, Australia. Associ-
ation for Computational Linguistics.

Antonio Šajatović, Maja Buljan, Jan Šnajder, and Bo-
jana Dalbelo Bašić. 2019. Evaluating automatic term
extraction methods on individual documents. In Pro-
ceedings of the Joint Workshop on Multiword Expres-
sions and WordNet (MWE-WN 2019), pages 149–154,
Florence, Italy. Association for Computational Lin-
guistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In International Conference
on Acoustics, Speech and Signal Processing, pages
5149–5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Di Wu, Wasi Uddin Ahmad, Sunipa Dev, and Kai-
Wei Chang. 2022. Representation learning for
resource-constrained keyphrase generation. CoRR,
abs/2203.08118.

Ziqi Zhang, Johann Petrak, and Diana Maynard. 2018.
Adapted textrank for term extraction: A generic
method of improving automatic term extraction algo-
rithms. Procedia Computer Science, 137:102 – 108.
Proceedings of the 14th International Conference on
Semantic Systems 10th – 13th of September 2018
Vienna, Austria.

8

Proceedings of EMNLP 2022 Industry Track, pages 9–17
December 9–11, 2020. ©2022 Association for Computational Linguistics

DynaMaR: Dynamic Prompt with Mask Token Representation

Xiaodi Sun1,∗, Sunny Rajagopalan2,∗, Priyanka Nigam3, Weiyi Lu3, Yi Xu3

Iman Keivanloo3, Belinda Zeng3, Trishul Chilimbi3
1Microsoft, 2Google, 3Amazon

1xiaodisun315@gmail.com, 2sunny.rg@gmail.com
3{nigamp,weiyilu,yxaamzn,imanke,zengb,trishulc}@amazon.com

Abstract

Recent research has shown that large lan-
guage models pretrained using unsupervised
approaches can achieve significant perfor-
mance improvement on many downstream
tasks. Typically when adapting these language
models to downstream tasks, like a classifi-
cation or regression task, we employ a fine-
tuning paradigm in which the sentence repre-
sentation from the language model is input to a
task-specific head; the model is then fine-tuned
end-to-end. However, with the emergence of
models like GPT-3, prompt-based fine-tuning
has been proven to be a successful approach
for few-shot tasks. Inspired by this work, we
study discrete prompt technologies in practice.
There are two issues that arise with the stan-
dard prompt approach. First, it can overfit on
the prompt template. Second, it requires man-
ual effort to formulate the downstream task as
a language model problem. In this paper, we
propose an improvement to prompt-based fine-
tuning that addresses these two issues. We re-
fer to our approach as DynaMaR – Dynamic
Prompt with Mask Token Representation. Re-
sults show that DynaMaR can achieve an aver-
age improvement of 10% in few-shot settings
and improvement of 3.7% in data-rich settings
over the standard fine-tuning approach on four
e-commerce applications.

1 Introduction

Unsupervised pre-trained Language Models (LMs)
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) have achieved state-of-the-art
performance on many natural language understand-
ing tasks. In general, these models are fine-tuned
for different tasks through the addition of a task-
specific head on top of the [CLS] token representa-
tion (Scao and Rush, 2021).

An alternative method to applying LMs on down-
stream tasks is through discrete prompts. A discrete

∗∗Work done while at Amazon.

prompt is an additional text phrase inserted along
with the original input text that encapsulates the
task of interest. By adding the prompt, we con-
vert the downstream task into a masked language
(MLM) problem. For example, to classify the sen-
timent of a movie review, “I hate this movie.”, we
can append a prompt to the input to get “I hate this
movie. It was [MASK]”. The pre-trained language
model is thus prompted to identify the sentiment of
the input statement and classify the [MASK] token
as “terrible” instead of “great” (Liu et al., 2021). In
this paper, we call a function that includes a prompt
and its position information a prompt template.

Prompt-based approaches have shown success in
low-data regimes (Petroni et al., 2019; Schick and
Schütze, 2021; Jiang et al., 2020; Gao et al., 2021;
Lester et al., 2021). Prompt-based fine-tuning is
beneficial in few-shot learning, because it provides
extra task information to the model through the
prompt text (Schick and Schütze, 2021). However,
when we explore this technique in practice, two
issues have arisen. First, the trained model can
overfit on words or phrases within the prompt and
on the position of the [MASK] token in the prompt
(Zhong et al., 2021). For example, in movie review
sentiment analysis, when we append the prompt,
“Does the user like the movie? [MASK]”, to a neg-
ative review, “This is a bad movie.”, the trained
model is inclined to predict the positive class, be-
cause the word “like” frequently appears in positive
reviews and the masked language model has greater
attention on the words/phrases that are closer to the
mask token as shown in Figure 1. We call this issue
prompt-related overfitting in this work.

We tackle prompt-related overfitting by introduc-
ing a dynamic prompt approach. In this approach,
we create a prompt pool consisting of multiple
prompt templates. To construct this pool, we gener-
ate a set of prompt candidates and filter by a simi-
larity score we propose, called the pairwise prompt
dissimilarity score (detailed in Section 3). We then

9

Figure 1: BERT Attention Distribution. The figure
shows that the MLM model puts greater attention on
the prompt than the original input.

introduce the dynamic component of the algorithm
by randomly selecting a prompt template from the
pool and applying to the input for each training step.
For example, in the movie review sentiment analy-
sis task, the trained model will randomly see either
“does the user like the movie? [MASK]” or “does
the user dislike the movie? [MASK]” appended
to the original input. This prevents the model to
overfit on spurious correlations between words in
the prompt and the class label.

In addition, as previously mentioned, the stan-
dard prompt-based fine-tuning setup can be inef-
ficient. It requires significant input and answer
engineering to reformulate the downstream tasks
as MLM problems (Liu et al., 2021). This process
is time-consuming especially for tasks with large
numbers of classes. Besides, another disadvantage
of the standard setup is that it cannot be directly
applied to regression problems, as they cannot be
easily converted to MLM problems. To simplify
this process, we fine-tune the model by feeding
the mask token representation into a task-specific
classifier/predictor head instead of the pre-trained
MLM head to avoid the answer engineering pro-
cess, as shown in Figure 2. We refer to our prompt-
based approach with these two improvements as
Dynamic Prompt with Mask Token Representation
(DynaMaR). We apply DynaMaR to both few-shot
and data-rich settings and, for the first time, show
improvement gains across four tasks not only in
few-shot settings but also in data-rich settings.

Our contributions include: (1) proposing Dyna-
MaR, which can be applied without reformulating
downstream tasks into language problems and is

robust to prompt-related overfitting, (2) showing
DynaMaR can achieve improvements in both few-
shot and data-rich settings, (3) proposing a prompt
dissimilarity score to evaluate the degree of dis-
similarity between two prompt templates and to
help construct a diverse dynamic prompt pool, (4)
demonstrating that a larger dynamic prompt pool
achieves better performance on downstream tasks.

2 Related Work

Our work can be divided into three components:
language model fine-tuning, prompt generation,
and the design of the prompt template.

Language Model Fine-tuning is the main fo-
cus of our work. Recently, a large amount of re-
search has focused on improved language model
finetuning methods (Howard and Ruder, 2018;
Dodge et al., 2020; Lee et al., 2020; Zhang et al.,
2021). These works mainly focus on optimiza-
tion and regularization techniques to stabilize fine-
tuning. In contrast to these works, Gao et al. (2021)
describe the concept of prompt-based fine-tuning
for language models. We adapt and simplify the
core ideas from this work to create a simple yet
efficient prompt-based fine-tuning approach.

Prompt Generation is a key process in prompt-
based fine-tuning. The choice of prompt signifi-
cantly influences performance. The most natural
way to generate prompts is through manual design.
Petroni et al. (2019) employ manually generated
prompts with ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019) models. They evaluate on the
LAMA (LAnguage Model Analysis) benchmark
(Bordes et al., 2013; Nickel et al., 2016) without
fine-tuning and conclude that the model is able
to recall knowledge learned from the pre-training
tasks. While manually crafting prompts is intuitive,
creating effective prompts through manual effort re-
quires time, experience, and expertise. To address
this issue, a number of automatic prompt searching
methods have been proposed. For example, Jiang
et al. (2020) propose a data mining-based method
that searches for a prompt based on the shortest
path between the original inputs and answers. They
also propose paraphrasing-based methods that take
a seed prompt and paraphrase it into several seman-
tically similar expressions. Gao et al. (2021) treat
prompt generation as a text generation task and uti-
lize T5, a sequence-to-sequence pretrained model,
in the template search process. They generate tem-
plates by specifying the position to insert a prompt

10

Figure 2: Fine-tuning approach demonstration.

template and then inputting samples into T5 to de-
code the templates. These automatic approaches
achieve comparable performance to manually de-
signed prompts. Besides, Logan IV et al. (2021)
propose the null prompt method. Instead of gener-
ating prompts, they concatenate a [MASK] token
with original inputs and it performs competitively
to manually designed prompts. In our experiments,
we utilize the prompt generation methods to create
candidates for the dynamic prompt pool, while also
including the null prompt approach as one of the
baselines.

Prompt Template Design Factors are the fac-
tors that we take into consideration to create a met-
ric that informs how prompts are selected for the
dynamic prompt pool. Numerous previous works
analyze prompt template design factors and the im-
pact of prompt design on performance. Liu et al.
(2021) summarize the factors that influence the
application of prompt-related technologies in lan-
guage models. Logan IV et al. (2021) note that the
order in which the original input and the [MASK]
token are concatenated is an important consider-
ation. Zhong et al. (2021) propose to unify the
prompts into a question-answering format. These
previous works indicate that prompt construction
impacts performance. To this end, we hypothe-
size that diversity in the set of prompt templates
is an important factor in the performance of the
model and propose a prompt dissimilarity score for
measuring diversity.

3 Our Method: DynaMaR

In this section, we describe details of our approach,
DynaMaR. Before explaining the training process,
we define two concepts: the dynamic prompt pool
and the inference prompt.

Dynamic Prompt Pool is a pool of prompt tem-
plates from which a prompt template will be ran-
domly selected and applied to the input during train-
ing.

Inference Prompt is the prompt template used
during inference. It is selected from the set of tem-
plates in the dynamic prompt pool. In general, it is
the prompt template among those in the dynamic
prompt pool that can achieve the highest perfor-
mance in a fixed prompt setting.

We generate the candidates for the dynamic
prompt pool and inference prompt through man-
ual generation and paraphrasing-based methods
proposed by Jiang et al. (2020). However, we do
not include all candidates in the dynamic prompt
pool. We want to ensure the prompts within a pool
are sufficiently diverse so that the model will not
overfit on any of them. Therefore, we introduce
a prompt dissimilarity score to measure the level
of dissimilarity between these candidates. We con-
sider three factors in developing this metric: (1)
prompt position, or whether to append or prepend
the prompt to the input or even insert into the mid-
dle of pairwise inputs, (2) prompt wording or the
prompt word selection, and (3) prompt format, or
whether to create prompts in statement format or in
the question-answering format proposed by Zhong
et al. (2021). To define the prompt dissimilarity
score, we first introduce the normalized Hamming

11

distance and the normalized Levenshtein distance.
Normalized Hamming Distance is equal to the

number of different bits between two binary repre-
sentations divided by the length of the binary rep-
resentations (Norouzi et al., 2012). Let HD(bi, bj)
be the Hamming distance between binary represen-
tations bi and bj with equal lengthK. The equation
of normalized Hamming distance NHD(bi, bj)
then follows:

HD(bi, bj) =

K∑

k=1

|bik − bjk|, (1)

NHD(bi, bj) = HD(bi, bj)/K. (2)

Normalized Levenshtein Distance is equal to
the minimum number of operations (substitution,
insertion and deletion) required to transform a
given string into another string divided by the
length of the longer string and is calculated in
a recursive fashion (Yujian and Bo, 2007). Let
LD(si, sj) be the Levenshtein distance between
string si and sj . Let |si| and |sj | be the length of
prompt string si and sj , respectively. Let t(x) be
a function that keeps a string of all but the first
character of x. The equation of the normalized
Levenshtein distance NLD(si, sj) follows:

LD(si, sj) =





|si|, if |si| = 0;

|sj |, if |sj | = 0;

LD(t(si), t(sj)), if |si| = |sj |;
1+

min

(
LD(t(si),sj),

LD(si,t(sj)),

LD(t(si),t(sj))

)
, otherwise.

(3)

NLD(si, sj) =

{
LD(si,sj)

|si| , if |sj | ≤ |si|,
LD(si,sj)

|sj | , if |si| < |sj |.
(4)

Suppose we generate N prompt templates. Let
pi and pj be two prompt templates with si, sj
as prompt strings, respectively, where i 6= j and
i, j ∈ {1, 2, . . . , N}. We treat the prompt position
and format information as categorical variables and
convert them into binary representations, bi, bj . Let
PDS(pi, pj) denote the prompt dissimilarity score
between prompt templates pi and pj . The prompt
dissimilarity score equation can be found below:

PDS(pi, pj) = NHD(bi, bj) +NLD(si, sj).
(5)

In our experiment, we use 0.5 as the pairwise
prompt dissimilarity score threshold. We add the
prompt templates that have prompt dissimilarity

score larger than the threshold to others to a dy-
namic prompt pool. During the training process,
we randomly pick one prompt template from the
pool for each training step and apply it to the origi-
nal input. We treat the mask token representation
from the modified input as the sentence embedding
and train the model by directly feeding it into a
task-specific predictor head.

4 Experiment

4.1 Data

In this experiment, we use four e-commerce pro-
prietary datasets: (1) Variation Elimination (VE),
(2) Music Match (MM), (3) Music Genre (MG),
and (4) Price Prediction (PP). VE is a binary clas-
sification problem with pairwise-document inputs
where the label identifies whether two items are
the variations of the same product or not. For ex-
ample, similar shirts (from the same producer and
brand) in different sizes or colors are considered to
be variations. MM is a binary classification prob-
lem with pairwise-document inputs that identifies
whether two music tracks from different sources
are the same or not. MG is a 303-way classification
problem with single-document inputs that classifies
music tracks to genres. PP is a regression problem
with single-document inputs that aims to estimate
the sales price based on the product information. It
should be noted that the percentage of inputs with
number of tokens larger than 512 in VE, MM, MG,
PP are 90%, 75%, 82%, 1%, respectively.

For each task, we split the dataset into three parts:
(1) train, (2) validation, and (3) test. We use the full
training dataset for the data-rich settings. We also
sample multiple few-shot training datasets for few-
shot learning settings. In few-shot learning, each
classification dataset contains roughly 20 samples
for each class. For the regression task (i.e., PP), we
randomly sample 1% of the full training dataset as
a few-shot training dataset.

4.2 Model and Tokenizer Setup

For training the tokenizer, we collect an English
product catalog dataset with text features includ-
ing title, description, and detail bullet points. We
train a 32K BPE vocabulary on this dataset using
the SentencePiece library (Kudo and Richardson,
2018).

We create a 500M parameter transformer
encoder-only model, with 38 hidden layers, 1024
embedding size, 16 attention heads, and maximum

12

sequence length of 512. We train the model using
the LANS optimizer (Zheng et al., 2020) with a
batch size of 8192 and a learning rate of 10−4 on
the product catalog dataset.

4.3 Prompt Generation and Selection
To create the dynamic prompt pool for our tasks,
we first generate 20 prompt templates for each task
and select 5 out of them using the prompt dissim-
ilarity score. Specifically, for each task, we first
manually design 10 prompt templates. By treating
prompt template generation as paraphrase gener-
ation task (Jiang et al., 2020), we use these 10
prompt templates as seeds to generate another 10
templates per task by leveraging the public T5 para-
phrase generation model from Hugging Face1. Af-
terwards, we use the prompt dissimilarity score to
select 5 prompt templates out of the 20 based on
the method discussed at the end of Section 3. The
selected prompt templates are used as each task’s
dynamic prompt pool. For inference, we evaluate
each template in the dynamic prompt pool through
the evaluation process discussed in Section 4.5, and
select the prompt template that produces the best
performance on each task. Table 5 shows the dy-
namic prompt templates as well as the inference
prompt selected for each task.

4.4 Fine-tuning (Ft) Methods
We compare DynaMaR with the following ap-
proaches:

• Promptless Fine-tuning - CLS (PFt-CLS)
is our baseline approach where we fine-tune
the model by feeding the [CLS] token repre-
sentation into a predictor head.

• Promptless Fine-tuning - Average Pooling
(PFt-Avg) fine-tunes the model by using the
average of sequence output for prediction.

• Null Prompt - Prefix (NP-Prefix) prepends
the [MASK] token to the original inputs and
fine-tunes the model by feeding the [MASK]
token representation into a predictor head.
This approach avoids the issue where the
model overfits the prompt template since it
does not require a template.

• Null Prompt - Suffix (NP-Suffix) is the same
as the above approach except that the [MASK]

1https://huggingface.co/Vamsi/T5_Paraphrase_
Paws

Ft Method VE MM MG PP Avg
PFt-CLS 0 0 0 0 0
PFt-Avg -1.5% +7.2% -3.7% -8.8% -1.7%
NP-Prefix -1.0% +4.1% -2.0% +2.6% +0.9%
NP-Suffix -2.6% +0.2% -1.6% +6.7% +0.7%
FiTeR -0.7% +13.9% -1.1% +7.3% +4.9%
DPMR +0.8% +15.8% -0.5% +23.8% +10.0%

Table 1: Few-shot Learning Performance Comparison.

token is appended to the inputs instead of be-
ing prepended.

• Fixed Prompt with Mask Token Repre-
sentation (FiTeR) utilizes a static prompt
template in both the training and inference
stages and fine-tunes the model by feeding the
[MASK] token representation into a predictor
head.

Note that we use a task-specific predictor head in
combination with all above approaches including
the prompt-based fine-tuning methods, which typi-
cally use the pre-trained MLM head for prediction.
The reason is that we have a regression task as one
of our evaluation datasets, and as already discussed
in Section 1, it is not straight forward to convert
regression tasks into MLM tasks.

4.5 Model Training and Evaluation Setup
As mentioned in Section 1, we measure the per-
formance in both few-shot and data-rich settings.
For both VE and MM, we use Area Under the
Precision-Recall Curve (PRAUC) as the evaluation
metric. For MG, we use classification accuracy as
the evaluation metric. For PP, we use Root Mean
Square Error (RMSE) as the evaluation metric. We
validate the performance every 2 training steps in
the few-shot settings and every 100 steps in the
data-rich settings. We use early stopping with a pa-
tience of 3 validation steps to select the best model
for each task. We then evaluate the best models on
the test datasets. For few-shot learning, we report
the average performance across multiple few-shot
datasets per task to reduce the variation in perfor-
mance. In Table 1 and Table 2, we calculate and
report the improvement percentage, which is the
ratio of positive change as compared to PFt perfor-
mance.

4.6 Results
Table 1 and 2 show the performance results for
both few-shot and data-rich settings. In both set-
tings, PFt-Avg shows degradation in average of

13

Ft Method VE MM MG PP Avg
PFt-CLS 0 0 0 0 0
PFt-Avg -0.1% +1.2% -1.0% -11.0% -2.7%
NP-Prefix -0.1% +1.0% -0.4% 0 +0.1%
NP-Suffix -0.3% +1.7% -0.7% +2.2% +0.7%
FiTeR 0 +1.5% -0.2% +3.3% +1.2%
DPMR 0 +2.9% -0.3% +12.1% +3.7%

Table 2: Data-rich Performance Comparison.

performance compared to PFt-CLS. This shows
that average pooling generates worse sentence rep-
resentations than does taking the [CLS] token rep-
resentation.

In contrast, both null prompt approaches show
improvement in average performance compared to
PFt-CLS in both few-shot and data-rich settings.
The improvement could be a result of aligning the
format of the downstream tasks and that of the pre-
training task. By changing the input format to be
similar to that of the MLM task, we reduce the
amount of data that are required to coach the model
to learn the new task.

Also, there is a difference in the performance of
NP-suffix and NP-prefix. This is likely due to the
positional differences of the [MASK] token in the
two methods. For example, suppose we want to per-
form sentiment analysis on a sentence like “I love
the movie”. Prepending or appending the [MASK]
token would result in different distances between
[MASK] and the word “love”, which holds the key
information for classification. Such positional dif-
ferences could lead to different performance even
though the two methods are very similar in spirit.

Another observation is that FiTer shows higher
improvement in average of performance compared
to null prompt approaches. Recall that FiTer in-
troduces task information through the prompt tem-
plates, while the null prompt approaches do not,
which supposedly addresses the issue where the
model overfits the prompt templates. Hence, the re-
sults show that the benefits of adding the extra task
information outweigh the possible performance
loss caused by the prompt-related overfitting issue.

Finally, DynaMar outperforms FiTer on all tasks
in both setting, with the only exception being MG
in the data-rich setting. This indicates that increas-
ing the diversity of prompt templates used during
training will improve model generalization. We
also observe that DynaMar does not show signifi-
cant improvement over PFt-CLS on both MG and
VE. This is because both tasks contain a large num-

ber of documents with length longer than 512, as
mentioned in Section 4.1. As a result of this, we
need to truncate more of the original inputs for
these tasks in order to insert prompts, which can
lead to information loss. Thus, DynaMar is less
efficient in problems with long documents.

4.7 Analysis

Larger dynamic prompt pool, better perfor-
mance. The size of the dynamic prompt pool influ-
ences the performance. We compare the average
improvement percentage across four tasks with the
size of dynamic prompt pool = 1, 3, 5 (prompt
information can be found in Appendix A). From
Figure 3, we can see that performance improves as
the dynamic prompt pool is made larger.

Figure 3: Pool Size vs Improvement Percentage.

4.8 Limitations and Future Directions

As mentioned in Section 4.6, our method does not
show substantial improvement on tasks involving
long documents. Besides, the threshold of prompt
disimilarity score can be treated as a parameter.
This work lack of a study on the effect of this thresh-
old. In addition, we focus on e-commerce related
English classification/regression tasks in this work,
the performance of our method in other nature lan-
guage processing use cases remains unexplored.
As a next step, we will conduct additional studies
on these three topics.

5 Conclusion

In this work, we discuss methods for generating
prompts and propose a way to select prompt tem-
plates to include in the dynamic prompt pool. Also,
we show that using the mask representation of a
prompt either equals or improves upon the perfor-
mance of standard fine-tuning on four e-commerce
applications in both few-shot and data-rich settings.
In addition, we find DynaMaR outperforms the

14

fixed prompt approach in both settings. Further-
more, we show that a larger dynamic prompt pool
leads to improved model performance when em-
ploying DynaMaR.

References
Antoine Bordes, Nicolas Usunier, Alberto García-

Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Conference on Neural Informa-
tion Processing Systems (NeurIPS).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT).

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah A. Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. In ArXiv.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Association for Computational Linguis-
tics (ACL).

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Association for Computational Linguistics (ACL).

Zhengbao Jiang, Frank F. Xu, J. Araki, and Graham
Neubig. 2020. How can we know what language
models know? In Association for Computational
Linguistics (ACL).

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. In Inter-
national Conference on Learning Representations
(ICLR).

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
In ArXiv.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. In ArXiv.

Robert L Logan IV, Ivana Balavzevi’c, Eric Wallace,
Fabio Petroni, Sameer Singh, and Sebastian Riedel.
2021. Cutting down on prompts and parameters:
Simple few-shot learning with language models. In
Conference on Neural Information Processing Sys-
tems (NeurIPS).

Maximilian Nickel, Kevin P. Murphy, Volker Tresp,
and Evgeniy Gabrilovich. 2016. A review of rela-
tional machine learning for knowledge graphs. In
Proceedings of the IEEE.

Mohammad Norouzi, David J. Fleet, and Ruslan
Salakhutdinov. 2012. Hamming distance metric
learning. In Conference on Neural Information Pro-
cessing Systems (NeurIPS).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT).

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H. Miller, and Se-
bastian Riedel. 2019. Language models as knowl-
edge bases? In Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP).

Teven Le Scao and Alexander M. Rush. 2021. How
many data points is a prompt worth? In Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT).

Timo Schick and Hinrich Schütze. 2021. It’s not
just size that matters: Small language models are
also few-shot learners. In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies
(NAACL-HLT).

Li Yujian and Liu Bo. 2007. A normalized levenshtein
distance metric. In IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI).

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q.
Weinberger, and Yoav Artzi. 2021. Revisiting few-
sample bert fine-tuning. In International Confer-
ence on Learning Representations (ICLR).

Shuai Zheng, Haibin Lin, Sheng Zha, and Mu Li. 2020.
Accelerated large batch optimization of bert pretrain-
ing in 54 minutes. In ArXiv.

15

Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein.
2021. Adapting language models for zero-shot
learning by meta-tuning on dataset and prompt col-
lections. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

A Dynamic Prompt Pool with Different
Sizes

We need to define two prompt-related parameters
while using DynaMaR: the dynamic prompt pool
and the inference prompt. The list of prompts in the
pool and the inference prompt selected for dynamic
prompt pool sizes of 1, 3, and 5 can be found in
Table 3, Table 4, and Table 5, respectively.

16

Task Inference Prompt Dynamic Prompt Pool
VE f(x1, x2) = x1 and x2 are [MASK] product f(x1, x2) = x1 and x2 are [MASK] product

MM f(x1, x2) = x1 and x2 are [MASK] music f(x1, x2) = x1 and x2 are [MASK] music

MG f(x) = Genre: [MASK] x f(x) = Genre: [MASK] x

PP f(x) = x The price is [MASK] f(x) = x The price is [MASK]

Table 3: Dynamic Prompt Pool Size = 1.

Task Inference Prompt Dynamic Prompt Pool

VE f(x1, x2) = x1 and x2 are [MASK] product
(1) f(x1, x2) = x1 x2. Are they the same product? [MASK]

(2) f(x1, x2) = x1 and x2 are [MASK] product
(3) f(x1, x2) = x1 x2. They are [MASK]

MM f(x1, x2) = x1 and x2 are [MASK] music
(1) f(x1, x2) = x1 x2. Are they the same song? [MASK]

(2) f(x1, x2) = x1 and x2 are [MASK] music
(3) f(x1, x2) = x1 is as [MASK] as x2

MG f(x) = Genre: [MASK] x
(1) f(x) = Genre: [MASK] x

(2) f(x) = Music Genre: [MASK] x
(3) f(x) = x what is genre of the music? [MASK]

PP f(x) = x The price is [MASK]
(1) f(x) = Price: [MASK] x

(2) f(x) = x it cost [MASK] dollars
(3) f(x) = x what is price of the product? [MASK]

Table 4: Dynamic Prompt Pool Size = 3.

Task Inference Prompt Dynamic Prompt Pool

VE f(x1, x2) = x1 and x2 are [MASK] product

(1) f(x1, x2) = x1 x2. Are they the same product? [MASK]
(2) f(x1, x2) = x1 and x2 are [MASK] product

(3) f(x1, x2) = x1 x2. They are [MASK]
(4) f(x1, x2) = Are x1 and x2 the same product? [MASK]

(5) f(x1, x2) = x1 is as [MASK] as x2

MM f(x1, x2) = x1 and x2 are [MASK] music

(1) f(x1, x2) = x1 x2. Are they the same song? [MASK]
(2) f(x1, x2) = x1 and x2 are [MASK] music

(3) f(x1, x2) = x1 x2. They are [MASK] music
(4) f(x1, x2) = Are x1 and x2 the same music? [MASK]

(5) f(x1, x2) = x1 is as [MASK] as x2

MG f(x) = Genre: [MASK] x

(1) f(x) = Genre: [MASK] x
(2) f(x) = Music Genre: [MASK] x
(3) f(x) = x This is a [MASK] music

(4) f(x) = Type: [MASK] x
(5) f(x) = x what is genre of the music? [MASK]

PP f(x) = x The price is [MASK]

(1) f(x) = Price: [MASK] x
(2) f(x) = x Price: [MASK]

(3) f(x) = x it cost [MASK] dollars
(4) f(x) = x The price is [MASK]

(5) f(x) = x what is price of the product? [MASK]

Table 5: Dynamic Prompt Pool Size = 5.

17

Proceedings of EMNLP 2022 Industry Track, pages 18–28
December 9–11, 2020. ©2022 Association for Computational Linguistics

A Hybrid Approach to Cross-lingual Product Review Summarization

Saleh Soltan
Alexa AI, New York, USA
ssoltan@amazon.com

Victor Soto
Alexa AI, New York, USA
nvmartin@amazon.com

Ke Tran
Amazon AI Translate, Berlin, Germany

trnke@amazon.de

Wael Hamza
Alexa AI, Dallas, USA

waelhamz@amazon.com

Abstract

We present a hybrid approach for product re-
view summarization which consists of: (i)
an unsupervised extractive step to extract the
most important sentences out of all the re-
views, and (ii) a supervised abstractive step to
summarize the extracted sentences into a co-
herent short summary. This approach allows
us to develop an efficient cross-lingual abstrac-
tive summarizer that can generate summaries
in any language, given the extracted sentences
out of thousands of reviews in a source lan-
guage. In order to train and test the abstrac-
tive model, we create the Cross-lingual Ama-
zon Reviews Summarization (CARS) dataset
which provides English summaries for train-
ing, and English, French, Italian, Arabic, and
Hindi summaries for testing based on selected
English reviews. We show that the summaries
generated by our model are as good as human
written summaries in coherence, informative-
ness, non-redundancy, and fluency.

1 Introduction

Summarizing product reviews with thousands of re-
views is a daunting task. At the same time since this
task is extremely time consuming to be done by hu-
mans, there are no annotated training datasets avail-
able for it. Hence, almost all existing approaches
rely on unsupervised methods such as Latent Se-
mantic Analysis (LSA) (Steinberger and Jezek,
2004), LexRank (Erkan and Radev, 2004a), Mean-
Sum (Chu and Liu, 2019), and CopyCat (Bražin-
skas et al., 2020b) to name a few. However, the
main two shortcomings of these methods are: (i)
they do not provide comparable summaries in terms
of coherency and fluency to human written sum-
maries (Bražinskas et al., 2020a), and (ii) they can-
not be used for cross-lingual summarization (i.e.,
provide summaries in a target language given the
summaries in the source language).1

1Although it is possible to machine translate the sum-
maries, it will add an extra inference time and may reduce the

Figure 1: Our proposed summarization pipeline for
product review summarization.

In order to address both of these shortcomings,
we propose a hybrid two-step summarization ap-
proach: (i) an unsupervised extractive summariza-
tion step to extract the most representative sen-
tences out all the reviews, and (ii) a supervised
abstractive summarization step to summarize the
extracted sentences into a coherent short summary.

The main advantage of this approach is that we
can rely on a light-weight unsupervised method for
the extractive step to reduce the number of reviews
and focus on a more expensive supervised model
for the abstractive part (and actually collect human
summaries for training it). Moreover, we can use
state-of-the-art multilingual transformer models to
develop a cross-lingual abstractive summarizer re-
lying only on a monolingual extractive step.

For extractive summarization, we use
LSA (Steinberger and Jezek, 2004) which is
computationally efficient and provides a good
performance in our application. To create training
data for the abstractive step, we select 1000 prod-
ucts, for each product extract 10 most informative
sentences out of all the English reviews using LSA,
and obtain 3 summaries per product by asking
Amazon Mechanical Turkers to write a short
summary of the provided 10 sentences in English
(further details are provided in Section 3). An
example datapoint is provided in Table A1 in the
Appendix.

For testing, we repeat the same process for an-
other 280 products, but this time we ask Turkers to

quality by translating name of the products etc.

18

write summaries in French, Spanish, Italian, Ara-
bic, and Hindi (in addition to English) based on
the selected English sentences (3 summaries per
language per product). We name this dataset Cross-
lingual Amazon Reviews Summarization (CARS)
dataset.

Finally, we train multiple transformer based
models on CARS training data and evaluate their
performance on the test data through both auto-
matic and human evaluations. We show that our
approach provides informative summaries that are
as good as human written summaries and can gen-
eralize well to the categories not in the training data
(an example of a summary generated by our model
is shown in Table A1 in the Appendix).

The main contributions of our work are two fold:
1) introducing a scalable and productionalizable ap-
proach for cross-lingual product review summariza-
tion capable of producing summaries in English,
French, Spanish, Italian, Arabic, and Hindi from
English reviews, and 2) demonstrating that our ab-
stractive summarization model outperforms state-
of-the-art opinion summarization method (Bražin-
skas et al., 2020a).

2 Related Work

Some of the most widely used extractive summa-
rization techniques are based on Latent Seman-
tic Analysis (LSA) (Dumais, 2004; Gong and Liu,
2001), in which a matrix that represents the impor-
tance of words in sentences is created, and singular
value decomposition is used to select the sentences
with the highest relevancy; or Bayesian Topic Mod-
eling (Daumé III and Marcu, 2006; Haghighi and
Vanderwende, 2009), in which a generative model
is used to represent documents as mixtures of la-
tent topics, where a topic is a probability distribu-
tion over words. Other extractive methods make
use of graph methods (Erkan and Radev, 2004b)
and machine learning methods (Wong et al., 2008;
Narayan et al., 2018).

Abstractive summarization methods can be
structure-based, in which a data structure is used to
generate the new summary (examples include tree-
based methods (Knight and Marcu, 2000; Kikuchi
et al., 2014), template-based methods (Cao et al.,
2018) and rule-based methods). More recently,
the use of encoder-decoder architectures in trans-
fer learning frameworks have facilitated the use of
pre-trained encoders to generate document repre-
sentations which are then used to generate a new

summary (Rush et al., 2015; Chopra et al., 2016;
Liu and Lapata, 2019).

Since then there has been increasing efforts to
tackle many of the challenges posed by this task:
Nallapati et al. (2016) adds linguistically motivated
embeddings and pointer networks to deal with out-
of-vocabulary words; Paulus et al. (2018) adds re-
inforcement learning to the training objective to
lessen exposure bias; Cohan et al. (2018) proposes
a hierarchical model to encode the discourse struc-
ture research papers and an attention-based decoder
to generate the summaries; Gehrmann et al. (2018)
improves content selection performance on neural
summarizers by incorporating an extra attention
step to constrain on more likely phrases; Desai
et al. (2020) incorporates two transformer mod-
els to predict the saliency and plausibility of sen-
tence deletion in compressive summarization; Mao
et al. (2020) introduces token-level constraints to
improve factual consistency. To improve faithful-
ness Dou et al. (2021) proposes GSUM, a general
guided summarization framework that can make
use of external guiding policies to ensure faithful-
ness to the source documents.

On the topic of cross-lingual summarization, Chi
et al. (2020) proposes a pre-training strategy for
natural language generation tasks on both monolin-
gual and multi-lingual settings followed by mono-
lingual fine-tuning on the downstream task, and
show that the resulting model can generalize to
new languages. Ouyang et al. (2019) trains low
resource cross-lingual summarization systems on
automatically translated input and clean references,
improving on a standard copy-attention summa-
rizer on low resource languages and also evaluates
on an unseen language.

The task of opinion or review summarization,
which this paper focuses on, is receiving increased
attention due to real-world practical usage. Bražin-
skas et al. (2020a) proposes FewSUM, a hierar-
chical framework for few-shot multi-document re-
view summarization that consists on a transformer-
based generator followed by plug-in network that
switches the generator into a summarizer. Few-
SUM is the main system we will use for compari-
son throughout this paper. In a recent concurrent
work (Bražinskas et al., 2021), the authors create a
dataset of product summaries from a set of product
reviews and propose to use joint learning to select
a subset of reviews and then summarize from them.
However, they use professional written summaries

19

from various websites as gold summaries (which
may not be based on customer reviews at all, lead-
ing to model hallucination). The main advantage of
our approach in production is its decoupled design.
Namely, the the extractive part of our system can
always be improved to extract more informative
sentences without a need to retrain the abstractive
summarizer.

Finally, Gamzu et al. (2021) proposes the task
of extreme summarization from multiple product
reviews by extracting a single sentence that is con-
cise, relevant and supported by multiple reviews. In
our work, we propose to extract the most relevant
sentences from each set of reviews, rank them, and
use the top 10 reviews to create product summaries.
Nevertheless, our decoupled design allows us to
use Gamzu et al. (2021)’s method as our extractive
summarizer and improve our end to end system in
the future.

3 CARS Dataset

In this section, we describe the steps in creating
the Cross-lingual Amazon Reviews Summarization
(CARS) dataset.

3.1 Products Selection

3.1.1 Train
In order to have a diverse set of products, we
selected 1000 products from Electronics, Beauty
and Personal Care, Sports, Office Products, and
Kitchen categories (200 each) from all of the prod-
ucts with more than 1000 English reviews in the
Amazon US marketplace. In each category, we se-
lected 100 products with the average score greater
than or equal to 4 out of 5, and 100 products with
the average score less than 4 out of 5 (since low-
rated products do not have many reviews, we had
to use 4 out 5 threshold to separate well-reviewed
products from not so well reviewed products).

3.1.2 Test
For test, we selected 280 products from Electronics,
Beauty and Personal Care, Sports, Office Products,
Kitchen, Apparel, Furniture, Lawn & Garden cat-
egories (40 each) with more than 1000 English
reviews in the US marketplace (we added 3 extra
categories compared to the training set to evaluate
generalization ability of models). In each category,
we selected 20 products with average score greater
than or equal to 4 out of 5, and 20 products with
average score less than 4 out of 5.

Figure 2: Training MBART50 for abstractive summa-
rization. <tgt_lg> is the target language specific token.

3.2 Extract Sentences

Since products on Amazon have thousands of re-
views, it is practically impossible to obtain a gold
summary of all reviews for a product. Hence, we
extracted a few sentences (out of all reviews) that
best describe the important features of a product
using an unsupervised extractive summarization
method. In particular, we used Latent Seman-
tic Analysis (LSA) (Steinberger and Jezek, 2004)
which can run efficiently on reviews of products us-
ing a randomized version of the Singular Value De-
composition (SVD) to extract the top 10 sentences
representing the reviews for each product (hyper-
paramter settings are provided in Appendix B). An
example of the sentences extracted by LSA is pro-
vided in Appendix D.

3.3 Collect Human Summaries

We collected 3 human written summaries for each
product in the training data in English and each
product in the test data in English, French, Spanish,
Italian, Arabic, and Hindi using Amazon Mechani-
cal Turk (AMT). For each product, we provided the
10 selected sentences from all reviews along with
the name of the product and asked Turkers to write
a short summary of the selected sentences in the tar-
get language not exceeding 500 characters. More
details on instructions and quality control of the
collected summaries is provided in Appendix A.

4 Abstractive Summarizer

4.1 2-Step Training

To train an abstractive summarizer that can gener-
ate summaries in any of the target languages given
a selected set of sentences in English, we used
MBART50 (Liu et al., 2020; Tang et al., 2020)
model (which has already been fine-tuned on any-
to-any translation task covering 50 languages in-
cluding the ones presented in the CARS test set)
and fine-tuned it for summarization task in 2 steps:

(a) Pre-fine-tuning: We used CNN-DailyMail
dataset (Hermann et al., 2015) which includes
290K articles and the corresponding highlights in

20

English and machine translated all the highlights to
Arabic, Hindi, and Italian. Moreover, we used ML-
SUM dataset (Scialom et al., 2020) which provides
260K article-highlights pair in Spanish and 390K
article-highlights pair in French, and machine trans-
lated the articles of these datasets from Spanish and
French to English. That resulted in a multilingual
dataset of English articles to all target languages
highlights. We then extracted 10 sentences from
each article using LSA to form a dataset of ex-
tracted sentences-highlight pairs that mimics the
final task. Finally, we fine-tuned the MBART50 on
this dataset as shown in Fig. 2.

(b) Fine-tuning: In the second stage of fine-tuning,
we fine-tuned the model on CARS training data.
Since the training data is in English only, we Ma-
chine Translated (MT) the summaries into Spanish,
French, Italian, Hindi, and Arabic using Amazon
Translate2 to obtain a cross-lingual dataset from
English sentences to summaries in the target lan-
guages. We then shuffled the input sentences to ob-
tain two extra versions of the training data (total of
9000 sentences-summary pair for each language).
We then fine-tuned the model on the combined
dataset of all languages as shown in Fig. 2 with
a small addition that we also add the name of the
product after the selected sentences as the input to
the encoder during fine-tuning. Appendix C pro-
vides fine-tuning hyper-parameter details.

4.2 Importance of Including Target
Language Token on the Encoder Side

We observed an important property when fine-
tuning MBART50. Despite the way MBART50
is fine-tuned for translation by only including the
target language token on the decoder side, in our
use case, we observed that relying only on the de-
coder to generate a summary in the target language
from a unified representation of the selected sen-
tences (provided by the encoder) significantly de-
grades the model performance (see Table 1). Hence,
we included the target language token on the en-
coder side as well when we fine-tuned MBART50
for cross-lingual summarization task (as shown in
Fig. 2).

5 Evaluation

All the models are trained and evaluated using Hug-
gingFace Transformers Toolkit (Wolf et al., 2020).

2https://aws.amazon.com/translate

Model EN
R1 R2 RL BS

with <tgt_lg> in input 37.95 14.56 26.41 0.8832
w/o <tgt_lg> in input 16.34 6.07 11.91 0.8111

Table 1: The importance of including the target lan-
guage token (<tgt_lg>) in the input (as shown in Fig. 2)
when fine-tuning the model on cross-lingual summa-
rization data. R1 denotes Rouge-1, R2 denotes Rouge-
2, RL denotes Rouge-L, and BS denotes BERTScore.

5.1 Automatic Evaluation

For evaluation, we included two extra shuffled
input sentence orders per gold summary in the
test data per language to have a better estimate
of the models’ performance (9 sentences-summary
pairs per product). As in training, we added the
name of the product to the end of the selected
sentences as the input to the encoder. For eval-
uation metrics, we use Rouge (Lin, 2004) which
is the most common metric for summary evalua-
tion, and BERTScore (Zhang et al., 2020) which
has been recently shown to correlates with hu-
man judgments the most. For BERTScore, we
utilize RoBERTa (Liu et al., 2019) for English and
mBERT (Devlin et al., 2019) for non-English sum-
maries (which are the default choices).

Table 2 provides the cross-lingual summariza-
tion results on CARS dataset. As can be seen,
adding machine translation of English summaries
(notice that extracted sentences remain in English)
to the training data gives a significant boost to mod-
els’ performance especially for non-English lan-
guages. Moreover, pre-fine-tuning the model on a
similar task using public data can improve model
performance especially in zero-shot case (i.e., train-
ing the model only on English summaries). A sam-
ple generated summary using the best model (last
row in Table 2) is provided in Appendix D.

We also observe that adding machine translated
Arabic and Hindi summaries to the training data
decreases model performance in Rouge score on
these languages (compared to zero-shot with pre-
fine-tuning). The main reason for this degradation
is that the MT translates the names of the products
into Arabic and Hindi (and therefore model learns
to translate them as well), whereas gold summaries
have the names in English. However, this degrada-
tion is not present in BERTScore which relies on
token representations instead of their face value.

To see how well the best model (last row in Ta-
ble 2) generalizes to new categories (ones not in the

21

Model EN FR ES
R1 R2 RL BS R1 R2 RL BS R1 R2 RL BS

Fine-tune only on public data
MBART50 24.28 7.36 18.46 0.8557 17.13 3.11 11.6 0.6506 15.88 2.63 11.76 0.6534
Fine-tune on all English training data
MBART50 35.97 13.49 25.5 0.8779 8.04 3.84 7.21 0.6731 7.08 2.97 6.61 0.6778
+ pre-fine-tuning 35.92 13.49 25.52 0.876 12.64 5.15 10.35 0.6756 6.81 2.72 6.36 0.6758

Fine-Tune on all English training data plus translation of summaries in all other languages
MBART50 37.51 14.17 26.21 0.8824 33.1 9.18 20.72 0.7134 34.19 8.64 21.6 0.7191
+ pre-fine-tuning 37.95 14.56 26.41 0.8832 33.4 9.21 20.73 0.7162 34.42 8.71 21.83 0.722

IT AR HI
R1 R2 RL BS R1 R2 RL BS R1 R2 RL BS

Fine-tune only on public data
MBART50 17.52 3.22 13.2 0.6433 11.4 4.87 11.27 0.6317 4.81 1.41 4.73 0.609
Fine-tune on all English training data
MBART50 6.94 2.93 6.26 0.6692 10.23 6.66 9.89 0.6332 6.01 3.37 5.79 0.6086
+ pre-fine-tuning 18.83 5.24 13.93 0.6805 24.65 14.95 24.18 0.6603 12.12 5.4 11.89 0.627

Fine-Tune on all English training data plus translation of summaries in all other languages
MBART50 29.26 7.43 19.82 0.7119 20.11 9.07 19.8 0.7019 8.8 2.4 8.72 0.6655
+ pre-fine-tuning 29.31 7.42 19.7 0.7137 18.38 8.45 18.0 0.6995 8.87 2.62 8.83 0.6682

Table 2: Cross-lingual summarization results on the CARS set data averaged over 3 gold summaries and 3 different
input sentence orders per product (9 samples per product). R1 denotes Rouge-1, R2 denotes Rouge-2, RL denotes
Rouge-L, and BS denotes BERTScore.

training data), we computed per category perfor-
mance of the model as well (see Table 3). Overall,
we did not observe any particular degradation in
our model’s performance on the categories that did
not appear in the training data. This indicates that
our model generalizes well across domains.

Category EN
R1 R2 RL BS

Categories that appeared in the training data
Electronics 33.52 11.54 22.77 0.8757
Beauty 33.06 11.37 23.72 0.8778
Office Product 34.73 12.95 24.13 0.8764
Sports 40.79 17.55 28.69 0.8889
kitchen 41.23 16.92 28.05 0.8848
Categories that did not appear in the training data
Lawn and Garden 38.97 15.01 27.62 0.885
Furniture 41.55 16.06 28.57 0.8895
Apparel 38.88 14 26.39 0.8849

Table 3: Per category performance of our best model.

5.2 Human Evaluation

To evaluate the summaries generated by our best
model (last row in Table 2) by humans, we asked
Turkers to compare two summaries (the gold sum-
mary from test set and the automatic summary by
our model) in four different aspects: coherence,
informativeness, non-redundancy, and fluency.

Since a high quality evaluation requires constant
monitoring of Turkers, we managed to obtain evalu-
ation for only the full English test set and the 2/3rds
of the Spanish test set. We evaluated the results us-
ing the Best Worst Scaling (BWS) (Kiritchenko and

Feature EN ES
Binary Multi Binary Multi

Coherence -0.0108 0.0487 -0.0446 -0.0694
Informativeness 0.0195 0.1234 -0.038 -0.0992
non-redundancy 0.1061 0.1266 -0.0777 -0.1636
Fluency 0.1450 0.2792 -0.0645 -0.1537

Table 4: BWS scores based on human evaluation of the
summaries. Binary BWS denotes the scores aggregated
in the standard BWS way (-1 if the human summary is
better, and +1 if the automatic summary is better) and
Multi BWS denotes scores ranging between -3 to +3.

Mohammad, 2016) scores as presented in Table 4.
As can be seen, for both English and Spanish the
generated summaries are as good as human written
summaries. Surprisingly, Turkers found generated
summaries to be much better in Fluency in English
compared to human written ones. Although the
trend reverses in the Spanish summaries which is
expected since our model relies only on machine
translated training data for Spanish.

We also looked at the distribution of the scores
on both languages (as presented in Figs. 3 and 4).
For English, the automatic summaries are always
rated to be “much better” more often than the hu-
man summaries, whereas for Spanish the opposite
is true. In general Spanish summaries, whether au-
tomatic or crowdsourced, tend to rate their scores
in the “a bit better” area, especially for informative-
ness, non-redundancy and fluency.

To see how good the generated summaries re-
flect the overall consensus over a product, we also
asked Turkers to give the products a score from 1

22

Figure 3: Human comparison between English gold summaries (AMT) and the ones generated by our best model.

Figure 4: Human comparison between Spanish gold summaries (AMT) and the ones generated by our best model.

Model R1 R2 RL
FewSum (Bražinskas et al., 2020a) 33.56 7.16 21.49
MBART50 30.12 8.02 19.32
+ pre-fine-tuning 36.01 8.71 23.10

Table 5: Rouge scores on the Amazon reviews test
dataset provided in FewSum work. All the models are
only fine-tuned on the training data of the same dataset.

to 5 based on the given reviews. We then computed
the Mean Absolute Error (MAE) between the real
amazon product scores and the guessed scores by
the workers from the review summaries. For En-
glish, the MAE of both the human and generated
summaries are very similar: 0.94 and 0.93, respec-
tively. For Spanish the MAE of the crowdsourced
summaries is slightly smaller than the MAE of the
generated ones (0.62 compared to 0.75).

5.3 Comparison to FewSum

In the FewSum work (Bražinskas et al., 2020a), au-
thors introduced an unsupervised pretraining strat-
egy specifically for opinion review summarization
using hundreds of thousands reviews and demon-
strated that their model can provide state-of-the-
art summaries only using few supervised review
summaries (48 products each having 3 summaries
based on 8 randomly selected reviews). However,
as can be seen in Table 5, using MBART50 along
with our "pre-fine-tuning" strategy (as described in
Section 4), our model outperforms FewSum using

the exact same training data. Moreover, our model
can generate summaries in other languages as well,
using only English reviews.

6 Conclusion

We introduced a hybrid approach to cross-lingual
product review summarization which provides sum-
maries on different target languages by only relying
on English reviews. We demonstrated that our ap-
proach results in review summaries that are as good
as human written ones in English and Spanish (and
comparable to gold summaries in other languages
based on automatic evaluation metrics).

We also showed that our pre-fine-tuning plus
fine-tuning approach can outperform state-of-the-
art in few-shot abstractive review summarization.
Moreover, since our abstractive summarizer is
trained on summarizing a few selected (maybe un-
related) sentences, our end to end system can be
improved by improving the extractive summariza-
tion component only without retraining the more
expensive multilingual encoder-decoder architec-
ture that we used for abstractive summarization
(which is very desirable and cost saving feature in
production systems).

The main shortcoming of our work is that it does
not provide a mechanism to evaluate the correct-
ness of the generated summaries which is part of
our future work.

23

Acknowledgements

We thank Amjad Jbara and Tobias Falke for their
helpful comments and suggestions. We also thank
Amjad Jbara, Enrico Piovano, Nicolas Guenon Des
Mesnards, and Varun Kumar for their help in data
collection and reviewing the summaries written by
Turkers in Arabic, Italian, French, and Hindi.

References
Arthur Bražinskas, Mirella Lapata, and Ivan Titov.

2020a. Few-shot learning for opinion summariza-
tion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4119–4135, Online. Associa-
tion for Computational Linguistics.

Arthur Bražinskas, Mirella Lapata, and Ivan Titov.
2020b. Unsupervised opinion summarization as
copycat-review generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5151–5169, Online. As-
sociation for Computational Linguistics.

Arthur Bražinskas, Mirella Lapata, and Ivan Titov.
2021. Learning opinion summarizers by selecting
informative reviews. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 9424–9442, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei.
2018. Retrieve, rerank and rewrite: Soft template
based neural summarization. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 152–161, Melbourne, Australia. Association
for Computational Linguistics.

Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-
Ling Mao, and Heyan Huang. 2020. Cross-lingual
natural language generation via pre-training. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 34(05):7570–7577.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98, San
Diego, California. Association for Computational
Linguistics.

Eric Chu and Peter J. Liu. 2019. Meansum: A neural
model for unsupervised multi-document abstractive
summarization. In Proc. ICML’19.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention

model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Hal Daumé III and Daniel Marcu. 2006. Bayesian
query-focused summarization. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 305–312,
Sydney, Australia. Association for Computational
Linguistics.

Shrey Desai, Jiacheng Xu, and Greg Durrett. 2020.
Compressive summarization with plausibility and
salience modeling. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6259–6274, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao
Jiang, and Graham Neubig. 2021. GSum: A gen-
eral framework for guided neural abstractive summa-
rization. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4830–4842, Online. Association for
Computational Linguistics.

Susan T Dumais. 2004. Latent semantic analysis. An-
nual review of information science and technology,
38(1):188–230.

Günes Erkan and Dragomir R. Radev. 2004a. Lexrank:
Graph-based lexical centrality as salience in text
summarization. J. Artif. Int. Res., 22(1):457–479.

Günes Erkan and Dragomir R. Radev. 2004b. Lexrank:
Graph-based lexical centrality as salience in text
summarization. 22(1):457–479.

Iftah Gamzu, Hila Gonen, Gilad Kutiel, Ran Levy, and
Eugene Agichtein. 2021. Identifying helpful sen-
tences in product reviews. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 678–691, On-
line. Association for Computational Linguistics.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,

24

pages 4098–4109, Brussels, Belgium. Association
for Computational Linguistics.

Yihong Gong and Xin Liu. 2001. Generic text summa-
rization using relevance measure and latent semantic
analysis. In Proceedings of the 24th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’01,
page 19–25, New York, NY, USA. Association for
Computing Machinery.

Aria Haghighi and Lucy Vanderwende. 2009. Explor-
ing content models for multi-document summariza-
tion. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 362–370, Boulder, Col-
orado. Association for Computational Linguistics.

K. Hermann, Tomás Kociský, Edward Grefenstette,
Lasse Espeholt, Will Kay, Mustafa Suleyman, and
P. Blunsom. 2015. Teaching machines to read and
comprehend. In Proc. NIPS’15.

Yuta Kikuchi, Tsutomu Hirao, Hiroya Takamura, Man-
abu Okumura, and Masaaki Nagata. 2014. Single
document summarization based on nested tree struc-
ture. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 315–320, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Diederik P. Kingma and Jimmy Ba. 2015.
Adam: A method for stochastic optimization.
arXiv:1412.6980.

Svetlana Kiritchenko and Saif M. Mohammad. 2016.
Capturing reliable fine-grained sentiment associa-
tions by crowdsourcing and best-worst scaling. In
Proc. NAACL-HLT’16.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization-step one: Sentence compres-
sion. AAAI/IAAI, 2000:703–710.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
arXiv:1907.11692.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yuning Mao, Xiang Ren, Heng Ji, and Jiawei Han.
2020. Constrained abstractive summarization: Pre-
serving factual consistency with constrained genera-
tion. arXiv:2010.12723.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759, New Orleans, Louisiana.
Association for Computational Linguistics.

Jessica Ouyang, Boya Song, and Kathy McKeown.
2019. A robust abstractive system for cross-lingual
summarization. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2025–2031, Minneapolis, Minnesota.
Association for Computational Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. ICLR.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020.
MLSUM: The multilingual summarization corpus.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8051–8067, Online. Association for Computa-
tional Linguistics.

Josef Steinberger and Karel Jezek. 2004. Using latent
semantic analysis in text summarization and sum-
mary evaluation. Proc. ISIM’04.

Y. Tang, C. Tran, X. Li, P. Chen, Naman Goyal, Vishrav
Chaudhary, Jiatao Gu, and Angela Fan. 2020. Mul-
tilingual translation with extensible multilingual pre-
training and finetuning. arXiv:2008.00401.

25

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Kam-Fai Wong, Mingli Wu, and Wenjie Li. 2008. Ex-
tractive summarization using supervised and semi-
supervised learning. In Proceedings of the 22nd In-
ternational Conference on Computational Linguis-
tics (Coling 2008), pages 985–992, Manchester, UK.
Coling 2008 Organizing Committee.

Tianyi Zhang, V. Kishore, Felix Wu, Kilian Q. Wein-
berger, and Yoav Artzi. 2020. Bertscore: Evaluating
text generation with bert. In Proc. ICLR’20.

26

Appendix

A Data Collection Details

A.1 Instructions
We asked Turkers to follow the following instructions when writing a summary for each product:

1. Summaries written in any language other than the asked language will be rejected.

2. Summaries that do not simplify very long product names will be REJECTED. For example, instead
of referring to a hypothetical product as “FakeBrand FakeCode KN95 Protective Mask” you could
use “FakeBrand KN95 Mask.”

3. Summaries written in first person will be REJECTED. Please write the summary on third person,
and never in the first person.

4. Summaries that include information related to shipping or delivery will be REJECTED. Please do
not include information related to the shipping or delivery of the product.

5. Summaries that include information related to other products will be REJECTED. Sometimes
reviewers might compare the product of interest to other options in the market. It is ok to include
how the product of interest fares compared to other options but do not mention specific alternatives.

6. Some opinions might be long, it is ok to synthesize the most important information contained within
them.

7. Some opinions might not contain relevant information for a product summary, it is ok to ignore them.
For example: “After watching the show, I was looking forward to knowing more about the world,
and I decided to give the book a chance."

A.2 Quality Control
Throughout the process, we asked friends and colleagues to approve the quality of the summaries in the
target languages (in their native language) before adding them to our train/test set. For all the languages,
we could find enough Turkers to write summaries directly in the target languages given the selected
sentences in English (although collecting Arabic was extremely slow). However, for Hindi since we were
not getting quality summaries in a timely manner, we decided to collect summaries for two thirds of the
test data through human translation of the English summaries instead of a combined summarization and
translation process that we asked Turkers to do for other languages.

B LSA Hyper-parameters

For LSA, we considered the top 100 unigrams and bigrams appeared in less than 5% of sentences (to
avoid most common terms) in the term-frequency matrix and used the top 5 eigenvalues for sorting the
most informative sentences (i.e., focused on the 5 most important “topics" for each product). We then
used the top 10 sentences as the sentences representing the reviews for each product. Table A1 shows an
example of the top sentence in the reviews for a selected product.

C Fine-tuning Details

All the models are trained using Adam (Kingma and Ba, 2015) optimizer with 1e−5 learning rate, no
warm-up steps, a linear learning rate scheduler, and an effective batch size of 112. For pre-fine-tuning, we
trained the model for 2 epochs. But for fine-tuning, we trained the models for 5 epochs. For fine-tuning
on FewSum data, we used 10 epochs (but as in the case of fine-tuning on CARS data, we included two
shuffled versions of the input reviews during training).

27

D Sample Generated Summaries

A sample data point and generated summaries (not cherry picked) from the test set are provided in
Table A1.

Product
Name

Loud Alarm Clock with Bed Shaker, Vibrating Alarm Clock for Heavy Sleepers, Deaf and Hard of Hearing,
Dual Alarm Clock, 2 Charger Ports, 7-Inch Display, Full Range Dimmer and Battery Backup - Green

Selected
Sentences
from
Reviews

"Outwardly they look great, the large green numbers give excellent readability and thanks to the adjustable
brightness of the display, they Shine comfortably at night."
The goods have been received Faster than I thought The workmanship is very fine Real time monitoring Uitrasonic
alarm Very sensitive High precision A very satisfying shopping
"I take sedatives and have slept through friends banging on my bedroom door/windows, fire trucks in my
apartment parking lot right outside my door, and massive storms."
"First off, I can sleep through a full blown tornado and over the years I’ve tried every trick in the book to wake
me up in the mornings."
"My sleep is quite heavy if I work hard during the day, I usually do not even hear my phone alarm or those loud
mechanically ringing clocks."
"Easy-to-see numbers with adjustable control, alarm sound, light weight, slim, occupying little space, it charges
my mobile phone."
"I put it on the bedside table, it is easy to read, USB plug to keep your mobile phone, notebook computer and
any other you need to recharge."
"Overall, I love this product and it’s pretty good to wake up sleepy heads in the bed making it a great gift to buy
another for my friend."
"The extra large display allows even someone like me (-9 power eyesight) can see the time without glasses on,
which is a very pleasant thing to experience."
I decided on this clock because it had multiple alarm options and it had usb ports to charge my phone at bedside
without taking up more plug space.

Human
Summary 1

The alarm clock has a loud ringer that will wake you up easily in the morning. The large green numbers on the
clock are easy to read and it is easy to adjust the brightness of the display. The clock is small and takes up little
space and there is even a USB port to charge devices.

Human
Summary 2

The Loud Alarm Clock is designed to wake up heavy sleepers. It vibrates. It has two ports for charging, a
seven-inch display, and a battery back up. Reviewers were pleased with the lightweight and slim design, the two
chargers, the loud alarm sound and the large, easy-to-read display. There were no negative reviews.

Human
Summary 3

This alarm clock is generally well liked by users. They mention that they love the connection ports and it does a
good job waking them up.

Generated
Summary
English

The Loud Alarm Clock with Bed Shaker is a good product, easy to see with adjustable control, the numbers
give excellent readability and the brightness of the display is adjustable. The product is lightweight and slim,
occupying little space and it is easy to read. It has multiple alarm options and it has USB ports to charge your
phone without taking up more plug space.

Generated
Summary
Spanish

El reloj de alarma ruidoso con sofocantedor de cama es una gran adición a su hogar. Es ideal para personas que
tienen problemas de audición graves o no pueden oír el sonido de la alarma cuando dormen. Es fácil de leer y
tiene una pantalla de 7 pulgadas que se puede utilizar para cargar sus teléfonos y portátiles. Los números verdes
son fáciles de ver con un control ajustable y son ligeros y ligeros, lo que lo convierte en un gran regalo.

Generated
Summary
French

L’horloge d’alarme forte avec shaker de lit est un excellent ajout à votre équipement de nuit. Il est facile à
lire et dispose d’un grand écran. Les chiffres verts sont faciles à lire. Ils s’allument confortablement la nuit et
sont livrés avec une grande luminosité réglable. Il y a également deux ports USB pour charger votre téléphone
portable et votre ordinateur portable.

Generated
Summary
Italian

L’orologio svegliare forte con Shaker Bed è un bel prodotto, facile da vedere con un controllo regolabile e un
suono di allarme. Il prodotto è leggero e sottile, occupando poco spazio ed è facile da leggere. Il display è extra
grande e permette anche a qualcuno di vedere l’ora senza occhiali accesi.

Table A1: An example of test data with the generated summaries in latin languages.

28

Proceedings of EMNLP 2022 Industry Track, pages 29–62
December 9–11, 2020. ©2022 Association for Computational Linguistics

Augmenting Operations Research with Auto-Formulation of
Optimization Models From Problem Descriptions

Rindra Ramamonjison1† Haley Li∗ Timothy Yu†

Shiqi He∗ Vishnu Rengan∗ Amin Banitalebi-Dehkordi†

Zirui Zhou† Yong Zhang†

Abstract

We describe an augmented intelligence system
for simplifying and enhancing the modeling
experience for operations research. Using this
system, the user receives a suggested formu-
lation of an optimization problem based on
its description. To facilitate this process, we
build an intuitive user interface system that en-
ables the users to validate and edit the sug-
gestions. We investigate controlled generation
techniques to obtain an automatic suggestion
of formulation. Then, we evaluate their effec-
tiveness with a newly created dataset of linear
programming problems drawn from various
application domains. Code and data are availa-
ble at https://github.com/nl4opt/nl4opt-competition

1 Introduction

Many real-world decision-making problems can
be formulated and solved as mathematical opti-
mization problems. The field of operations re-
search (OR) has seen success in applications rang-
ing from increasing bike-share ridership and effi-
ciency (Beairsto et al., 2021; Ma et al., 2016), man-
aging wastewater collection and treatment systems
(Tao et al., 2020), to finding a revenue-maximizing
pricing strategy (Bitran and Caldentey, 2016). In
fact, optimization solvers can tackle different types
of problems as they are powered by efficient algo-
rithms such as the simplex method (Nash, 2000) or
interior-point methods (Karmarkar, 1984).

However, modeling a problem into a proper for-
mulation is a complex and time-consuming process.
First, a domain expert must describe the problem
and identify its variables, parameters, objective and
constraints. Then, an OR expert needs to translate
this problem description into a precise formulation
using a modeling language, thus making the pro-
cess inefficient and limits the accessibility of the
solvers to non-experts (Hürlimann, 2013).

1 rindranirina.ramamonjison@huawei.com
† Huawei Technologies Canada
∗ University of British Columbia, Vancouver

We propose an augmented intelligence system
to simplify and enhance the modeling process. We
partially automate the process using NLP models
to suggest a formulation that the users can validate
or edit the suggestions using an intuitive interface.
Partial automation avoids the manual writing of the
formulation by using a modeling language, thereby
reducing the time and expertise to build optimiza-
tion models. The intuitive interface also makes
solvers more accessible to non-technical users.

From an NLP perspective, there are many chal-
lenges to parsing an optimization problem’s formu-
lation from its natural language description:

• Limited dataset. The strenuous nature of mod-
eling makes the cost of creating and labeling a large
dataset prohibitive. Thus, efficient few-shot seman-
tic parsers must be trained in a low-resource setting.
Therefore, the solution must be built leveraging
methods that excel on a limited training dataset.

• Document-level input. Most semantic parsers
operate primarily at the sentence level. In contrast,
long paragraph inputs describe the many variables,
parameters, and constraints of optimization prob-
lems. Also, the parsing task involves a high level
of compositionality and ambiguity.

• Context-free output. The outputs of most se-
mantic parsing tasks share some contextual infor-
mation with the inputs (e.g. database table or col-
umn names in SQL queries). In contrast, our task
has a context-free tabular format, which makes it
difficult to align the input-output pair.

• Domain-agnostic parsing. Finally, OR can
tackle a diverse range of applications (Williams,
2013). Hence, the semantic parser must generalize
well not only to new problem instances but also
new application domains.

In this paper, we describe the underlying system
that addresses these challenges and that enables

29

Figure 1: Augmented modeling platform.

the augmented modeling application. Our contribu-
tions are:

1. A novel augmented intelligence application that
simplifies and enhances the modeling process.

2. New controllable generation methods for pars-
ing the formulation of optimization problems
from its natural language description.

3. The first dataset on linear programming word
problems, with which we test and analyze the
effectiveness of the methods for this emerging
application.

2 Related Work

Augmented intelligence systems. Augmented
intelligence systems use AI to assist (and not re-
place) the users in performing certain tasks. These
systems could improve the experience or creativity
of users in artistic applications such as story writ-
ing (Clark et al., 2018), music composition (Huang
et al., 2020), poetry composition (Uthus et al.,
2022), and sketching (Fan et al., 2019). This ap-
proach has also seen success in more task-oriented
applications by helping teachers to grade home-
work efficiently (Malik et al., 2021), salespeople
to summarize sales calls (Asi et al., 2022), and
improving pneumonia diagnostic accuracy (Patel
et al.). We adopt a similar approach for OR and
focus on improving the modeling process.

Semantic parsing and generation. Semantic
parsing maps natural language utterances into
a machine-interpretable representation (Kamath
and Das, 2019). This mapping has been exten-
sively studied for output representations such as

SQL queries (Gan et al., 2020), Unix commands
(Bharadwaj and Shevade, 2021), or logical forms
for querying a knowledge base (Dong and Lap-
ata, 2016). We tackle a different and challenging
semantic parsing task as explained in Section 1.

Building on the success of attention models in
sequence-to-sequence tasks (Sutskever et al., 2014;
Luong et al., 2015), encoder-decoder architectures
have been adopted for designing semantic parsers
(Dong and Lapata, 2016, 2018; Wang et al., 2020).
We propose using an intermediate representation
(IR) that serves as a bridge between natural lan-
guage and the canonical output format. Our two-
stage mapping strategy is different from (Dong and
Lapata, 2018), which initially generates a sketch of
the query and then fills out the slots. In contrast to
prior methods of constrained decoding (Hokamp
and Liu, 2017; Scholak et al., 2021), our approach
uses a simple beam search and leverages a prompt-
guided generation and copying mechanism to guide
the decoding.

Datasets on Mathematical World Problems
(MWP). Recent works have studied the use of
NLP models to automatically solve MWP (Wang
et al., 2017; Ughade and Kumbhar, 2019) Most
existing MWP datasets have focused on returning
the solutions of elementary arithmetic problems
(Roy and Roth, 2015; Koncel-Kedziorski et al.,
2016) and algebra problems (Kushman et al., 2014;
Huang et al., 2016). More challenging benchmarks
have been recently proposed such as SVAMP (Pa-
tel et al., 2021), MATH (Hendrycks et al., 2021)
and GSM8K (Cobbe et al., 2021). In contrast, we
build the first linear programming word problems
(LPWP) dataset and evaluate methods of generating

30

objective: Max 0.07*x+0.02*y

constraint: x >= 0.15*(x+y)
Entity

Tagger

Your client has $60,000 LIMIT available

CONS_DIR to invest for a one-year term. The

money can be placed in a trust VAR yielding a

7% PARAM return OBJ_NAME or in a savings

account VAR yieldinga 2% PARAM return OBJ_NAME.

Based on your client's investment goals, you

advise her that at least CONS_DIR 15% LIMIT of

the investment be placed in the trust VAR.

Given her risk profile, she also requests that

the money placed in savings VAR should not

exceed CONS_DIR 60% LIMIT of her total

investment. How much should your client

allocate to each asset so as to maximize

OBJ_DIR her return OBJ_NAME?

Formulation
Generator

Problem
description

Formulation
suggestions

Edit operationsTagged problem description

Final optimization model

constraint: x+y <= 60000

constraint: y <= 0.6*(x+y)

Figure 2: System diagram for augmented modeling framework.

the formulations as inputs to optimization solvers
which can efficiently return an optimal solution.

3 Augmented Modeling Interface

We present an interactive system that enables users
to model an optimization problem in collaboration
with an AI system. To use this application, the
user first describes the problem using natural lan-
guage. Then, the system will suggest to the user
the formulation of the optimization model includ-
ing the decision variables, objective, and problem
constraints. The system suggests the components
of the formulation one at a time allowing the users
to accept, reject, or edit the suggestions.

An example scenario of a portfolio optimization
problem is shown in Figure 1. Here, the system sug-
gested the formulation of a balance constraint given
the description “savings should not exceed 60% of
her total investment”. Had the system presented
an incorrect formulation (e.g. an upper bound con-
straint), the user can change the type using the in-
terface and the system reformulates the constraint
expression automatically. The user can also edit the
description, which will be stored as metadata of the
model. In the same fashion, the user can add vari-
ables or constraints manually or edit the problem
description to update the model. When the user is
satisfied with the formulation, the system forwards
it to an optimization solver, which then returns ei-
ther an optimal solution of the problem to the user
or warnings for some infeasible constraints.

Figure 2 shows an overview of the underlying
auto-formulation system. It consists of an entity
tagger, a formulation generator, and an augmented
modeling interface. Given a problem description,
the entity tagger labels the keywords that indicate
the components of the optimization problem. For
example, “return” and “at least” are tagged as an
objective name and constraint direction, respec-
tively. Then, the formulation generator uses the
text description and the corresponding tagged enti-
ties to generate the formulation suggestions, which

are then presented to the user by the augmented
modeling interface. In our implementation (experi-
mental settings in the Appendix), we used an XLM-
RoBERTa pre-trained transformer and fine-tuned it
for entity recognition using the dataset described
in Section 5.2.

4 OptGen: Controllable Generation of
Optimization Formulation

Here, we present the methods behind our model
OptGen, for generating the suggested formulation.

4.1 Two-stage mapping approach

It is difficult to directly map the problem descrip-
tion p to the formulation f due to the character-
istics of the input-output pair (p, f) as mentioned
in Section 1. First, the input document p can be
unstructured and ambiguous especially when it de-
scribes many constraints of different types. From
the input, we must precisely extract the canonical
representation f of an optimization formulation.

As shown on the right of Figure 3, this canonical
representation is a context-free table in which the
column header is either a variable symbol or a con-
straint’s right-hand-side (rhs) limit. Each table row
contains the parameters of the objective function
or constraint. As a result, the canonical formula-
tion f is context-free since it abstracts away the
contextual information of p.

Instead, we adopt a two-stage mapping p 7→
r 7→ f to bridge the gap between the natural lan-
guage input and context-free formulation.

Text-to-IR mapping. We first define an inter-
mediate representation (IR) r of the problem to
simplify the parsing. As illustrated in Figure 3, a
Text-to-IR mapping model generates a set of entity-
typed declarations {Di}ni=1 defined in an extended
markup format to simplify its parsing. Note that
other formats can be used for the IR (e.g. a format
defined by a context-free grammar). Each decla-
ration Di is a sequence of tokens that represents

31

	 <DECLARATION>
	 	 <OBJ_DIR> maximize </OBJ_DIR>
	 	 <OBJ_NAME> return </OBJ_NAME> [is]
	 	 	 <VAR> trust </VAR> [times] <PARAM> 7% </PARAM> [plus]
	 	 	 <VAR> savings </VAR> [times] <PARAM> 2% </PARAM>
	 </DECLARATION>

	 <DECLARATION>
	 	 <CONST_DIR> total <CONST_DIR><LIMIT> 60000 </LIMIT>
 <OPERATOR> LESS_OR_EQUAL </OPERATOR>
	 	 <CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>
	 </DECLARATION>

	 <DECLARATION>
	 	 <CONST_DIR> at least <CONST_DIR><LIMIT> 15%</LIMIT>
 <OPERATOR> GREATER_OR_EQUAL </OPERATOR>
	 	 <CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
	 	 <VAR> trust </VAR>
	 </DECLARATION>

	 <DECLARATION>
	 	 <CONST_DIR> should not exceed <CONST_DIR><LIMIT> 60%</LIMIT>
 <OPERATOR> LESS_OR_EQUAL </OPERATOR>
	 	 <CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
	 	 <VAR> savings </VAR>
	 </DECLARATION>

Intermediate Representations of

Objective and Constraint Declarations

Tagged
problem

description
Text-to-IR

Mapping

IR Parser

IR Parser

IR Parser

IR Parser

Canonical output format

0.007 0.002

1.0 60000

- 0.085 0.015 0

- 0.6 0.4 0

1.0

var_0 var_1 rhs

objective

constraint_0

constraint_1

constraint_2

n/a

	 <DECLARATION>
	 	 <OBJ_DIR> maximize </OBJ_DIR>
	 	 <OBJ_NAME> return </OBJ_NAME> [is]
	 	 	 <VAR> trust </VAR> [times] <PARAM> 7% </PARAM> [plus]
	 	 	 <VAR> savings </VAR> [times] <PARAM> 2% </PARAM>
	 </DECLARATION>

	 <DECLARATION>
	 	 <CONST_DIR> total <CONST_DIR><LIMIT> 60000 </LIMIT>
 <OPERATOR> LESS_OR_EQUAL </OPERATOR>
	 	 <CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>
	 </DECLARATION>

	 <DECLARATION>
	 	 <CONST_DIR> at least <CONST_DIR><LIMIT> 15%</LIMIT>
 <OPERATOR> GREATER_OR_EQUAL </OPERATOR>
	 	 <CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
	 	 <VAR> trust </VAR>
	 </DECLARATION>

Figure 3: Overview of our formulation generation approach.

a typed and structured representation of either the
optimization objective or a constraint. Each Di is
defined based on a predefined template of the differ-
ent objective and constraint types. The tokens defin-
ing each declaration are wrapped in special tags.
For example, <OBJ_DIR> maximize </OBJ_DIR>

and <OBJ_NAME> return </OBJ_NAME> define the
direction and the name of the objective. Since these
tokens are derived from the input description, the
IR preserves the context of the problem. We de-
scribe the grammar of the IR in the Appendix.

IR parsing. An IR parser converts each IR dec-
laration to the canonical format. We use an XML
parser and apply simple transformations to convert
numerical words to decimal numbers and to fol-
low the following conventions. First, the canon-
ical format always "minimize" a cost function.
When the objective direction is "maximize," we
instead change the sign of each objective param-
eter. Similarly, each inequality constraint must
have a LESS_OR_EQUAL operator and convert each
inequality constraint to the form a>x ≤ b.

4.2 Prompt-guided generation model
We use an autoregressive model that is built upon
the BART language model (Lewis et al., 2020). A
prompt-guided generation is proposed to improve
the accuracy of the Text-to-IR mapping. The idea
is to decode the declarations of the IR one by one
by using a declaration prompt to focus the gen-
eration. A declaration prompt is a prefix of the
IR declaration of an objective or a constraint. For
an objective, the prompt is composed of the en-
tity tokens of the objective’s direction and name.
Similarly, the prompt for a constraint is defined by
the entity tokens of the constraint direction. These
tokens are obtained from the output of the Entity
Tagger model shown in Figure 2. The declaration

prompt is added to the input text of the encoder.
The role of the prompt is to provide contextual trig-
gers for the decoder to focus on the relevant parts
of the declaration to be generated. As illustrated
in Figure 4, the model is trained to generate the IR
of the declaration based on the declaration prompt
and the problem description.

One key requirement of the Text-to-IR mapping
is the ability to extract the variable names and data
parameters from the descriptions and copy these im-
portant mentions from the input description into the
output IR of the decoder. To augment the capabil-
ity of BART encoder-decoder model, we leverage
a copy mechanism that computes the probability
distribution Pcopy over the input tokens using cross-
attention scores. The copy distribution is calculated
at each time step t by taking the mean of the de-
coder’s cross-attention scores across all attention
heads as follows:

et,i =
(Wsst)

T Whhi√
dk

αt,i = softmax (et,i)

Pcopy =
1

nH

∑

i

αt,i

where Ws and Wh are the projection matrices for
the encoder and decoder. Then, st, hi, and nH are
the decoder hidden state at time step t, the encoder
hidden state for the attention head i, and the number
of heads respectively.

We add the special tokens of the IR into the
BART target vocabulary and mask out any vocabu-
lary words that are not present in the source input.
Following (See et al., 2017), we use a soft switch
pgen ∈ [0, 1] to choose between generating a word
from the vocabulary by sampling from Pvocab, or
copying a word from the input sequence by sam-
pling from Pcopy. Thus, the final probability distri-

32

<s><OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> return </OBJ_NAME></s><s>Your
client has $60,000 available to invest for a one-year
term. The money can be placed in a trust yielding a
7% return or in a savings account yielding a 2%
return. Based on your client's investment goals, you
advise her that at least 15% of the investment be
placed in the trust. Given her risk profile, she also
requests that the money placed in savings should not
exceed 60% of her total investment. How much
should your client invest in each so as to maximize
her return?<tab><tab><tab><tab></s>

</s><s><DECLARATION>
<OBJ_DIR> maximize </OBJ_DIR><OBJ_NAME>
return </OBJ_NAME>

</s><s><DECLARATION><OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> return </OBJ_NAME> [is] <VAR> trust </VAR> [times]
<PARAM> 7% </PARAM> [plus] <VAR> savings </VAR> [times]
<PARAM> 2% </PARAM></DECLARATION></s>

Input

Embedding

Declaration PromptEncoder input Decoded IR

Input Text

Encoder IR Decoder

Encoder input Declaration Prompt

Figure 4: Description of prompt-guided generation method.

bution of a word w is given by:

P (w) = pgenPvocab (w) +
(
1− pgen

)
Pcopy (w)

and is used to compute the loss for timestep t as the
negative loglikehood of the target word yt for that
timestep during training. Then, we average the loss
over all time steps. As a result, the model is trained
to produce tokens from either the IR vocabulary or
the input problem description.

5 Experiments

5.1 Dataset
Dataset description. We curated a first-ever
LPWP dataset1 and use it to train and evaluate
our methods. The dataset contains a collection of
LP problems of the form:

min
x∈Rn

c>x s.t. a>i x ≤ bi, i = 1, . . . ,m

where c and ai represent the parameters of the ob-
jective and the i-th constraint, respectively. bi is the
right-hand-side (rhs) limit, and the goal is to find x
that minimizes the objective value. The objective
and constraint functions are linear with respect to
variables in the LP problems. Each example has
a text description of the problem and is annotated
with the IR, math representation, and canonical
formulation as shown in Figure 3. Table 1 sum-
marizes the statistics of the dataset. More details
and examples of the dataset are provided in the
Appendix.

The dataset contains 1101 LP problems from
the source domain (advertising, investment, sales)
and target domain (production, science, transporta-
tion). The train, dev, and test splits contain 713, 99,
and 289 samples, respectively. The training split
is comprised of solely of samples from the source
domain whereas the dev and test splits contain sam-
ples from both source and target domains with a
source-to-target domain ratio of 1:3.

1We plan to release this dataset and open-source the code
to the research community for future research.

Number of Problems 1101
Number of Declarations 4216
Number of Constraint Types 6
Average Number of Variables 2.08
Average Number of Constraints 2.83

Table 1: Summary statistics of the LPWP dataset.

Dataset creation and quality control. The
dataset was created from scratch and annotated in-
ternally by a team of 20 researchers and engineers
with different levels of expertise in OR/NLP. The
process included 3 stages: (1) problem creation,
(2) NER annotation, and (3) REL annotation and
declaration generation. Each stage was followed
by rigorous quality checks and verification. The
creation process is described in Figure 5.

Additional details of the dataset including the
creation process, examples of the problem and their
corresponding math formulation and IR, exclusion
criteria, and inter-annotator agreement score, etc,
are reported in the Appendix.

5.2 Results and Discussions
Baseline and metrics. We conducted experi-
ments using the dataset described in Section 5.1.
We use BART model (Lewis et al., 2020) as base-
line for the two-stage mapping approach. In ad-
dition, we adopt the Text-to-Table (T2T) model
(Wu et al., 2021) as a baseline for the direct ap-
proach that directly produces the canonical form.
An example of its output is shown in Table 3 in the
Appendix.

For evaluation, we measure the declaration-level
mapping accuracy on the canonical formulation
defined as:

Acc = 1−
∑N

i=1min {FPi + FNi, Di}∑N
i=1Di

,

where for a given problem i, Di is the number
of ground-truth declarations, false positives FPi is
the number of non-matched predicted declarations,
and false negatives FNi is the number of excess un-
matched ground-truth declarations. In other words,

33

Quality

Control

NER

Annotation

NER
Verification

Relation

Annotation

REL

Validation

Convert to
Declarations

Declaration

Verification

Problem

Creation

LPWP

Dataset

Problem
Specifications

Domains
Templates
...

Figure 5: Overview of dataset creation.

FNi is only non-zero when there are more ground-
truth declarations than predicted declarations. The
min is to prevent negative accuracy and overpenal-
ization on single problems.

Main Results. Table 2 summarizes our results on
the source and target domains. The BART baseline
achieved the worst performance on all domains. In
fact, BART hallucinated by producing too many
constraints or many wrong parameters. Next, the
direct mapping approach of T2T model achieved
the highest accuracy of 88% on the Source domain
but generalized poorly on out-of-domain (Target)
test set. While it seemed to learn the task, T2T
overfit to the Source training data. In contrast, our
proposed OptGen achieved an absolute +18% ac-
curacy improvement over direct mapping (T2T) on
the Target domain. It was able to generalize better
than the other models and produced the fewest er-
rors on the problem structure and parameters. Our
two-stage approach helped in this regard while the
T2T must directly learn to convert to the canonical
form. A detailed error analysis can be found in
Figures 8 and 9 in the Appendix.

Ablation study. We also analyzed the impor-
tance of the individual methods used in our model
in Table 2. It shows that the copy mechanism is
important for accurately mapping the description to
the equivalent formulation. Without the copy mech-
anism, we see significant accuracy drops of about
5% and 30% on Source and Target respectively.
We show a qualitative comparison of generated IR
formulations for two LP problems in Tables 12
and 13 in the Appendix. While our model could
perfectly generate the correct representations, the
model without copy mechanisms produced many
errors. For example, it hallucinated the wrong con-
straint limits or detected the wrong constraint types.
The prompt-guided generation method also led to
slightly better performance on the Target domain.
Finally, we noticed +6% improvement for T2T on
the target domain when using contextual prompts.

These results show the importance of using con-
trolled generation techniques for learning the syn-
tax and grammar of the target IR language and for

Method Source Target Sci Prod Trans

T2T 0.83 0.39 0.46 0.37 0.37
T2T + Prompt 0.88 0.45 0.49 0.46 0.40
BART 0.52 0.20 0.21 0.19 0.20
OptGen w/o copy 0.55 0.34 0.38 0.32 0.33
OptGen w/o prompt 0.58 0.61 0.64 0.63 0.57
OptGen 0.60 0.63 0.60 0.66 0.64

Table 2: Results for each model on the declaration-level
mapping accuracy metric. Source consists of samples from
the source domain test split. Target is a weighted mean (by
number of declarations) of the science (Sci), production (Prod),
and transportation (Trans) target domains test split.

accurately mapping the input description to the IR
formulation.

Limitations and future works. Our preliminary
results show the potential and the importance of
controllable generation methods for enabling the
augmented modeling system. While the proposed
OptGen generation model was shown to generalize
better than baseline models, its accuracy perfor-
mance should still be enhanced further by improv-
ing the decoding method or by using edit-based
models (Malmi et al., 2022) to automatically cor-
rect the erroneous parts of the formulation. As
future work, we will conduct human evaluation of
the augmented system by measuring the efficiency
improvement perceived by real users. As the cur-
rent dataset only covers LP problems, we will also
expand it to cover other types of problems such
as mixed-integer programs, which have different
types of constraints. Other directions can also be
explored to build more data-efficient methods.

6 Conclusion

We introduced an augmented modeling platform, in
which users enter the descriptions of optimization
problems and interact with an AI system to effi-
ciently model their formulations. To this end, we
described the underlying system for this emerging
application and proposed controllable generation
methods to enable it. We also created a training
dataset of linear programming word problems to
evaluate the effectiveness of the proposed methods.
Our findings showed that the design of generation
models and methods can have significant impact
on the accuracy of the system’s suggested formula-

34

tions and that the system should help the users to
validate and edit the suggestions.

7 Ethics Statement

This augmented intelligence system is intended
to parse the formulation of optimization problems
from its natural language description to aid stake-
holders in their decision-making. The dataset was
created taking special care to exclude samples with
inappropriate language or names of real people,
products or companies. The harm to users result-
ing from incorrect parsing is limited. However,
depending on the application, the system may be
used in sensitive or critical applications, such as a
power grid, flights scheduling, etc. In such cases,
the solver should be used with caution and the mod-
eling process should be validated by the domain
expert. Finally, operations research has historically
been applied in tactical military operations. We
must understand the potential negative impact of
misusing this technology for society at large and
the users must seriously consider the ethical con-
cerns related to military applications.

References
Abedelkadir Asi, Song Wang, Roy Eisenstadt, Dean

Geckt, Yarin Kuper, Yi Mao, and Royi Ronen. 2022.
An end-to-end dialogue summarization system for
sales calls. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies: Industry Track, pages 45–53, Hybrid:
Seattle, Washington + Online. Association for Com-
putational Linguistics.

Jeneva Beairsto, Yufan Tian, Linyu Zheng, Qunshan
Zhao, and Jinhyun Hong. 2021. Identifying loca-
tions for new bike-sharing stations in glasgow: an
analysis of spatial equity and demand factors. An-
nals of GIS, 0(0):1–16.

Shikhar Bharadwaj and Shirish Shevade. 2021. Ex-
plainable natural language to bash translation using
abstract syntax tree. In Proceedings of the 25th Con-
ference on Computational Natural Language Learn-
ing, pages 258–267, Online. Association for Compu-
tational Linguistics.

Gabriel R. Bitran and René A. Caldentey. 2016. An
overview of pricing models for revenue manage-
ment. IEEE Engineering Management Review,
44:134–134.

Elizabeth Clark, Anne Spencer Ross, Chenhao Tan,
Yangfeng Ji, and Noah A. Smith. 2018. Creative
writing with a machine in the loop: Case studies on
slogans and stories. 23rd International Conference
on Intelligent User Interfaces.

Karl Cobbe, Vineet Kosaraju, et al. 2021. Training ver-
ifiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Judith E. Fan, Monica Dinculescu, and David Ha.
2019. Collabdraw: An environment for collabo-
rative sketching with an artificial agent. In Pro-
ceedings of the 2019 on Creativity and Cognition,
page 556–561, New York, NY, USA. Association for
Computing Machinery.

Yujian Gan, Matthew Purver, and John R. Woodward.
2020. A review of cross-domain text-to-SQL mod-
els. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing: Stu-
dent Research Workshop, pages 108–115, Suzhou,
China. Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational
Linguistics.

Cheng-Zhi Anna Huang, Hendrik Vincent Koops,
Ed Newton-Rex, Monica Dinculescu, and Carrie J.
Cai. 2020. Ai song contest: Human-ai co-creation
in songwriting.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do comput-
ers solve math word problems? large-scale dataset
construction and evaluation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
887–896, Berlin, Germany. Association for Compu-
tational Linguistics.

Tony Hürlimann. 2013. Mathematical modeling and
optimization: an essay for the design of computer-
based modeling tools, volume 31. Springer Science
& Business Media.

35

Aishwarya Kamath and Rajarshi Das. 2019. A survey
on semantic parsing.

N. Karmarkar. 1984. A new polynomial-time algo-
rithm for linear programming. In Proceedings of
the Sixteenth Annual ACM Symposium on Theory of
Computing, STOC ’84, page 302–311, New York,
NY, USA. Association for Computing Machinery.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A math word problem repository. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1152–1157, San Diego, California. Association for
Computational Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 271–281, Baltimore, Maryland. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Yingying Ma, Xiaoran Qin, Jianmin Xu, and Xiangli
Zou. 2016. Research on pricing method of public
bicycle service: A case study in guangzhou. In IEEE
International Conference on Service Operations and
Logistics, and Informatics (SOLI), pages 156–161.

Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song,
Madison Coots, John Mitchell, Noah D. Goodman,
and Chris Piech. 2021. Generative grading: Near
human-level accuracy for automated feedback on
richly structured problems. In Proceedings of the
14th International Conference on Educational Data
Mining, EDM 2021, virtual, June 29 - July 2, 2021.
International Educational Data Mining Society.

Eric Malmi, Yue Dong, Jonathan Mallinson, Aleksandr
Chuklin, Jakub Adamek, Daniil Mirylenka, Felix
Stahlberg, Sebastian Krause, Shankar Kumar, and
Aliaksei Severyn. 2022. Text generation with text-
editing models.

John C Nash. 2000. The (dantzig) simplex method for
linear programming. Computing in Science & Engi-
neering, 2(1):29–31.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Bhavik N. Patel, Louis Rosenberg, Gregg Willcox,
David Baltaxe, Mimi Lyons, Jeremy Irvin, Pranav
Rajpurkar, Timothy Amrhein, Rajan Gupta, Safwan
Halabi, Curtis Langlotz, Edward Lo, Joseph Mam-
marappallil, A. J. Mariano, Geoffrey Riley, Jayne
Seekins, Luyao Shen, Evan Zucker, and Matthew
Lungren. Human–machine partnership with artifi-
cial intelligence for chest radiograph diagnosis. npj
Digital Medicine, 2(1).

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems,
NIPS’14, page 3104–3112, Cambridge, MA, USA.

Diana Qing Tao, Martin Pleau, et al. 2020. Analytics
and Optimization Reduce Sewage Overflows to Pro-
tect Community Waterways in Kentucky. Interfaces,
50(1):7–20.

Shounaak Ughade and Satish Kumbhar. 2019. Survey
on mathematical word problem solving using natu-
ral language processing. In 2019 1st International
Conference on Innovations in Information and Com-
munication Technology (ICIICT), pages 1–5.

David Uthus, Maria Voitovich, and R.j. Mical. 2022.
Augmenting poetry composition with Verse by
Verse. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: Industry Track, pages 18–26, Hybrid: Seat-
tle, Washington + Online. Association for Compu-
tational Linguistics.

36

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854, Copenhagen, Denmark. Association for Com-
putational Linguistics.

H Paul Williams. 2013. Model building in mathemati-
cal programming. John Wiley & Sons.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2021.
Text-to-table: A new way of information extraction.

37

8 Appendix

This section contains supplementary materials in-
cluding qualitative comparisons, examples from the
dataset, as well as additional details which were
omitted from the main paper due to space limita-
tions.

A More details on dataset description

In Table 4, we showcase the different constraint
types, along with their use in a problem, their math
formulation, and their IR. Tables 6, 7 and 8 provide
examples showing the problem description, IR and
the math formulations.

B More details on dataset creation

The LPWP dataset creation process consists of
three stages.

B.1 Stage 1: Problem creation
First, we invited 15 researchers and engineers to
create original LP problems. They created the prob-
lems following some specifications such as prob-
lem domains and templates. The problem domains
include advertising, investment, sales, agriculture,
manufacturing, transportation and health sciences.
During the creation step, 5 additional people were
tasked with performing quality control and giving
guidance to the problem creators. This included
screening for the exclusion criteria (e.g. use of
inappropriate language or names of real people,
products or companies) and making sure the pro-
duced problem followed the specified domain and
template. In fact, we used these templates to ensure
the diversity of the problem structure (e.g. number
of constraints, objectives and constraint types) in
the dataset. If a mistake was detected in the prob-
lem, the problem creator would have been asked
to fix it and the correction was verified. We made
sure that each problem was verified by at least two
people.

B.2 Stage 2: NER Annotation
At this stage, annotators were required to locate and
classify entities mentioned in the problem. There
are in total 6 types of targeted entities: variable
(VAR), parameter (PARAM), limit (LIMIT), con-
straint direction (CONST_DIR), objective direc-
tion (OBJ_DIR) and objective name (OBJ_NAME).
We used the Prodigy annotation tool to annotate the
problems. A screenshot of one annotation session
is provided in Figure 6. We asked an additional

annotator to resolve disagreements by reading the
guideline thoughtfully and asking the annotators
for clarifications if needed.

To ensure the quality of the NER annotations,
four OR/NLP experts annotated more than 10% of
the entire dataset, with an equal split between each
domain, separately to compute the inter-annotator
agreement. We measured an average pairwise
micro-averaged F1 score of 97.7% for the inter-
annotator agreement, showing the reliability of the
annotation process.

B.3 Stage 3: Relation annotation and
declaration generation

In the final stage, we annotated relations between
entities for representing the objective and constraint
declarations. Using a custom Prodigy annotation
recipe, we integrated some validation checks to
detect mistakes in the relation annotation period.
These checks ensured that the annotator corrected
all mistakes before proceeding to the next prob-
lem. Table 5 summarizes the relations required
to represent each constraint type. The validation
checks verified the number, labels, directions, and
the entity labels of all relations that represent one
constraint or objective. To increase the efficiency
of the annotation process, we also provided guide-
lines and trained annotators to annotate each type
of constraints. Similar to stage 2, we worked with
annotators to resolve complex relations. A screen-
shot of a relation annotation session is provided in
Figure 7.

After annotating the relations, we used a Python
script to automatically convert the extracted rela-
tions into optimization declarations. A team of 5
people were asked to verify the correctness of the
optimization declarations for all problems.

C Examples of target domain problems

Tables 9, 10 and 11 provide additional examples
from the target domain: production, transportation,
and sciences respectively.

D Predicted vs gold IR for target domain
examples

Table 14-20 demonstrate the predictions of our
model in comparison to the gold standard (ground-
truth) for several examples from the target domain.
We show examples for when the model produced
the gold IR formulation in Table 14 and Table 15.

38

More importantly, we illustrate and analyze dif-
ferent errors when the model was used to parse
examples from the target domain. For each exam-
ple, detailed analysis of the errors are given in the
captions of Table 16-20.

E Qualitative comparison of test
predictions

In Table 12 and 13, we qualitatively compare the
generated IR of two different optimization prob-
lems. Our model perfectly matched the gold IR for
both problems. When the copy mechanism is not
used, the model made few errors when generating
the constraint declarations. In the first example (Ta-
ble 12), the model hallucinates the wrong constraint
limits in the first two constraints. Furthermore, the
constraint type is invalid for the second constraint.
Similar errors happen in the problem of Table 13.

F Experimental settings

NER experiments. We trained the XLM-
RoBERTa transformer as the baseline model.
The training was performed as a two-step ap-
proach with a training followed by a fine-tuning
step. The training step utilized the Hugging-
Face get_linear_schedule_with_warmup func-
tion that uses a learning rate decreasing linearly
to 0 from the initial learning rate (1E-4) after a
warmup period. This step was run for a maximum
of 25 epochs on a batch of 64 samples with the
early stopping callback function set to stop training
monitoring the loss of the development split with
a patience of 5 epochs and minimum change of
0.001. A model checkpoint was also used to save
a checkpoint of the model that performed the best
on the development set. The fine-tuning step also
utilized a learning rate of 0.0001 for a maximum of
30 epochs with the same callback functions used in
the training step. To set the learning rate, we used
a grid search using a development set.

Generation experiments. We trained the BART
baseline model and our model for a total of 200
epochs, using a learning rate of 1E-06, and with a
batch size of 32. The corresponding performance
on the dev set for the best model is summarized in
Table 21. We trained the Text-to-Table for a total of
4000 updates, using a learning rate of 1E-05, and
with max-tokens of 4096. To set the learning rate,
we used a grid search using a development set.

39

Figure 6: Screenshot of NER annotation using Prodigy.

Figure 7: Screenshot of REL annotation using Prodigy.

40

Problem Description A hotel employs cleaners and receptionists. Cleaners earn $500 per
week and receptionists earn $350 per week. The hotel requires a
minimum of 100 workers of whom at least 20 must be receptionists.
To keep the hotel clean and running smoothly, the number of recep-
tionists should be at least a third of the number of cleaners. The hotel
wants to keep the weekly wage bill below $30000. Formulate a LP to
minimize the wage bill.

Text-to-Table + Prompt Form

cleaners receptionists rhs
objective 500.0 350.0
minimum -1.0 -1.0 -100.0
at least 0.0 -1.0 -20.0
at least 0.3333 -1.0 0.0
below 500.0 350.0 30000.0

Canonical Form

var_0 var_1 rhs
objective 500.0 350.0
constraint_0 -1.0 -1.0 -100.0
constraint_1 0.0 -1.0 -20.0
constraint_2 0.3333 -1.0 0.0
constraint_3 500.0 350.0 30000.0

Table 3: Text-to-Table example: Problem description, and expected output. Newline tokens have been replaced
with newline characters, indentation was added, and column dividers were omitted for readability.

41

Constraint Type Problem Description Math Formulation + IR Representation

Sum Constraint

A bike shop sells two models of a bike: a mountain bike and a road bike.
(...) The bike shop owner knows that the monthly demand will be at most
150 bikes. (...) How many bikes of each type should be stocked in order

to maximize profit?

x + y <= 150

<DECLARATION><CONST_DIR> at most </CONST_DIR><LIMIT> 150 </LIMIT>

<OPERATOR> LESS_OR_EQUAL </OPERATOR>

<CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE></DECLARATION>

Upper Bound

An ice cream bar sells vanilla and chocolate ice cream cones. (...) The
ice cream bar must make at lest 20 cones of vanilla ice cream but cannot
make more than 50 cones. (...) How many cones of each flavor should

they make to maximize profit?

x <= 50

<DECLARATION><CONST_DIR> cannot make more than </CONST_DIR><LIMIT>
50 </LIMIT><OPERATOR> LESS_OR_EQUAL </OPERATOR><CONST_TYPE>

[UPPER_BOUND] </CONST_TYPE> [for] <VAR> vanilla ice cream </VAR>
</DECLARATION>

Lower Bound

There is only 5000 grams of a rare flower extract needed to make both
youth and adult doses. (...) A minimum of 10 adult doses need to be
made. (...) How many of each dose should be prepared to maximize

profit?

y >= 10

<DECLARATION><CONST_DIR> minimum </CONST_DIR><LIMIT> 10 </LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR><CONST_TYPE>

[LOWER_BOUND] </CONST_TYPE> [for] <VAR> adult doses </VAR>
</DECLARATION>

Linear Constraint (e.g.
minimum requirement or

capacity constraint)

A smoothie store sells two types of smoothies (...). Each small smoothie
requires 2 units of ice cream and 1 unit of peanut butter. Each large
smoothie requires 3 units of ice cream and 2 units of peanut butter.

The company only has a total of 20 units of ice cream and 18 units of
peanut butter. (...) how many of each should the store sell to maximize

profit?

2x + 3y <= 20

<DECLARATION><CONST_DIR> total </CONST_DIR><LIMIT> 20 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR><CONST_TYPE>

[LINEAR_CONSTRAINT] </CONST_TYPE> [is] <VAR> small smoothie </VAR>
[TIMES] <PARAM> 2 </PARAM><VAR> large smoothie </VAR> [TIMES] <PARAM> 3

</PARAM></DECLARATION>

Ratio Control Constraint
A furniture store only stocks and sells dining tables and chairs. (...)

Because chairs sell in larger quantities, at least 70% of all furniture in
the store must be chairs. (...) Formulate an LP to maximize profit.

x >= 70/100 * (x+y)

<DECLARATION><CONST_DIR> at least </CONST_DIR><LIMIT> 70% </LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR><CONST_TYPE>

[RATIO_CONSTRAINT] </CONST_TYPE> [for] <VAR> chairs </VAR>
</DECLARATION>

Balance Constraint
 Type-1 : X <= B*Y

There is only 5000 grams of a rare flower extract needed to make both
youth and adult doses. (...) Demand is such that at least three times as
many youth doses are needed than the adult doses. (...) . How many

of each dose should be prepared to maximize profit?

x >= 3y

<DECLARATION><CONST_DIR> at least </CONST_DIR><OPERATOR>
GREATER_OR_EQUAL </OPERATOR><CONST_TYPE> [XBY_CONSTRAINT]

</CONST_TYPE><VAR> adult doses </VAR> [TIMES] <PARAM> three </PARAM>
[is] <VAR> youth doses </VAR></DECLARATION>

Balance Constraint
 Type-2 : X <= Y

A peanut farmer has to send his product to the city. (...) He wants to
spend at most $3000 and the number of train trips must not exceed
the number of truck trips. Formulate a LP to maximize the number of

peanut packages that can be transported.

x <= y

<DECLARATION><CONST_DIR> must not exceed </CONST_DIR><OPERATOR>
LESS_OR_EQUAL </OPERATOR><CONST_TYPE> [XY_CONSTRAINT]
</CONST_TYPE><VAR> truck trips </VAR> [is] <VAR> train trips </VAR>

</DECLARATION>

Table 4: Different types of constraints with examples from the LPWP dataset.

42

Constraint Type Problem Description Relation Annotation Examples

Sum Constraint

A bike shop sells two models of a bike: a mountain
bike and a road bike. (...) The bike shop owner knows
that the monthly demand will be at most 150 bikes.

(...) How many bikes of each type should be stocked in
order to maximize profit?

CONST_DIR -> LIMIT

Upper Bound

An ice cream bar sells vanilla and chocolate ice cream
cones. (...) The ice cream bar must make at lest 20
cones of vanilla ice cream but cannot make more

than 50 cones. (...) How many cones of each flavor
should they make to maximize profit?

CONST_DIR -> LIMIT

VAR -> LIMIT

Lower Bound

There is only 5000 grams of a rare flower extract
needed to make both youth and adult doses. (...)

A minimum of 10 adult doses need to be made. (...)
How many of each dose should be prepared to

maximize profit?

CONST_DIR -> LIMIT

VAR -> LIMIT

Linear Constraint (e.g.
minimum requirement
or capacity constraint)

A smoothie store sells two types of smoothies (...).
Each small smoothie requires 2 units of ice
cream and 1 unit of peanut butter. Each large

smoothie requires 3 units of ice cream and 2 units
of peanut butter. The company only has a total of 20
units of ice cream and 18 units of peanut butter. (...)
how many of each should the store sell to maximize

profit?

CONST_DIR -> LIMIT

VAR (X) -> PARAM

VAR (Y) -> PARAM

Ratio Control Constraint

A furniture store only stocks and sells dining tables
and chairs. (...) Because chairs sell in larger

quantities, at least 70% of all furniture in the store
must be chairs. (...) Formulate an LP to maximize

profit.

CONST_DIR -> LIMIT

VAR -> LIMIT

Balance Constraint
 Type-1 : X <= B*Y

There is only 5000 grams of a rare flower extract
needed to make both youth and adult doses. (...)

Demand is such that at least three times as many
youth doses are needed than the adult doses. (...) .

How many of each dose should be prepared to
maximize profit?

VAR (X) -> CONST_DIR

CONST_DIR-> PARAM

PARAM -> VAR (Y)

Balance Constraint
 Type-2 : X <= Y

A peanut farmer has to send his product to the city.
(...) He wants to spend at most $3000 and the number
of train trips must not exceed the number of truck

trips. Formulate a LP to maximize the number of
peanut packages that can be transported.

VAR (X) -> CONST_DIR

CONST_DIR-> VAR (Y)

<CONST_DIR> minimum </CONST_DIR> <LIMIT> 10 </LIMIT>
LOWER

<VAR> adult doses </VAR> <LIMIT> 10 </LIMIT>
LOWER

<VAR> small smoothie </VAR> <PARAM> 2 </PARAM>
LINEAR

<VAR> large smoothie </VAR> <PARAM> 3 </PARAM>
LINEAR

<CONST_DIR> at least </CONST_DIR> <LIMIT> 70% </LIMIT>
RATIO

<VAR> chairs </VAR> <LIMIT> 70% </LIMIT>
RATIO

<VAR> youth doses </VAR> <CONST_DIR> at least </CONST_DIR>
BALANCE-1

<CONST_DIR> at least </CONST_DIR> <PARAM> three </PARAM>
BALANCE-1

<PARAM> three </PARAM> <VAR> adult doses </VAR>
BALANCE-1

<VAR> train trips </VAR> <CONST_DIR> must not exceed </CONST_DIR>
BALANCE-2

<CONST_DIR> must not exceed </CONST_DIR> <VAR> truck trips </VAR>
BALANCE-2

<LIMIT> 20 </LIMIT><CONST_DIR> total </CONST_DIR>
LINEAR

<VAR> vanilla ice cream </VAR> <LIMIT> 50 </LIMIT>
UPPER

<CONST_DIR> cannot make more than </CONST_DIR>
UPPER

<LIMIT> 50 </LIMIT>

<CONST_DIR> at most </CONST_DIR>
SUM

<LIMIT> 150 </LIMIT>

Table 5: REL annotation examples for different constraint types.

43

Problem Description There is only 5000 grams of a rare flower extract needed to make both
youth and adult doses. Youth doses contain 20 grams of extract and
adult doses contain 35 grams. Demand is such that at least three times
as many youth doses are needed than the adult doses. A minimum
of 10 adult doses need to be made. Youth doses are sold for a profit
of $5 while adult doses are sold at a profit of $3. How many of each
dose should be prepared to maximize profit?

Intermediate Representation
<DECLARATION>

<OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> profit </OBJ_NAME> [is]
<VAR> Youth doses </VAR> [TIMES] <PARAM> 5 </PARAM>
<VAR> adult doses </VAR> [TIMES] <PARAM> 3 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> only </CONST_DIR><LIMIT> 5000 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> Youth doses </VAR> [TIMES] <PARAM> 20 </PARAM>
<VAR> adult doses </VAR> [TIMES] <PARAM> 35 </PARAM>

</DECLARATION>

DECLARATION>
<CONST_DIR> at least </CONST_DIR>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [XBY_CONSTRAINT] </CONST_TYPE>
<VAR> adult doses </VAR> [TIMES]
<PARAM> three </PARAM> [is]
<VAR> youth doses </VAR>

</DECLARATION>

<DECLARATION>
<CONST_DIR> minimum </CONST_DIR><LIMIT> 10 </LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LOWER_BOUND] </CONST_TYPE> [for]
<VAR> adult doses </VAR>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 5 3
constraint_0 20 35 5000
constraint_1 -1 3 0
constraint_2 0 -1.0 -10

Math Formulation
max 5x + 3y
subject to

20x + 35y <= 5000
x >= 3y
y >= 10

Table 6: Original dataset - Resource allocation example: problem description, intermediate representation, canoni-
cal form, and math formulation.

44

Problem Description Your client has $60,000 available to invest for a 1 year term. The
money can be placed in a trust yielding a 2% return or in a savings
account yielding a 3% return. Based on your experience, you advise
your client that at least 15% of the investment be placed in the trust and
that at most 80% of the investment be placed in the savings account.
How much should your client invest in each so as to maximize his
return on investment?

Intermediate Representation
<DECLARATION>

<OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> return </OBJ_NAME> [is]
<VAR> trust </VAR> [TIMES] <PARAM> 2% </PARAM>
<VAR> savings account </VAR> [TIMES] <PARAM> 3%

</PARAM>
</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 60,000

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at least </CONST_DIR><LIMIT> 15%

</LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
<VAR> trust </VAR>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at most </CONST_DIR><LIMIT> 80% </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
<VAR> savings account </VAR>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 0.02 0.03
constraint_0 1 1 60000
constraint_1 -0.85 0.15 0
constraint_2 -0.8 0.2 0

Math Formulation
max (2/100)*x + (3/100)*y
subject to

x + y <= 60000
x >= (15/100)*(x+y)
y <= (80/100)*(x+y)

Table 7: Original dataset - Investment allocation example: problem description, intermediate representation, canon-
ical form, and math formulation.

45

Problem Description A farmer has 500 acres of land to grow turnips and pumpkins. Turnips
require 50 minutes of watering and $80 worth of pesticide per acre.
Pumpkins require 90 minutes of watering and $50 worth of pesticide
per acre. The farmer has 40000 minutes available for watering and
$34000 available to spend on pesticide. If the revenue per acre of
turnips is $300 and the revenue per acre of pumpkins is $450, how
many acres of each should he grow to maximize his revenue.

Intermediate Representation
<DECLARATION>

<OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> revenue </OBJ_NAME> [is]
<VAR> turnips </VAR> [TIMES] <PARAM> 300 </PARAM>
<VAR> pumpkins </VAR> [TIMES] <PARAM> 450 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> has </CONST_DIR><LIMIT> 500 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>

</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 40000

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> Turnips </VAR> [TIMES] <PARAM> 50 </PARAM>
<VAR> Pumpkins </VAR> [TIMES] <PARAM> 90 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 34000

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> Turnips </VAR> [TIMES] <PARAM> 80 </PARAM>
<VAR> Pumpkins </VAR> [TIMES] <PARAM> 50 </PARAM>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 300 450
constraint_0 1 1 500
constraint_1 50 90 40000
constraint_2 80 50 34000

Math Formulation
max 300x + 450y
subject to

x + y <= 500
50x + 90y <= 40000
80x + 50y <= 34000

Table 8: Original Dataset - Farming example: problem description, intermediate representation, canonical form,
and math formulation.

46

Problem Description A mining company has available a total of 100 square miles of mining
sites and considering the use of two mining techniques: heap leach-
ing and vat leaching. For each square mile of land, heap leaching
technique can have a daily production of 3 tons of rare earth oxide
per square miles but it also creates 8 tons of polluted wastewater and
requires 10 extraction machines. On the other hand, vat leaching
technique produces 5 tons of rare earth oxide per square miles per
day while creating 17 tons of polluted wastewater and requiring 20
extraction machines. There are 100 machines available and due to
environmental regulations, the amount of polluted wastewater must
be at most 90 tons daily. Find the proportion of lands that use each
mining technique in order to maximize the daily production of rare
earth oxide.

Intermediate Representation
<DECLARATION>

<OBJ_DIR> maximize </OBJ_DIR>
<OBJ_NAME> rare earth oxide </OBJ_NAME> [is]
<VAR> heap leaching </VAR> [TIMES] <PARAM> 3

</PARAM>
<VAR> vat leaching </VAR> [TIMES] <PARAM> 5 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 100

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> heap leaching </VAR> [TIMES] <PARAM> 10

</PARAM>
<VAR> vat leaching </VAR> [TIMES] <PARAM> 20

</PARAM>
</DECLARATION>

<DECLARATION>
<CONST_DIR> at most </CONST_DIR><LIMIT> 90 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> heap leaching </VAR> [TIMES] <PARAM> 8

</PARAM>
<VAR> vat leaching </VAR> [TIMES] <PARAM> 17

</PARAM>
</DECLARATION>

<DECLARATION>
<CONST_DIR> available </CONST_DIR><LIMIT> 100

</LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [SUM_CONSTRAINT] </CONST_TYPE>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 3 5
constraint_0 10 20 100
constraint_1 8 17 90
constraint_2 1 1 100

47

Math Formulation
max 3x + 5y
subject to

10x + 20y <= 100
8x + 17y <= 90
x + y <= 100

Table 9: Out-of-domain dataset - Production example: problem description, intermediate representation, canonical
form, and math formulation.

48

Problem Description A shipping company need to transport packages by either truck or car.
A truck can transport 50 packages per trip while a car can transport
30 packages per trip. In addition, a truck uses 20 liters of gas per trip
while a car uses 15 liters of gas per trip. There can be at most 5 truck
trips made and at least 30% of all the trips must be made by car. The
company needs to transport at least 500 packages. How many of each
transportation should they use to minimize the total amount of gas
consumed?

Intermediate Representation
<DECLARATION>

<OBJ_DIR> minimize </OBJ_DIR>
<OBJ_NAME> amount of gas </OBJ_NAME> [is]
<VAR> truck </VAR> [TIMES] <PARAM> 20 </PARAM>
<VAR> car </VAR> [TIMES] <PARAM> 15 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at most </CONST_DIR><LIMIT> 5 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [UPPER_BOUND] </CONST_TYPE> [for]
<VAR> truck </VAR>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at least </CONST_DIR><LIMIT> 30%

</LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [RATIO_CONSTRAINT] </CONST_TYPE> [for]
<VAR> car </VAR>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at least </CONST_DIR><LIMIT> 500

</LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> truck </VAR> [TIMES] <PARAM> 50 </PARAM>
<VAR> car </VAR> [TIMES] <PARAM> 30 </PARAM>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 20 15
constraint_0 1 0 5
constraint_1 0.3 -0.7 0
constraint_2 -50 -30 -500

Math Formulation
min 20x + 15y
subject to

x <= 5
y >= (30/100)*(x+y)
50x + 30y >= 500

Table 10: Out-of-domain dataset - Transportation example: problem description, intermediate representation,
canonical form, and math formulation.

49

Problem Description A patient is undergoing radiation treatment involving two beams,
Beam 1 and Beam 2. Beam 1 delivers a dose of 0.3 units of medicine
per minute to the benign area of the pancreas and 0.2 units of medicine
per minute to the benign area of the skin. Beam 2 delivers 0.2 units of
medicine per minute to the benign area of the pancreas and 0.1 units
of medicine per minute to the benign area of the skin. In addition,
beam 1 delivers 0.6 units of medicine per minute to the tumor and
beam 2 delivers 0.4 units of medicine per minute to the tumor. At
most 4 units of medicine should be received by the skin and at least
3 units of medicine should be delivered to the tumor. How many
minutes of each beam should be used to minimize the total radiation
received by the pancreas?

Intermediate Representation
<DECLARATION>

<OBJ_DIR> minimize </OBJ_DIR>
<OBJ_NAME> total radiation received by the pancreas

</OBJ_NAME> [is]
<VAR> Beam 1 </VAR> [TIMES] <PARAM> 0.3 </PARAM>
<VAR> Beam 2 </VAR> [TIMES] <PARAM> 0.2 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> At most </CONST_DIR><LIMIT> 4 </LIMIT>
<OPERATOR> LESS_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> Beam 1 </VAR> [TIMES] <PARAM> 0.2 </PARAM>
<VAR> Beam 2 </VAR> [TIMES] <PARAM> 0.1 </PARAM>

</DECLARATION>

<DECLARATION>
<CONST_DIR> at least </CONST_DIR><LIMIT> 3 </LIMIT>
<OPERATOR> GREATER_OR_EQUAL </OPERATOR>
<CONST_TYPE> [LINEAR_CONSTRAINT] </CONST_TYPE> [is]
<VAR> beam 1 </VAR> [TIMES] <PARAM> 0.6 </PARAM>
<VAR> beam 2 </VAR> [TIMES] <PARAM> 0.4 </PARAM>

</DECLARATION>

Canonical Form

var_0 var_1 rhs
objective 0.3 0.2
constraint_0 0.2 0.1 4
constraint_1 -0.6 -0.4 3

Math Formulation
min 0.3x + 0.2y
subject to

0.2x + 0.1y <= 4
0.6x + 0.4y >= 3

Table 11: Out-of-domain dataset - Health Science example: problem description, intermediate representation,
canonical form, and math formulation.

50

A furniture store only stocks and sells dining tables and chairs. The profit per dining table is $350
and the profit per chair is $75. There is 500 sq ft of space available and a dining table requires 8
sq ft of floor space while a chair requires 2 sq ft. Because chairs sell in larger quantities, at least
70% of all furniture in the store must be chairs. In terms of capital, a dining table ties up $1000 in
capital and a chair ties up $150 in capital. The company wants a maximum of $20000 worth of
capital tied up at any time. Formulate an LP to maximize profit.

OptGen w/o copy OptGen

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME> profit
</OBJ_NAME> [is] <VAR> dining
table </VAR> [TIMES] <PARAM> 350
</PARAM><VAR> chair </VAR> [TIMES]
<PARAM> 75 </PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME profit
</OBJ_NAME> [is] <VAR> dining
table </VAR> [TIMES] <PARAM> 350
</PARAM><VAR> chair </VAR> [TIMES]
<PARAM> 75 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> available
</CONST_DIR><LIMIT> 20000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 8 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 2
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> available
</CONST_DIR><LIMIT> 500
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 8 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 2
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 200000
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 1000 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 150
</PARAM> </DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 70%
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT]
</CONST_TYPE> [for] <VAR> chairs
</VAR> </DECLARATION>

<DECLARATION><CONST_DIR> maximum
</CONST_DIR><LIMIT> 20000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 1000 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 150
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> maximum
</CONST_DIR><LIMIT> 20000 </LIMIT>
LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> dining table </VAR>
[TIMES] <PARAM> 1000 </PARAM><VAR>
chair </VAR> [TIMES] <PARAM> 150
</PARAM></DECLARATION>

Table 12: Qualitative comparison of model predictions with and without copy mechanism. In this example, the
model without copy mechanism produced erroneous IR declarations (highlighted in red) whereas our model pro-
duces perfect matches with the gold declarations.

51

There is only 5000 grams of a rare flower extract needed to make both youth and adult doses. Youth
doses contain 20 grams of extract and adult doses contain 35 grams. Demand is such that at least
three times as many youth doses are needed than the adult doses. A minimum of 10 adult doses
need to be made. Youth doses are sold for a profit of $5 while adult doses are sold at a profit of $3.
How many of each dose should be prepared to maximize profit?

OptGen w/o copy OptGen

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME profit
</OBJ_NAME> [is] <VAR> Youth doses
</VAR> [TIMES] <PARAM> 5
</PARAM><VAR> adult doses </VAR>
[TIMES] <PARAM> 3
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME profit
</OBJ_NAME> [is] <VAR> Youth doses
</VAR> [TIMES] <PARAM> 5
</PARAM><VAR> adult doses </VAR>
[TIMES] <PARAM> 3
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> only
</CONST_DIR><LIMIT> 200000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> Youth doses </VAR>
[TIMES] <PARAM> 20 </PARAM><VAR>
adult doses </VAR> [TIMES] <PARAM>
35 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> only
</CONST_DIR><LIMIT> 5000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> Youth doses </VAR>
[TIMES] <PARAM> 20 </PARAM><VAR>
adult doses </VAR> [TIMES] <PARAM>
35 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XBY_CONSTRAINT] </CONST_TYPE><VAR>
youth doses </VAR> [TIMES] <PARAM>
three </PARAM> [is] <VAR> adult
doses </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XBY_CONSTRAINT] </CONST_TYPE><VAR>
adult doses </VAR> [TIMES] <PARAM>
three </PARAM> [is] <VAR> youth
doses </VAR></DECLARATION>

<DECLARATION><CONST_DIR> minimum
</CONST_DIR><LIMIT> 200000
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> Youth doses </VAR>
[TIMES] <PARAM> 20 </PARAM><VAR>
adult doses </VAR> [TIMES] <PARAM>
35 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> minimum
</CONST_DIR><LIMIT> 10
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LOWER_BOUND] </CONST_TYPE> [for]
<VAR> adult doses
</VAR></DECLARATION>

Table 13: Qualitative comparison of model predictions with and without copy mechanism. In this example, the
model without copy mechanism produced erroneous IR declarations (highlighted in red) whereas our model pro-
duces perfect matches with the gold declarations.

52

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s

Syntax Error

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Wrong Number of Variables

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Too Many Constraints

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Too Few Constraints

(a) Problem level errors on the Source domain

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s

Syntax Error

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Wrong Number of Variables

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en
Too Many Constraints

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

Too Few Constraints

(b) Problem level errors on the Target domain

Figure 8: Classification of problem level errors for each model. These errors are not mutually exclusive. Problem
level syntax errors will result in a completely incorrect problem as they cannot be parsed. On models predicting
the IR of a problem, a problem level syntax error is defined as one that cannot be parsed through an XML parser.
On the T2T models, syntax errors are defined as a mismatch between the number of columns in each row.

53

BA
RT

Op
tG

en

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f D
ec

la
ra

tio
ns

Objective Syntax Error

BA
RT

Op
tG

en

Constraint Syntax Error

BA
RT

Op
tG

en

Wrong Constraint Type

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f D
ec

la
ra

tio
ns

Wrong Parameters

(a) Declaration level errors on the Source domain.

BA
RT

Op
tG

en

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f D
ec

la
ra

tio
ns

Objective Syntax Error

BA
RT

Op
tG

en

Constraint Syntax Error

BA
RT

Op
tG

en

Wrong Constraint Type

T2
T

T2
T +

Pro

mpt BA
RT

Op
tG

en

0

10

20

30

40

50

60

70

80
Pe

rc
en

ta
ge

 o
f D

ec
la

ra
tio

ns

Wrong Parameters

(b) Declaration level errors on the Target domain.

Figure 9: Classification of declaration level errors for each model. Note that some of these error types are not
made by the T2T models, as they do not predict constraint types, and their syntax errors are all at the problem
level. The parser will skip parsing poorly formatted declarations, which are later counted as incorrect. We define
a declaration level parameter error as a declaration that contains any parameter mismatch between the prediction
and the ground truth.

54

A patient in the hospital can take two pills, Pill 1 and Pill 2. Per pill, pill 1 provides 0.2 units of pain
medication and 0.3 units of anxiety medication. Per pill, pill 2 provides 0.6 units of pain medication
and 0.2 units of anxiety medication. In addition, pill 1 causes 0.3 units of discharge while pill 2
causes 0.1 units of discharge. At most 6 units of pain medication can be provided and at least 3
units of anxiety medication must be provided. How many pills of each should the patient be given
to minimize the total amount of discharge?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> amount of
discharge </OBJ_NAME> [is] <VAR>
pill 1 </VAR> [TIMES] <PARAM> 0.3
</PARAM><VAR> pill 2 </VAR>
[TIMES] <PARAM> 0.1
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total
amount of discharge </OBJ_NAME>
[is] <VAR> Pill 1 </VAR> [TIMES]
<PARAM> 0.3 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.1
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> At most
</CONST_DIR><LIMIT> 6
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> pill 1 </VAR> [TIMES]
<PARAM> 0.2 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.6
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> At most
</CONST_DIR><LIMIT> 6
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> pill 1 </VAR> [TIMES]
<PARAM> 0.2 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.6
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 3
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> pill 1 </VAR> [TIMES]
<PARAM> 0.3 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.2
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 3
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> pill 1 </VAR> [TIMES]
<PARAM> 0.3 </PARAM><VAR> pill 2
</VAR> [TIMES] <PARAM> 0.2
</PARAM></DECLARATION>

Table 14: Comparison of predicted vs. gold IR for out-of-domain example (Health Science). In this example, the
predicted IR is almost equal to the gold IR except for the extra token ("total") in the objective name declaration.

55

An international goods exporter uses ships and planes to transport goods. A ship can take 40
containers worth of goods and uses 500 liters of fuel per trip. A plane can take 20 containers worth
of goods and uses 300 liters of fuel per trip. The company needs to transport at least 500 containers
worth of goods. In addition, there can be at most 10 plane trips made and a minimum of 50% of the
trips made must be by ship. How many of each trip should be made to minimize the total amount
of fuel consumed?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total amount
of fuel </OBJ_NAME> [is] <VAR>
ship </VAR> [TIMES] <PARAM> 500
</PARAM><VAR> plane </VAR> [TIMES]
<PARAM> 300 </PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total amount
of fuel </OBJ_NAME> [is] <VAR>
ship </VAR> [TIMES] <PARAM> 500
</PARAM><VAR> plane </VAR> [TIMES]
<PARAM> 300 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 500
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> ship </VAR> [TIMES]
<PARAM> 40 </PARAM><VAR> plane
</VAR> [TIMES] <PARAM> 20
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 500
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> ship </VAR> [TIMES]
<PARAM> 40 </PARAM><VAR> plane
</VAR> [TIMES] <PARAM> 20
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><OPERATOR>
LESS_OR_EQUAL </OPERATOR><LIMIT>
10 </LIMIT><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> plane </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><OPERATOR>
LESS_OR_EQUAL </OPERATOR><LIMIT>
10 </LIMIT><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> plane </VAR></DECLARATION>

<DECLARATION><CONST_DIR> minimum
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><LIMIT> 50%
</LIMIT><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> ship
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> minimum
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><LIMIT> 50%
</LIMIT><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> ship
</VAR></DECLARATION>

Table 15: Comparison of predicted vs. gold IR for out-of-domain example (Transportation example). In this
example, the model perfectly matched the gold IR.

56

A pharmacy has 3000 mg of morphine to make painkillers and sleeping pills. Each painkiller pill
requires 10 mg of morphine and 3 units of digestive medicine. Each sleeping pill requires 6 mg of
morphine and 5 units of digestive medicine. The pharmacy needs to make at least 50 painkiller pills.
Since sleeping pills are more popular, at least 70% of the pills should be sleeping pills. How many
of each should the pharmacy make to minimize the total amount of digestive medicine needed?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> amount of
digestive medicine </OBJ_NAME>
[is] <VAR> painkiller pill </VAR>
[TIMES] <PARAM> 3 </PARAM><VAR>
sleeping pill </VAR> [TIMES]
<PARAM> 5 </PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> amount of
digestive medicine </OBJ_NAME>
[is] <VAR> painkiller pill </VAR>
[TIMES] <PARAM> 3 </PARAM><VAR>
sleeping pill </VAR> [TIMES]
<PARAM> 5 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 50
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LOWER_BOUND] </CONST_TYPE> [for]
<VAR> painkiller pills
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 50
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LOWER_BOUND] </CONST_TYPE> [for]
<VAR> painkiller pills
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 70%
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT]
</CONST_TYPE> [for] <VAR>

sleeping pills </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 50
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LOWER_BOUND]
</CONST_TYPE> [for] <VAR> painkiller
pills </VAR></DECLARATION>

<DECLARATION><CONST_DIR> has
</CONST_DIR><LIMIT> 3000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> painkiller pill </VAR>
[TIMES] <PARAM> 10 </PARAM><VAR>
sleeping pill </VAR> [TIMES]
<PARAM> 6 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> has
</CONST_DIR><LIMIT> 3000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> painkiller pill </VAR>
[TIMES] <PARAM> 10 </PARAM><VAR>
sleeping pill </VAR> [TIMES]
<PARAM> 6 </PARAM></DECLARATION>

Table 16: Comparison of predicted vs. gold IR for out-of-domain example (Health Science). In this example,
our model predicted the wrong constraint type as lower bound instead of a ratio constraint. This shows that it
is sometimes hard for the model to distinguish between similar constraint types. The rest of the declaration that
follows the constraint type is also invalid.

57

A parent feeds their baby two flavors of baby food, apple and carrot, in order to meet the babies
fat and folate requirements. Each serving of apple flavored baby food contains 2 units of fat and
5 units of folate. Each serving of carrot flavored baby food contains 4 units of fat and 3 units of
folate. The baby does not like the carrot flavor, and therefore he must eat three times as many apple
flavored baby food as carrot flavored baby food. However, he must eat at least 2 servings of carrot
flavored baby food. If the baby can consume at most 100 units of folate, how many servings of
each should he eat to maximize his fat intake?

Gold Pred

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME> fat intake
</OBJ_NAME> [is] <VAR> apple
flavored baby </VAR> [TIMES] <PARAM>
2 </PARAM> <VAR> carrot flavored
baby </VAR> [TIMES] <PARAM> 4
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> maximize
</OBJ_DIR><OBJ_NAME> fat intake
</OBJ_NAME> [is] <VAR> apple
flavored baby food
</VAR> [TIMES] <PARAM> 5
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> must eat
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XBY_CONSTRAINT]
</CONST_TYPE><VAR> carrot flavored
baby </VAR> [TIMES] <PARAM> three
</PARAM> [is] <VAR> apple flavored
baby food </VAR></DECLARATION>

<DECLARATION><CONST_DIR> must eat
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XBY_CONSTRAINT]
</CONST_TYPE><VAR> carrot flavored
baby food
</VAR> [TIMES] <PARAM> three
</PARAM> [is] <VAR> apple flavored
baby food </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><LIMIT> 2
</LIMIT><CONST_TYPE> [LOWER_BOUND]
</CONST_TYPE> [for] <VAR> carrot
flavored baby </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><LIMIT> 2
</LIMIT><CONST_TYPE> [LOWER_BOUND]
</CONST_TYPE> [for] <VAR> carrot
flavored baby food
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 100
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> apple flavored baby
</VAR> [TIMES] <PARAM> 5
</PARAM><VAR> carrot flavored baby
</VAR> [TIMES] <PARAM> 3
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 100
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> apple flavored baby food
</VAR> [TIMES] <PARAM> 2
</PARAM><VAR> carrot flavored baby
food </VAR> [TIMES] <PARAM> 4
</PARAM></DECLARATION>

Table 17: Comparison of predicted vs. gold IR for out-of-domain example (Health Science). In this example,
the model produced an erroneous declaration in the objective and the last constraint. The wrong data parameters,
which should describe the objective function, are instead copied into the last constraint. This example illustrates
the difficulty of parsing an input document that is ambiguous.

58

A chocolate company can transport their boxes of chocolate either using their own vans or by
renting trucks. Their vans can transport 50 boxes per trip while a truck can transport 80 boxes per
trip. Since they own their vans, the cost per van trip is $30 while the cost per truck trip is $50.
The company needs to transport at least 1500 boxes of chocolate and they have a budget of $1000.
Since the vans also provide advertising, the number of trips by van must be larger than the number
of trips by trucks. How many of trip by each should be done to minimize the total number of trips?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> number of
trips </OBJ_NAME> [is] <VAR> vans
</VAR> [TIMES] <PARAM> ONE
</PARAM><VAR> trucks </VAR>
[TIMES] <PARAM> ONE
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total number
of trips </OBJ_NAME> [is] <VAR>
van </VAR> [TIMES] <PARAM> ONE
</PARAM><VAR> truck </VAR> [TIMES]
<PARAM> ONE </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1500
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> vans </VAR> [TIMES]
<PARAM> 50 </PARAM><VAR> truck
</VAR> [TIMES] <PARAM> 80
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1500
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> vans </VAR> [TIMES]
<PARAM> 50 </PARAM><VAR> trucks
</VAR> [TIMES] <PARAM> 80
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> budget
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> van </VAR> [TIMES]
<PARAM> 30 </PARAM><VAR> truck
</VAR> [TIMES] <PARAM> 50
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> budget
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> van </VAR> [TIMES]
<PARAM> 30 </PARAM><VAR> truck
</VAR> [TIMES] <PARAM> 50
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> must be
larger than </CONST_DIR><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[XY_CONSTRAINT] </CONST_TYPE> <VAR>
trucks </VAR> [is] <VAR> van </VAR>
*@)</DECLARATION>

<DECLARATION><CONST_DIR> must be
larger than </CONST_DIR><LIMIT>
500 </LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> vans </VAR> [TIMES]
<PARAM> 50 </PARAM><VAR> trucks
</VAR> [TIMES] <PARAM> 80 </PARAM>
</DECLARATION>

Table 18: Comparison of predicted vs. gold IR for out-of-domain example (Transportation example). In this
example, our model detects a linear constraint instead of a balance constraint. In fact, the balance constraints are
less frequent in the training dataset whereas the linear constraints are the majority ones. This can explain this type
of error as the constraint types are imbalanced in the training dataset.

59

A toy store decides to deliver gifts using two shipping companies, a new one and an old one. The
new company can deliver 50 gifts per trip while the old company can deliver 70 gifts per trip. The
new company uses 30 liters of diesel per trip while the old company uses 40 liters of diesel per
trip. The toy store needs to deliver at least 1000 gifts. There can be at most 15 trips made by the
new company. In order to make sure that the old company does not go out of business, at least
40% of all trips must be made by the old company. How many trips should each company make to
minimize the total amount of diesel used?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total amount
of diesel </OBJ_NAME> [is] <VAR>
new company </VAR> [TIMES] <PARAM>
30 </PARAM><VAR> old company
</VAR> [TIMES] <PARAM> 40
</PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total amount
of diesel </OBJ_NAME> [is] <VAR>
new company </VAR> [TIMES] <PARAM>
30 </PARAM><VAR> old company
</VAR> [TIMES] <PARAM> 40
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> new company </VAR>
[TIMES] <PARAM> 50 </PARAM><VAR>
old company </VAR> [TIMES] <PARAM>
70 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> new company </VAR>
[TIMES] <PARAM> 50 </PARAM><VAR>
old company </VAR> [TIMES] <PARAM>
70 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 15
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> new company
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 15
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> new company </VAR>
[TIMES] <PARAM> 50 </PARAM><VAR>
old company </VAR> [TIMES] <PARAM>
70 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 40%
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> old company
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 1000
</LIMIT><OPERATOR> GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> new company </VAR>
[TIMES] <PARAM> 50 </PARAM><VAR>
old company </VAR> [TIMES] <PARAM>
70 </PARAM></DECLARATION>

Table 19: Comparison of predicted vs. gold IR for out-of-domain example (Transportation example). In this
example, the model incorrectly generated the expressions for the last two constraints. In fact, it detects the wrong
constraint types and produced the same invalid algebraic expression. This suggests that the generation could
be made more precise by adding additional constrain context into the declaration prompt to distinguish between
different constraints.

60

A zoo needs to transport their monkeys to the vet either by bus or by car. A bus can transport 20
monkeys per trip and takes 30 minutes. A car can transport 6 monkeys per trip and takes 15 minutes.
There can be at most 10 bus trips. In addition, since the monkeys get aggressive when there are
too many in one place at least 60% of the trips should be by car. If the zoo needs to transport 300
monkeys, how many trips of each should be done to minimize the total time required to transport
the monkeys?

Gold Pred

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total time
</OBJ_NAME> [is] <VAR> bus
</VAR> [TIMES] <PARAM> 30
</PARAM><VAR> car </VAR> [TIMES]
<PARAM> 15 </PARAM></DECLARATION>

<DECLARATION><OBJ_DIR> minimize
</OBJ_DIR><OBJ_NAME> total time
</OBJ_NAME> [is] <VAR> monkeys
</VAR> [TIMES] <PARAM> 30
</PARAM><VAR> cars </VAR> [TIMES]
<PARAM> 15 </PARAM></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 10
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> bus </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at most
</CONST_DIR><LIMIT> 10
</LIMIT><OPERATOR> LESS_OR_EQUAL
</OPERATOR><CONST_TYPE>
[UPPER_BOUND] </CONST_TYPE> [for]
<VAR> bus </VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 60%
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> car
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> at least
</CONST_DIR><LIMIT> 60%
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[RATIO_CONSTRAINT] </CONST_TYPE>
[for] <VAR> car
</VAR></DECLARATION>

<DECLARATION><CONST_DIR> needs
</CONST_DIR><LIMIT> 300
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> bus </VAR> [TIMES]
<PARAM> 20 </PARAM><VAR> car
</VAR> [TIMES] <PARAM> 6
</PARAM></DECLARATION>

<DECLARATION><CONST_DIR> needs
</CONST_DIR><LIMIT> 300
</LIMIT><OPERATOR>
GREATER_OR_EQUAL
</OPERATOR><CONST_TYPE>
[LINEAR_CONSTRAINT] </CONST_TYPE>
[is] <VAR> bus </VAR> [TIMES]
<PARAM> 20 </PARAM><VAR> car
</VAR> [TIMES] <PARAM> 6
</PARAM></DECLARATION>

Table 20: Comparison of predicted vs. gold IR for out-of-domain example (Transportation example). In this
example, the model detects an invalid decision variable "monkeys" in the predicted objective declaration.

61

Rouge-1 Rouge-2 Rouge-L
Method Accuracy Recall Precision F1 Recall Precision F1 Recall Precision F1
OptGen 0.61 0.89 0.89 0.89 0.80 0.80 0.79 0.86 0.86 0.86

Table 21: Performance of our model on development set. Rouge scores included declaration tags to illustrate how
well the model is able to reproduce syntax.

62

Proceedings of EMNLP 2022 Industry Track, pages 63–76
December 9–11, 2020. ©2022 Association for Computational Linguistics

Knowledge Distillation based Contextual Relevance Matching
for E-commerce Product Search

Ziyang Liu§,Chaokun Wang§*, Hao Feng§, Lingfei Wu†, Liqun Yang‡

§Tsinghua University,†JD.com,‡CNAEIT
§liu-zy21@mails.thu.edu.cn,§chaokun@thu.edu.cn

§fh20@mails.thu.edu.cn,†lwu@email.wm.edu, ‡yanglq@cnaeit.com

Abstract

Online relevance matching is an essential task
of e-commerce product search to boost the util-
ity of search engines and ensure a smooth user
experience. Previous work adopts either classi-
cal relevance matching models or Transformer-
style models to address it. However, they ig-
nore the inherent bipartite graph structures that
are ubiquitous in e-commerce product search
logs and are too inefficient to deploy online.
In this paper, we design an efficient knowl-
edge distillation framework for e-commerce rel-
evance matching to integrate the respective ad-
vantages of Transformer-style models and clas-
sical relevance matching models. Especially
for the core student model of the framework,
we propose a novel method using k-order rele-
vance modeling. The experimental results on
large-scale real-world data (the size is 6∼174
million) show that the proposed method sig-
nificantly improves the prediction accuracy in
terms of human relevance judgment. We deploy
our method to JD.com online search platform.
The A/B testing results show that our method
significantly improves most business metrics
under price sort mode and default sort mode.

1 Introduction

Relevance matching (Guo et al., 2016; Rao et al.,
2019; Wang et al., 2020) is an important task in the
field of ad-hoc information retrieval (Zhai and Laf-
ferty, 2017), which aims to return a sequence of in-
formation resources related to a user query (Huang
et al., 2020; Chang et al., 2021; Sun and Duh,
2020). Generally, texts are the dominant form of
user queries and returned information resources.
Given two sentences, the target of relevance match-
ing is to estimate their relevance score and then
judge whether they are relevant or not. However,
text similarity does not mean semantic similarity.
For example, while “mac pro 1.7GHz” and “mac

*Chaokun Wang is the corresponding author.

(The color of red denotes problematic examples.)

q1——i1
q2——i3
q3——i3
q3——i4

Click

Query Item

q1
q2
q3

i1
i2
i3
i4

Sentence

q1 mac pro

q2 mac lipstick

q3 mac mini

i1
Apple MacBook Pro (16-inch, 16GB RAM,

1TB Storage, 2.3GHz Intel Core i9)

i2
Apple MacBook Pro MLH42LL/A 13.3-

inch Laptop

i3
Little MAC Lipstick 0.06 oz/ 1.77 ml

WHIRL

i4
Apple Mac Mini with Apple M1 Chip

(8GB RAM, 256GB SSD Storage)

View but not click

Positives Negatives

q1——i2
q1——i3
q3——i2

ARC-I model: using click
behaviors as training labels

Figure 1: Shortcoming of the existing relevance match-
ing model. Here we take the ARC-I model as an exam-
ple. The right part shows the ground truth of queries
and item titles. The left part shows two problematic ex-
amples in ARC-I, which deviate from the ground truth.

lipstick 1.7ml” look alike, they describe two differ-
ent and irrelevant products. Therefore, relevance
matching is important, especially for long-term
user satisfaction of e-commerce search (Niu et al.,
2020; Xu et al., 2021; Zhu et al., 2020).

Recently, Transformer-style models (e.g.,
BERT (Devlin et al., 2019) and ERNIE (Sun et al.,
2019b)) have achieved breakthroughs on many
NLP tasks and shown satisfactory performance on
relevance matching, but they are hard to deploy
to the online environment due to their high time
complexity. Moreover, these methods cannot deal
with the abundant context information (i.e., the
neighbor features in a query-item bipartite graph)
in e-commerce product search. Last but not least,
when applied to real-world scenarios, existing
classical relevance matching models directly use
user behaviors as labeling information (Figure 1).
However, this solution is not directly suitable
for relevance matching because user behaviors
are often noisy and deviate from relevance
signals (Mao et al., 2019; Liu and Mao, 2020).

In this paper, we propose to incorporate bipar-
tite graph embedding into the knowledge distilla-
tion framework (Li et al., 2021; Dong et al., 2021;
Rashid et al., 2021; Wu et al., 2021b; Zhang et al.,

63

2020) to solve the relevance matching problem
in the scene of e-commerce product search. We
adopt BERT (Devlin et al., 2019) as the teacher
model in this framework. Also, we design a novel
model called BERM, Bipartite graph Embedding
for Relevance Matching (BERM), which acts as
the student model in our knowledge distillation
framework. This model captures the 0-order rel-
evance using a word interaction matrix attached
with positional encoding and captures the higher-
order relevance using the metapath embedding with
graph attention scores. For online deployment, it is
further distilled into a tiny model BERM-O.

Our main contributions are as follows:

• We formalize the k-order relevance problem in
a bipartite graph (Section 2.1) and address it by
a knowledge distillation framework with a novel
student model called BERM.

• We apply BERM to the e-commerce product
search scene with abundant context information
(Section 2.4) and evaluate its performance (Sec-
tion 3). The results indicate that BERM outper-
forms the state-of-the-art methods.

• To facilitate online applications, we further distill
BERM into a faster model, i.e., BERM-O. The
results of online A/B testing indicate that BERM-
O significantly improves most business metrics
under price sort mode and default sort mode.

2 Method

2.1 Problem Definition

We first give the definition of the bipartite graph:

Definition 1 Bipartite Graph. Given a graph G =
(U ,V, E , A,R), it contains two disjoint node sets
U : {u1, u2, · · · , un} and V : {v1, v2, · · · , vn′}.
For edge set E : {e1, · · · , em}, each edge ei con-
nects uj in U and vk in V . In addition, there is a
node type mapping function f1 : U ∪ V → A and
an edge type mapping function f2 : E → R. Such
a graph G is called a bipartite graph.

Example 1 Given a search log, a query-item bi-
partite graph is built as shown in Figure 1, where
A= {Query, Item} andR= {Click}.

In a bipartite graph, we use the metapath and
metapath instance to incorporate the neighboring
node information into relevance matching. They
are defined as follows:

Definition 2 Metapath and Metapath In-
stance in Bipartite Graph. Given a bipar-
tite graph G=(U ,V, E ,A,R), the metapath
Pi=a1

r1→ a2
r2→· · · rl→al+1 (aj ̸=aj+1, 1⩽j⩽l) is

a path from a1 to al+1 successively through
r1, r2, · · · , rl (aj∈A, rj∈R). The length of Pi is
denoted as |Pi| and |Pi|=l. For brevity, the set of
all metapaths on G can be represented in regular
expression as P G=(aa′)+(a|ε)|(a′a)+(a′|ε)
where a, a′∈A and a̸=a′. The metapath instance
p is a definite node sequence instantiated from
metapath Pi. All instances of Pi is denoted as
I(Pi), then p∈I(Pi).

Example 2 As shown in Figure 1, an instance of
metapath “Query-Item-Query” is “q2-i3-q3”.

Definition 3 k-order Relevance. Given a bipar-
tite graph G = (U ,V, E ,A,R), a function F k

rel :
U × V → [0, 1] is called a k-order relevance func-
tion on G if F k

rel(ui, vj) = G(Φ(ui),Φ(vj)|Ck),
where Φ(·) is a function to map each node to
a representation vector, G(.) is the score func-
tion, ui∈U , vj∈V , and context information Ck =⋃

IPi
⊆I(Pi),Pi∈PG ,|Pi|=k IPi .

Many existing relevance matching mod-
els (Huang et al., 2013; Shen et al., 2014; Hu
et al., 2014a) ignore context information Ck and
only consider the sentences w.r.t. the query and
item to be matched, which corresponds to 0-order
relevance (for more details, please see the “Related
Work” part in Appendix 4). We call it context-free
relevance matching in this paper. Considering that
both the 0-order neighbor (i.e., the node itself)
and k-order neighbor (k ⩾ 1) are necessary for
relevance matching, we argue that a reasonable
mechanism should ensure that they can cooperate
with each other. Then the research objective of our
work is defined as follows:

Definition 4 Contextual Relevance Matching.
Given a bipartite graph G = (U ,V, E ,A,R), the
task of contextual relevance matching is to deter-
mine the context information Ck on G and learn
the score function G(·) .

2.2 Overview

We propose a complete knowledge distillation
framework (Figure 2), whose student model in-
corporates the context information, for contextual
relevance matching in e-commerce product search.
The main components of this framework are de-
scribed as follows:

64

Search log

Query
Unlabeled

Data
Labeled

Data
Teacher model

Student model

Transfer set

Online model

Item1
Item2
Item3
……

User

Further
distillation

BERT

BERM BERM-O

Graph
analysis

Raw graph
construction

Graph refinement

Figure 2: The e-commerce knowledge distillation framework proposed in our work. Three models are used in this
framework: teacher model BERT, student model BERM, and online model BERM-O.

• Graph construction. We first construct a raw bi-
partite graph G based on the search data collected
from JD.com. Then we construct a knowledge-
enhanced bipartite graph G′ with the help of
BERT, which is fine-tuned by the human-labeled
relevance data.

• Student model design. We design a novel stu-
dent model BERM corresponding to the score
functionG(·) in Definition 4. Specifically, macro
and micro matching embeddings are derived in
BERM to capture the sentence-level and word-
level relevance matching signal, respectively.
Also, based on the metapaths “Q-I-Q” and
“I-Q-I”, we design a node-level encoder and
a metapath-instance-level aggregator to derive
metapath embeddings.

• Online application. To serve online search, we
conduct further distillation to BERM and obtain
BERM-O, which is easy to be deployed online.

2.3 Bipartite Graph Construction

We introduce the external knowledge from BERT
to refine the raw user behavior graph G into a
knowledge-enhanced bipartite graph G′. The whole
graph construction includes the following phases.

Fine-tuning BERT. We use the BERT model
as the teacher model in our framework. BERT is
pre-trained on a large text corpus and fine-tuned on
our in-house data where the positive examples and
negative examples are human-labeled and cover
various item categories. The fine-tuned BERT is
equipped with good relevance discrimination and
thus acts as an expert in filtering noisy data. For
each example pair pi in the transfer set Stransfer,
we use BERT to predict its score yi as the training
label of the student model BERM.

Behavior graph construction. The user behav-
ior graph G is built on the user search log over six
months which records click behaviors and purchase

behaviors as well as their frequencies. Each edge in
G represents an existing click behavior or purchase
behavior between the given query and item.

Knowledge-enhanced graph refinement. The
click behavior edges are dense and highly noisy, so
we leverage the fine-tuned BERT model to refine
G. Specifically, we retain all the raw purchase
behavior edges, and meanwhile use the knowledge
generated by the fine-tuned BERT to refine the
click behavior edges. We set two thresholds α and
β to determine which raw edges are removed and
which new edges are added. This strategy helps
remove the noise in user behaviors, and at the same
time retrieve the missing but relevant neighbors
which cannot be captured by user behaviors. To
preserve important neighbors, for each anchor node,
we rank its 1-hop neighbors with the priority of
“purchase>high click>low click” and select the
top two of them as the final neighbor list, i.e., the
neighbor list of a query node Q is represented as
[Itop1, Itop2] and the neighbor list of a query node I
is represented as [Qtop1, Qtop2]. The algorithm of
graph construction is provided in Appendix A.

2.4 BERM Model
In this part, we describe BERM in detail, includ-
ing 0-order relevance modeling, k-order relevance
modeling, and overall learning objective.

2.4.1 0-order Relevance Modeling
The whole structure of BERM includes both the
0-order relevance modeling and k-order relevance
modeling. This subsection introduces the 0-order
relevance modeling which captures sentence-level
and word-level matching signals by incorporating
the macro matching embedding and micro match-
ing embedding, respectively.

Macro and micro matching embeddings. Each
word is represented by a d-dimensional embedding
vector, which is trained by Word2Vec (Mikolov
et al., 2013). The i-th word’s embedding of query

65

...

encoder encoder

... ...

attention

х х

+

...

...

encoder encoder

... ...

attention

х х

+

...

...

I-Q-I Q-I-Q

EI-Q-I EQ-I-Q

… …

instance
embedding

metapath
embedding

Figure 3: Calculation process of metapath embeddings.

Q (or item title I) is denoted as Ei
Q∈Rd (or Ei

I∈Rd).
To capture sentence-level and word-level match-
ing signals, we employ macro matching embed-
ding and micro matching embedding, respectively.
For the macro matching embedding, taking query
Q with lQ words and item I with lI words as
examples, their macro embeddings EQ

seq,E
I
seq∈Rd

are calculated by the column-wise mean value of
EQ∈RlQ×d,EI∈RlI×d:

EQ
seq=

1

lQ

lQ∑

i=1

Ei
Q, EI

seq=
1

lI

lI∑

i=1

Ei
I . (1)

For the micro matching embedding, we first build
an interaction matrix Mint∈RlQ×lI whose (i, j)-th
entry is the dot product of Ei

Q and Ej
I :

Mint=
{
mi,j

int

}
lQ×lI

, mi,j
int=⟨Ei

Q,E
j
I ⟩ . (2)

Then the micro matching embedding Eint∈RlQlI is
the vectorization of Mint, i.e., Eint = vec(Mint).

2.4.2 k-order Relevance Modeling
The k-order relevance model contains a node-level
encoder and a metapath-instance-level aggregator.

Node-level encoder. The input of the node-level
encoder is node embeddings and its output is an
instance embedding (i.e., the embedding of a meta-
path instance). Specifically, to obtain the instance
embedding, we integrate the embeddings of neigh-
boring nodes into the anchor node embedding with
a mean encoder. Taking “Q-Itop1-Qtop1” as an ex-
ample, we calculate its embedding EQ-Itop1-Qtop1∈Rd

as follows:

EQ-Itop1-Qtop1=MEAN(EQ
seq,E

Itop1
seq ,E

Qtop1
seq). (3)

The metapath instance bridges the communication
gap between different types of nodes and can be
used to update the anchor node embedding from
structure information.

Metapath-instance-level aggregator. The in-
puts of the metapath-instance-level aggregator are
instance embeddings and its output is a metapath
embedding. Different metapath instances convey
different information, so they have various effects
on the final metapath embedding. However, the
mapping relationship between the instance embed-
ding and metapath embedding is unknown. To
learn their relationship automatically, we introduce
the “graph attention” mechanism to generate metap-
ath embeddings (Wu et al., 2021a; Liu et al., 2022).
Taking metapath “Q-I-Q” as an example, we use
graph attention to represent the mapping relation-
ship between “Q-I-Q” and its instances. The fi-
nal metapath embedding EQ-I-Q∈Rd is calculated
(EI-Q-I∈Rd is calculated similarly) by accumulat-
ing all instance embeddings with attention scores
Att1,Att2,Att3,Att4∈R+:

EQ-I-Q=σ(Att1·EQ-Itop1-Qtop1+Att2·EQ-Itop1-Qtop2

+Att3·EQ-Itop2-Qtop1+Att4·EQ-Itop2-Qtop2),
(4)

where σ(·) is the activation function of LeakyReLU.
Though Atti can be set as a fixed value, we adopt a
more flexible way, i.e., using the neural network to
learn Atti automatically. Specifically, we feed the
concatenation of the anchor node embedding and
metapath instance embedding into a one-layer neu-
ral network (its weight is Watt∈R6d×4 and its bias
is batt∈R1×4) with a softmax layer, which outputs
an attention distribution:

(Atti)1≤i≤4=softmax(Econcat ∗Watt + batt), (5)

Econcat=[EQ
seq|EI

seq|EQ-Itop1-Qtop1 |EQ-Itop1-Qtop2

|EQ-Itop2-Qtop1 |EQ-Itop2-Qtop2].
(6)

The above process is shown in Figure 3.
Embedding fusion. By the 0-order and k-

order relevance modeling, three types of em-
beddings are generated, including macro match-
ing embedding (EQ

seq,EI
seq∈Rd), micro match-

ing embedding (Eint∈RlQlI), and metapath em-
bedding (EQ-I-Q,EI-Q-I∈Rd). We concate-
nate them together and feed the result to
a three-layer neural network (its weights are
W0∈R(4d+lQlI)×d,W1,W2∈Rd×d,W3∈Rd×1 and bi-
ases are b0, b1, b2∈R1×d, b3∈R1×1), which outputs
the final relevance estimation score ŷi:

ŷi = Sigmoid(E3 ∗W3 + b3), (7)

Ej+1 = ReLU(Ej ∗Wj+bj),E0 = Eall, j = 0, 1, 2, (8)

Eall = [EQ
seq|EI

seq|Eint|EQ-I-Q|EI-Q-I]. (9)

66

2.4.3 Overall Learning Objective
We evaluate the cross-entropy error on the estima-
tion score ŷi and label yi (note that yi∈[0, 1] is
the score of the teacher model BERT), and then
minimize the following loss function:

L=−
ñ∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (10)

where ñ is the number of examples. We also ana-
lyze the complexities of BERT, BERM, and BERM-
O in Appendix C.

3 Experiments

In this section, we present the offline and online
experimental results of BERM *.

3.1 Experimental Setting

Datasets. We collect three datasets from the search
platform of JD.com, including the “Electronics”
category (Data-E), all-category (Data-A), and sam-
pled all-category (Data-S). In the platform, there
are mainly three different levels of item categories:
Cid1 (highest level, e.g., “Electronics”),Cid2 (e.g.,
“Mobile phone”), and Cid3 (lowest level, e.g., “5G
phone”). Data-A, Data-S, and Data-E have differ-
ent data distributions. Specifically, Data-A covers
all first-level categories Cid1 in the platform; Data-
S is generated by uniformly sampling 5,000 items
from Cid1; Data-E only focuses on the category of
“Electronics” in Cid1. Details of Data-E, Data-A,
and Data-S are reported in Table 1.

For the training data Strain (also called Stransfer),
the collected user behaviors include click and pur-
chase. For the testing data Stest, whose queries
are disjointed with those of Strain, we use human
labeling to distinguish between relevant and irrele-
vant items. Specifically, editors are asked to assess
the relevance scores between queries and items. In
JD.com platform, the candidate set of relevance
scores is {1, 2, 3, 4, 5}, where 5 means most rele-
vant and 1 means least relevant. To simplify it, we
use binary labeling including the positive label (i.e.,
4 or 5) and negative label (i.e., 1, 2, or 3).

Evaluation Metrics. To measure the perfor-
mance of baseline methods and our BERM, we use
three kinds of evaluation metrics, including Area
Under the receiver operating characteristic Curve
(AUC), F1-score, and False Negative Rate (FNR).

*We provide the description of baselines, implementation
details, and additional experiments in Appendix D.1, D.2, E
(Code URL: https://github.com/Young0222/EMNLP-BERM).

Table 1: Statistics of the used datasets.

Set Name Data-E Data-A Data-S

Strain

Example 6,369,396 174,863,375 11,397,439
Nodequery 398,824 5,952,020 3,284,480
Nodeitem 728,405 49,517,217 1,307,557

Edge 5,070,460 159,205,320 7,525,355
Click 1,471,079,596 5,109,731,591 1,431,899,847

Purchase 33,285,887 322,151,488 118,495,170

Stest

Example 30,563 39,743 39,743
Nodequery 3,374 3,108 3,108
Nodeitem 16,137 30,097 30,097

Edge 18,988 30,661 30,661

Table 2: Comparisons on Data-E and Data-S. In each
column, the best result is bolded and the runner-up is
underlined. The symbol of “↓” represents that the lower
value corresponds to better performance. “I, II, III” rep-
resent the representation-focused, interaction-focused,
and both-focused relevance matching models, respec-
tively. “IV” represents the graph neural network models.

Model Data-E Data-S
AUC F1-score FNR(↓) AUC F1-score FNR(↓)

I
DSSM 0.6246 0.6923 0.9953 0.8219 0.8691 1.0000

MVLSTM 0.8602 0.8055 0.3416 0.7877 0.8857 0.7802
ARC-I 0.8343 0.7949 0.3857 0.6919 0.8750 0.9388

II

DRMM 0.6720 0.6891 0.7692 0.6781 0.8722 0.9401
MatchPyramid 0.7826 0.7481 0.5615 0.7859 0.8786 0.8475

ARC-II 0.8128 0.7864 0.4377 0.7606 0.8784 0.9076
K-NRM 0.7462 0.7291 0.6510 0.7314 0.8733 0.9081

DRMM-TKS 0.7678 0.7383 0.5462 0.7793 0.8789 0.7893
Conv-KNRM 0.8369 0.7879 0.3469 0.8029 0.8789 0.8913

ESIM 0.8056 0.7769 0.3373 0.7987 0.8623 1.0000

III Duet 0.7693 0.7219 0.8173 0.7968 0.8754 0.9458
BERT2DNN 0.8595 0.8037 0.3464 0.8313 0.9061 0.4450

IV

GAT 0.7526 0.7361 0.7529 0.7411 0.8746 0.9234
GraphSAGE-Mean 0.7493 0.7330 0.7422 0.7406 0.8719 0.9119
GraphSAGE-LSTM 0.7588 0.7509 0.6536 0.7529 0.8743 0.8652

TextGNN 0.8310 0.8029 0.4525 0.8277 0.8779 0.7549
GEPS 0.8405 0.8037 0.4892 0.8254 0.8794 0.6340

BERM (ours) 0.8785 0.8256 0.2966 0.8758 0.9079 0.3625

The low value of FNR indicates the low probabil-
ity of fetching irrelevant items, which is closely
related to the user’s search experience. Therefore,
we include it in the evaluation metrics.

3.2 Offline Performance

We compare BERM with 12 state-of-the-art rele-
vance matching methods and 5 graph neural net-
work models on our in-house product search data.
The results are shown in Table 2. Because some
baseline methods (e.g., DRMM and ESIM) have
high time complexities, we use Data-E and Data-S
for training and testing models.

As shown in Table 2, BERM outperforms all
the baselines according to the metrics of AUC, F1-
score, and FNR. More specifically, we have the
following findings: 1) Compared to the second-

67

Table 3: Cases of e-commerce product search. “yi” is the prediction score of the teacher model BERT and “ŷi” is
the relevance estimation score of the student model BERM.

Query Item title Human labeling yi ŷi
whistle Li Ning whistle for basketball or volleyball game Positive 0.9961 0.9681

women’s dance shoe Sansha modern dance shoe P22LS (black, women) Positive 0.9973 0.9908
violin adult FineLegend 1/8 violin FLV1114 Positive 0.9950 0.9769

skating knee panels RMT sports knee panels (black, L size) Positive 0.9652 0.9841
DJI g1200a DJI Mavic Mini unmanned aerial vehicle Negative 0.0049 0.0514

Berkshire Hathaway Letters to Shareholders The Snowball: Warren Buffett and the Business of Life Negative 0.0258 0.0874
My brother called Shun Liu, ZHU SU JIN Brothers: A Novel; Author: Yu Hua Negative 0.1624 0.0263

nissan thermos cup Disney thermos cup 500ML Negative 0.4938 0.2513
java web exercises JSP project development Case Full Record Negative 0.5106 0.3111

best method MVLSTM (BERT2DNN), BERM sur-
passes it 1.83% (4.45%) according to AUC on Data-
E (Data-S). Furthermore, BERM achieves the low-
est value of FNR on both Data-E and Data-S. This
implies that BERM can easily identify irrelevant
items so that it can return a list of satisfactory items
in the real-world scene. 2) The collected training
data have imbalanced classes (i.e., the positive ex-
amples are far more than the negative examples),
which poses a challenge to model learning. Most
baselines are sensitive to class imbalance. Since
BERM learns explicit node semantics by integrat-
ing the neighboring node information, our method
is robust when the data are imbalanced.

3.3 Case Study

Apart from the above quantitative analysis, we con-
duct qualitative analysis based on some cases of
e-commerce product search. For these cases, we
list the query phrase, item title, human labeling,
score of BERT, and score of BERM in Table 3. We
have the following empirical conclusions: 1) Most
of the student’s scores are close to the teacher’s,
which indicates the success of the proposed knowl-
edge distillation framework. 2) Some cases im-
ply that context information is necessary for rele-
vance matching. For example, for the query “nissan
thermos cup”, the teacher model cannot explicitly
judge whether or not the item entitled “Disney ther-
mos cup 500ML” is relevant to it. With the help
of context information in the query-item bipartite
graph, BERM can recognize that this query is re-
lated to “nissan”, rather than “Disney”.

3.4 Deployment & Online A/B Testing

We conduct further distillation to BERM and ob-
tain a lighter model BERM-O whose basic struc-
ture is a two-layer neural network. The process
of further distillation is almost the same as the
first knowledge distillation. The transfer set gener-

Table 4: Online performance of BERM-O under price
sort mode and default sort mode.

Metric Price sort mode Default sort mode
Improvement P-value Improvement P-value

UV-value 5.713% 3.20e-2 0.5013% 1.10e-1
UCVR 1.540% 7.81e-2 0.3058% 1.75e-2
CVR 1.829% 1.01e-2 0.1218% 1.60e-1
RPM 5.587% 3.03e-2 0.6886% 2.32e-2

ated by further distillation has graph-context labels.
To further evaluate BERM-O’s performance in the
real search scene, we deploy it to JD.com online
search platform. On this platform, there are about
one hundred million daily active users (DAU) and
two billion items. It processes over 150 million
search queries per day. The online baseline group
BERT2DNN (Jiang et al., 2020) and control group
BERM-O are deployed in a cluster, where each
node is with 64 core Intel(R) Xeon(R) CPU E5-
2683 v4 @ 2.10GHz, 256GB RAM as well as 4
NVIDIA TESLA P40 GPU cards. For both groups,
the only needed input data are queries and item
titles, which can be easily caught from the online
environment. Since BERM-O is lighter than BERT
or BERM, deploying it to the online search chain
requires less engineering work in the system.

Online results. We compare BERM-O with
BERT2DNN (Jiang et al., 2020) which is our online
baseline model using knowledge distillation with-
out context information. The results of A/B testing
are reported in Table 4. These results are from
one observation lasting more than ten days. Four
widely-used online business metrics are adopted
1) conversion rate (CVR): the average order num-
ber of each click behavior, 2) user conversion rate
(UCVR): the average order number of each user, 3)
unique visitor value (UV-value): the average gross
merchandise volume of each user, and 4) revenue
per mile (RPM): the average gross merchandise vol-
ume of each retrieval behavior. The results show

68

that BERM-O outperforms BERT2DNN in the plat-
form according to all of the business metrics. For
example, BERM-O significantly improves 5.7%
(relative value) of UV-value under price sort mode.

4 Related Work

4.1 Classical Relevance Matching Models

The classical relevance matching models use the
deep learning technique to learn vector repre-
sentations containing the semantics of words or
sequences. The prevailing methods are either
representation-focused (e.g., DSSM (Huang et al.,
2013), CDSSM (Shen et al., 2014), and ARC-
I (Hu et al., 2014b)) or interaction-focused (e.g.,
MatchPyramid (Pang et al., 2016a), ARC-II (Hu
et al., 2014b), and ESIM (Chen et al., 2017)).
The representation-focused methods learn the low-
dimensional representations of both sentences and
then predict their relationship by calculating the
similarity between the two representations. The
interaction-focused methods learn an interaction
representation of both sentences based on the cal-
culation from word-level to sentence-level.

However, the above methods ignore the inherent
context information contained in search logs (Qin
et al., 2022; Roßrucker, 2022). In this work, we
incorporate the advantages of representation-based
and interaction-based embeddings into BERM,
which is focused on contextual relevance matching.

4.2 Transformer-style Models

More recently, Transformer-based models (Chen
et al., 2021; Chi et al., 2021; Lin et al., 2021;
Reid et al., 2021) have achieved breakthroughs on
many NLP tasks and reached human-level accu-
racy. The representative models include BERT (De-
vlin et al., 2019), ERNIE (Sun et al., 2019b),
and RoBERTa (Liu et al., 2019b). Additionally,
GRMM (Zhang et al., 2021) and GHRM (Yu et al.,
2021) use graph information to enforce the rele-
vance matching model for information retrieval.

However, the multi-layer stacked Transformer
structure in these models leads to high time com-
plexity, so they are hard to deploy online. In this
work, we use BERT to generate the supervised in-
formation of BERM and refine the noisy behavior
data. Also, GRMM and GHRM are essentially
different from ours in the definition of graphs. In
their constructed graph, nodes are unique words
and edges are the co-occurrent relationships. In
this work, we leverage query phrases (or item ti-

tles) as nodes and user behaviors as edges, which
is more suitable for the product search problem.

4.3 Online Knowledge Distillation Methods

Knowledge distillation is firstly proposed in (Hin-
ton et al., 2015). Its main idea is to transfer the
knowledge generated by a massive teacher model
into a light student model. Because of the low com-
plexity of the student model, it is easy to deploy
the student model to the online platform. Con-
sidering the strong semantic understanding abil-
ity of BERT, some studies exploit the potential
of BERT as the teacher model of knowledge dis-
tillation. Two types of design principles are gen-
eral: isomorphic principle and isomeric principle.
Specifically, the distillation methods that follow
the isomorphic principle use the same model ar-
chitecture for teacher and student models, such as
TinyBERT (Jiao et al., 2020), BERT-PKD (Sun
et al., 2019a), MTDNN (Liu et al., 2019a), and Dis-
tilBERT (Sanh et al., 2019). As a more advanced
design principle, the isomeric principle uses dif-
ferent model architectures for teacher and student
models, such as Distilled BiLSTM (Tang et al.,
2019) and BERT2DNN (Jiang et al., 2020).

Although the above methods reduce the total
time costs by learning a light student model, they
ignore the context information in the real search
scene. Our proposed knowledge distillation frame-
work follows the isomeric principle and further in-
tegrates context information into the student model
by bipartite graph embedding.

5 Conclusions and Future Work

In this paper, we propose the new problem of con-
textual relevance matching in e-commerce product
search. Different from the previous work only us-
ing the 0-order relevance modeling, we propose a
novel method of the k-order relevance modeling,
i.e., employing bipartite graph embedding to ex-
ploit the potential context information in the query-
item bipartite graph. Compared to the state-of-the-
art relevance matching methods, the new method
BERM performs robustly in the experiments. We
further distill BERM into BERM-O and deploy
BERM-O to JD.com online e-commerce product
search platform. The results of A/B testing indicate
that BERM-O improves the user’s search experi-
ence significantly. In the future, we plan to apply
our method to other e-commerce applications such
as recommender systems and advertisements.

69

Acknowledgements

This work is supported in part by the National Nat-
ural Science Foundation of China (No. 61872207)
and JD.com, Inc. Chaokun Wang is the correspond-
ing author.

References
Wei-Cheng Chang, Daniel Jiang, Hsiang-Fu Yu,

Choon Hui Teo, Jiong Zhang, Kai Zhong, Kedarnath
Kolluri, Qie Hu, Nikhil Shandilya, Vyacheslav Iev-
grafov, et al. 2021. Extreme multi-label learning for
semantic matching in product search. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 2643–2651.

Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli,
Hyung Won Chung, Yin-Wen Chang, and Chun-Sung
Ferng. 2021. A simple and effective positional en-
coding for transformers. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2974–2988, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1657–1668.

Zewen Chi, Li Dong, Shuming Ma, Shaohan Huang,
Saksham Singhal, Xian-Ling Mao, Heyan Huang,
Xia Song, and Furu Wei. 2021. mT6: Multilingual
pretrained text-to-text transformer with translation
pairs. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 1671–1683, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Chenhe Dong, Yaliang Li, Ying Shen, and Minghui
Qiu. 2021. HRKD: Hierarchical relational knowl-
edge distillation for cross-domain language model
compression. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3126–3136, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model for

ad-hoc retrieval. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowl-
edge Management, pages 55–64.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014a. Convolutional neural network architectures
for matching natural language sentences. In Ad-
vances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Process-
ing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 2042–2050.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014b. Convolutional neural network archi-
tectures for matching natural language sentences. In
Advances in neural information processing systems,
pages 2042–2050.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanab-
han, Giuseppe Ottaviano, and Linjun Yang. 2020.
Embedding-based retrieval in facebook search. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 2553–2561.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338.

Yunjiang Jiang, Yue Shang, Ziyang Liu, Hongwei Shen,
Yun Xiao, Wei Xiong, Sulong Xu, Weipeng Yan, and
Di Jin. 2020. Bert2dnn: Bert distillation with mas-
sive unlabeled data for online e-commerce search. In
2020 IEEE International Conference on Data Mining
(ICDM), pages 212–221. IEEE.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 4163–4174.

Lei Li, Yankai Lin, Shuhuai Ren, Peng Li, Jie Zhou, and
Xu Sun. 2021. Dynamic knowledge distillation for
pre-trained language models. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 379–389, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ye Lin, Yanyang Li, Tong Xiao, and Jingbo Zhu. 2021.
Bag of tricks for optimizing transformer efficiency.
In EMNLP.

70

Hao Liu, Jindong Han, Yanjie Fu, Yanyan Li, Kai Chen,
and Hui Xiong. 2022. Unified route representation
learning for multi-modal transportation recommen-
dation with spatiotemporal pre-training. The VLDB
Journal, pages 1–18.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and
Jianfeng Gao. 2019a. Improving multi-task deep
neural networks via knowledge distillation for
natural language understanding. arXiv preprint
arXiv:1904.09482.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yiqun Liu and Jiaxin Mao. 2020. " revisiting infor-
mation retrieval tasks with user behavior models"
by yiqun liu and jiaxin mao with martin vesely as
coordinator. ACM SIGWEB Newsletter, pages 1–8.

Jiaxin Mao, Zhumin Chu, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2019. Investigating the reliability of
click models. In Proceedings of the 2019 ACM SIGIR
International Conference on Theory of Information
Retrieval, pages 125–128.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017.
Learning to match using local and distributed repre-
sentations of text for web search. In Proceedings
of the 26th International Conference on World Wide
Web, WWW 2017, Perth, Australia, April 3-7, 2017,
pages 1291–1299. ACM.

Xichuan Niu, Bofang Li, Chenliang Li, Rong Xiao,
Haochuan Sun, Hongbo Deng, and Zhenzhong Chen.
2020. A dual heterogeneous graph attention network
to improve long-tail performance for shop search
in e-commerce. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3405–3415.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengx-
ian Wan, and Xueqi Cheng. 2016a. Text matching as
image recognition. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengx-
ian Wan, and Xueqi Cheng. 2016b. Text matching as
image recognition. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA, pages 2793–
2799.

Chuan Qin, Kaichun Yao, Hengshu Zhu, Tong Xu,
Dazhong Shen, Enhong Chen, and Hui Xiong. 2022.
Towards automatic job description generation with

capability-aware neural networks. IEEE Transac-
tions on Knowledge and Data Engineering.

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng
Shi, and Jimmy Lin. 2019. Bridging the gap be-
tween relevance matching and semantic matching for
short text similarity modeling. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5370–5381.

Ahmad Rashid, Vasileios Lioutas, Abbas Ghaddar, and
Mehdi Rezagholizadeh. 2021. Towards zero-shot
knowledge distillation for natural language process-
ing. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
pages 6551–6561, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4081–4090, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Georg P Roßrucker. 2022. State-of-the-art survey on
web search. In The Autonomous Web, pages 1–24.
Springer.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. Learning semantic rep-
resentations using convolutional neural networks for
web search. In Proceedings of the 23rd international
conference on world wide web, pages 373–374.

Shuo Sun and Kevin Duh. 2020. CLIRMatrix: A mas-
sively large collection of bilingual and multilingual
datasets for cross-lingual information retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4160–4170, Online. Association for Computa-
tional Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019a.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019b. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

71

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu,
Liang Pang, and Xueqi Cheng. 2016. A deep ar-
chitecture for semantic matching with multiple posi-
tional sentence representations. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, pages
2835–2841.

Junmei Wang, Min Pan, Tingting He, Xiang Huang,
Xueyan Wang, and Xinhui Tu. 2020. A pseudo-
relevance feedback framework combining relevance
matching and semantic matching for information
retrieval. Information Processing & Management,
57(6):102342.

Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He,
Bin Yang, and Christian S Jensen. 2021a. Autocts:
Automated correlated time series forecasting. Pro-
ceedings of the VLDB Endowment, 15(4):971–983.

Yimeng Wu, Mehdi Rezagholizadeh, Abbas Ghaddar,
Md Akmal Haidar, and Ali Ghodsi. 2021b. Universal-
KD: Attention-based output-grounded intermediate
layer knowledge distillation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7649–7661, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan
Liu, and Russell Power. 2017. End-to-end neural
ad-hoc ranking with kernel pooling. In Proceedings
of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Shinjuku, Tokyo, Japan, August 7-11, 2017, pages
55–64. ACM.

Song Xu, Haoran Li, Peng Yuan, Yujia Wang, Youzheng
Wu, Xiaodong He, Ying Liu, and Bowen Zhou. 2021.
K-PLUG: Knowledge-injected pre-trained language
model for natural language understanding and gener-
ation in E-commerce. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
1–17, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xueli Yu, Weizhi Xu, Zeyu Cui, Shu Wu, and
Liang Wang. 2021. Graph-based hierarchical rel-
evance matching signals for ad-hoc retrieval. CoRR,
abs/2102.11127.

Chengxiang Zhai and John Lafferty. 2017. A study of
smoothing methods for language models applied to
ad hoc information retrieval. In ACM SIGIR Forum,
volume 51, pages 268–276. ACM New York, NY,
USA.

Yuan Zhang, Dong Wang, and Yan Zhang. 2019. Neu-
ral ir meets graph embedding: A ranking model for
product search. The World Wide Web Conference.

Yuan Zhang, Xiaoran Xu, Hanning Zhou, and Yan
Zhang. 2020. Distilling structured knowledge into
embeddings for explainable and accurate recommen-
dation. In Proceedings of the 13th International Con-
ference on Web Search and Data Mining, pages 735–
743.

Yufeng Zhang, Jinghao Zhang, Zeyu Cui, Shu Wu,
and Liang Wang. 2021. A graph-based rele-
vance matching model for ad-hoc retrieval. CoRR,
abs/2101.11873.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li,
Markus Pelger, Tianqi Yang, Liangjie Zhang, Ruofei
Zhang, and Huasha Zhao. 2021. Textgnn: Improving
text encoder via graph neural network in sponsored
search. In WWW ’21: The Web Conference 2021,
Virtual Event / Ljubljana, Slovenia, April 19-23, 2021,
pages 2848–2857. ACM / IW3C2.

Tiangang Zhu, Yue Wang, Haoran Li, Youzheng Wu,
Xiaodong He, and Bowen Zhou. 2020. Multimodal
joint attribute prediction and value extraction for E-
commerce product. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2129–2139, Online. As-
sociation for Computational Linguistics.

72

A Graph Construction Algorithm

We provide the complete algorithm of graph con-
struction in Algorithm 1.

B Word Embedding in E-commerce
Scene

In this part, we introduce the details of word embed-
ding generation used in this work. In e-commerce
scene, the basic representation of a query or an
item is an intractable problem. On one hand, it
is infeasible to represent queries and items as in-
dividual embeddings due to the unbounded entity
space. On the other hand, product type names (like
“iphone11”) or attribute names (like “256GB”) have
special background information and could contain
complex lexicons such as different languages and
numerals. To address these problems, we adopt
word embedding in BERM, which dramatically re-
duces the representation space. Also, we treat con-
tiguous numerals, contiguous English letters, or sin-
gle Chinese characters as one word and only retain
the high-frequency words (such as the words oc-
curring more than fifty times in a six-month search
log) in the vocabulary. The final vocabulary is only
in the tens of thousands, which saves memory con-
sumption and lookup time of indexes by a large
margin.

C Complexity Analysis

In this section, we analyze the time and space com-
plexities of BERT (teacher model), BERM (student
model), and BERM-O (online model).

C.1 Time Complexity

For the lookup operation on the static vocabulary
table (i.e., a word embedding table whose size is
nw), the time complexities of BERT, BERM, and
BERM-O are the same, i.e., O(nw). For the model
calculation part, BERT uses Transformer networks.
We denote the word embedding size, head num-
ber, network number, query length, and item length
as d1, h1, k1, lQ, lI , respectively. For the one-layer
multi-head attention mechanism, the complexity
of linear mapping (input part) is O(1

h1
(lQ + lI)d

2
1),

the complexity of attention operation is O(h1l2Qd+
hl2Id1), and the complexity of linear mapping (out-
put part) is O((lQ + lI)d

2
1). Therefore, the total

model calculation complexity of k1-layer BERT
is O(h1+1

h1
(lQ + lI)d

2
1k1 + (l2Q + l2I)h1d1k1). For the

student model BERM, we denote the word em-

Algorithm 1 Bipartite Graph Construction
Input: Thresholds α and β; Collected dataset Sinput= {pi}ñ

(note that ñ is the number of examples); Raw user behav-
ior graph G=(U ,V, E ,A,R) where E= {e1, · · · , em},
A= {Query, Item},R= {Click, Purchase}.

Output: Transfer set Stransfer= {pi; yi}ñ where yi is the
training label of query-item pair pi (yi∈ [0, 1]); Refined
bipartite graph G′=(U ,V, E ′,A,R).

1: Initialize E ′: E ′=E .
2: Fine-tune BERT on the human-labeled data.
3: Use the fine-tuned BERT to predict on Sinput and then

obtain Stransfer= {pi; yi}ñ.
4: for pi, yi in Stransfer do
5: Build an edge between the pair pi and denote it as

ei=edge(pi).
6: if ei∈E then
7: if f2(ei)=Purchase then
8: continue;
9: else if yi < α then

10: E ′=E ′ \ {ei}
11: end if
12: else if yi > β then
13: E ′=E ′ ∪ {ei}
14: end if
15: end for

bedding size, hidden size, and network number as
d, h2, k2, respectively. The complexity of calculat-
ing micro matching embedding is O(lQlId), which
is far more than that of calculating micro matching
embedding. The complexity of k2-layer DNN is
O(h2dk2). Therefore, the total model calculation
complexity of k2-layer BERM is O(lQlId+h2dk2).
For the online model BERM-O, we denote the word
embedding size, hidden size, and network num-
ber as d3, h3, k3, respectively. The model calcula-
tion complexity of k3-layer BERM-O is O(d3h3k3).
Note that the complexity of BERM-O is indepen-
dent of lQ and lI because BERM-O only receives
sentence embeddings and does not calculate word-
level matching signals. Based on the above analy-
sis, we can conclude that BERM is more efficient
than BERT and meanwhile BERM-O has more ad-
vantages than BERM on time complexity.

C.2 Space Complexity

The storage of the static vocabulary table takes
up the majority of the total space storage. There-
fore, the space complexities of BERT, BERM, and
BERM-O are the same, i.e., O(nwd).

D Details of Experimental Setups

D.1 Baselines

The model BERM is compared with some state-of-
the-art models. Like BERM, these models are used
as the student model of the proposed knowledge dis-

73

tillation framework. We adopt the hyper-parameter
settings recommended by the original papers for all
the methods. According to the formulation process
of embedding, these methods can be divided into
the following three types:

• Three representation-focused relevance matching
methods: DSSM (Huang et al., 2013), MVL-
STM (Wan et al., 2016), and ARC-I (Hu et al.,
2014b). They learn the low-dimension represen-
tations of both sentences w.r.t. a query and an
item, and then predict their relationship by calcu-
lating the similarity (such as cosine similarity) of
representations.

• Seven interaction-focused relevance matching
methods: DRMM (Guo et al., 2016), Match-
Pyramid (Pang et al., 2016b), ARC-II (Hu et al.,
2014a), K-NRM (Xiong et al., 2017), DRMM-
TKS (Guo et al., 2016), Conv-KNRM (Xiong
et al., 2017), and ESIM (Chen et al., 2017). They
learn an interaction representation of both sen-
tences based on the interaction calculation from
word-level to sentence-level.

• Two integrated relevance matching methods:
Duet (Mitra et al., 2017) and BERT2DNN (Jiang
et al., 2020). They combine the features of the
above two types of methods into themselves.

• Five graph neural network models:
GAT (Veličković et al., 2018), GraphSAGE-
Mean (Hamilton et al., 2017), GraphSAGE-
LSTM (Hamilton et al., 2017), TextGNN (Zhu
et al., 2021), and GEPS (Zhang et al., 2019).
They aggregate the neighbor information from
the query graph or item graph to update the
embedding of the anchor node.

D.2 Implementation Details
Here we introduce the implementation details of
the whole knowledge distillation framework as fol-
lows:

• Teacher model. For the teacher model, we adopt
BERT-Base* with a 12-layer (k1=12) Trans-
former encoder where the word embedding size
d1 is 768 and head number h1 is 12. We pre-
train BERT-Base on a human-labeled dataset
with 380,000 query-item pairs. The fine-tuned
BERT-Base is then used as an expert to refine
the noisy click behavior data from Strain. The

*https://github.com/google-research/bert

refinement rule is: if the prediction score yi of
BERT-Base is less than α (the default value of α
is 0.3), then the raw edge is deleted; if the score
is larger than β (the default value of β is 0.7),
then a new edge is added.

• Student model. For the student model, we adopt
the proposed BERM model. We implement
BERM in TensorFlow 2.0 with the high-level
Estimator API. For each input query phrase Q
or item title I , we split it into several words and
then truncate or pad its length to 10 or 65words
(i.e., lQ=10, lI=65). Each word embedding is
acquired by the lookup operation on a static vo-
cabulary table whose total size nw is 39,846.
This table is generated by pre-training two billion
search data with the tool of Word2Vec. The size d
of pre-trained embeddings or trained embeddings
is 128.

• Training details. We use Lazy-Adam as the
optimizer and its learning rate is 0.001. To reduce
the overfitting of the training data, we use L2
regularization on each layer of neural networks.
For Data-E, we set the training epoch as 20. For
Data-A and Data-S, we set the training epoch as
3.

E Additional Experiments

We conduct some additional experiments, includ-
ing ablation studies (Section E.1) and sensitivity
analysis (Section E.2). In these experiments, we
adopt Data-E and Data-A consistently.

E.1 Ablation Study

E.1.1 Integration of Embeddings
There are three types of components in the com-
plete BERM: the representation-based embeddings
EQ

seq,EI
seq, interaction-based embedding Eint, and

metapath embeddings EQ-I-Q,EI-Q-I . To further
examine the importance of each component in the
final embedding of BERM, we remove one or two
components from it (Equation 9) at a time and
examine how the change affects its overall perfor-
mance.

The corresponding results on Data-E and Data-A
are reported in Table 5 and 6. We have the follow-
ing empirical observation and analysis:

• In general, the both-component setting outper-
forms the single-component setting but is worse
than the triple-component setting (i.e., BERM).

74

Table 5: Ablation study on Data-E. In each column, the
best result is bolded.

Model Data-E
AUC F1-score FNR(↓)

EQ
seq,E

I
seq 0.8537 0.8044 0.3560

Eint 0.8595 0.8037 0.3464
EQ-I-Q,EI-Q-I 0.8430 0.8173 0.2995
EQ

seq,E
I
seq,Eint 0.8638 0.8086 0.3331

Eint,EQ-I-Q,EI-Q-I 0.8761 0.8221 0.2758
EQ

seq,E
I
seq,EQ-I-Q,EI-Q-I 0.8656 0.8190 0.2922

BERM 0.8785 0.8256 0.2966

Table 6: Ablation study on Data-A. In each column, the
best result is bolded.

Model Data-A
AUC F1-score FNR(↓)

EQ
seq,E

I
seq 0.8067 0.8660 0.3697

Eint 0.8289 0.9084 0.4459
EQ-I-Q,EI-Q-I 0.8500 0.9114 0.4110
EQ

seq,E
I
seq,Eint 0.8776 0.9070 0.4743

Eint,EQ-I-Q,EI-Q-I 0.8824 0.9099 0.3705
EQ

seq,E
I
seq,EQ-I-Q,EI-Q-I 0.8750 0.9094 0.3753

BERM 0.8862 0.9107 0.3673

It demonstrates that different components in
BERM have different positive effects on the over-
all performance and they cannot replace each
other.

• The introduction of k-order relevance modeling
can bring stable advancement to each 0-order
relevance model. For example, the combination
of “EQ

seq,EI
seq,EQ-I-Q,EI-Q-I” surpasses the com-

bination of “EQ
seq,EI

seq” 6.83% according to the
metric of AUC on Data-A. This demonstrates
that applying metapath embedding to relevance
matching can make effective use of the neigh-
boring nodes’ information in the user behavior
graph.

E.1.2 Effect of the Intermediate Node

The metapath defined in BERM includes the in-
termediate node. To further investigate the effect
of the intermediate node, we compare the perfor-
mances of BERM with the intermediate node (i.e.,
“Q-I-Q” and “I-Q-I”) and BERM without the in-
termediate node (i.e., “Q-Q” and “I-I”) on Data-E
and Data-A in Figure 4. We observe that BERM
with the intermediate node performs better than the
other one. We infer that the intermediate node has
strong semantic closeness to the anchor node and
thus it is helpful for accurate semantic recognition.

(a) Data-E (b) Data-A

Figure 4: Effect of the intermediate node. The red (blue)
bar represents BERM with (without) the intermediate
node.

(a) AUC of Data-E (b) F1-score of
Data-E

(c) FNR of Data-E

(d) AUC of Data-A (e) F1-score of
Data-A

(f) FNR of Data-A

Figure 5: Effect of different values of α and β. (a), (b),
and (c) are the results of Data-E; (d), (e), and (f) are the
results of Data-A. The red (blue) color corresponds to
the high (low) value.

E.2 Sensitivity Analysis

E.2.1 Thresholds α and β

In BERM, α decides how many edges of the noisy
click behavior should be deleted and β decides how
many hidden useful edges should be retrieved. To
investigate the sensitivity of α and β, we conduct
experiments with 16 different hyper-parameter set-
tings where α ranges from 0.2 to 0.5 and β ranges
from 0.5 to 0.8. We apply the three-order curve
interpolation method to show the final results in
Figure 5. In general, the results of BERM are ro-
bust to the change of hyper-parameter α and β on
either Data-E or Data-A. For example, the maxi-
mum error of AUC is no more than 1%. So we
conclude that user behaviors play a major role in
the performance of BERM and the knowledge from
BERT provides auxiliary effects for it.

75

Table 7: Effect of different neighbor selection strategies
on Data-E.

Rate Click+BERT’s score Purchase+BERT’s score
AUC F1-score FNR(↓) AUC F1-score FNR(↓)

λ = 0.0 0.8785 0.8256 0.2966 0.8785 0.8256 0.2966
λ = 0.2 0.8779 0.8237 0.2834 0.8777 0.8236 0.2810
λ = 0.4 0.8770 0.8200 0.3198 0.8756 0.8214 0.3068
λ = 0.6 0.8670 0.8085 0.4000 0.8696 0.8045 0.3694
λ = 0.8 0.8679 0.8101 0.3901 0.8660 0.8105 0.3262
λ = 1.0 0.8656 0.8091 0.3850 0.8671 0.8109 0.3727

Table 8: Effect of different neighbor selection strategies
on Data-A.

Rate Click+BERT’s score Purchase+BERT’s score
AUC F1-score FNR(↓) AUC F1-score FNR(↓)

λ = 0.0 0.8862 0.9107 0.3673 0.8862 0.9107 0.3673
λ = 0.2 0.8849 0.9113 0.3794 0.8830 0.9117 0.3831
λ = 0.4 0.8821 0.9112 0.4016 0.8818 0.9100 0.4131
λ = 0.6 0.8779 0.9068 0.4793 0.8783 0.9064 0.4844
λ = 0.8 0.8802 0.9076 0.4676 0.8790 0.9084 0.4683
λ = 1.0 0.8792 0.9077 0.4671 0.8787 0.9079 0.4716

E.2.2 Threshold k

Here we evaluate the effect of k on the performance
of BERM by sampling neighboring nodes with dif-
ferent hops from the bipartite graph. The compar-
ison results on Data-E and Data-S are shown in
Figure 6. We can see that the BERM with k=2
achieves the best performance among them. When
k is too large such as k=5, many distant neigh-
bors are aggregated into the anchor nodes, then
it leads to the performance degradation of BERM
due to lots of noise gathering in these distant neigh-
bors. Therefore, we conclude that 2-order rele-
vance matching modeling is the optimal choice for
our e-commerce scene.

E.2.3 Selection of Neighbor Structure

In BERM, the selection of neighbor structure di-
rectly affects which context information is transmit-
ted to the anchor node. A good selection strategy
can aggregate valuable neighboring node informa-
tion to enrich the anchor node’s representation. To
investigate the effect of different neighbor struc-
ture selection strategies on BERM and seek a rela-
tively optimal solution, we use different values of
hyper-parameter λ to control the ratio between user
behavior and BERT’s score. Specifically, we calcu-
late a new score Scorenew(Q, I) = λ·User(Q, I) +
(1−λ)·Score(Q, I) where User(Q, I) is the
user behavior feature (e.g., for click behavior,
User(Q, I)=1 if click behavior happens between
query Q and item I). The addition and dele-

Figure 6: The effect of different k.

tion of edges refer to Scorenew(Q, I), rather than
Score(Q, I). We report the results with different λ
in Table 7 and 8. From them, we can conclude that:

• Using BERT’s score is better than using user be-
haviors for the selection of neighbors. Therefore,
the value of AUC or F1-score gradually decreases
with the increase of λ; the value of FNR increases
with the increase of λ. The optimal λ is located
in the interval [0.0, 0.2].

• According to the metric of FNR, the purchase be-
havior is better than the click behavior on Data-E.
The reason for it is that purchase behaviors reveal
more accurate semantic relevance information
than click behaviors. However, the purchase be-
havior is worse than the click behavior on Data-A.
We guess that it is caused by the sparsity of pur-
chase behaviors in the dataset of all categories.

76

Proceedings of EMNLP 2022 Industry Track, pages 77–89
December 9–11, 2020. ©2022 Association for Computational Linguistics

Accelerating the Discovery of Semantic Associations from Medical
Literature: Mining Relations Between Diseases and Symptoms

Alberto Purpura
IBM Research Europe
alp@ibm.com

Francesca Bonin
IBM Research Europe

fbonin@ie.ibm.com

Joao H. Bettencourt-Silva
IBM Research Europe

jbettencourt@ie.ibm.com

Abstract

Medical literature is a vast and constantly ex-
panding source of information about diseases,
their diagnoses and treatments. One of the
ways to extract insights from this type of data
is through mining association rules between
such entities. However, existing solutions do
not take into account the semantics of sen-
tences from which entity co-occurrences are
extracted. We propose a scalable solution for
the automated discovery of semantic associ-
ations between different entities such as dis-
eases and their symptoms. Our approach em-
ploys the UMLS semantic network and a bi-
nary relation classification model trained with
distant supervision to validate and help rank-
ing the most likely entity associations pairs ex-
tracted with frequency-based association rule
mining algorithms. We evaluate the pro-
posed system on the task of extracting disease-
symptom associations from a collection of
over 14M PubMed abstracts and validate our
results against a publicly available known list
of disease-symptom pairs.

1 Introduction

Scientific literature is a valuable resource for accel-
erating scientific discovery in several fields, from
computer science to physics, and healthcare (Ku-
mar and Tipney, 2014). However, the overwhelm-
ing amount of articles that need to be inspected re-
quires extensive computational approaches as well
as modeling knowledge in an appropriate machine
readable form. Many efforts have been recently
tackling the problem of transforming the unstruc-
tured knowledge from scientific papers to knowl-
edge graphs that enable the extraction of actionable
insights (Hou et al., 2019; Yadav et al., 2020; Park
et al., 2021).

Due to the phenomenal growth of PubMed and
MedLine publications (Bretonnel and Lawrence,
2008), the medical domain would particularly ben-
efit from the creation of comprehensive knowledge

graphs. Extracting relations between entities is par-
ticularly valuable in the medical and biomedical
domains where scientists need to extract semantic
relations between medical concepts, such as protein
and protein, gene and protein, drug and drug, and
drug and disease. These relations can be extracted
from biomedical literature available from various
sources and have already been made accessible in
different databases such as BioGRID (Stark et al.,
2006) or PDID (Wang et al., 2016). The extraction
of these associations from biomedical literature,
however, is often time consuming and computa-
tionally expensive. Hence, these databases become
quickly outdated if they are not updated at the same
rate as new scientific discoveries are published. In
fact, to the best of our knowledge, the usage of fully
automated tools for the extraction of information
from these sources is very limited.

In this paper, we propose an efficient end-to-end
pipeline for the extraction of semantic relations
between medical concepts. We evaluate our ap-
proach on disease-symptom associations discovery,
but it can also be applied to other relation types
and use cases. While disease-symptom informa-
tion is widely published in medical bibliography,
mining such information from literature, electronic
health records, or even from user generated con-
tent, can accelerate the detection of new symptoms,
diseases or variants. Early detection is particu-
larly important in public health surveillance, both
in detecting new pandemics (as was the case for
COVID-19), identifying new symptoms associated
with known diseases (also seen in COVID-19), or
even for detecting the resurgence of disease out-
breaks in certain countries – as was the case for the
Ebola outbreak of 2014 in West Africa. Being able
to recognize relations between medical concepts
also means that biomedical or clinical texts can be
automatically processed at scale, resulting in tools
to support decision-making, clinical trial screening,
and pharmacovigilance (Yadav et al., 2020).

77

The proposed pipeline operates similarly to a
search engine and can therefore return up-to-date
information as its database of documents can be
updated in near real time. Our main contributions
are:

• a scalable and easily updatable Elasticsearch-
based solution to store and query annotated
medical literature documents;
• an efficient association rules discovery sys-

tem based on (i) an association rule mining
algorithm, (ii) UMLS semantic network infor-
mation and (iii) a binary relation classification
model trained with distant supervision;
• a solution for human-in-the-loop verification

and interpretation of the discovered disease-
symptoms associations.

In addition, our solution uses open source libraries
and models, and does not require expensive anno-
tation efforts.

An Industry Perspective. With the advance of
health informatics, several applications are being
developed in the healthcare industry. Automated
diagnosis applications as well as symptom check-
ers are widely used and especially important in
low-resource countries to ensure remote medical
assistance (Morita et al., 2017). Similarly, health
insurance providers and public health organizations
are increasingly interested in preventative care to
detect early disease onset or complications before
patients become expensive and risky to treat.

One of the issues for such application is the col-
lection of information for specific populations. The
system proposed in this paper, because of its scal-
ability and ability to interrogate more than 14M
abstracts, can represent a useful resource that al-
lows near real time searches to be performed for
relation discovering.

2 Related Work

Relation extraction from biomedical text, clinical
discharge notes and medical articles have been
widely investigated. Among the early systems,
Chen et al. (2008) proposed a combination of text
mining and association rules to determine the as-
sociation of drugs and diseases. More recently,
increasing numbers of machine learning-based ap-
proaches have been developed exploiting super-
vised learning and feature engineering. Many of
them have looked at identifying modifiers related
to important clinical entities, such as medication

features (Jon D. and Min, 2010; Pathak et al., 2015).
An interesting relation extraction task was pro-
posed in the 2010 i2b2/VA challenge (Uzuner et al.,
2011). Task organizers released an annotated data-
set with medical concepts, assertions and relations,
and participants where asked to extract both con-
cepts and assertion as well as specific relations
between relevant clinical entities in text. All the
top-ranked systems used machine learning-based
methods with extensive feature engineering. For
example, Grouin et al. (2010) proposed a Support
Vector Machine (SVM) based system with addi-
tional rules to capture linguistic patterns of rela-
tions, while De Bruijn et al. (2011) investigated
machine learning using large-dimensional features
derived from both textual information and other ex-
ternal sources. Differently from those approaches,
we focus on disease-symptom associations, which
are useful for a wide variety of healthcare applica-
tions and our approach does not require costly man-
ual annotations or extensive feature engineering.
More recently, deep learning models have also been
applied to solve the same task. Shah et al. (2019)
introduce a concept association mining framework
based on word embeddings learned through neural
networks allowing diseases and related symptoms
to be visualized in chronological order. Zhang and
Lu (2019) have used a semi-supervised approach
based on variational autoencoder for biomedical re-
lation extraction where a multi-layer Convolutional
Neural Network (CNN) was used together with
bidirectional long short-term memory networks
(Bi-LSTMs) to encode drug-drug, protein-protein
and chemical-protein interactions. Similar tasks
were carried out by Yadav et al. (2020) who intro-
duced a multi task learning framework leveraging
a structured self-attentive network together with
adversarial learning, and their approach covers also
the task of medical concept relation extraction. Our
approach explores a different solution, combining
pattern mining with NLP algorithms and leverag-
ing more than 14M PubMed abstract, to exploit the
vastness of publications to its fullest.

3 Proposed System

The proposed system for the discovery of semantic
entity associations is divided into three parts: 1) a
sentence annotation system, 2) an Elasticsearch 1

index and 3) a querying and filtering component.
The latter can be further divided into three units: (i)

1https://www.elastic.co.

78

Figure 1: Proposed pipeline architecture.

an Association Rules Mining (ARM) algorithm, (ii)
a Unified Medical Language System (UMLS) (Bo-
denreider, 2004) semantic network-based associ-
ation rules filter and (iii) a Binary semantic Rela-
tion Classification (BRC) model. When deployed,
a user can query our system providing a disease
name or its UMLS unique identifier and receive a
ranked list of symptoms that are likely associated to
it, together with a few sentences from the indexed
data that motivate the discovered disease-symptom
associations. The system facilitates the addition of
new documents – such as newly published papers –
with the automated annotation of the new textual
data and a call to the index API to insert the new
records to the index without any updates to the re-
sults filtering pipeline. A diagram of the proposed
system is depicted in Figure 1.

Documents Annotation and Indexing. When a
new document is received, we first split it into sen-
tences and annotate each of them with UMLS en-
tity codes using Scispacy’s (Neumann et al., 2019)
Natural Language Processing (NLP) pipeline. Scis-
pacy is one of the most efficient and popular NLP
annotation libraries for biomedical data and al-
lows for a straightforward integration with the
large ecosystem of Python libraries. Its perfor-
mance is similar to other popular libraries such
as MetaMap (Aronson, 2001) but it has a lower
inference time (Neumann et al., 2019). For the
above reasons, we decide to employ it as the an-
notation component for our pipeline. Scispacy’s
entity linker also recognizes mentions of entities
from the UMLS database in each of the sentences
of the input text. Each of the entities recognized by
the annotator has a corresponding UMLS seman-
tic type, such as diseases, symptoms, or anatomy
terms, among others. Here, we are going to fo-
cus only on the former two entity semantic types
– i.e. diseases and symptoms – however, the pro-
posed solution could discover relations between
any entity types with minimal adaptations. Once
a sentence has been annotated, we store it in an
Elasticsearch index. There, we associate different
tags to it indicating the UMLS unique identifiers of

the entities mentioned in it. We then employ these
tags to efficiently retrieve relevant sentences men-
tioning a certain disease and its symptoms. We use
the keyword data type from Elasticsearch to store
a list of entity identifiers for each sentence record.
This strategy allows us to efficiently compute the
support (Agrawal and Srikant, 1994) of different
diseases and disease-symptom pairs. 2 To sum-
marize, when receiving a new textual document,
this component of our pipeline: (1) splits into sen-
tences, (2) adds metadata to each sentence related
to the spans of each entity mentioned in it, i.e. a
disease, drug or symptom name and their UMLS
identifiers, (3) store the sentence and metadata into
an Elasticsearch index. Finally, we are aware that
the output of this component could contain errors,
e.g. mislabeled entities. We protect from them by
collecting data from a large number of documents
and relying on approaches that are robust to outliers
as described in the following sections.

Association Rules Mining (ARM). To discover
associations between annotated entity pairs – e.g.
a disease and its symptoms – we first query our
index to retrieve all sentences mentioning the given
disease. For each sentence where the given disease
is mentioned, we also obtain a list of other entity
identifiers that co-occur with the same disease in
that sentence. We then extract all frequent item-
sets of size two containing the given disease and
a symptom among all possible combinations be-
tween any co-occurring pair. For each candidate
symptom entity we then compute the support of
the itemset of size two containing the given dis-
ease by querying the Elasticsearch index. Finally,
we compute the confidence of the association rule:
conf(D ⇒ C) = supp(D,C)/supp(D), where
D indicates a disease, C a candidate symptom en-
tity, supp(·) the operation to compute the support
of an itemset and D ⇒ C an association rule be-
tween a disease D and another entity C. We em-

2The support of an itemset is defined as the number of
times it occurs in a dataset. An itemset could contain a sin-
gle entity (e.g. a disease) or more than one (e.g. a disease-
symptom pair).

79

ploy this score to rank disease-entity pairs that are
most likely to be associated based on the statis-
tical properties of the collected data. This solu-
tion for ARM is similar in principle to the popu-
lar Pointwise Mutual Information (PMI) (Church
and Hanks, 1990) measure of association between
words, but allows the discovery of associations be-
tween groups of entities larger than two, which can
be useful for certain applications.

We also experimented with computing the Lift
of each association rule, defined as Lift(C ⇒
D) = conf(D ⇒ C)/supp(C). However, we
found that this metric – which is normalized with
respect to the frequency of each symptom – led to
lower performances than the former. This is likely
due to the fact that it does not take into account the
frequency of each candidate symptom alone which
is some important information when dealing with
noisy annotations coming from text.

Frequency-based measures, however, are not
precise enough to recognize all semantic disease-
symptoms associations in our data. For this reason,
we apply two further steps based on the informa-
tion contained in the UMLS Semantic Network and
on our BRC model.

UMLS Semantic Network Based Pruning.
From the perspective of our ARM approach, any
entity co-occurring with a disease is considered
a potential relevant match. To remove association
rules involving entities that do not represent a symp-
tom or are not semantically related to a disease, we
apply a filtering step based on the information con-
tained in the UMLS semantic network. This is a
network of semantic types such as Disease, Symp-
tom or Gene, among others.

Each of these semantic types is associated to a
set of UMLS entity identifiers and allows us to iden-
tify entities typically recognized as symptoms by
the medical community and the relations between
them and other entities in the UMLS ontology. In
principle, any symptom associated to the disease
semantic type can be associated to the disease that
we are interested in analyzing. The semantic net-
work, however, only yields semantic information
between broad semantic concepts that could all be
potentially related to each other and does not pro-
vide any specific information regarding a particular
disease or symptom association. Therefore, this fil-
tering stage allows us to distinguish between a gene
or a body part and a symptom that could occur with
any disease and to remove these semantically incor-

rect associations. For this reason, we employ it in
association with the former statistical-based entity
strategy and with the BRC model described below
to filter out some of the candidate entity pairs.

Binary Relation Classification (BRC). The fi-
nal step we propose to extract and rank the most
likely symptoms for a disease is the BRC model.
We randomly sample n sentences (set to 500 in our
experiments) where a disease is mentioned together
with each of the candidate symptoms and feed them
to our BRC model. This model is trained to predict
whether two entities in a sentence are semantically
related or not. For example, in the sentence: “We
conclude that the ability of stress testing to predict
<e2>coronary-artery disease</e2> is limited in a
heterogeneous population in which the prevalence
of disease can be estimated through classification
of <e1>chest pain</e1> and the sex of the pa-
tient.” the two entities chest pain (symptom) and
coronary-artery disease (disease) are semantically
related because the sentence is expressing a con-
cept that puts the entities in relation to each other.
We are not interested in a specific relation type be-
tween the two entities (a symptom-disease relation
can be manifestation-of, evaluation-of, diagnoses
of according to the UMLS semantic network). In-
stead, we are interested in recognizing sentences ex-
pressing any semantic relation between two given
entities. The confidence score returned by this
component of our pipeline is equal to the ratio
of the examined sentences where the same entity
pair is classified as semantically related out of the
total number of examined sentences where both
entities occur (n). For instance, we consider 500
random sentences from our index where a disease
like “Asthma” is mentioned together with one of its
candidate symptoms such as “Dyspnea”. We then
classify the relation between these two entities in
each of the 500 sentences. We finally compute the
BRC association score as the number of sentences
where the two entities were classified as related
over the total of 500.

The architecture of the proposed model is de-
picted in Figure 2. We employ a BERT transformer
model trained on PubMed abstracts – PubMed-
BERT (Gu et al., 2021) – available in the Hugging
Face library and fine-tune it on the binary classi-
fication task on a training dataset we generated
automatically with distant supervision. The input
to the model is a sentence with entity mentions tags
like <e1>...</e1> and <e2>...</e2> surround-

80

ing the surface forms of the pair of entities we are
interested in. Next, we encode the input sentence
with PubMedBERT and then take the representa-
tion of the <e1> and <e2> tokens from the last layer
of the encoder and concatenate them. This repre-
sentation of the entities in the input sentence is
then fed to a feed-forward neural network with a
softmax activation that outputs the probabilities of
the two input entities being semantically related
to each other given the input sentence. To gen-
erate the training data for our model we consider
the sentences stored in the aforementioned Elas-
ticsearch index. We select a subset of 300K sen-
tences containing pairs of entities that are related
to each other according to the UMLS semantic
network – we used 90% of them for training and
10% for validation. These sentences are automat-
ically labeled as containing a relation between a
UMLS semantically related entity pair if the same
entities are also syntactically related. All other in-
stances from the aforementioned group containing
syntactically unrelated entity pairs are considered
as negative samples. We say that two entities are
syntactically related if the root verb of the sentence
appears in the shortest path connecting them in
the sentence dependency tree. We observed em-
pirically that combining this simple syntactic rule
with the information from the UMLS semantic net-
work yields results of a sufficiently high quality
to train our BRC model. Other strategies similar
to ours are also frequently employed for the cre-
ation of relation classification datasets (Smirnova
and Cudré-Mauroux, 2018). We fine-tune the trans-
former model for 10 epochs using Cross-Entropy
loss, batch size 64 and learning rate of 2e-5. After
training, our model achieved an F1 Score of 0.94
on our randomly sampled validation set.

Figure 2: Binary Relation Classification (BRC) model.

Results ranking. The disease-symptoms pairs
discovered filtered by the UMLS semantic network
are finally ranked in decreasing order of relevance
with respect to a combination of the output scores
of the ARM and BRC models: Score(d, s) = α·
BRC(d, s) + β· ARM(d, s) where α and β are pa-
rameters optimized using a held out validation set
of known entity pairs associations, described in
more detail in the next section.

4 Evaluation

We evaluate the proposed system on the task of
discovering symptoms associated to different dis-
eases from a collection of over 14M PubMed ab-
stracts published between 2000 and 2022. We
assess the performance of the proposed pipeline
in terms of Recall, F1 Score, and Precision@k
(P@k), with k ∈ {1, 3, 5}, defined as the num-
ber of relevant items among the top k ranked by
the system divided by k. As ground truth data,
we consider a subset of the Disease-Symptoms
Knowledge Database (Wang et al., 2008) published
by Columbia University and available online. 3

This dataset contains a list of disease-symptom
pairs extracted from textual discharge summaries
of patients at New York Presbyterian Hospital. We
only considered 54 out of 134 diseases from the
ground truth data since for the remaining 80 no
symptoms were ever associated – i.e. mentioned
in the same sentence – with the respective disease
in our subset of PubMed abstracts. After pruning,
our ground truth data contained an average of 1.89
symptoms per disease (min=1, max=5, standard de-
viation=1.10). For this reason, we limit the number
of candidate symptoms returned by our approach
to a maximum of 10 per disease after ranking them,
as explained before. To determine the parameters
α and β used to compute the final ranking score
of each disease-symptoms candidate, we perform a
2-fold cross validation optimizing the P@1 perfor-
mance measure of the entire pipeline.

Disease-Symptoms Associations Discovery.
From the evaluation results reported in Table 1,
we observe that the proposed pipeline employing
both the ARM and BRC models is able to rank
among the top 10 symptoms all the ones reported
in our ground truth data – i.e. achieves a Recall
of 1.00. We also observe that, between the ARM
and BRC models, the ARM model is superior in

3https://people.dbmi.columbia.edu/
~friedma/Projects/DiseaseSymptomKB.

81

P@1 P@3 P@5 Recall F1 Score
ARM 0.56 0.33 0.25 0.75 0.29
BRC 0.09 0.10 0.12 0.83 0.21
ARM and BRC 0.57 0.33 0.25 1.00 0.31

Table 1: Performance evaluation of the proposed
pipeline employing only the Association Rules Mining
component (ARM), the Binary Relation Classification
(BRC) one and both of them (ARM and BRC).

detecting significant associations between diseases
and their symptoms in our ground truth. On the
other hand, by design, the BRC model prefers
symptoms which are mentioned a few times in the
corpus but have a very strong semantic association
with their respective disease. For instance, the
BRC model might more easily detect a rare
symptom for a disease which is only mentioned
a few times in the scientific literature than the
ARM approach. Conversely, the ARM approach
distinguishes between frequent and infrequent
entities and for this reason is better able to capture
associations between common symptoms with
their respective diseases. For this reason, the BRC
model achieves a lower P@k than ARM but a
higher recall since the frequency of co-occurrence
of disease-symptoms pairs does not affect the
relevance estimation process of this component.
Thanks to the different characteristics of the two
models, the combined approach employing both
elements in the pipeline achieves overall a higher
P@k and Recall as the two models are able to
complement each other. Overall, the lower P@3
and P@5 values that we observe are motivated
by the small number of relevant symptoms for
each disease. For example, in most of the cases, a
disease has less than 5 recognized symptoms and
for this reason its P@5 will be lower than 1.0 even
if all the correct symptoms have been retrieved by
our model.

Qualitative Evaluation. Quoting Wang et al.
(2008) – who created the ground truth of disease-
symptom associations that we employ in our eval-
uation – “One of the limitations in this study is
that these associations are based on inpatient re-
ports and therefore may reflect different disease-
symptom associations than those that would be ac-
quired using reports from outpatients”. For this
reason, we include a qualitative assessment of
the relevance of the discovered disease-symptoms
pairs on our collection of PubMed abstracts. We
also use this assessment to show how the sup-

port statements provided by our system to each
of the disease-symptom association claims could
be used in practice to evaluate and interpret the
results of our pipeline. As shown in Table 2, for
each of the selected disease-symptom pairs, the
proposed pipeline also returns at least one sentence
that provides some evidence to support its disease-
symptom association claims, this allows us to eas-
ily verify whether some of disease-symptom pairs
are actually not relevant or are just missing from
the ground truth. Using this evidence, we man-

Disease Symptom Support Statement PMID
Asthma Dyspnea Dyspnea is a prominent symptom in

asthma.
21635136

Bronchitis Coughing For example, midnight worsening of
cough is a frequent complaint of pa-
tients with laryngitis and bronchitis.

18346860

Dyspnea Deglutition
Disorders

Dysphagia in children most com-
monly presents as feeding or respira-
tory difficulty.

14992456

Table 2: Sample of disease-symptom pairs discovered
by our approach. We also report one of the statements
retrieved in support of each association and indicate the
PubMed ID (PMID) of the paper reporting it.

ually verified the relevance of each of the top 3
symptoms recognized for each of the diseases by
our system. We evaluated the semantic relation of
each disease-symptom pair in the top 10 sentences
extracted from PubMed abstracts provided as evi-
dence by the model and updated the ground truth if
we found any. We share the new disease-symptom
associations obtained from this process and the
respective PubMed abstracts sentences provided
automatically as supplementary material to this pa-
per. As a results of our manual evaluation, we
decided to add 70 new disease-symptoms pairs to
the ground truth – 1.29 new symptoms for each of
the considered diseases. A new disease-symptom
association was added to the ground truth if we
recognized a statement validating that association
among the evidence provided from PubMed by
our model. During this process, we observed a few
counter-intuitive associations retrieved by proposed
pipeline that were semantically correct according to
the UMLS semantic network but logically incorrect.
For example, we observed 18 associations between
different diseases and the UMLS entity “Illness
(finding)” which is classified under the semantic
type “Sign or Symptom” – e.g. in the sentence
“When illness occurs, it is primarily a pneumonic
presentation.” stating a relation between the dis-
ease “Pneumonia” and the “Illness (finding)” entity.
We marked these associations as not relevant in our

82

ground truth even if we observed a semantic rela-
tion between the entities in the provided sentences.
Finally, we repeated the evaluation of the proposed
pipeline considering the updated ground truth and
observed higher values of P@1, P@3 and P@5 of
0.87, 0.77, 0.47, respectively and a Recall of 0.99.

5 Conclusions, Limitations and Future
Work

We describe an end-to-end pipeline for the acceler-
ated discovery of medical entity associations from
textual data. We evaluate the proposed approach on
the task of extracting disease-symptom pairs from
medical literature. The main advantages of the pro-
posed system are (i) its capability to discover new
entity associations from collections of millions of
scientific abstracts, (ii) the ability to easily include
new scientific data in its index and therefore to per-
form up-to-date predictions, (iii) the independence
from human annotations, (iv) the interpretability
of its predictions given supporting evidence, (v)
its low computational complexity, and (vi) the re-
liance only on open source libraries and models.
We believe the adoption of systems like this in
the healthcare industry could help medical profes-
sionals and researchers in making better-informed
decisions. Such systems could also accelerate sci-
entific discovery by giving researchers the ability to
quickly verify potential entity associations claims
against scientific literature, or discover new symp-
toms if used with additional data sources. Our
pipeline could also be employed to extend existing
resources such as the UMLS ontology with new
entity relations.

The proposed approach allows researchers to
verify the generated entity associations claims by
providing statements from indexed scientific doc-
uments that motivate such claims. Despite the en-
couraging results, the quality of the associations
discovered is limited by the accuracy of the entity
annotator (incorrect annotations observed in recog-
nizing acronyms may lead to inaccurate entity asso-
ciations). Similarly, the available UMLS semantic
types may not accurately describe the different cate-
gories and this can also introduce noise. In addition,
the system uses only PubMed abstract, while the
entire text could provide more information. As
future work, we would like test the pipeline over
a larger ground truth, explore relations between
other concepts and explore the issue of veracity of
the extracted claims in cases where the opinions in

scientific literature change over time. We are also
planning to evaluate possible improvements to our
pipeline, in particular at the stage where the BRC
and ARM scores are combined, exploring some
machine learning-based approaches for learning to
rank.

6 Ethical Considerations

The goal of the proposed system is to support medi-
cal professionals and researchers in the accelerated
discovery of new entity associations such as new
disease-symptom pairs. We show how to do so
by relying on the vast collection of medical litera-
ture available in PubMed. During the design of the
proposed pipeline we paid particular attention to
the interpretability and transparency of the results
provided by this system. By providing explicit
statements in support to each of the discovered
associations with references to peer-reviewed sci-
entific publications, we expect users of this system
to independently verify the veracity of the provided
information and to keep updated the index of publi-
cations on which the search system relies. Machine
learning models are imperfect and could therefore
misinterpret user input or make certain predictions
without a having a complete view or understand-
ing of their context. These errors could have se-
rious consequences, especially in the healthcare
domain. For this reason, researchers and health-
care professionals employing this system should
be aware of possible harms and risks stemming
from the use of it, and should implement appro-
priate safeguards to guarantee the safety of their
patients. We also believe that the data we share as
supplementary material should not be considered
as a verified resource for disease-symptoms associ-
ations for any healthcare application as no medical
professional reviewed the correctness of our anno-
tations. Finally, since the proposed approach relies
on a collection of textual documents for the dis-
covery of new entity associations, it is important
that this collection contains an unbiased represen-
tation of the entire target population. Otherwise,
the system might exhibit a poor performance when
interrogated on aspects that might be prevalent in
underrepresented populations.

References
Rakesh Agrawal and Ramakrishnan Srikant. 1994.

Fast algorithms for mining association rules. In
Proceedings of the 20th International Conference of

83

Very Large Data Bases, VLDB, volume 1215, pages
487–499. Santiago, Chile.

Alan R. Aronson. 2001. Effective mapping of biomed-
ical text to the umls metathesaurus: the metamap
program. In Proceedings of the AMIA Symposium,
page 17. American Medical Informatics Associa-
tion.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl_1):D267–
D270.

Cohen K. Bretonnel and Hunter Lawrence. 2008. Get-
ting started in text mining. PLoS computational bi-
ology, 4(1):e20.

Elizabeth S. Chen, George Hripcsak, Hua Xu, Mari-
anthi Markatou, and Carol Friedman. 2008. Re-
search paper: Automated acquisition of disease-drug
knowledge from biomedical and clinical documents:
An initial study. Journal of American Medical Infor-
matics Assoc., 15(1):87–98.

Kenneth Church and Patrick Hanks. 1990. Word as-
sociation norms, mutual information, and lexicogra-
phy. Computational linguistics, 16(1):22–29.

Berry De Bruijn, Colin Cherry, Svetlana Kiritchenko,
Joel D. Martin, and Xiao-Dan Zhu. 2011. Machine-
learned solutions for three stages of clinical infor-
mation extraction: the state of the art at i2b2 2010.
Journal of the American Medical Informatics Asso-
ciation : JAMIA, 18:557 – 562.

Cyril Grouin, Asma B. Abacha, Delphine Bernhard,
Bruno Cartoni, Louise Deléger, Brigitte Grau, Anne-
Laure Ligozat, Anne-Lyse Minard, Sophie Rosset,
and Pierre Zweigenbaum. 2010. Caramba: Concept,
assertion, and relation annotation using machine-
learning based approaches.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. 2021. Domain-
specific language model pretraining for biomedical
natural language processing. ACM Transactions on
Computing for Healthcare (HEALTH), 3(1):1–23.

Yufang Hou, Charles Jochim, Martin Gleize, Francesca
Bonin, and Debasis Ganguly. 2019. Identifica-
tion of tasks, datasets, evaluation metrics, and nu-
meric scores for scientific leaderboards construction.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5203–5213, Florence, Italy. Association for Compu-
tational Linguistics.

Patrick Jon D. and Li Min. 2010. High accuracy infor-
mation extraction of medication information from
clinical notes: 2009 i2b2 medication extraction chal-
lenge. Journal of the American Medical Informatics
Association : JAMIA, 17 5:524–7.

Vinod D. Kumar and Hannah J. Tipney. 2014. Biomed-
ical literature mining. Springer.

Tomohiro Morita, Abidur Rahman, Takanori
Hasegawa, Akihiko Ozaki, and Tetsuya Tani-
moto. 2017. The potential possibility of symptom
checker. International Journal of Health Policy
Management, pages 615–616.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. Scispacy: Fast and robust models for
biomedical natural language processing. In Proceed-
ings of the 18th BioNLP Workshop and Shared Task,
pages 319–327.

Yoonyoung Park, Natasha Mulligan, Martin Gleize,
Morten Kristiansen, and Joao H. Bettencourt-Silva.
2021. Discovering associations between social de-
terminants and health outcomes: Merging knowl-
edge graphs from literature and electronic health
data. In AMIA Annual Symposium Proceedings, vol-
ume 2021, page 940. American Medical Informatics
Association.

Parth Pathak, Pinal Patel, Vishal Panchal, Sagar Soni,
Kinjal Dani, Amrish Patel, and Narayan Choudhary.
2015. ezDI: A supervised NLP system for clinical
narrative analysis. In Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation (SemEval
2015), pages 412–416, Denver, Colorado. Associa-
tion for Computational Linguistics.

Setu Shah, Xiao Luo, Saravanan Kanakasabai, Ricardo
Tuason, and Gregory Klopper. 2019. Neural net-
works for mining the associations between diseases
and symptoms in clinical notes. Health information
science and systems, 7(1):1–9.

Alisa Smirnova and Philippe Cudré-Mauroux. 2018.
Relation extraction using distant supervision: A sur-
vey. ACM Computing Surveys (CSUR), 51(5):1–35.

Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly,
Lorrie Boucher, Ashton Breitkreutz, and Mike
Tyers. 2006. Biogrid: a general repository
for interaction datasets. Nucleic acids research,
34(suppl_1):D535–D539.

Özlem Uzuner, Brett R. South, Shuying Shen, and
Scott L. DuVall. 2011. 2010 i2b2/VA challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation, 18(5):552–556.

Chen Wang, Gang Hu, Kui Wang, Michal Brylin-
ski, Lei Xie, and Lukasz Kurgan. 2016. Pdid:
database of molecular-level putative protein–drug in-
teractions in the structural human proteome. Bioin-
formatics, 32(4):579–586.

Xiaoyan Wang, Amy Chused, Noémie Elhadad, Carol
Friedman, and Marianthi Markatou. 2008. Auto-
mated knowledge acquisition from clinical narrative
reports. In AMIA Annual Symposium Proceedings,
volume 2008, page 783. American Medical Infor-
matics Association.

84

Shweta Yadav, Srivastsa Ramesh, Sriparna Saha, and
Asif Ekbal. 2020. Relation extraction from biomed-
ical and clinical text: Unified multitask learning
framework. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics.

Yijia Zhang and Zhiyong Lu. 2019. Exploring semi-
supervised variational autoencoders for biomedical
relation extraction. Methods, 166:112–119.

85

A Supplementary Material

In Table 3, we report all the disease-symptoms pairs that we consider as ground truth for our evaluation
in Section 4. We expand the list of associations provided by Wang et al. (2008) by manually evaluating
the associations between the top 3 symptoms retrieved for each disease by the proposed pipeline. We
considered a disease-symptom association as relevant if we could find at least one sentence – among the
top 10 provided by our model from our collection of PubMed abstracts – that confirmed a generalized
association between each disease and candidate symptom. For each of the pairs we added, we also report
the respective statement that motivated our decision. Disease-symptom pairs for which we do not provide
a support statement are part of the associations already provided in (Wang et al., 2008).

Disease Symptom Support Sentence (when added to original GT)
Anemia Fatigue –
Anemia, Sickle Cell Chronic pain Chronic pain affects 50% of adults with sickle cell disease

(SCD).
Anemia, Sickle Cell Syncope Although benign mechanisms predominate, syncope may be

arrhythmic and precede SCD.
Anemia, Sickle Cell Pain –
Anxiety state Fatigue Fatigue was correlated with depression (r = .40, p < .01), state

anxiety (r = .40, p <.01), and trait anxiety (r = .46, p <.01).
Anxiety state Pain –
Asthma Wheezing This report serves as a reminder to all clinicians that "not all that

wheezes is asthma".
Asthma Dyspnea Dyspnea is a prominent symptom in asthma.
Asthma Coughing –
Bronchitis Coughing For example, midnight worsening of cough is a frequent com-

plaint of patients with laryngitis and bronchitis.
Bronchitis Fever –
Bronchospasm Dyspnea –
Cellulitis Fever –
Cellulitis Pain –
Cholecystitis Fever We report a 55-year-old man who presented with fever and

abdominal pain compatible with cholecystitis.
Cholecystitis Vomiting We present the case of a 69 year old woman with a history of

cholecystitis, who consulted for severe abdominal pain, nausea
and vomiting.

Cholecystitis Abdominal Pain –
Chronic Obstructive Airway
Disease

Signs and Symptoms,
Respiratory

COPD is characterized by episodic increases in respiratory symp-
toms, so-called exacerbations.

Chronic Obstructive Airway
Disease

Dyspnea –

Chronic Obstructive Airway
Disease

Coughing –

Confusion Seizures All patients presented with fever and disorientation; 6 of the 9
(66%) presented with seizures.

Confusion Headache –
Congestive heart failure Cheyne-Stokes Respira-

tion
Cheyne-Stokes respiration is frequently observed in congestive
heart failure.

Congestive heart failure Angina Pectoris He often had episodes of angina at night or during dialysis, and
then developed congestive heart failure and was hospitalized.

Congestive heart failure Dyspnea –
Deep Vein Thrombosis Syncope Symptoms significantly associated with DVT were syncope and

chest pain.
Deep Vein Thrombosis Headache The clinical picture of deep cerebral vein thromboses (DCVT)

usually is acute, combining vigilance disorders, headaches, and
focal neurologic deficit.

Deep Vein Thrombosis Pain –
Degenerative polyarthritis Pain Osteoarthritis is clinically defined mainly by pains upon move-

ment and joint stiffness.
Degenerative polyarthritis Knee pain Osteoarthritis (OA) is a major source of knee pain.
Deglutition Disorders Dyspnea Dysphagia in children most commonly presents as feeding or

respiratory difficulty.
Deglutition Disorders Hoarseness –
Dehydration Diarrhea –
Dehydration Vomiting –

86

Delirium Agitation Agitation can be one of the early signs of delirium or altered
mental status (AMS).

Delirium Malaise Delirium is highly prevalent in critically ill patients.
Delusions Psychotic symptom The psychotic symptoms were variable with delusions and/or

hallucinations.
Delusions Agitation –
Delusions Hallucinations, Audi-

tory
–

Diabetic Ketoacidosis Abdominal Pain Abdominal pain is a frequent manifestation in patients presenting
with Diabetic Ketoacidosis (DKA).

Diabetic Ketoacidosis Vomiting –
Diverticulitis Abdominal Pain Abdominal pain is the most common complaint in patients with

acute diverticulitis.
Diverticulitis Pain Acute diverticulitis is a painful disease of the colon characterized

by peridiverticular inflammation and/or infection.
Diverticulitis Fever –
Epilepsy Seizures Epilepsy is the most prevalent neurological disease and is char-

acterized by recurrent seizures.
Epilepsy Fever Temporal-parietal-occipital carrefour epilepsy is part of the ge-

netic epilepsy with febrile seizures plus spectrum.
Epilepsy Headache Epilepsy bears a bidirectional relationship with headache.
Gastritis Dyspepsia Gastritis, GERD, and PUD are the leading causes of dyspepsia.
Gastritis Diarrhea Gastritis is an inflammatory disease leading to abdominal pain,

nausea, and diarrhea.
Gastritis Abdominal Pain –
Gastroenteritis Diarrhea Gastroenteritis is a common disease in children, characterized

by diarrhea, vomiting, abdominal pain, and fever.
Gastroenteritis Fever –
Gastroesophageal reflux dis-
ease

Chronic cough Gastro-esophageal reflux can be the cause of chronic cough.

Gastroesophageal reflux dis-
ease

Dyspepsia Gastritis, GERD, and PUD are the leading causes of dyspepsia.

Gastroesophageal reflux dis-
ease

Heartburn –

Gout Foot pain Gout is associated with foot pain, impairment, and disability.
Gout Fever In conclusion, gout attacks in elderly patients are associated with

fever and higher ESR and CRP levels, often resembling a septic
arthritis.

Gout Pain –
Heart failure Dyspnea –
Hemorrhoids Pain –
Hemorrhoids Diarrhea –
Hepatitis Icterus Onset of hepatitis was defined as jaundice and elevated alanine

aminotransaminase (ALT) levels.
Hepatitis Fever –
Hypothyroidism Diarrhea Diarrhoea and malabsorption are common findings together with

hyperthyroidism, whereas constipation is frequently observed in
hypothyroidism.

Hypothyroidism Dry skin Dry skin may be a manifestation of hypothyroidism.
Hypothyroidism Fatigue –
Ileus Vomiting Many cases of terminal cancer develop ileus symptoms such as

vomiting and abdominal distension.
Ileus Abdominal Pain –
Ileus Constipation –
Influenza Headache –
Mental Depression Pain The link between pain and depression lies in the central and

peripheral nervous systems.
Mental Depression Fatigue Depression was the main factor influencing fatigue among both,

MS patients and controls.
Mental Depression Depressive Symptoms To study the effect of depression (high levels of depressive symp-

toms) on social engagement.
Migraine Disorders Headache Diet can play an important role in the precipitation of headaches

in children and adolescents with migraine.
Migraine Disorders Pain Migraineurs have atypical pain processing, increased expecta-

tions for pain, and hypervigilance for pain.
Migraine Disorders Vertigo Migraine is a common cause of vertigo.
Neuropathy Neuralgia Neuropathic pain is the most common type of pain in neuropathy.

87

Neuropathy Ataxia JCV granule cell neuronopathy (JCV-GCN) is caused by infec-
tion of cerebellar granule cells, causing ataxia.

Neuropathy Pain –
Osteomyelitis Pain Osteomyelitis ossis pubis is a painful disorder.
Osteomyelitis Fever –
Osteoporosis Weakness Osteoporosis is a debilitating disease.
Osteoporosis Perceived quality of life These indicate that osteoporosis decreased QOL.
Osteoporosis Pain –
Pancreatitis Pain Pain is a main complaint of patients with pancreatitis.
Pancreatitis Icterus Features of pancreatitis were present in 59, cholangitis in 26 and

jaundice in 109 patients.
Pancreatitis Abdominal Pain –
Pancytopenia Hepatosplenomegaly Examination revealed hepatosplenomegaly associated with pan-

cytopenia.
Paranoia Sleeplessness Recent epidemiological studies show a strong association of

insomnia and paranoia.
Paranoia Agitation –
Parkinson Disease Motor symptoms Motor symptoms in Parkinson’s disease (PD) patients are usually

asymmetric at onset.
Parkinson Disease Bradykinesia Motor slowness (bradykinesia) is a core feature of Parkinson’s

disease (PD).
Parkinson Disease Tremor –
Peptic Ulcer Dyspepsia Gastritis, GERD, and PUD are the leading causes of dyspepsia.
Peptic Ulcer Pain This pain is related to extrahepatic infusion and gastroduodenal

ulceration.
Pericardial effusion Fever The more common symptoms associated with purulent pericar-

dial effusion are fever, dyspenia, and tachycardia.
Pericardial effusion Chest Pain Pericardial effusion was diagnosed because the child suffered

chest pain and fatigue.
Pericardial effusion Dyspnea –
Pneumonia Fever –
Pneumothorax Respiratory distress Spontaneous pneumothorax is a recognised cause of respiratory

distress in the neonatal period.
Pneumothorax Hemoptysis –
Psychotic Disorders Seizures Out of these 8 patients, 3 presented with psychosis (12.5%) and

4 (17%) with seizures.
Pulmonary Edema Respiratory distress The respiratory distress was initially caused by pulmonary edema

and later was caused by severe bronchorrhea.
Pulmonary Edema Dyspnea –
Pulmonary Embolism Syncope Syncope can be caused by a pulmonary embolism.
Pulmonary Embolism Dyspnea –
Pulmonary Embolism Chest Pain –
Pyelonephritis Flank Pain Symptoms of cystitis are dysuria, frequency, new onset inconti-

nence and malodorous urine while symptoms of pyelonephritis
are high grade fever, flank pain and vomiting.

Pyelonephritis Dysuria We report the case of a 45-year-old African American man who
presented with symptoms of right-sided pyelonephritis, including
fever, dysuria, and flank pain.

Pyelonephritis Fever –
Respiratory Failure Dyspnea –
Thrombocytopenia Fever –
Thrombocytopenia Fatigue –
Tonic-Clonic Epilepsy Seizures Seizures are reported in one quarter, including tonic-clonic, ab-

sence, and febrile seizures.
Tonic-Clonic Epilepsy Fever Onset in the first year of life by febrile or afebrile clonic and

tonic-clonic, generalized, and unilateral seizures, often pro-
longed, in an apparently normal infant is the first symptom,
suggesting the diagnosis.

Tonic-Clonic Epilepsy Myoclonus –
Transient Ischemic Attack Neurologic Symptoms Transient ischemic attack (TIA) is a cerebrovascular disease with

temporary (<24 h) neurological symptoms.
Transient Ischemic Attack Seizures Little attention has been paid to the possibility that seizures may

be precipitated by TIAs.
Transient Ischemic Attack Headache –
Upper Respiratory Infec-
tions

Coughing The commonest form of cough is caused by upper respiratory
tract infection and has no benefit to the host.

88

Upper Respiratory Infec-
tions

Fever –

Urinary tract infection Fever Patients’ clinical status was dominated by fever due to upper
urinary tract infection.

Urinary tract infection Dysuria –

Table 3: Extended list of disease-symptoms associations. We provide a supporting statement for each of the
associations that we decided to add to the list of disease-symptom associations provided by Wang et al. (2008).

89

Proceedings of EMNLP 2022 Industry Track, pages 90–98
December 9–11, 2020. ©2022 Association for Computational Linguistics

PENTATRON: PErsonalized coNText-Aware Transformer for
Retrieval-based cOnversational uNderstanding

Niranjan Uma Naresh∗ Ziyan Jiang∗ Ankit∗
Sungjin Lee Jie Hao Xing Fan Chenlei Guo

Amazon
{niumanar, ziyjiang, ankitvys, sungjinl, jieha, fanxing, guochenl}@amazon.com

Abstract

Conversational understanding is an integral part
of modern intelligent devices. In a large frac-
tion of the global traffic from people using
smart digital assistants, frictions in dialogues
may be attributed to incorrect understanding
of the entities in a user’s query due to factors
including ambiguous mentions, mispronunci-
ation, background noise and faulty on-device
signal processing. Such errors are compounded
by two common deficiencies from intelligent
devices namely, (1) the device not being tai-
lored to individual users, and (2) the device
responses being unaware of the context in the
conversation session . Viewing this problem via
the lens of retrieval-based search engines, we
build and evaluate a scalable entity correction
system, PENTATRON. The system leverages a
parametric transformer-based language model
to learn patterns from in-session user-device
interactions coupled with a non-parametric per-
sonalized entity index to compute the correct
query, which aids downstream components in
reasoning about the best response. In addition
to establishing baselines and demonstrating the
value of personalized and context-aware sys-
tems, we use multitasking to learn the domain
of the correct entity. We also investigate the
utility of language model prompts. Through
extensive experiments, we show a significant
upward movement of the key metric (Exact
Match) by up to 500.97% (relative to the base-
line).

1 Introduction

Intelligent devices are ubiquitous in the modern
computing. The scientific modules that drive these
devices involve conversational understanding, am-
bient computing, natural language reasoning and
self-learning (Thoppilan et al., 2022; Sarikaya,
2022; Pinhanez et al., 2021; Liu et al., 2021). A
user’s interaction with a device, however, is suscep-
tible to errors arising from a myriad of sources
including wrong pronunciation, inaccuracies in

∗∗Equal contribution.

the subject mentions in a sentence, environmen-
tal noise, hardware and software error (Kim et al.,
2020). Correct interpretations of user queries, espe-
cially entities, is central to delivering the best user
experience. Two important factors that contribute
strongly to high-precision entity recognition are
(1) personalization, ie, learning users’ unique pat-
terns, and (2) contextualization, ie, deriving cues
from the information in a user-device interaction
session. In this paper, we design and evaluate an
entity correction system, PENTATRON, with both
personalization and contextualization baked into
its architecture.

Figure 1: (Above) One multi-turn dialogue session with
defective source query which contains one erroneous
entity ‘wallace’ and its successful rephrase with correct
entity ‘wallows’. (Below) Concatenation of queries and
responses using special tokens to form a single sequence
as encoder input.

90

1.1 Motivation

In Figure 1, we illustrate a real-world case as to
why personalization and contextualization are very
important, especially due to the specificity in highly
entity-centric domains such as music. In this case,
masking the very last device response, we observe
that there is valuable information scattered across
the user’s requests in the session yet, the device de-
livers sub-par experience by responding defectively
multiple times before finally getting the user’s in-
tent right.

1.2 Notation and Preliminaries

Definition 1. Let integer γ satisfy 1 ≤ γ < ∞.
A natural language (NL) hypothesis is a mapping,
h : Q → D × I × [E]γ , where Q refers to the
query space, D refers to the domain space, I refers
to the intent space and E refers to the entity space.
The entity space, E := ET × EV , may further be
decomposed into the entity type space ET and the
entity value space EV . All spaces are defined over
Unicode strings.

As an example, given a query string q =“play the
real slim shady”, the corresponding NL hypothesis
is h(q) =(Music, PlayMusicIntent, [(SongName,
the real slim shady)]) where the domain is Music,
the intent is PlayMusicIntent, and the entity value
is the real slim shady with SongName entity type.

Definition 2. Building on Definition 1, our system,
PENTATRON, may be formalized as Φ : (C,Q)→
EV where C is the user space (anonymized using
a hash function, for privacy, in practice).

In a nutshell, given an input query q (with or
without dialogue context), our system essentially
solves the optimization problem,

min
θ

E(c,q,e)∼D [ℓ (Φθ(c, q), e)] (1)

where D is supported on C ×Q× EV .

1.3 Our Contributions and Preview of Results

On the system design front, we build a retrieval-
based pipeline. Our model backbone is inspired by
attention-based (Vaswani et al., 2017) transformer
encoders (Devlin et al., 2018). We achieve per-
sonalization via a non-parametric index which is
essentially a key-value pair look-up table with the
keys representing users and values representing
the entity lists derived from historical data aggre-
gation. With respect to experimental results, we

Figure 2: Preview of the system performance which
shows consistent significant improvement in going from
a purely personalized system (N) to a fully contextual
personalized system (CC). Further details are available
in Table 1.

conduct extensive studies on seven different ver-
sions of PENTATRON, involving ablations with
prompts, multi-tasking and non-contextual train-
ing data, and show consistent improvements in Ex-
act Match (EM) of up to 500.97% (relative to the
baseline) as captured by the preview of results in
Figure 2.

2 Background and Related Work

2.1 Query Rewriting
Query Rewriting (QR) in dialogue systems aims
to reduce frictions by reformulating the automatic
speech recognition component’s interpretation of
users’ queries. Initial efforts (Dehghani et al., 2017;
Su et al., 2019) treat QR as a text generation prob-
lem.

Some recent studies (Chen et al., 2020; Yuan
et al., 2021; Fan et al., 2021; Cho et al., 2021) are
based on neural retrieval systems. In the retrieval-
based systems, the rewrite candidate pool is aggre-
gated from users’ habitual or historical queries so
that the rewrite quality can be tightly controlled.
Compared to generation-based systems, retrieval-
based systems may sacrifice flexibility and diver-
sity of the rewrites, but in the meanwhile provide
more stability which is more important in a runtime
production setup.

Personalization and Contextualization are two
popular directions for QR systems. A personalized
system such as Cho et al., 2021 tends to incorpo-
rate diverse affinities and personal preferences to
provide individually tailored user experience in a
single unified system. Contextualization attempts
to utilize multi-turn queries rather than only lever-
aging single-turn information. Some previous stud-

91

ies (Wang et al., 2021) have shown the benefits
by leveraging the dialogue context and user-device
interaction signals.

Entities have been shown to be a strong indicator
of text semantics. Since queries in our dialogue
system are typically short sentences, entities are
even more important in this scenario. Most existing
QR approaches mentioned above rephrase query
utterances entirely. Although some existing works
focus on specific categories like coreference resolu-
tion or entity omission (Su et al., 2019; Tseng et al.,
2021), none of them has a particular emphasis on
the correction of erroneous entities.

2.2 Entity Linking
Another related thread towards our task is entity
linking. Entity linking task aims to link mentioned
entities with their corresponding entities in a knowl-
edge base. In a retrieval-based QR system which
focuses on entity correction, we could adopt similar
methods in entity linking area. BLINK(Wu et al.,
2019) designs a two-stage retrive-rerank framework
based on pre-trained deep transformers. The fol-
lowing work ELQ (Li et al., 2020) uses a biencoder
to jointly perform mention detection and linking
in one pass and also shows good improvement in
latency metrics which is quite important in a pro-
duction settings. Our task is more challenging than
entity linking because the input utterance is noisy
with incorrect entities and the lack of textual de-
scriptions of each entity.

3 Problem Setup and Solution Design

The overall architecture of the PENTATRON sys-
tem is described in Figure 3.

Figure 3: For a given user, the input request string from
the PENTATRON orchestrator is processed by a trans-
former model and also by a named entity recognition
model, both trained on historical user requests, to en-
code the request and extract mentions, respectively. A
semantic search is applied on the request embeddings
and the precomputed entity embeddings of the user to
find the best match following which, post-processing is
applied to feed the result into downstream components.

3.1 Entity Correction in Query Rewriting
We consider a dataset of M multi-turn dialogue
sessions: {St}Tt=1. S is a set of T turns in chrono-
logical order: S = {(qt, rt)}Tt=1. Here t is the in-
dex of turn and each turn consists of a pair (qt, rt),
where qt denotes the user’s query utterance and rt
denotes the device’s response utterance. The ses-
sions are selected so that the source query qT−1

contains one erroneous entity and qT , which has
the correct form of entity e, is the rephrase of the
previous turn. More details about the data selection
is described in Section 4.1. Our prediction goal is
formulated as:

ê = argmax
e

P(e | {St}T−2
t=1 , qT−1) (2)

q̂T = g(qT−1, ê) (3)

We flatten the previous dialogue turns {St}T−2
1

and the source query qT−1 into a single sequence to
feed into the encoder, as shown in Figure 1. Since
the only difference between qT−1 and qT is whether
we have the correct form of e, the final rewrite is
generated based on source query qT−1 and entity
prediction ê through a simple replacement function
g.

3.2 Personalized Entity Index
We build an personalized entity index for each user
to leverage individual interaction history by aggre-
gating users’ frequent entities in past 30 days1. The
entities include song names or artists that users fre-
quently listened to, nicknames of users’ intelligent
devices and so on.

This index serves as the retrieval candidate pool
during inference time. The candidate embeddings
are cached. We implement a two-stage in-memory
index that has a map of users to their specific enti-
ties along with the embeddings corresponding to
the union of entities across all users. This is done
for memory efficiency reasons so that we avoid the
overhead caused by the redundancy of duplicate
entities across different users.

3.3 Modeling
We use a bi-encoder architecture based on
MiniLM (Wang et al., 2020) for jointly encoding
the queries and the entities (Humeau et al., 2019).
The weights are shared for memory footprint sav-
ings and serving cost reduction. Note, we also try
asymmetric query and candidate entity encoders;

1All user information is in a de-identified format.

92

however, we observe only a marginal performance
improvement of less than 1%. We use a batch size
of 128 and train it on p3.2x-large GPU instances
acquired on AWS cloud. AdamW (Loshchilov and
Hutter, 2017) is our optimizer of choice.

For detecting mentions in the input query, we
use a Spacy named entity recognition model trained
on historical user queries containing entity strings
from different domains.

3.4 Optimization Objectives

A combination of both hard negatives (Gillick et al.,
2019) and in-batch random negatives improve the
performance of large-scale natural language reason-
ing systems. We use the multiple negatives rank-
ing loss (Henderson et al., 2017) for the primary
task. We take a metric learning approach (Hadsell
et al., 2006) to the auxiliary task, ie, we use the
contrastive loss here.

Inference: The semantic search function which
is used in primary retrieval task computes si =
cos(f(q), f(ei)) for i ∈ [k] where ei ∈ EV are
the top-k entities retrieved from the personalized
index (sorted by the relevance score in descending
order) and q refers to the query (with or without
context). We configure our system to be activated
on the threshold conditions, s1 > τ1 and s2 < τ2,
to make sure the top-2 entities are sufficiently far
apart to avoid any ambiguous predictions.

Training: The encoder model of the PENTA-
TRON system is trained with the primary task of
entity prediction, which we maximize the similar-
ity score between the user query (with or without
context) and the target correct entity. Consider a
batch of N samples. The loss of the primary task
is given by:

LE = − 1

N

N∑

i=1

log
exp(si)∑N
j=1 exp(sj)

(4)

In the above formula, we only take in-batch random
negatives into consideration. We will also discuss
the utilization of hard negatives later in this paper.

We adopt an auxiliary task during training to
have an implicit clustering effect of the query em-
beddings based on target domain. For this task,
we want to push source queries targeting to the
same domain close to each other and source queries
targeting to the different domain away from each
other.

For N randomly selected pairs of queries (in-
dexed by i and j) from a batch, the loss of the
auxiliary task is the contrastive loss given by:

LD =
1

N

∑

(i,j)

1{hD(qi) = hD(qj)}.

∥f(qi)− f(qj)∥2

+
1

N

∑

(i,j)

1{hD(qi) ̸= hD(qj)}.

max(0, λ− ∥f(qi)− f(qj)∥2) (5)

The margin parameter λ is set as 0.75. Here, hD de-
notes the domain extracted from the NL hypothesis
of the target (final) dialogue turn.

Multi-task Formulation: The final loss is com-
puted as µLE + (1 − µ)LD where µ ∈ (0, 1].
Specifically, we build different versions of PENTA-
TRON by setting µ = 1 and µ = 0.5.

We train two single-task models which are used
as the non-contextual and contextual baselines re-
spectively. The non-contextual baseline model uses
the source query as input and the rewrite entity as
output. The contextual baseline model uses the full
context (truncated to maximum allowable length of
256) as input and the rewrite entity as output.

Furthermore, we train another five versions PEN-
TATRON with multi-task settings. We also inves-
tigate the usage of task markers similar to the ap-
proach in Maillard et al., 2021. The (hard) prompts
are added as special tokens [REWRITE] and [DO-
MAIN] before the corresponding input during train-
ing. More details are presented in Table 1

Hard Negatives Mining: First, we use bm25
(Robertson et al., 2009) to mine hard negatives
from the candidate pool, which shows minor im-
provement. Hence, we adopt a two-pass method to
compute hard negatives. In the first pass, we use a
model trained with random negatives to perform in-
ference on a disjoint “second” training set to obtain
entity predictions. In the second pass, we continue
training the previous baseline model checkpoint
and take into account the wrong predictions as hard
negatives.

4 Experiments

4.1 Training and Test Data
Our data is derived from the logs of a commercial
voice assistant and we process the data with strict
privacy standards so that users are not identifiable.

93

Model Primary Task Auxiliary Task Exact Match (Relative)
DPR-EC Non-contextual None 0.0 [Baseline]

PENTATRON-N Non-contextual None +432.11%
PENTATRON-NN Non-contextual Non-contextual +438.86%
PENTATRON-NC Non-contextual Contextual +442.76%
PENTATRON-NNP Non-contextual Non-contextual with prompt +453.82%
PENTATRON-NCP Non-contextual Contextual with prompt +454.47%
PENTATRON-C Contextual None +484.14%
PENTATRON-CC Contextual Contextual +500.97%

Table 1: List of all model settings and their performance numbers (relative, with respect to the baseline, DPR-EC).
The primary task is entity prediction using the multiple negative ranking loss with a batch size of 128 and the
auxiliary task uses the online contrastive loss with a margin of 0.75. We apply the state-of-the-art retrieval model,
DPR (Karpukhin et al., 2020), to train a dual BERT architecture, DPR-EC, for entity correction as the baseline, i.e.,
without utilizing personal and contextual information.

We sample multi-turn dialogue sessions between
English-speaking users and devices in a time pe-
riod of one month, in May-June 2022, from all over
the United States. A defect detection model similar
to (Gupta et al., 2021) and rule-based filters are
applied to find dialogue sessions whose last two
turns of user query are rephrase pairs. Rule-based
filters are using edit-distance and time gap between
utterance pairs similar to (Cho et al., 2021). Since
our work has a particular emphasis on the correc-
tion of erroneous entities, we also utilize the NL
hypothesis of the rephrase pairs to get such cases.
For simplicity, we consider data with only a single
erroneous entity as the target to be predicted. It
is straightforward to generalize our system to the
multiple entities case.

We sample the test set and keep only sessions
wherein a retrieval-based system such as (Cho et al.,
2021), which rephrases query utterances entirely,
couldn’t solve. For training, a sample of two mil-
lion utterances was extracted. Also, some (com-
pletely generic) example dialogs extracted from
critical data are reported in the paper (Table 2).

Figures 4 and 5 summarize the keys data statis-
tics on the training and test sets. This gives us an
insight into how transformer models stand to bene-
fit from longer sequences in our application since
they are parameterized by and compute second-
order statistics.

4.2 Evaluation Metrics

We utilize the harshest metric to evaluate our sys-
tem namely, the Exact Match (EM). This score is 1
if the predicted rewrite exactly matches the labeled
rephrase, and is 0 otherwise. We use the same

Figure 4: Query length statistics of contextual training
and test data.

Figure 5: Query length statistics of non-contextual train-
ing and test data.

threshold τ1 and τ2 for all the proposed PENTA-
TRON models. The threshold is experimentally set
up to keep the balance between opportunities and
potential risks in real production.

4.3 Observations and Case-studies
Table 1 shows the main results of our different ver-
sions of systems. The experimental result is consis-
tent with our intuition. Since the pipeline has also
actually been run on live traffic, through an A/B ex-
periment (section 4.4), the baselines were created
for the purpose of this paper. All the PENTATRON
models benefit from a personalization settings and
outperform a global-wise retrieval model DPR-EC
by a large margin. Among different settings of
PENTATRON, it’s obvious that both contextualiza-

94

Dialogue Context

[USER] Turn on ben’s light.
[DEVICE] I’m sorry I couldn’t find the device.
[USER] Turn on benny’s light.
[DEVICE] Okay.

[USER] Play calen playlist.
[DEVICE] I could not find that on Amazon Music.
[USER] Play scars.
[DEVICE] Here’s Scars , by James Bay , on Amazon Music.

User Query Turn ben’s light on pink Play playlist karen
Rewrite Label Turn benny’s light on pink Play playlist callen
DPR-EC Turn brecken’s light on pink ✗ Play playlist cameron ✗
PENTATRON-N Turn britney’s light on pink ✗ Play playlist carrie ✗
PENTATRON-C Turn benny’s light on pink ✔ Play playlist carrie ✗
PENTATRON-CC Turn benny’s light on pink ✔ Play playlist callen ✔

Table 2: Two examples to showcase the importance of full contextualization and personalization.

Figure 6: In this figure, we illustrate the importance of
contextual information and training with hard negatives
in boosting the performance of our system.

Figure 7: Performance of different versions of PEN-
TATRON with respect to different system activation
thresholds τ1 and τ2.

tion and multi-tasking bring further improvement.
There is also some gain by adding task markers in
the multi-task settings.

Figure 6 presents an ablation that shows the bene-
fits of hard negative sampling. To further stress test
our system, we also swept over different thresh-
olds, summarized in Figure 7. We could notice
that the general trend is consistent using different
thresholds.

In sweeping across thresholds in our empirical
studies (Figure 8), we observe interesting trends.
In particular, that when τ1 = τ2, the personalized
model that does not utilize contextual information
suffers from noisy predictions when the thresholds

are equal since the top-2 retrieved entities are se-
mantically very similar and the model finds it diffi-
cult to disambiguate. However, with the contextual
information, we see consistent improvements in
accuracy as we tighten thresholds.

Figure 8: Demonstrating the value of contextual infor-
mation with appropriate multitasking design.

We illustrate the benefits of our approach on
a generic dialog in Table 3. In the left example
from HomeAutomation domain, the device name in
the source query is incorrect which will make this
task-oriented dialogue system fail. PENTATRON-
C and PENTATRON-CC could generate the cor-
rect rewrite by leveraging dialogue context and
user’s personalized index which contains user’s
registered device name. A similar trend can be ob-
served in the right example from Music domain.
Besides, the right example also illustrates the bene-
fits from multi-task learning by comparing the pre-
diction from PENTATRON-C and PENTATRON-
CC. Both the video name ‘carrie’ and playlist
name ‘callen’ exist in user’s personalized index.
With the help of contrastive representation learn-
ing, PENTATRON-CC could learn to retrieve a
Music domain entity which is the correct one here.

Visualization: We analyze the benefits of our
design using t-SNE (Van der Maaten and Hinton,
2008). The results are presented in Figures 9 and
10. We clearly observe that multi-tasking enables
domain disambiguation via implicitly clustering the

95

queries by domains, thus contributing positively to
entity prediction accuracy and, in turn, improving
the query rewrite quality. In particular, we observe
that Music, Video and Knowledge domains im-
mensely benefit from multi-tasking.

Figure 9: In the absence of the auxiliary task, queries
across domains are interspersed which leads to lower
accuracy due ambiguity in the rewrite domain. Here,
the blue cluster denotes Knowledge domain queries, the
orange cluster denotes Music domain queries and the
green cluster denotes Video domain queries.

Figure 10: Multi-tasking to predict the rewrite domain,
in addition to predicting the correct entity, leads to
higher accuracy due to domain disambiguation arising
from the implicit clustering effect.

4.4 Online Performance

A/B Experimentation: At the time of writing
this, we deployed a static (request, rewrite) look-
up table computed using PENTATRON-N to serve
real users. With a p-value < 0.05, we observe
a significant improvement, of 47.5%, in the user
experience measured using the model-based (Gupta
et al., 2021) assessment used for dataset selection in
Section 4.1 on the treatment group as compared to
the control group. Moreover, other friction metrics
such as the turn error rate have improved over 40%

throughout the A/B duration. Successive version
upgrade deployments are ongoing.

Latency: To investigate the deployment in a real-
time inference service, we performed extensive
load tests implemented with a Flask endpoint. We
store all objects in the main memory. On a c5.9x-
large instance on AWS cloud, at 120 queries per
second hitting the PENTATRON system, we ob-
served a P90 latency of less than 30ms for the end-
to-end execution.

5 Conclusions and Future Directions

In this work, we build a system called PENTA-
TRON which significantly improves user experi-
ence in intelligent devices by operating on entities
and reducing friction in multi-turn dialogues. There
are several future directions we plan to work on,
including operationalizing large-scale unbiased per-
sonalized and context-aware systems, and design-
ing self-learning (Ponnusamy et al., 2020; Roshan-
Ghias et al., 2020) using techniques such as rein-
forcement learning. We also plan to investigate
the utility of a multi-level index to improve entity
coverage and mitigate the cold-start problem for
new customers. Dynamic index building and de-
ployment in low-latency applications is an ongoing
direction.

Limitations

Our system has the following limitations. Though
personalization offers great benefits, the coverage
of desired entities in our historical index due to
personalization is typically limited. Specifically,
we observe only 20% coverage in our empirical
studies. This can alleviated using a multi-level
index involving clusters of users. We have initial
results on this approach and plan to compile that in
future work.

Next, natural language based prompts should
further improve our system. However, very long
sequence length has concerns with respect latency
and memory on CPU-deployed solutions. A poten-
tial solution to this is to consider low-rank factor-
ization in the attention design.

Finally, in production deployments, large-scale
in-memory index for multiple locales poses cost
challenges. A separate study is warranted to study
hybrid storage mechanisms and high performance
cache design.

96

Ethics Statement

To the best of our knowledge, our work is ethical
and has a positive impact on society and human
well-being. In particular, we take pride in empha-
sizing that we handle customer confidentiality and
privacy with critical care. Its design principles are
unbiased.

References
Zheng Chen, Xing Fan, Yuan Ling, Lambert Math-

ias, and Chenlei Guo. 2020. Pre-training for query
rewriting in a spoken language understanding system.
ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings.

Eunah Cho, Ziyan Jiang, Jie Hao, Zheng Chen, Saurabh
Gupta, Xing Fan, and Chenlei Guo. 2021. Personal-
ized search-based query rewrite system for conver-
sational ai. In Proceedings of the 3rd Workshop on
Natural Language Processing for Conversational AI,
pages 179–188.

Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca,
and Pascal Fleury. 2017. Learning to attend, copy,
and generate for session-based query suggestion. In
Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management, pages 1747–
1756.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xing Fan, Eunah Cho, Xiaojiang Huang, and Chenlei
Guo. 2021. Search based self-learning query rewrite
system in conversational ai. In 2nd International
Workshop on Data-Efficient Machine Learning (De-
MaL).

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego
Garcia-Olano. 2019. Learning dense representations
for entity retrieval. arXiv preprint arXiv:1909.10506.

Saurabh Gupta, Xing Fan, Derek Liu, Benjamin Yao,
Yuan Ling, Kun Zhou, Tuan-Hung Pham, and Chen-
lei Guo. 2021. Robertaiq: An efficient framework
for automatic interaction quality estimation of dia-
logue systems. In 2nd International Workshop on
Data-Efficient Machine Learning (DeMaL).

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2019. Poly-encoders: Trans-
former architectures and pre-training strategies for
fast and accurate multi-sentence scoring. arXiv
preprint arXiv:1905.01969.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee,
Jiyeon Kim, Ankur Kumar, Sungsoo Kim, Abhi-
nav Garg, and Changwoo Han. 2020. A review of
on-device fully neural end-to-end automatic speech
recognition algorithms. In 2020 54th Asilomar Con-
ference on Signals, Systems, and Computers, pages
277–283. IEEE.

Belinda Z Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-
pass end-to-end entity linking for questions. arXiv
preprint arXiv:2010.02413.

Yiding Liu, Weixue Lu, Suqi Cheng, Daiting Shi,
Shuaiqiang Wang, Zhicong Cheng, and Dawei Yin.
2021. Pre-trained language model for web-scale re-
trieval in baidu search. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pages 3365–3375.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Jean Maillard, Vladimir Karpukhin, Fabio Petroni, Wen-
tau Yih, Barlas Oğuz, Veselin Stoyanov, and Gargi
Ghosh. 2021. Multi-task retrieval for knowledge-
intensive tasks. arXiv preprint arXiv:2101.00117.

Claudio Pinhanez, Paulo Cavalin, Victor Hen-
rique Alves Ribeiro, Ana Appel, Heloisa Candello,
Julio Nogima, Mauro Pichiliani, Melina Guerra,
Maira de Bayser, Gabriel Malfatti, et al. 2021. Us-
ing meta-knowledge mined from identifiers to im-
prove intent recognition in conversational systems.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7014–7027.

Pragaash Ponnusamy, Alireza Roshan Ghias, Chenlei
Guo, and Ruhi Sarikaya. 2020. Feedback-based self-
learning in large-scale conversational ai agents. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 34, pages 13180–13187.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

97

Alireza Roshan-Ghias, Clint Solomon Mathialagan, Pra-
gaash Ponnusamy, Lambert Mathias, and Chenlei
Guo. 2020. Personalized query rewriting in conver-
sational ai agents. arXiv preprint arXiv:2011.04748.

Ruhi Sarikaya. 2022. Intelligent conversational agents
for ambient computing. In Proceedings of the 45th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
5–5.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei
Hu, Cheng Niu, and Jie Zhou. 2019. Improving
multi-turn dialogue modelling with utterance rewriter.
arXiv preprint arXiv:1906.07004.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Bo-Hsiang Tseng, Shruti Bhargava, Jiarui Lu, Joel
Ruben Antony Moniz, Dhivya Piraviperumal, Lin
Li, and Hong Yu. 2021. Cread: Combined resolution
of ellipses and anaphora in dialogues. arXiv preprint
arXiv:2105.09914.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776–5788.

Zhuoyi Wang, Saurabh Gupta, Jie Hao, Xing Fan,
Dingcheng Li, Alexander Hanbo Li, and Chenlei
Guo. 2021. Contextual rephrase detection for re-
ducing friction in dialogue systems. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1899–
1905, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2019. Scalable zero-
shot entity linking with dense entity retrieval. arXiv
preprint arXiv:1911.03814.

Siyang Yuan, Saurabh Gupta, Xing Fan, Derek Liu,
Yang Liu, and Chenlei Guo. 2021. Graph enhanced
query rewriting for spoken language understanding
system. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceed-
ings.

98

Proceedings of EMNLP 2022 Industry Track, pages 99–109
December 9–11, 2020. ©2022 Association for Computational Linguistics

Machine Translation Impact in E-commerce Multilingual Search

Bryan Hang Zhang
Amazon.com

bryzhang@amazon.com

Amita Misra
Amazon.com

misrami@amazon.com

Abstract
Previous work suggests that performance of
cross-lingual information retrieval correlates
highly with the quality of Machine Transla-
tion. However, there may be a threshold be-
yond which improving query translation quality
yields little or no benefit to further improve the
retrieval performance. This threshold may de-
pend upon multiple factors including the source
and target languages, the existing MT system
quality and the search pipeline. In order to
identify the benefit of improving an MT system
for a given search pipeline, we investigate the
sensitivity of retrieval quality to the presence of
different levels of MT quality using experimen-
tal datasets collected from actual traffic. We
systematically improve the performance of our
MT systems quality on language pairs as mea-
sured by MT evaluation metrics including Bleu
and Chrf to determine their impact on search
precision metrics and extract signals that help
to guide the improvement strategies. Using this
information we develop techniques to compare
query translations for multiple language pairs
and identify the most promising language pairs
to invest and improve.

1 Introduction

Multilingual search capability is essential for mod-
ern e-commerce product discovery (Lowndes and
Vasudevan, 2021; Zhang, 2022). Localization of
e-commerce sites have led users to expect search
engines to handle multilingual queries. Recent pro-
posals of cross-lingual information retrieval handle
multilingual queries, and language-agnostic cross-
borders product indexing has gained traction with
neural search engines (Hui et al., 2017; McDonald
et al., 2018; Nigam et al., 2019a; Lu et al., 2021; Li
et al., 2021), but legacy e-commerce search indices
are still built on monolingual product information
and support for multilingual search is bridged using
Query translation (Nie, 2010; Rücklé et al., 2019;
Saleh and Pecina, 2020; Bi et al., 2020; Jiang et al.,
2020; Zhang and Tan, 2021).

Query translation allows users to look up infor-
mation represented in documents written in a lan-
guages different from the language of the query. It
takes as input the query typed in source or query
language and returns a translated query to the
search engine to retrieve documents in the target
language. It follows that query translation plays
a key role and its output significantly affects the
retrieval results.

Previous studies have demonstrated performance
of CLIR (Cross-Lingual Information Retrieval) cor-
relates highly with the quality of the Machine
Translation (MT), and improving the quality of MT
improves retrieval quality (Goldfarb et al., 2019;
Brynjolfsson et al., 2019). However, these eval-
uations are done separately for each task. This
leaves a large gap in understanding the impact of
improving MT quality iteratively on CLIR perfor-
mance in a real time industrial setting. Since ma-
chine translation is used here as interim application,
the objectives of the retrieval task may have vary-
ing levels of tolerance to the inherent translation
quality. Information retrieval evaluation usually in-
volves human-annotated relevance labels of search
results candidates. In an industry setting, annotat-
ing a representative sample is a time consuming
and expensive task, particularly during iterative
improvement of MT for the search use case. Addi-
tionally, a general-purpose MT evaluation metric
may not necessarily adapt to the query evaluation
for downstream retrieval task.

To address these above concerns, we propose an
MT evaluation framework to build an e-commerce
specific CLIR test set. It exploits behavioural sig-
nals from search retrieval results to evaluate MT
quality for a given query. In order to identify the
benefit of improving an MT system, we further
investigate the sensitivity of retrieval quality to
the presence of different levels of MT quality as
measured by Bleu, and Chrf using experimental
datasets collected from actual traffic. Based on

99

these experiments, we recommend the pairs that
are worth continued investment in improving MT
systems for search. Our main contributions are:

• A rank-based evaluation framework to eval-
uate MT in CLIR through ranking-based
search metrics using behavioral signals (from
the store of the target language) as a proxy to
relevance information without any human an-
notation; this framework can be used to create
e-commerce CLIR test set at scale.

• A method to measure the MT launching
impact on the e-commerce CLIR ecosystems
for a given language pair. This can be used
to identify and prioritize the high impact lan-
guage pairs for more investment in the MT
improvement.

• A method to measure the MT improvement
impact on the e-commerce CLIR ecosystems
for a given language pair. It signals the strat-
egy to be used for MT improvement, either a
comprehensive strategy focusing on the over-
all query traffic or a specific one targeting a
smaller percentage of query traffic or a com-
bination of both strategies.

This paper is organized as following: we pro-
pose a rank-based evaluation framework in section
2. We propose two MT impact rates, MT launching
impact rate and MT improvement MT rate respec-
tively in section 3. Section 4 is the experiment
with 12 language pairs from 6 stores. Section 5 is
the results and analysis. We defer related work to
Section 6 where we compare it with our proposed
work. We draw a conclusion in Section 7.

2 Cross-Lingual Information Retrieval
(CLIR) Evaluation Framework for
E-commerce Product Search

Different from static test sets in academia, indus-
trial search applications are dynamic as user queries
and behavioral signals change with world trends.
Moreover, product inventory is dynamic, changes
often and quickly.

A previous study (Sloto et al., 2018) proposes
the traditional Normalized Discounted Cumulative
Gain (nDCG) for CLIR using all search results
from the reference translation as relevance ground
truth to compute nDCG for MT translation (aka
nDCG-MT). However, their approach imposes a
strong assumption that the top-k search results

from reference translation are all relevant to the
query and relevance is inversely scaled by the rank-
ing of the results.

Although behavioral signals from users’ clicks
and purchases are useful proxy (Wu et al., 2018)
to expensive human relevance annotations, these
are dynamic and change according to the product
life cycle and seasonal business trends. These be-
havioral signals need to be updated at regular ca-
dence to accurately represent relevance information
needed to compute search metrics.

We introduce a ranking-based evaluation frame-
work through search ranking metrics using behav-
ioral signals as a proxy to relevance information
without any human annotation; To the best of our
knowledge, there is no systematic study on cross-
lingual information retrieval for e-commerce search
that neither requires ground-truth click/purchase in-
formation nor human annotated relevance data.

Figure 1: Test set creation workflow

Figure 1 illustrates the test sets creation work-
flow for MT evaluation in E-commerce CLIR:

1. Create a sample of query data from the histor-
ical search traffic in the target language (the
language that the search index is built on).
Empirically, we recommend to sample that
queries from the top 30%, bottom 30% and
the middle 40% in frequency bins to better
simulate the user traffic. We refer to these
queries as Qref .

2. To allow computation of traditional relevance
metrics, aggregate the clicks and/or purchase
product IDs associated with the queries, if
they are available. We refer to the prod-
ucts IDs associated with the query and their
click/purchase frequency as Pid and Pfreq.

3. Create human reference translation of the
100

search queries sample in the source language
(the language that users will be searching in).
We refer to these human translated queries as
Qsrc.

We propose the following evaluation framework
with the test sets created above to evaluate machine
translation in the context of CLIR for e-commerce
queries.

1. Translate the Qsrc with the MT model in con-
sideration. We refer to these machine trans-
lated queries as Qmt.

2. Search for the candidate products using the
machine translated queries Qmt; retrieving
top-k search result Rmt

3. Use Pid and Pfreq (as ground truth) with Rmt

to compute traditional relevance based metrics
such as nDCG.

3 MT impact in the search ecosystem

3.1 The range of MT impact on search
As mentioned, the downstream search pipeline con-
sists of a large number of components, which al-
together has different levels of tolerance for query
translation quality. Hence, it is important to esti-
mate the range of query translation impact on the
search ecosystem in consideration. With the test
sets from the creation workflow in Section 2, we
propose to measure the rank-based search metrics
such as nDCG of source queries Qsrc as the lower
bound of the MT impact, which serves a baseline
for the impact of MT translated query on search,
and measure the search metrics of human reference
query translations Qref as the upper bound.

3.2 MT launching impact measurement
We expect that launching an MT system in a search
ecosystem of different language pairs can have dif-
ferent levels of positive impact on the search result
quality. Therefore, given a language pair (e.g. enus-
jajp), we propose the MT launching impact rate
to quantify the MT impact on the search ecosys-
tem (e.g. jp). MT launching impact rate (IMT) is
defined as in Equation 1.

IMT =
∆S

∆T
(1)

∆S = Sadapt − Ssource (2)

∆T = Tadapt − Tsource (3)

where, ∆S is the search result improvement from
source queries Ssource to the query translation from
a fine-tuned MT Sadapt (as Equation 2), Ssource
and Sadapt can be common search metrics such as
nDCG, ∆T is the respective translation quality im-
provement from the source queries Tsource to the
fine-tuned MT query translations Tadapt (as equa-
tion 3), Tsource and Tadapt can be MT evaluation
metrics such as Bleu or Chrf.

We propose the following three groups for lan-
guage pairs based on their MT impact rate:

• High-impact language pairs: Search ecosys-
tems of high-impact language pairs are less
tolerant to languages different from the search
index language, and more sensitive to the
query translation quality. Launching or im-
proving an MT system of those language pairs
in the respective search pipeline is more likely
to improve the search results.

• Medium-impact language pairs: Search
ecosystems of medium-impact language pairs
are somewhat sensitive to the query translation
quality, though not as much as high-impact
language pairs.

• Low-impact language pairs: Search ecosys-
tems of low-impact language pairs are more
robust to different languages and translation
quality, and the presence of an MT in the
search pipeline has less or little impact on
the search result improvement.

3.3 MT improvement impact
We experimented with two improvement strategies
for MT in the e-commerce CLIR product search:
one is comprehensive improvement (CI), the
other is specific improvement (SI). CI usually
focuses on the overall improvement in translation
quality and targets the entire query traffic. The
CI strategies usually involve a change of model
architecture or training techniques, etc; SI usually
focuses on the improvement of the specific aspects
of the query translation quality, and targets a frac-
tion of query traffic. The SI strategies are not nec-
essarily language-agnostic, for example, it can be
solving a smaller transliteration problem in a given
language, or a brand term preservation improve-
ment for a given language pair.

We propose The MT improvement impact rate
to quantify the impact of MT comprehensive im-
provement (Iimprove) on search improvement as in

101

Equation 4, which can provide signals to choose
the right MT improvement strategy for a given lan-
guage pair.

Iimprove =
∆S′

∆T ′ (4)

∆S′ = Sadapt − Sgeneric (5)

∆T ′ = Tadapt − Tgeneric (6)

where, ∆S′ is the search result improvement from
generic MT query translations Sgeneric to the fine-
tuned MT query translations Sadapt (as in Equation
5), Sgeneric and Sadapt can be the common search
metrics such as nDCG; ∆T ′ is the respective trans-
lation quality improvement from generic MT query
translations Tgeneric to the fine-tuned MT query
translations Tadapt (as in Equation 6), Tgeneric and
Tadapt can be MT evaluation metrics such as Bleu
or Chrf.

Language pairs with higher improvement rate
signals both the CI and SI of MT are likely to have
positive impact on search. Those with lower rate
may benefit more from the focusing on SI for a
targeted group of queries from the traffic.

4 Experiment

Language pairs and locales: We selected 12 lan-
guage pairs from 6 stores for our experiments as
seen in Table 1.

Lang pair Store Lang pair Store
esmx-enus US ptpt-eses Spain
ptbr-enus US frca-enca Canada
kokr-enus US nlnl-dede Germany
dede-enus US trtr-dede Germany
mlin-enin India engb-dede Germany
knin-enin India enus-jajp Japan

Table 1: Selected 12 language pairs from 6 stores

Test data: The test data is created as described in
Section 2. The test set comprises 4000 queries (as
reference query translation) per store (e.g. enus),
each query is translated into their respective lan-
guage pairs (e.g. enus -> kokr, enus -> dede). We
have also stored the purchased product IDs asso-
ciated with the queries of the store (e.g. US). We
use sampled purchased product ID associated with
reference queries as relevant product, and the log-
arithm of the frequencies of purchased product as
the relevance score.
Machine Translation (MT) models: We trained
two models per language pair: (i) a generic MT sys-
tem trained on general news and internal crawled

data with (ii) a domain-specific MT that is fined
tuned on human translated search queries and
synthetically generated query translations through
back-translation. These in-house MT models are
trained on proprietary data using vanilla trans-
former architecture (Vaswani et al., 2017) with
Sockeye MT toolkit (Domhan et al., 2020).1

Metric hyper-parameters: We set K to 16 for the
top-k search results, using the top-16 products in
the search results to compute nDCG@16.
MT metrics: Tables 3 and 4 in the appendix
present the MT quality metrics Bleu2 and Chrf; Ta-
ble 5 in the appendix presents search performance
metric normalized nDCG@16.3.
MT launching and improvement impact rates:
With aforementioned metrics, the lower and higher
bounds of nDCG@16 of MT impact are presented
in Table 6. MT launching impact and improvement
rates are computed using nDCG@16 with and Chrf
respectively, as in Table 2 in the appendix.

MT launching
impact

MT improvement
impact

Language
pair

∆nDCG/
∆Bleu

∆nDCG/
∆Chrf

∆nDCG/
∆Bleu

∆nDCG/
∆Chrf

ptpt-eses 0.11 0.15 0.19 0.70
enus-jajp 0.25 0.18 0.78 1.09
engb-dede 0.29 0.32 0.09 0.13
frca-enca 0.31 0.23 0.35 0.60
nlnl-dede 0.47 0.43 0.32 0.69
esmx-enus 0.50 0.34 0.34 0.64
ptbr-enus 0.62 0.56 0.28 1.01
dede-enus 0.62 0.66 0.33 0.61
knin-enin 0.72 0.59 0.19 0.60
trtr-dede 0.85 0.43 0.24 0.43
kokr-enus 0.98 0.49 0.33 0.39
mlin-enin 1.04 0.59 0.74 0.72

Table 2: MT launching impact and improvement impact
rates

5 Results and Analysis

For the MT launching impact, we rank the language
pairs in the descending order according to the MT
launching impact rate as well as the impact range
respectively, as in Table 7 in the appendix. We
observe Bleu and Chrf can give a similar ranking

1For the purpose of this paper, we are less concerned with
the accuracy of the MT models and more interested in the
difference in the MT quality as per measured by traditional MT
metrics and their evaluation based on our proposed framework.
Thus the brevity in the model description.

2SacreBleu version 2.0.0 (Post, 2018)
3Both the nDCG@16 and Chrf are scaled to 0-100 for the

computation convenience

102

with small difference, so the following analysis is
based on the MT launching impact from ∆ nDCG/
∆Bleu for simplicity. For the MT improvement
impact rate, we observe that Bleu makes value scale
smaller than Chrf. We will use ∆nDCG/ ∆Bleu
for the following analysis.

Figure 2: Language pairs where the MT have bigger
impact on search pipeline

We observe that MT of language pairs such as
mlin-enin, kokr-enus have higher launching impact
rate and should be labeled as the high-impact lan-
guage pairs. For mlin-enin, the MT launching im-
pact rate is 1.04, which signals one point Bleu in-
crease in translation quality can gain slightly more
than one point of search improvement. Figure 2
(In Figure 2, 3, 4 , “src” refers to source query,
“g” refers to generic mt, “a” refers to the adapted
(fine-tuned) MT, “ref” refers to the human trans-
lation. The axis is scaled according to the Bleu
score from 0-100.) illustrates the higher impact lan-
guage pairs, the range of the MT impact is much
bigger, search ecosystems are very responsive to
the presence of MT system in the search pipeline,
MT and search metrics have similar trending. mlin-
enin has a much higher improvement rate of 0.74,
the ecosystem of the search of this language pair
can potentially benefit from both comprehensive
improvement (CI) and specific improvement (SI)
in the MT. Meanwhile, kokr-enus has a much lower
improvement rate of 0.33, which signals this search
is more likely to benefit from SI than CI.
Language pairs such as nlnl-dede, frca-enca should
be considered as the decent impact language pairs.
As illustrated in Figure 3, both have smaller MT
impact range and the launching impact rates are
high but not quite as the high impact language
pairs. As Bleu and Chrf increase from source
query to generic MT to fine-tuned MT, nDCG@16
increases slower. Both language pairs have relative
lower improvement impact rate which is around
0.3, that signals search of these two language

Figure 3: Language pairs where the MT have decent
impact on search pipeline

pairs are more likely to benefit from SI than CI.
Language pairs such as ptpt-eses, enus-jajp should

Figure 4: Language pairs where the MT have lower
impact on search pipeline

be labeled lower impact language pairs based on
the lower launching impact rate. For ptpt-eses, one
point Bleu increase in translation quality can only
achieve 0.11 point of search improvement. Both
have smaller launching impact range, thus, search
ecosystems are not very responsive to the MT
quality improvement. As Bleu and Chrf increase
from source query to generic MT to fine-tuned
MT, nDCG@16 increases much slower and the
trend line is almost flat as Figure 4. In principle,
low-impact language arcs might not be prioritized
for MT improvement. If there is a need to improve
those MT for search, ptpt-eses has a much lower
MT impact rate of 0.19, so search is likely to
benefit from the SI for the MT, whereas enus-jajp
has much higher improvement rate of 0.78, the
search may still benefit from CI as well as SI.
Figure 5 and 6 in the appendix are the plots for all
other language pairs.

A/B testing: We have also conducted paral-
lel online A/B testing for the following language
pairs: enus-jajp, ptpt-eses, frca-enca, mlin-enin,
nlnl-dede, engb-dede. For each language pair, we
have deployed two fine-tuned MT systems and

103

integrated them into the search pipeline for the
designated store, and the MT system with the
comprehensive improvement has higher off-line
MT metrics (+5 Bleu points on average) than the
baseline model. The A/B testing lasted for 4 weeks
on average for all the experiments. For the high
impact language pairs, the improved MT systems
have seen large increases in business metrics,
such as, Order Product Sales (OPS), composite
contribution profit (CCP), compared to the baseline
model, and have much larger positive impact
on the search result quality. For the low impact
language pairs, we observe much smaller or even
no impact at all. Overall, the A/B testing results
are consistent with the MT launching impact rate
results we have computed. Moreover, for ptpt-eses
and nlnl-dede, we also conducted another round
A/B testing with the same experiment setup except
using MT with specific improvement to compare
with the baseline models. Those two improved
MT enhanced the terminology translation of 3-5%
of query traffic. The results are consistent with
our hypothesis that the MT with SI improvement
has much more impact than the MT with CI
improvement.

6 Related Work

Machine Translation is necessary to bridge the gap
between query translation and cross-lingual infor-
mation retrieval (Bi et al., 2020). Query translation
a key component in large e-commerce stores, pre-
vious studies have demonstrated that better transla-
tion quality improves retrieval accuracy (Goldfarb
et al., 2019; Brynjolfsson et al., 2019).

Queries are naturally short and search engines
usually have preferred word choices and colloca-
tions based on users’ query patterns (Lv and Zhai,
2009; Vechtomova and Wang, 2006). This com-
plicates the evaluation of machine translation for
cross-lingual information retrieval in the context of
‘fitting in well to the search index‘. While machine
translation evaluation is well-studied, translation
evaluation in downstream task requires more at-
tention especially in the e-commerce cross-lingual
information retrieval.

Traditionally, information retrieval evaluation
relies on behavioral signals as ground truth to mea-
sure relevance of search results; mean reciprocal
ranking (MRR), mean average precision (MAP),
normalized discounted cumulative gain (nDCG)
(Järvelin and Kekäläinen, 2002; Wu et al., 2018;

Nigam et al., 2019b).
Previous studies in cross-lingual information re-

trieval (CLIR) evaluation relies on pre-annotated
datasets that are relatively small and specific to
domains outside of e-commerce; for example, the
CLEF eHealth test sets (Saleh and Pecina, 2018;
Suominen et al., 2018; Zhang et al., 2013) and
Wikipedia cross-lingual test set (Sas et al., 2020).
Although Sloto et al. (2018) proposed the nDCG-
MT metric that leveraged on the reference transla-
tion to measure search results relevance, reliance
on the ground truth data is still necessary. In pursuit
of a more effective approach, we integrate CLIR
and MT more closely and evaluate them in an end-
to-end task. Our proposed method allows us to
fully-automate the evaluation and study the impact
of improving MT on CLIR by collecting organic
queries in the target language of the e-commerce
service and use reference results of these queries
as a proxy to human annotation.

7 Conclusion

In this paper, we propose an evaluation framework
for MT in the E-commerce multilingual product
search through ranking-based search metrics us-
ing behavioral signals as proxy relevance informa-
tion without any human notation, which makes it
practical to iteratively improve MT models for the
search use case and evaluate them frequently off-
line. This framework can also be used to create
cross-lingual information retrieval (CLIR) test sets
for e-commerce at scale. We also propose a method
to measure off-line the MT launching impact and
and improvement impact rate on search. The for-
mer can identify the the high-impact language pairs
can be prioritized with more investment in the MT
improvement. These experiments can help select
the most promising improvement strategy either
comprehensive or specific improvement or com-
bination of both to bring a larger impact on the
search performance of a given language pair. We
have experimented with the proposed evaluation
framework and MT impact measuring method on
12 language pairs from 6 stores, and identified the
high language pairs of different impact on search
and assigned potential improvement strategies. The
results are consistent with on-line A/B testing.

References
Tianchi Bi, Liang Yao, Baosong Yang, Haibo Zhang,

Weihua Luo, and Boxing Chen. 2020. Constraint
104

translation candidates: A bridge between neural
query translation and cross-lingual information re-
trieval.

Erik Brynjolfsson, Xiang Hui, and Meng Liu. 2019.
Does machine translation affect international trade?
evidence from a large digital platform. Management
Science, 65(12):5449–5460.

Tobias Domhan, Michael Denkowski, David Vilar,
Xing Niu, Felix Hieber, and Kenneth Heafield. 2020.
The sockeye 2 neural machine translation toolkit at
AMTA 2020. In Proceedings of the 14th Conference
of the Association for Machine Translation in the
Americas (Volume 1: Research Track), pages 110–
115, Virtual. Association for Machine Translation in
the Americas.

Avi Goldfarb, Daniel Trefler, et al. 2019. Artificial
intelligence and international trade. The economics
of artificial intelligence: an agenda, pages 463–492.

Kai Hui, Andrew Yates, Klaus Berberich, and Gerard
de Melo. 2017. PACRR: A position-aware neural
IR model for relevance matching. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1049–1058, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS),
20(4):422–446.

Zhuolin Jiang, Amro El-Jaroudi, William Hartmann,
Damianos Karakos, and Lingjun Zhao. 2020. Cross-
lingual information retrieval with BERT. In Proceed-
ings of the workshop on Cross-Language Search and
Summarization of Text and Speech (CLSSTS2020),
pages 26–31, Marseille, France. European Language
Resources Association.

Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang,
Xiaoyi Zeng, Xiao-Ming Wu, and Qianli Ma. 2021.
Embedding-based product retrieval in taobao search.
In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining, pages
3181–3189.

Mike Lowndes and Aditya Vasudevan. 2021. Market
guide for digital commerce search.

Hanqing Lu, Youna Hu, Tong Zhao, Tony Wu, Yiwei
Song, and Bing Yin. 2021. Graph-based multilingual
product retrieval in E-commerce search. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies: Industry
Papers, pages 146–153, Online. Association for Com-
putational Linguistics.

Yuanhua Lv and ChengXiang Zhai. 2009. Adaptive
relevance feedback in information retrieval. In Pro-
ceedings of the 18th ACM conference on Information
and knowledge management, pages 255–264.

Ryan McDonald, George Brokos, and Ion Androut-
sopoulos. 2018. Deep relevance ranking using en-
hanced document-query interactions. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1849–1860,
Brussels, Belgium. Association for Computational
Linguistics.

Jian-Yun Nie. 2010. Cross-language information re-
trieval. Synthesis Lectures on Human Language Tech-
nologies, 3(1):1–125.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan
Lakshman, Weitian (Allen) Ding, Ankit Shingavi,
Choon Hui Teo, Hao Gu, and Bing Yin. 2019a.
Semantic product search. In Proceedings of the
25th ACM SIGKDD International Conference on
Knowledge Discovery Data Mining, KDD ’19, page
2876–2885, New York, NY, USA. Association for
Computing Machinery.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lak-
shman, Weitian, Ding, Ankit Shingavi, Choon Hui
Teo, Hao Gu, and Bing Yin. 2019b. Semantic prod-
uct search.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Andreas Rücklé, Krishnkant Swarnkar, and Iryna
Gurevych. 2019. Improved cross-lingual question
retrieval for community question answering. In
The World Wide Web Conference, WWW ’19, page
3179–3186, New York, NY, USA. Association for
Computing Machinery.

Shadi Saleh and Pavel Pecina. 2018. Cuni team: Clef
ehealth consumer health search task 2018. In CLEF
(Working Notes).

Shadi Saleh and Pavel Pecina. 2020. Document transla-
tion vs. query translation for cross-lingual informa-
tion retrieval in the medical domain. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6849–6860, On-
line. Association for Computational Linguistics.

Cezar Sas, Meriem Beloucif, and Anders Søgaard. 2020.
WikiBank: Using Wikidata to improve multilingual
frame-semantic parsing. In Proceedings of the 12th
Language Resources and Evaluation Conference,
pages 4183–4189, Marseille, France. European Lan-
guage Resources Association.

Steve Sloto, Ann Clifton, Greg Hanneman, Patrick
Porter, Donna Gates, Almut Silja Hildebrand, and
Anish Kumar. 2018. Leveraging data resources for
cross-linguistic information retrieval using statisti-
cal machine translation. In Proceedings of the 13th
Conference of the Association for Machine Transla-
tion in the Americas (Volume 2: User Track), pages
223–233.

105

Hanna Suominen, Liadh Kelly, Lorraine Goeuriot, Au-
rélie Névéol, Lionel Ramadier, Aude Robert, Evan-
gelos Kanoulas, Rene Spijker, Leif Azzopardi, Dan
Li, et al. 2018. Overview of the clef ehealth eval-
uation lab 2018. In International Conference of
the Cross-Language Evaluation Forum for European
Languages, pages 286–301. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Olga Vechtomova and Ying Wang. 2006. A study of the
effect of term proximity on query expansion. Journal
of Information Science, 32(4):324–333.

Liang Wu, Diane Hu, Liangjie Hong, and Huan Liu.
2018. Turning clicks into purchases: Revenue opti-
mization for product search in e-commerce. SIGIR
’18, page 365–374, New York, NY, USA. Association
for Computing Machinery.

Bryan Zhang. 2022. Improve MT for search with se-
lected translation memory using search signals. In
Proceedings of the 15th Biennial Conference of the
Association for Machine Translation in the Americas
(Volume 2: Users and Providers Track and Govern-
ment Track), pages 123–131, Orlando, USA. Associ-
ation for Machine Translation in the Americas.

Hang Zhang and Liling Tan. 2021. Textual representa-
tions for crosslingual information retrieval. In Pro-
ceedings of The 4th Workshop on e-Commerce and
NLP, pages 116–122, Online. Association for Com-
putational Linguistics.

Lei Zhang, Achim Rettinger, Michael Färber, and
Marko Tadić. 2013. A comparative evaluation of
cross-lingual text annotation techniques. In Inter-
national Conference of the Cross-Language Evalua-
tion Forum for European Languages, pages 124–135.
Springer.

A Appendix

sacreBleu
Language
pair source generic

MT
adapted
MT

trtr-dede 6.4 23.4 28.8
enus-jajp 2.8 21.1 30.6
esmx-enus 2.6 26.6 33.3
kokr-enus 6.02 32.53 38.39
frca-enca 3.77 30.01 40.46
ptbr-enus 3.7 26.8 41.91
mlin-enin 4.41 41.7 47.02
nlnl-dede 14.09 36.87 48.11
dede-enus 6.88 46.74 60.93
ptpt-eses 16.49 33.28 63.08
engb-dede 10.1 45.61 63.08
knin-enin 2.77 52.02 71.27

Table 3: MT metric - Bleu for source queries and query
MT translations

Chrf
language
pair source generic

mt
adapted
mt

dede-enus 30.49 73.82 81.36
engb-dede 33.08 69.68 80.99
enus-jajp 10.49 41.91 48.67
esmx-enus 24.92 65.62 69.19
frca-enca 27.04 69.72 75.85
kokr-enus 10.7 69.79 74.75
mlin-enin 7.64 77.7 83.19
nlnl-dede 42.63 75.34 80.58
ptbr-enus 25.66 64.2 68.33
ptpt-eses 48.37 73.26 81.52
trtr-dede 23.08 64.27 67.3
knin-enin 5.29 82.67 88.62

Table 4: MT metric -Chrf for source queries and query
MT translations

106

nDCG@16
Language
pair source generic

MT
adapted
MT ref

enus-jajp 36.2 35.80 43.19 62.30
frca-enca 33.34 40.98 44.64 53.47
trtr-dede 26.8 44.60 45.90 63.90
nlnl-dede 31.11 43.67 47.26 56.76
ptpt-eses 42.53 41.89 47.64 55.65
mlin-enin 4.00 44.38 48.34 58.28
ptbr-enus 27.2 46.71 50.89 60.28
kokr-enus 19.59 49.38 51.29 60.42
dede-enus 17.78 46.91 51.54 60.27
knin-enin 2.90 48.7 52.27 58.28
esmx-enus 37.7 50.6 52.90 69.40
engb-dede 38.54 52.38 53.88 61.91

Table 5: search metric (nDCG@16) of source queries
and query MT and reference translations

Language
pair

lower
bound

upper
bound

impact
range

ptpt-eses 42.53 55.65 13.12
frca-enca 33.34 53.47 20.13
engb-dede 38.54 61.91 23.37
nlnl-dede 31.11 56.76 25.65
enus-jajp 36.20 62.30 26.10
esmx-enus 37.70 69.40 31.70
ptbr-enus 27.20 60.28 33.08
trtr-dede 26.80 63.90 37.10
kokr-enus 19.59 60.42 40.83
dede-enus 17.78 60.27 42.49
mlin-enin 4.00 58.28 54.28
knin-enin 2.90 58.28 55.38

Table 6: The MT impact range (nDCG@16)

MT launching impact

Rank impact
range

∆nDCG/
∆Bleu

∆nDCG/
∆Chrf

1 knin-enin mlin-enin dede-enus
2 mlin-enin kokr-enus knin-enin
3 dede-enus trtr-dede mlin-enin
4 kokr-enus knin-enin ptbr-enus
5 trtr-dede dede-enus kokr-enus
6 ptbr-enus ptbr-enus trtr-dede
7 esmx-enus esmx-enus nlnl-dede
8 enus-jajp nlnl-dede esmx-enus
9 nlnl-dede frca-enca engb-dede
10 engb-dede engb-dede frca-enca
11 frca-enca enus-jajp enus-jajp
12 ptpt-eses ptpt-eses ptpt-eses

Table 7: Language pair ranking based on the MT launch-
ing impact

107

Figure 5: MT quality metrics and search metrics.png

108

Figure 6: MT quality metrics and search metrics

109

Proceedings of EMNLP 2022 Industry Track, pages 110–120
December 9–11, 2020. ©2022 Association for Computational Linguistics

Ask-and-Verify: Span Candidate Generation and Verification for
Attribute Value Extraction

Yifan Ding1∗ , Yan Liang2, Nasser Zalmout2, Xian Li2, Christan Grant3, Tim Weninger1
University of Notre Dame1, Amazon.com2, University of Oklahoma3,

{yding4, tweninge}@nd.edu, {ynliang, nzalmout, xianlee}@amazon.com, cgrant@ou.edu

Abstract

The product attribute value extraction (AVE)
task aims to capture key factual information
from product profiles, and is useful for several
downstream applications in e-Commerce plat-
forms. Previous contributions usually formu-
late this task using sequence labeling or read-
ing comprehension architectures. However, se-
quence labeling models tend to be conservative
in their predictions resulting in a high false neg-
ative rate. Existing reading comprehension for-
mulations, on the other hand, can over-generate
attribute values which hinders precision. In the
present work we address these limitations with
a new end-to-end pipeline framework called
Ask-and-Verify. Given a product and an at-
tribute query, the Ask step detects the top-K
span candidates (i.e., possible attribute values)
from the product profiles, then the Verify step
filters out false positive candidates. We evalu-
ate Ask-and-Verify model on Amazon’s prod-
uct pages and AliExpress public dataset, and
present a comparative analysis as well as a de-
tailed ablation study. Despite its simplicity, we
show that Ask-and-Verify outperforms recent
state-of-the-art models by up to 3.1% F1 abso-
lute improvement points, while also scaling to
thousands of attributes.

1 Introduction

The product profiles in e-Commerce platforms are
usually comprised of free-form natural language
description of the main product features. The prod-
uct attribute value extraction (AVE) task is used to
extract key factual information from textual prod-
uct descriptions. Properly extracted attribute val-
ues can facilitate several downstream applications,
such as search (Xiao et al., 2021), recommendation
systems (Hwangbo et al., 2018), and task-oriented
dialogue systems (Yan et al., 2017). In the vari-
ous retail categories there are millions of different

∗ Most of the work was done during an internship at
Amazon.

Stonyfield Organic Kids Strawberry Banana Whole Milk
Yogurt Tubes, 2 oz. Each, 8 Ct

Stonyfield Organic Kids Whole Milk Yogurt Tubes are
the portable super snack for hungry kids. This yogurt
pack includes 8 Strawberry Banana tubes.

Our #1 Organic Kids Yogurt is made with wholesome
ingredients including milk from pasture-raised cows. It's
USDA Organic, non-GMO, gluten-free, and Kosher.

What’s the flavor?
What’s the target age?
What’s the brand?
What’s the gluten information?
Is it organic?

Strawberry Banana
Kids
Stonyfield Organic
gluten-free
USDA Organic

Attribute Questions:

About this item:

Title:

Labels:

Figure 1: An example of attribute value extraction task
on a dairy product. Corresponding attribute values are
extracted for several different attributes including flavor,
target age, brand, gluten, and organic information.

product types with thousands of unique attributes,
so AVE should ideally be scalable with respect to
the number of attributes, providing high coverage
for all possible values, while maintaining accurate
overall predictions. Fig. 1 shows an example for
the AVE task on a dairy product. In this case, AVE
aims to extract the corresponding attribute values of
multiple product attributes including flavor, target
age, gluten information, among others.

AVE is a central organizational task in online
shopping systems, significant attention has been
paid to the task resulting in a handful of highly-
optimized systems (Zalmout et al., 2021; Yan et al.,
2021; Lin et al., 2021; Wang et al., 2020; Xu et al.,
2019; Zheng et al., 2018). Most of these models
use either a sequence labeling formulation, or a ma-
chine reading comprehension (MRC) formulation.
Sequence labeling is a popular formulation in the
named entity recognition literature. However, its
application on the AVE task tends to generate con-
servative outputs, resulting in many false negatives.
This is mostly caused by an overabundance of neg-
ative token labels (i.e., the ‘O’ in BIOE schema).

Recently, the AVEQA model (Wang et al., 2020)
addressed the AVE task using a reading compre-

110

hension formulation (i.e., question answering –
hence AVEQA). This formulation tends to be more
flexible and scalable than sequential labelling ap-
proaches, however, we observed that AVEQA tends
to over-generate irrelevant outputs and does not
generalize to multiple attribute values.

In the present work, we address these limita-
tions in existing systems with a new end-to-end
framework we dub Ask-and-Verify, consisting of
a span candidate generation step (Ask) and a span
verification step (Verify). The Ask step first identi-
fies relevant span candidates by locating potential
boundaries (i.e.starting and ending indices) with
two individual multi-label classifiers based on to-
ken features. The goal of the Verify step is to elim-
inate irrelevant span candidates with span features.
The overall framework is attribute-agnostic, which
can capture salient attribute information from the
input sequence, and can generalize to thousands of
attributes without attribute-specific parameters.

In summary, we present the Ask-and-Verify
framework, which disentangles the attribute value
extraction task into an end-to-end pipeline of (1)
span candidate generation and (2) verification. We
design the multi-label classifiers and span candi-
date collection module to obtain valid high-quality
span candidates within the model. The verification
module is an attribute-agnostic binary classifier
based on span features. Through extensive experi-
ments on two real-world E-commerce datasets, we
show that the Ask-and-Verify framework outper-
forms the current crop of state-of-the-art models,
and is able to scale to thousands of attributes.

2 Related Work

2.1 Attribute Value Extraction

The goal of the attribute value extraction task is
to extract key factual information about a product
from its text description. Recent contributions typi-
cally formulate the AVE task as a sequence labeling
task (Yan et al., 2021; Karamanolakis et al., 2020;
Xu et al., 2019; Zheng et al., 2018). The main idea
is to assign token-wise attribute labels with context-
aware token features. To extract different attributes,
multiple strategies have been presented in previous
works. OpenTag (Zheng et al., 2018) utilized sep-
arate tag-sets for each attribute, SuOpenTag (Xu
et al., 2019) and Adatag (Yan et al., 2021) utilized
single tag-set for all the attributes while attribute
information is explicitly injected at the encoder or
decoder. Recently, AVEQA (Wang et al., 2020)

utilizes machine reading comprehension to extract
attribute values by treating attributes as questions
and text descriptions as the passage.

2.2 Machine Reading Comprehension

Machine reading comprehension (MRC) is a gen-
eral task within the fields of information retrieval
(IR) and natural language processing (NLP), which
aims to find correct answers to a question in a given
passage (Rajpurkar et al., 2016, 2018; Zhang et al.,
2020). Illustrated via questions at the bottom of
Fig. 1, the AVE task can naturally be formulated as
an MRC task, which is to extract correct attribute
values (answer) within a product text description
(passage) for a given attribute query (question).
One complication is that the AVE task must handle
unanswerable attribute queries (unanswerable ques-
tions) and multiple attribute values for an attribute
(multiple answers to a single question).

2.3 Candidate Generation and Selection

Candidate generation and selection is widely used
in object detection (Carion et al., 2020; Ren et al.,
2015) and instance segmentation (Wang et al.,
2021; He et al., 2017) in computer vision. The can-
didate generation step generates candidate bound-
ing boxes which can carry instance information
used in the selection step. Recently, NLP re-
searchers have developed span-based models (Shen
et al., 2021; Joshi et al., 2020; Yamada et al., 2020;
Li et al., 2020) to obtain state-of-the-art perfor-
mance on span-based or entity-centered tasks like
named entity recognition (Ding et al., 2021; Huang
et al., 2015), entity linking (Ding et al., 2022;
Botzer et al., 2022), and machine reading com-
prehension (Rajpurkar et al., 2018) among others.
A key insight of the Ask-and-Verify framework is
to show that this kind-of candidate generation and
selection formulation used widely in computer vi-
sion can also be used to benefit the the AVE task
and potentially other span-level NLP tasks.

3 Methodology

Task Definition: Given a product description
X = [x1, x2, ..., xL] with L tokens, and an at-
tribute A from a pre-defined attribute set A, the
AVE task aims to extract all of the unique attribute
values Y = {y1, y2, ..., yM} corresponding to A.
Each attribute value ym is composed of one or more
consecutive tokens within X . If no proper attribute
values is found in X for A, an empty set should

111

[CLS] Stonyfield Organic Kids Whole Milk Yogurt [SEP] [SEP]Brand

H2 H3 H4 H5 H6 H7 H8 H10H9

Transformer Encoder

H1

Span Feature Extraction ℓ1 ℓ2 ℓ3 ℓ4
Length Embedding

Product Text Description (Passage) Attribute (Question)

Span Candidate Collection

Span Binary Classification

Stonyfield Organic

H2 H3 ℓ2 ℓ1H4H4 ℓ2H6H5 H7 H7 ℓ1

Stonyfield Organic Kids Whole Milk Yogurt

Stonyfield Organic Kids Whole Milk Yogurt

Span Candidate Generation

Span Candidate Verification

Figure 2: Overview of the Ask-and-Verify framework, a two-step attribute value extraction framework with Span
Candidate Generation (Ask) and Span Candidate Verification (Verify). The framework takes input sequences of
entity text descriptions and a single attribute of interest. In the Span Candidate Generation step, the input sequence
is first passed to a Transformer Encoder to obtain hidden states. The Span Candidate Collection module processes
the hidden states to obtain top-K valid span candidates. In the Span Candidate Verification step, span embeddings
composed of start-token hidden states, end-token hidden states and a span-length embedding, are obtained in Span
Feature Extraction module for each generated span candidate. Finally, the span embedding is passed to the Span
Binary Classification module to obtain the extracted attribute values.

be returned for Y . Following common practice
in question answering, we also call this case as
unanswerable case.

Ask-and-Verify: Our framework addresses the
AVE task in an end-to-end manner with two major
components: (1) span candidate generation (Ask),
and (2) span candidate verification (Verify). For an
attribute of interest A, the first step generates the
potential span candidates. The second verification
step filters the candidates and selects a subset.

3.1 Span Candidate Generation
This step generates potential span candidates.
Specifically, we employ two individual multi-label
classifiers to locate starting index and ending index
of span candidates. Formally, given a product with
text description X and an attribute of interest A,
we use a sub-word tokenizer to tokenize original
tokens along with the attribute into sub words SW :

(1)SW = Tokenizer({[CLS], X, [SEP], A})
Following common practice, we pad the se-

quences to some fixed length K and longer se-

quences are also fixed to the same length K by
truncating the tokens of text description. The pro-
cessed tokens are then fed into a BERT encoder to
obtain d-dimensional hidden states H ∈ RK×d:

(2)H = Encoder(SW)

The hidden states Hs of index s are further fed
through a linear layer and Softmax to obtain the
probabilities for the starting token. Similarly, the
probability index e for the ending token is obtained
by feeding the corresponding hidden states He

through another linear layer and Softmax.

P θ
start(s|X,A) =

exp(wT
startHs)∑K

k=1 exp(w
T
startHk)

(3)

P θ
end(e|X,A) =

exp(wT
endHe)∑K

k=1 exp(w
T
endHk)

(4)

At the training stage, twoK-class (K is the fixed
length of input sentence) classifiers are used in-
dividually on start indexes and end indexes with
multi-label cross-entropy loss (see Eq. (5)-(6)).

112

Note that start token(s) of Y forms a set YS , and
end token(s) of Y forms a set YE . Any correct
token in YS is considered as a positive starting to-
ken and any correct token in YE is considered as a
positive ending token.

Lstart = −
K∑

s=1

1(SWs ∈ YS) logP θ
start(s|X,A)

(5)

Lend = −
K∑

e=1

1(SWe ∈ YE) logP θ
end(e|X,A)

(6)

To obtain the actual span candidates M, each
span candidate m(s,e) has to have top-K probabil-
ities within valid spans (see Eq. (7)). A span is a
valid if and only if all the span tokens are within the
range of text description with positive lengths up
to T tokens (see Eq. (8)). Note that span candidate
generation is part of the model thus span candidates
are obtained in both training and inference stage.

M = {m(s,e) |Mask(s,e) ∧
P θ

start(s|X,A) + P θ
end(e|X,A) ∈ top-K}

(7)

Mask(s,e) = 1(SWs ∈ X ∧ SWe ∈ X
∧ 1 <= e− s <= T)

(8)

3.2 Span Candidate Verification
The span candidate verification step aims to ver-
ify each span candidate generated from previous
step, and choose the final attribute value extraction
output. We utilize a simple but effective uniform
binary classification model for the verification step.
We make individual binary (i.e., yes/no) classifica-
tions for each span candidate with the correspond-
ing span-level features.

Formally, given the same hidden state H from
Eq. (2), each span candidate m(s,e) obtains its span
features Hm(s,e)

by concatenating starting token’s
hidden state Hs, ending token’s hidden state He,
and span candidate’s length embedding ℓe−s.

Hm(s,e)
= Concat([Hs;He; ℓe−s]) (9)

Ĥm(s,e)
= DropOut(ReLU(wT

1Hm(s,e)
)) (10)

P θ
span(m(s,e)|X,A) =

exp(wT
2 Ĥm(s,e)

)
∑

m′∈M exp(wT
2 Ĥm′)

(11)

where ℓ ∈ RT×dF is the learned span length fea-
tures with dF dimension. The span features are
then fed into a single-layer feed forward neural net-
work with DropOut and a ReLU layer to obtain the
corresponding span state Ĥm(s,e)

. Ĥm(s,e)
further

goes through another linear layer and Softmax to
obtain the probabilities.

The objective function Lspan of the verification
step is the sum of the binary cross entropy losses
for each span candidate m(s,e). A span is positive
if and only if it exactly matches one of the ground
truth attribute value(s).

Lspan = −
∑

m∈M

(
1(m ∈ Y) logP (m|X,A) +

1(m /∈ Y) log(1− P (m|X,A)
)

(12)

L = Lstart + Lend + Lspan (13)

3.3 Training and Inference

The training objective function of the Ask-and-
Verify framework is the sum of the starting index
loss, ending index loss, and the span binary classi-
fication loss (see Eq. (13)). During inference, each
span candidate m̂ is ranked according to its binary
classification score P θ

span(m̂|X,A). The span can-
didate with higher score than some threshold value
τ makes it to the ranking step. In the ranking or-
der, a span candidate is selected if it does not have
any overlapping token(s) with any of the already
selected spans. If no spans make it to the rank-
ing step, then an empty set is returned. Additional
details (i.e.hyperparameters) can be found in the
reproducibility section A of the appendix.

4 Experiments

We conduct extensive experiments using the AliEx-
press (Xu et al., 2019) and Amazon datasets and
compare the Ask-and-Verify framework with ten
state-of-the-art methods.

4.1 Datasets

AliExpress: We use the public version of the
AliExpress dataset (AE-110K). Following previous
work (Wang et al., 2020), we randomly partition the
product-instances into an 80/20 train/test split for
scaling experiments. Additionally, we also focus
on the 50 most frequent attributes, but remove 2

113

Table 1: Test macro precision (P), recall (R) and F1 scores on AE-48, AZ-15 and AZ-33. Best scores are highlighted
in bold, second best scores are underlined.

Model AE-48 AZ-15 AZ-33
P R F1 P R F1 P R F1

BiLSTM (Huang et al., 2015) 0.788 0.771 0.776 0.742 0.519 0.593 0.731 0.511 0.586
BERT (Devlin et al., 2019) 0.787 0.814 0.800 0.720 0.506 0.582 0.736 0.509 0.589
OpenTag (Zheng et al., 2018) - - - 0.751 0.519 0.594 0.708 0.482 0.557
SuOpenTag (Xu et al., 2019) 0.806 0.795 0.798 0.749 0.503 0.585 0.711 0.533 0.593
AdaTag (Yan et al., 2021) 0.801 0.805 0.799 0.751 0.518 0.591 0.712 0.542 0.599
AVEQA (Wang et al., 2020) 0.806 0.807 0.804 0.618 0.512 0.551 0.633 0.523 0.563
MRC-For-NER (Li et al., 2020) 0.753 0.800 0.774 0.562 0.428 0.470 0.652 0.482 0.543
W2NER (Li et al., 2022) - - - 0.847 0.304 0.405 0.838 0.271 0.369
Locate-and-Label (Shen et al., 2021) 0.713 0.673 0.669 0.655 0.564 0.569 0.697 0.512 0.549
Sequence-to-Set (Tan et al., 2021) 0.778 0.621 0.665 0.786 0.411 0.501 0.763 0.420 0.501

Ask-and-Verify 0.821 0.813 0.814 0.750 0.551 0.625 0.744 0.562 0.629

that fail on the AdaTag model (Yan et al., 2021).
This setting is referred to as AE-48 dataset.
Amazon: Similar to previous work (Yan et al.,
2021), we collected datasets from Amazon’s prod-
uct pages. The raw training data includes 33 fre-
quent attributes and 745, 216 total samples. Ex-
ample attributes including color, flavor, skin type,
hair type, pattern type, and age range description.
Test data is annotated by Amazon employees, in-
cluding 15 attributes (from the 33 attributes) and
11, 000 total samples. We consider two experiment
settings: first we use all 33 attributes (AZ-33) from
the training set; in the second setting we restrict
the training instances to include at least one of 15
attributes present in test set (AZ-15).

4.2 Existing Models

We compared the AVE task performance of the
Ask-and-Verify against ten state-of-the-art models
including two standard sequential labeling mod-
els: BiLSTM (Huang et al., 2015) and BERT (De-
vlin et al., 2019); four state-of-the-art attribute
value extraction models: OpenTag (Zheng et al.,
2018), SuOpenTag (Xu et al., 2019), AdaTag (Yan
et al., 2021), and AVEQA (Wang et al., 2020); four
state-of-the-art named entity recognition models:
MRC-for-NER (Li et al., 2020), W2NER (Li et al.,
2022), Locate-and-Label (Shen et al., 2021), and
Sequence-to-Set (Tan et al., 2021).

4.3 Metrics

Following the previous contributions, we use the
exact entity matching criteria for evaluation. A
predicted attribute value is considered to be a true

Table 2: Test micro precision (P), recall (R) and F1
scores on AE-110k. Many models are not included be-
cause they could not scale to the large size of attributes
in the AE-110K dataset. Best scores are highlighted in
bold. ♣: our reported scores are different from original
reported values, details can be found in section B and D
of appendix.

Model AE-110K
P R F1

SuOpenTag (Xu et al., 2019) 0.641 0.575 0.607
AVEQA (Wang et al., 2020) ♣ 0.784 0.711 0.746

Ask-and-Verify 0.798 0.723 0.759

positive if and only if it exactly matches one of
the ground truth values. In the main experiments
shown in Table 1 we compute macro precision (P),
recall (R) and F1 scores (F1) by aggregating across
testing attributes. In the scaling experiment shown
in Table 2, we use micro precision, recall and F1
scores following previous work (Wang et al., 2020).

4.4 Results

The results of our principal experiments over the
three E-Commerce dataset settings (AE-48, AZ-15
and AZ-33) are listed in Table 1. We observe that
the Ask-and-Verify framework outperforms the ex-
isting methods on all three settings with absolute
improvements in the F1 score of +1.0%, +3.1% and
+3.0% respectively, compared to second best base-
line. Specifically, Ask-and-Verify obtains the best
or second best recall scores. As for precision, only
state-of-the-art NER models obtain higher preci-
sion than Ask-and-Verify but with the cost of much

114

Table 3: Ablation study of different model choices on
span candidate generation (Ask) and verification (Ver-
ify). Best scores are highlighted in bold.

AZ-15 AZ-33
P R F1 P R F1

Ask-and-Verify 0.750 0.551 0.625 0.744 0.562 0.629

w/o Verify 0.279 0.601 0.374 0.328 0.618 0.421
Verify w/ PURE 0.825 0.316 0.418 0.829 0.287 0.388
Ask w/ n-gram 0.717 0.510 0.587 0.708 0.507 0.582
Ask w/ nouns 0.611 0.264 0.361 0.580 0.266 0.357

more downgrade on the recall.
We further conduct experiments to test the scal-

ability of the Ask-and-Verify framework on the
AE-110K setting with more than two thousand at-
tributes. Results of this experiment are listed in Ta-
ble 2. We compared Ask-and-Verify with AVEQA
and SuOpenTag only because the other models are
not able to scale up to all attributes. We find the
AVEQA model shows significantly better scala-
bility compared to the SuOpenTag. Compared to
AVEQA, the Ask-and-Verify framework is able to
further boost the performance, with improvements
in precision, recall and F1 scores at +1.4%, +1.2%
and 1.3% respectively.

5 Ablation Studies

5.1 Effectiveness of the Ask-Step
We study the effect of using alternative formula-
tions for the Ask step to provide span candidates.
Intuitively, we can remove the Ask component and
replace it with a basic n-grams setup. Specifically,
we use n-grams and noun phrase chunking as alter-
natives for the Ask step. For the n-grams model,
we consider all the possible spans up to five words.
For the noun-phrase chunking model, we utilize
spaCy’s chunker1 to extract all the nouns of the
input text. We keep the same Verification step and
conduct experiments on AZ-15 and AZ-33 settings.
As shown in Table 3, both n-grams and noun phrase
chunking show a lower performance compared to
the Ask component. Using n-grams drops f1 by
3.8% on AZ-15, and 4.7% on AZ-33. While noun
phrases result in a larger drop, by more than 20%
on both settings.

5.2 Effectiveness of the Verification-Step
To study the effect of the Verification step, we first
consider removing the Verification step completely,

1https://github.com/explosion/spaCy

Ask-only-top1

Ask-and-Verify

1193
863

686 661

AE-48

N
um

be
ro

fF
al

se
Po

si
tiv

es

Unanswerable Answerable

Ask-only-top1

Ask-and-Verify

3238

2297

966
523

AZ-15

Ask-only-top1

Ask-and-Verify

3094

2389

959
532

AZ-33

Figure 3: Number of false positive samples in Ask-only
and Ask-and-Verify settings. The Verify-step substan-
tially reduces false positives.

and use the span candidates directly as the output.
As shown in Table 3, removing the verification step
leads to significant precision drop of about 47.1%
and 41.6%, with moderate recall improvement of
5.0% and 5.6% on the AZ-15 and AZ-33. We also
replace the Verification step with the PURE (Zhong
and Chen, 2021) model. Even though the alterna-
tive can improve precision with 7.5% and 8.5%, it
drops recall by about 23.5% and 27.5%.

Further, to quantitatively understand how the
Verify model can reduce the number of false pos-
itives presented in the span candidates, we count
the false positives in the Ask-and-Verify output
and Ask-only-top1 span output. Compared to Ask-
only-top-1, the addition of the Verify model in our
framework can significantly reduce the false posi-
tives in both answerable and unanswerable cases.
In the AE-48 setting, answerable false positive sam-
ples are reduced by about 20%. On the AZ-15 and
AZ-33 settings, Ask-and-Verify can filter-out more
than 40% of the unanswerable cases, and more than
20% of the answerable cases.

6 Deployment Considerations

The Ask-and-Verify framework is currently under
deployment evaluation. Investigation is going on
to verify if the framework can be deployed with
minimal changes of the existing workflow. In our
deployment tests, we found that the Ask-and-Verify
framework has better precision and recall perfor-
mance. Ask-and-Verify is also flexible, and can
adapt to a wide application scenarios that might re-
quire varying precision and recall levels, by chang-
ing the threshold values. Moreover, a single model
can cover a large number of attributes – this is par-

115

ticularly important since E-commerce platforms
can hold billions of different products with thou-
sands of attributes.

7 Conclusions

In this paper we described a new end-to-end frame-
work, Ask-and-Verify, for the attribute value ex-
traction task. This framework has two main com-
ponents: (1) a span candidate generation step, and
(2) a verification step. The span candidate gen-
eration step can provide high-quality span candi-
dates and the verification step can further remove
irrelevant span candidates. Ask-and-Verify utilizes
two individual multi-label classifiers in the candi-
date span generation step and an attribute agnostic
span-based binary classifier in the verification step.
We performed a comparative analysis on an Ama-
zon products dataset as well as a publicly avail-
able dataset from AliExpress. We evaluate Ask-
and-Verify compared to ten other baseline models.
Despite its simplicity, Ask-and-Verify consistently
outperforms these state-of-the-art methods, and is
able to scale up to thousands of unique attributes.
Ask-and-Verify also has high flexibility and allows
for effective threshold tuning.

Acknowledgements

This project was funded in part by DARPA under
contract HR001121C0168 and HR00112290106.
We would like to thank Chenwei Zhang and Jun Ma
from Amazon, for their constructive feedback on
the work. We would also like to thank the anony-
mous reviewers for their valuable comments.

References
Nicholas Botzer, Yifan Ding, and Tim Weninger. 2022.

Reddit entity linking dataset. Information Processing
and Management, 58(3).

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In 2020 European Conference on Com-
puter Vision, pages 213–229, Cham. Springer Inter-
national Publishing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021. Few-NERD: A few-shot named entity
recognition dataset. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3198–3213, Online. Association
for Computational Linguistics.

Yifan Ding, Nicholas Botzer, and Tim Weninger. 2022.
Posthoc verification and the fallibility of the ground
truth. In Proceedings of the First Workshop on Dy-
namic Adversarial Data Collection, pages 23–29,
Seattle, WA. Association for Computational Linguis-
tics.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask r-cnn. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages
2980–2988.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional lstm-crf models for sequence tagging.
arXiv:1508.01991.

Hyunwoo Hwangbo, Yang Sok Kim, and Kyung Jin
Cha. 2018. Recommendation system development
for fashion retail e-commerce. Electronic Commerce
Research and Applications, 28:94–101.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Giannis Karamanolakis, Jun Ma, and Xin Luna Dong.
2020. TXtract: Taxonomy-aware knowledge extrac-
tion for thousands of product categories. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8489–8502, On-
line. Association for Computational Linguistics.

Jingye Li, Hao Fei, Jiang Liu, Shengqiong Wu, Meishan
Zhang, Chong Teng, Donghong Ji, and Fei Li. 2022.
Unified named entity recognition as word-word rela-
tion classification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
10965–10973.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020. A unified MRC
framework for named entity recognition. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5849–5859, On-
line. Association for Computational Linguistics.

Rongmei Lin, Xiang He, Jie Feng, Nasser Zalmout, Yan
Liang, Li Xiong, and Xin Luna Dong. 2021. Pam:
Understanding product images in cross product cate-
gory attribute extraction. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery

116

and Data Mining, page 3262–3270, New York, NY,
USA. Association for Computing Machinery.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Ad-
vances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang,
Wen Wang, and Weiming Lu. 2021. Locate and la-
bel: A two-stage identifier for nested named entity
recognition. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2782–2794, Online. Association for Computa-
tional Linguistics.

Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu,
and Yueting Zhuang. 2021. A sequence-to-set net-
work for nested named entity recognition. In Pro-
ceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, pages 3936–3942.
International Joint Conferences on Artificial Intelli-
gence Organization. Main Track.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai,
D. Sivakumar, Bin Shu, Zac Yu, and Jon Elsas. 2020.
Learning to extract attribute value from product via
question answering: A multi-task approach. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, page 47–55, New York, NY, USA. Association
for Computing Machinery.

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chun-
hua Shen, Baoshan Cheng, Hao Shen, and Huaxia
Xia. 2021. End-to-end video instance segmentation
with transformers. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
8737–8746.

Liqiang Xiao, Jun Ma, Xin Luna Dong, Pascual
Martínez-Gómez, Nasser Zalmout, Wei Chen, Tong
Zhao, Hao He, and Yaohui Jin. 2021. End-to-end
conversational search for online shopping with utter-
ance transfer. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Process-
ing, pages 3477–3486, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Huimin Xu, Wenting Wang, Xin Mao, Xinyu Jiang, and
Man Lan. 2019. Scaling up open tagging from tens
to thousands: Comprehension empowered attribute
value extraction from product title. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5214–5223, Florence,
Italy. Association for Computational Linguistics.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant,
Xiang Ren, and Xin Luna Dong. 2021. AdaTag:
Multi-attribute value extraction from product profiles
with adaptive decoding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4694–4705, Online. Association
for Computational Linguistics.

Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe
Zhou, and Zhoujun Li. 2017. Building task-oriented
dialogue systems for online shopping. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 31.

Nasser Zalmout, Chenwei Zhang, Xian Li, Yan Liang,
and Xin Luna Dong. 2021. All you need to know
to build a product knowledge graph. In Proceedings
of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD ’21, page
4090–4091, New York, NY, USA. Association for
Computing Machinery.

Zhuosheng Zhang, Hai Zhao, and Rui Wang.
2020. Machine reading comprehension: The role
of contextualized language models and beyond.
arXiv:2005.06249.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
value extraction from product profiles. In Proceed-
ings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
page 1049–1058, New York, NY, USA. Association
for Computing Machinery.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61, Online. Association for Computational
Linguistics.

117

A Reproducibility

Ask-and-Verify is implemented using the PyTorch
and transformers packages based on the uncased
BERT model. We use the transformers’ trainer
and default AdamW optimizer with the learning
rate setting to 3e−5 in all the experiments. Training
epoch and batch size vary for different datasets (see
Table 4). The experiments on AZ-15 and AE-33
takes about 18 hours to run on 4 NVIDIA TITAN
XP GPUs. The experiments on AE-48 and AE-
110E take less than six hours on single GPU.

dataset AE-48 AE-110E AZ-15 AZ-33

A
sk batch-size 48 48 48 96

epoch 30 30 5 30

Ve
ri

fy batch-size 128 128 128 128
epoch 100 30 10 10

Table 4: batch size and epoch used by Ask-and-Verify
on different experiments

The Ask-and-Verify framework has a handful of
hyper-parameters. The mentioned values are ap-
plicable for all the experiments unless specifically
indicated. The maximum number of sub-words
for a span candidate is set to 5. The verification
model considers at most 5 span candidates in both
training and inference stages. Both span candidate
generation and verification input a list of tokens
consisting of a text description, a single attribute of
interest, and special tokens. The length (i.e.number
of tokens) of the input sequence K is set to 512.
Shorter sentences are padded with a special token.
Longer sentences are truncated. In the verifica-
tion step, the dimension of the span length features
dF is set to 150 and the dropout rate is set to 0.2.
The inference threshold τ uses the default value of
binary classifier 0.5.

B Preprocessing and Postprocessing

Attribute value extraction is formalized as different
tasks by different methods in our experiments, in-
cluding machine reading comprehension (i.e., ques-
tion answering), sequence labeling, and span can-
didate generation and verification. There can be
multiple ways to conduct preprocessing and post-
processing in these tasks. For example, the labels
of MRC can be defined on word-level (before to-
kenization) or sub-word-level (after tokenization).
We tried to ask for the preprocessing code used for
the AVEQA (Wang et al., 2020) paper, but were

[“Stonyfield”, “Organic”, “Kids”, “Whole”, “Milk”, “Yogurt”]
Product Text Description:

Attribute: “Brand”
Ground Truth: “Stonyfield Organic”
Span Candidates: [“Stony”, “Stonyfield Organic”]
(1) + (2):

“Stony” => “Stonyfield”: (0, 0, 1); label: 0

Tokenized Input Sequence:
[“[CLS]”, “brand”, “[SEP]”, “stony”, “##field”, “organic”, … ,“[SEP]”]

(3):
“Stonyfield”: (3, 3, 1); label: 0

“Stonyfield Organic” => “Stonyfield Organic”: (0, 1, 2); label: 1

index: [0, 1, 2, 3, 4, 5]

index: [0, “br11 1, 2, 13, 4, 5, … , 110]

“Stonyfield Organic”: (3, 5, 2); label: 1

Figure 4: An example of processing span candidates.

unable to obtain it. Following previous sequence
labeling work (Zheng et al., 2018; Yan et al., 2021),
we first prepare tokens and associated labels in the
sequence labeling format for each experiment set-
ting. Then labels of other formats are transformed
from the sequence labeling format in the prepro-
cessing step. Output results are later transformed
back to sequence labeling format to conduct eval-
uation. Specifically, we required all the possible
extracted attribute values being a subset of contin-
uous full words within the input sequence X for
each method. In comparison, standard sub-word
tokenizer (e.g.BERT) can generate sub-words not
necessarily forming full words. For example, if
a word is called "swimglass" and sub-word tok-
enizer can generate "swim" only. We observe the
differences have impacts on the evaluation results
of different experiment settings.

C Span Candidate Process

In Ask-and-Verify, a span candidate m(s,e) is rep-
resented as a tuple (with start-index s, end-index
e, span-length ℓ = e − s). The span candidate
must consist of continuous context sub-words with
no more than the predefined maximum number
of sub-word tokens. Additionally, the span candi-
dates from the generation step are composed of sub-
words which do not necessarily form full words.
This setting may cause extra errors in final eval-
uation. Furthermore, the index s and e are not
the same as original span candidate’s positions be-
cause of sub-word tokenization and the attribute
injected in the input sequence. To overcome the in-
terface challenge, we present a processing pipeline
in the span candidate collection module to: (1) lo-
cate or transform span candidates to nearest tokens
forming in the full-word formats; (2) assign binary
classification labels with strict string matching be-
tween the processed span candidates and ground

118

Table 5: Models that address the attribute value extrac-
tion task and their features onM product attribute types.

of models Scales to
AE-110K

Negative
Words

OpenTag M ✓
SuOpenTag 1 ✓ ✓
AdaTag 2 ✓
AVEQA 1 ✓
Ask-and-Verify 1 ✓ ✓

truth (only in training phase); and (3) capture the
correct position of sub-word tokens corresponding
to the start token and end token. An example is
illustrated in Fig. 4.

D AE-110K dataset

We utilize the public version of AE-110K dataset.
However, the data split process, pre-processing,
post-processing and evaluation code are not pub-
lic released. We observed our experiment values
for AVEQA (74.6% F1) and SuOpenTag (60.7%
F1) are both lower than the values reported in the
AVEQA paper: AVEQA (85.01% F1) and SuOpen-
Tag (74.92% F1). This is most likely coming from
different data splits and pre-processing strategies.

E Contribution Matrix

In the attribute value extraction task, we argue that
there are three major dimensions to judge a frame-
work in the industry production environment: effi-
ciency, scaling ability, and performance. A good
framework should have few number of models, ca-
pable of scaling up to large number of attributes
while obtaining good performances as shown in
the Table 5. Compared to all the previous methods,
Ask-and-Verify has only one model for multiple
attributes, scaling up to thousands of attributes on
the public AE-110K dataset, and also carefully con-
sidering negative words resulting superior perfor-
mances on two real word datasets.

F Precision-Recall curve

We present the precision-recall curve of the Ask-
and-Verify model on the AZ-15 and AZ-33 settings
by changing the threshold values of the Verify step.
The performances of other baseline methods are
also included in the same figures. From the results
in Fig. 5, we can see that the precision and recall
keeps a high performance score in a wide range.
Compared to the performance of other baselines,
the precision and recall curve of Ask-and-Verify

0 0.2 0.4 0.6
0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

AZ-15

0 0.2 0.4 0.6

recall

AZ-33

Ask-and-Verify BiLSTM BERT OpenTag
SuOpenTag AdaTag AVEQA

0 0.2 0.4 0.6
0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

AZ-15

0 0.2 0.4 0.6

recall

AZ-33

Ask-and-Verify BiLSTM BERT OpenTag
SuOpenTag AdaTag AVEQA

0 0.2 0.4 0.6
0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

AZ-15

0 0.2 0.4 0.6

recall

AZ-33

Ask-and-Verify BiLSTM BERT OpenTag
SuOpenTag AdaTag AVEQA

Figure 5: precision and recall curves of Ask-and-Verify
on AZ-15 and AZ-33 settings. Ask-and-Verify has a
good performance and high flexibility. Both precision-
recall curves are above all the comparing methods.

0 5 10 15 20

0.2

0.4

0.6

0.8

1

number of span candidates

pe
rfo

rm
an

ce
AZ-15

0 5 10 15 20

number of span candidates

AZ-33

Ask-and-Verify Precision Ask-only Precision

Ask-and-Verify Recall Ask-only Recall

Ask-and-Verify F1 Ask-only F1

Figure 6: Ablation study on changing the number of
span candidates on AZ-15 and AZ-33 settings. With
number of span candidates increase, the ask-only pro-
vides spans with higher recall but lower precision. In
comparison, Ask-and-Verify model has a moderate in-
crease from 1 to 5 span candidates and keeps a stable
performance with 5 or more span candidates.

is always on the top right. Interestingly, the mar-
gin gets larger on the AZ-33 compared to AZ-15,
showing the better scalability of Ask-and-Verify.

G Effectiveness of Changing the Number
of Span Candidates

Span candidate plays a central role in the frame-
work by bridging Ask model and Verify model. In-
tuitively, increasing the number of span candidates
can potentially include extra positive span samples
but also bring more negative samples at the same
time. It is also interesting to investigate how the
trade offs impact the performances of overall archi-
tecture. Fig. 6 shows the metrics of Ask-only and

119

Ask-and-Verify models by generating or utilizing
the same number of span candidates. We first ana-
lyze the Ask-only performances from the dash lines.
When the number of span candidates increases, we
can see that the recall curve is constantly increas-
ing while precision and f1 curves keep decreasing.
Considering the top-20 span candidates, the recall
can be even larger than 75% while the precision
is only around 25%. As for the Ask-and-Verify
performance represented with solid lines, it shows
interesting patterns. With top-1 span candidates on
AZ-15 setting, it has slightly larger precision and
slightly lower recall compared to Ask-only outputs.
As the number of span candidates increases to 5,
both precision and recall increase. As the number
of span candidates keeps increasing, both precision
and recall drop slightly but still keep stable scores.

H Case Study

We present some examples to show how Ask-and-
Verify span candidate verification step can bet-
ter capture the correct attribute values from the
span candidates. These examples are illustrated in
Fig. 7 (A-D). The AVE task of (A) is to extract
the “skin tone” attribute from the tanning prod-
uct. The Ask model produces span candidates with
“darker”, “softening and tan extending DHA”, “all”
and “black”, sorted by the ranking scores of the Ask
model. The “darker” span candidate ranks first and
is the output of the Ask-only model. However, the
verification model chooses the third-ranked span
candidate “all” as the output, matching the ground
truth. The AVE task of example (B) is to extract the
“hair type” attribute from a Hair Conditioner prod-
uct. All span candidates are incorrect and Ask-and-
Verify is able to reject all the irrelevant attribute
values. Example (C) seeks to extract the same
“hair type” attribute from a gel product. Even if
the correct attribute values are not included within
the span candidates, Ask-and-Verify can still reject
each candidate and therefore reduce false positives.
Finally, in example (D) we seek to extract the “Age
Range” attribute from a pack of diapers. Ask-and-
Verify can correctly identify the “Baby” attribute
value in the second span candidate.

In summary, we find that the Ask-step predicts
frequent and contextually-coherent span candidates.
However, these span candidates carry many false
positives Introducing the verification-step into the
framework appears to substantially reduce the oc-
currence of false positives.

(A)
Bella Black 100x Bronzing Tanning Bed Lotion 13. 5 oz -
Safe for use on all Tanning Beds & Skin types.

Extreme Silicone for skin softening and tan extending
DHA Bronzers for Delayed and immediate results

New Factory Sealed 13. 5oz Bottle

Melanin booster for quicker, darker, longer lasting
results

What’s the skin tone?
Attribute Question:

About this item:

Title:

All
Ground Truth:

darker, softening and tan extending DHA, all, black
QA span candidates: Verification result:

All

(B)

GIBS Grooming Con Man Hair & Beard Pudding , 19 Fl Oz .

The product you didn ' t know you needed . Literally nothing
else like this !

Pudding gives you a vibrant look to your hair & a stronger
beard Ideal for short to mid - length hair

Attribute Questions:

About this item:

Title:

What’s the hair type?
Ground Truth:

short to mid

QA span candidates:
Literally, nothing, else, beard

Verification result:
(empty)

(C)

Kaleidoscope Miracle Edges 2 Fl Oz

Attribute Questions:

Title:

What’s the hair type?
Ground Truth:

(empty)

QA span candidates:
Edges, Kaleidoscope, Miracle, Edges 2 Fl Oz

Verification result:
(empty)

(D)

Diapers Size 7 , 44 Count - Pampers Swaddlers Disposable
Baby Diapers, Super Pack.

No . 1 choice of hospitals, Nurses and Parents (Hospitals :
based on hospital sales data vs Other hospital brands)

2x softer with up to 12 hours of protection

Attribute Questions:

About this item:

Title:

What’s the Age Range?
Ground Truth:

Baby

QA span candidates:
Diapers, Baby, Other hospital brands

Verification result:
Baby

Figure 7: Case study with four illustrative examples of
(A) tanning lotion, (B) hair conditioner, (C) hair gel, and
(D) diapers. We find that the Ask-step of the Ask-and-
Verify model is able to produce reasonable, but noisy
candidates each of the product attributes. However, the
Verify-step is able to filter-out spurious candidates and
reduce the rate of false positives.

120

Proceedings of EMNLP 2022 Industry Track, pages 121–130
December 9–11, 2020. ©2022 Association for Computational Linguistics

Consultation Checklists: Standardising the Human Evaluation
of Medical Note Generation

Aleksandar Savkov1, Francesco Moramarco1,2, Alex Papadopoulos Korfiatis1,
Mark Perera, Anya Belz2,3, Ehud Reiter2

1Babylon 2University of Aberdeen 3ADAPT Research Centre, Dublin City University
1 {sasho.savkov, francesco.moramarco, alex.papadopoulos}

@babylonhealth.co.uk
2 {r01fm20, ehud.reiter, anya.belz}@abdn.ac.uk

Abstract
Evaluating automatically generated text is gen-
erally hard due to the inherently subjective na-
ture of many aspects of the output quality. This
difficulty is compounded in automatic consul-
tation note generation by differing opinions be-
tween medical experts both about which pa-
tient statements should be included in gener-
ated notes and about their respective impor-
tance in arriving at a diagnosis. Previous real-
world evaluations of note-generation systems
saw substantial disagreement between expert
evaluators. In this paper we propose a protocol
that aims to increase objectivity by grounding
evaluations in Consultation Checklists, which
are created in a preliminary step and then used
as a common point of reference during qual-
ity assessment. We observed good levels of
inter-annotator agreement in a first evaluation
study using the protocol; further, using Consul-
tation Checklists produced in the study as refer-
ence for automatic metrics such as ROUGE or
BERTScore improves their correlation with hu-
man judgements compared to using the original
human note.

1 Introduction

While Electronic Health Record systems are a ne-
cessity in modern healthcare, they are burdening
primary care clinicians with significant clerical
work that distracts them from patient care and
increases their dissatisfaction and burnout rates
(Arndt et al., 2017). Since a significant part of
the required documentation involves note writing,
there has been a mounting interest in assisting
clinicians by automatically generating consultation
notes (Finley et al., 2018; Enarvi et al., 2020; Mole-
naar et al., 2020; Knoll et al., 2022).

A common approach involves passing the record-
ing of the consultation through a speech-to-text
system, then using a sequence-to-sequence model
trained on parallel transcript and note datasets to au-
tomatically generate the note (Krishna et al., 2020;

Transcript Note

Clinician: Hello there, it’s Dr
Smith, and how can I help you
this afternoon?

3/7 hx developed headache.
Constant, severity 8/10,
dull ache with associated
sharp pain, gradual onset.
Progressively worsening.
Has tried ibuprofen with
limited relief.
Feels nauseous, no vomit.
No neck pain/stiffness.
No speech disturbances.
No arm or leg weakness.
No head injury. No fevers.
No rashes.
PMH: Nil.
DH: Nil. NKDA
FH: mother and sister -
migraines
SH: lives with
housemates, works in IT
Socially smoke/EtOH.

Patient: Hi there. Well, I have
this like really crazy headache
that’s been going on for days.

Clinician: Ohh dear, OK. When,
when did it exactly start, this
headache?

Patient: Eh, around three days
ago, maybe.

Clinician: Three days ago, OK.
And whereabout in your head, is
this pain?

Patient: Um, it kind of feels
all over my head, but mainly
around my right eye. [...]

Table 1: Abridged version of a mock transcript and
human-written note from Papadopoulos Korfiatis et al.
(2022).

Joshi et al., 2020; Zhang et al., 2021; Moramarco
et al., 2022). An example of a transcript and as-
sociated consultation note, taken from the mock
consultation dataset released by Papadopoulos Ko-
rfiatis et al. (2022), can be seen in Figure 1.

Evaluating the output of such systems is chal-
lenging (Gehrmann et al., 2022), as it is often
the case in Natural Language Generation (NLG).
Widely used automatic metrics, such as ROUGE
(Lin, 2004) and BLEU (Papineni et al., 2002), of-
ten fail to capture relevant aspects of generated text
(Reiter and Belz, 2009), and human evaluation, the
best practice in NLG, is not only expensive and
hard to reproduce (Belz et al., 2021) but also highly
subjective (Howcroft et al., 2020; van der Lee et al.,
2021; Gehrmann et al., 2022). Even in the field
of Note Generation where evaluators tend to be
medical experts rather than crowd-sourced work-
ers, inter-annotator agreement is low, as there is no
explicit ground truth and the annotators have dif-

121

fering opinions on the importance of each patient
statement and whether it should be included in a
consultation note (Moramarco et al., 2022).

In this work, we propose an evaluation protocol
that uses Consultation Checklists (CC), itemised
reference of all facts discussed during doctor-
patient consultations. We report good agreement
between clinicians building CCs from the same
consultation, which indicates good consistency of
the reference creation process. Since Consultation
Checklists act as an approximation of the ground
truth, they reduce evaluator subjectivity, which is
reflected in the high inter-annotator agreement ob-
served in our first study. We also show that cor-
relation with human judgements increases when
using CCs instead of the original clinician note as
the reference for automatic evaluation metrics.

2 Related Work

There are a number of different approaches to quan-
titative human evaluation in NLG.

Rating or Likert scales work well with few crite-
ria, but lack explanatory power and fail to capture
text quality (Hastie and Belz, 2014). Adding more
criteria partly resolves this, but at the cost of the
evaluation task becoming more difficult and subjec-
tive (van der Lee et al., 2021). For example, Moen
et al. (2016) use a 30 item rating scale and report
that subjects found it too difficult to use.

Ranking methods, where evaluators are asked to
rank the output of text generation systems along
a specified criterion, are an alternative to rating
scales. Some studies have shown ranking to be
more reliable and consistent (van der Lee et al.,
2021); however, ranking methods do not scale well
when comparing multiple models.

Extrinsic measures, such as measuring post-edit
time of generated text (Moramarco et al., 2022)
provide a better estimate of how useful the gen-
erated text may be to the final user, but are often
expensive and subjective (Lai et al., 2022).

A common shortcoming among all methods de-
scribed above is that none of them provide granular
insights into the text generation systems’ errors and
how to address them. This is particularly important
when evaluating automatically generated medical
notes, where the factual accuracy and complete-
ness of the generated note are critical, as well as
identifying the situations where the system fails.

As with all summarisation tasks, Note Gen-
eration has an element of content selection that
is highly subjective. For this reason, evaluating
system-generated notes against a single reference
summary would penalise those notes that diverge
from the reference in their content selection. One
way to address this is by using multiple reference
summaries1, as for example in the Pyramid evalua-
tion protocol (Nenkova and Passonneau, 2004). In
a similar way to our proposed protocol, it splits the
evaluation into two independent steps: extracting
Summarization Content Units (SCUs) from multi-
ple references, then using these SCUs to evaluate
generated text.

Another way to address the subjectivity of us-
ing single references comes from reference-less
approaches that compare the generated text against
the source text directly rather than against reference
summaries. For example, Narayan et al. (2019)
once more split the evaluation in two steps: high-
lighting annotations in the source document, then
comparing each generated summary to these anno-
tations. In the domain of note generation, however,
the format of the source documents (consultation
transcripts) and the generated summaries (consul-
tation notes) is different enough (see Table 1) that
a highlighting-based approach would not work.

In the medical domain Moramarco et al. (2022)
give evaluators the consultation audio recording
instead of a reference, and ask them to identify the
missing and incorrect items in a generated note,
providing the required insight into how the gener-
ated text is wrong. However, even though the evalu-
ators are experts (medical practitioners), agreement
between them is very low. While this could be
improved by better evaluator training, we believe
that the evaluation task itself inherently inhibits
agreement. There is no standard way of recognis-
ing or mapping facts from the audio recording of
the consultation, which is the ‘ground truth’, to the
consultation note – generated or otherwise. This
makes it very hard to align multiple evaluators and
get consistent results.

3 Proposed Protocol

We propose Consultation Checklists — a protocol
using an expert-crafted ground truth approximation
to evaluate the quality of system-generated medical
notes with human raters. The evaluation protocol

1Multiple reference summaries are also used in some auto-
matic evaluation metrics, such as ROUGE (Lin, 2004).

122

Figure 1: Columns A and B are the abridged version of a Consultation Checklist. Column E is the automatically-
itemised system generated note. Columns C, F, and G are filled in by the evaluating clinician.

consists of a reference creation step followed by a
notes evaluation step (see Figure 2).

3.1 Creation

Given a dataset of consultation audio recordings,
one expert clinician is asked to listen to the audio
and produce a Consultation Checklist: a structured
list of all the facts discussed in the consultation.
Including both relevant and irrelevant content in
the Consultation Checklist is an important feature
of the protocol as it eliminates the subjectivity of
the content selection characteristic of other human-
made references as discussed in Section 2. The
list items are organised in sections for clarity and
split into sub-lists to allow for more granularity
(e.g. ‘headache for 1 day’ may be item ‘Headache’
with sub-item ‘1 day’); see Columns A and B in
Figure 1. Following Moramarco et al. (2022), each
item is marked for clinical importance as follows:

Critical: Items medico-legally required to docu-
ment the diagnosis and treatment decisions whose
absence or incorrectness may lead to wrong diag-
nosis and treatment later on, e.g. the symptom
‘cough’ in a suspected chest infection consultation.
This is the key information a note needs to capture
correctly in order to not mislead clinicians.

Non-critical: Items that should be documented in
a complete note but whose absence will not affect
future treatment or diagnosis, e.g. ‘who the patient
lives with’ in a consultation about chest infection.

Figure 2: Diagram of the Consultation Checklists eval-
uation protocol, including the creation stage and the
evaluation stage.

Irrelevant: Medically irrelevant information cov-
ered in the consultation, e.g. the pet of a patient
with a suspected chest infection just died. Includ-
ing such information in the Consultation Checklist
allows for a fair evaluation of the less relevant parts
of the generated notes.

Once the Consultation Checklists are created, they
can be stored and reused in any future evaluation,
thereby making the evaluation cost more scalable.

123

3.2 Evaluation
The created Consultation Checklists are then used
to evaluate one or more system-generated consul-
tation notes by one or more clinicians (or raters).
These clinicians are not required to listen to the
consultation recording but to only rely on the Con-
sultation Checklist as a common ground when eval-
uating the notes. Each note is automatically split
into sentences, then each sentence is split on punc-
tuation and conjunctions. The first item in each
sentence is considered top level and all others are
nested in a sub-list (column E in Figure 1). We
instruct evaluators to read the full sentence before
marking each item as they may be meaningless
in isolation. Once familiar with the Consultation
Checklist, clinicians are asked to carry out the fol-
lowing sequence of tasks (see Figure 2):

1. Mark each item in the note as correct or in-
correct using the Consultation Checklist as a
common reference (column F). Since there is no
explicit mapping, the clinicians need to scan the
Consultation Checklist to try and find support-
ing facts for each item in the note. For example,
in Figure 1 item 2 in the note (‘HPC2: Onset
of a headache for the past day’) is validated by
the first two items in the Consultation Checklist
(‘Headache’ and ’1 day’).

2. Mark each item in the generated note as crit-
ical, non-critical, or irrelevant (column G).
Even though some of these values could be
inferred from the importance of the Consul-
tation Checklist items, asking the evaluating
clinicians to fill them in covers two common
edge cases: (i) when one item in the note is
fact-checked against multiple items in the Con-
sultation Checklist, and (ii) when the item is
incorrect. In the case of incorrect items, the
importance is established by the effect the pres-
ence of the item may have to the clinician using
the generated note.

3. Mark each item in the Consultation Checklist as
present or absent in the generated note (column
C) where ‘present’ means that the item is fully
reported in the generated note.

We define Precision and Recall in the context of
Consultation Checklists as:

Precision =
| correct items |
| generated items | (1)

2History of Presenting Complaint

Recall =
| present items |
| checklist items | (2)

Both metrics can also be computed for critical
items only using the importance level assigned to
each item (see Figure 1, column B).

The items in each Consultation Checklist are
similar to the ‘Summarization Content Units’ de-
scribed by Nenkova and Passonneau (2004) and
can be re-used to evaluate any number of generated
notes. However, as our method does not use hu-
man notes as a reference, the items are extracted
from the consultation audio recording rather than
from multiple reference summaries. As the evalu-
ation stage involves no writing and only a limited
amount of interpretation, the set of clinicians carry-
ing it out could be of lower skill in contrast to the
Pyramid approach where the same amount of skill
is required for both stages.

4 Checklist Creation Pilot

Based on our initial assumption that a Consultation
Checklist should capture the salient points of a
consultation in an itemised format, we ran a pilot
study with 2 clinicians expert in AI annotation, A &
B. The goal of the study was to define best practices
for creating Consultation Checklists and to evaluate
the consistency of their creation between clinicians.

To investigate the agreement on Checklist cre-
ation, we asked the two clinicians to produce Con-
sultation Checklists for the same 10 mock consul-
tations taken from Papadopoulos Korfiatis et al.
(2022) (see Figure 3 in the Appendix for an exam-
ple). In order to quantify the alignment between
them, two of the authors checked whether the infor-
mation of each item in Clinician A’s version was
present in Clinician B’s version, and vice-versa.

Based on this analysis, we define the fact cover-
age for each Consultation Checklist as the number
of matching facts divided by the total number of
facts. We found that 93.7% of the items in Clini-
cian A’s Consultation Checklists were also present
in Clinician B’s, and 78.3% the other way around.
This may indicate that the two clinicians agree on
the basic facts to include but Clinician B tended
to add more details. Table 2 shows the values for
both annotators, the average, and the agreement
computed with Krippendorff’s Alpha on the binary
values for each statement (present or absent).

As part of the pilot, we refined the following
process for creating Consultation Checklists:

124

Annotator Checklist A (critical) Checklist B (critical)
Ann1 94.7% (95.7%) 79.8% (79.1%)
Ann2 92.8% (94.3%) 76.9% (78%)
Avg 93.7% (95%) 78.3% (78.6%)
Agreement 0.624 0.77

Table 2: Results of the alignment between Checklists.

1. Listen to the consultation audio and take notes
on every patient statement.

2. Format the notes into an itemised list, splitting
longer items to a more atomic level in sub-lists
and categorising them using sub-headers (e.g.
Presenting History, Past Medical History, Social
History, etc.). More examples of sub-headers
can be seen in Figure 3 (Appendix A).

3. Read through two system-generated notes to
sanity-check the Checklist with regards to item
granularity and coverage.

4. Mark each item in the Checklist as critical, non-
critical or irrelevant, as defined in Section 3.

5. Re-listen to the consultation audio to ensure no
important points have been missed.

The pilot study also highlighted the cognitive effort
of producing Consultation Checklists. On average,
a Consultation Checklist for a 10 minutes consul-
tation contains 56 items (excluding sub-headings)
and it takes the clinician around 1 hour to complete.
Also, the clinicians found that they would be able
to produce 4 Consultation Checklists in a row be-
fore requiring a break, and that the first one would
be the quickest to make (in as little as 30 minutes)
but the following ones would require progressively
more time.

5 Consultation Notes Evaluation

To test the utility of our protocol, we used a
single expert clinician to create 20 Consultation
Checklists from real-life patient consultations. We
then generated History and Examination notes for
each of the consultations using a BART (Lewis
et al., 2020) encoder-decoder transformer model3.
The model was pre-trained on the CNN/Dailymail
dataset (Hermann et al., 2015), and fine-tuned on a
proprietary dataset of 10,000 (speech-to-text gen-
erated) consultation transcripts and human-written
History and Examination notes.

3https://huggingface.co/facebook/bart-large-cnn

Finally, we hired three clinicians (two women
and one man from ethnically diverse backgrounds)
to evaluate the 20 generated notes by following the
evaluation process defined in Section 3. The train-
ing for this task involved: (i) task instructions (see
Appendix); (ii) two evaluation practice tasks; (iii)
an alignment session between the three clinicians,
where they investigated all cases of disagreement
on the practice tasks and came to a joint decision.

Present /
Absent

Correct /
Incorrect Imp.

data points 2258 904 904
Eval 1 - Eval 2 0.733 0.690 0.521
Eval 1 - Eval 3 0.729 0.627 0.387
Eval 2 - Eval 3 0.754 0.701 0.697
3-way Agreement 0.739 0.672 0.522

Table 3: Krippendorf’s Alpha inter-annotator agreement
scores for Present/Absent, Correct/Incorrect and Impor-
tance (Imp.).

CC
(pairwise)

CC
(count)

No CC
(count)

Pre / Abs 0.739 0.969 0.374*
Cor / Inc 0.672 0.726 0.541*

Table 4: Krippendorff’s Alpha scores for Present/Absent
and Correct/Incorrect values for an evaluation using
the Consultation Checklist as common ground and one
using the consultation recording. Asterisk(*) denotes
scores reported in Moramarco et al. (2022).

In addition, we wanted to quantify how often
evaluators misjudge the generated note because of
information that is omitted or misrepresented in
Consultation Checklists. In order to do this, we
asked each evaluator to listen to the audio of the
consultation and review whether a generated note
item was correct or incorrect.

125

Spearman correlation coefficient Pearson correlation coefficient
Metric Ref: Human note Ref: Checklist Ref: Human note Ref: Checklist
Rouge1 Fscore 0.493 0.553 0.509 0.553
Rouge2 Fscore 0.376 0.570 0.445 0.545
Rouge3 Fscore 0.348 0.424 0.408 0.442
RougeL Fscore 0.431 0.636 0.439 0.577
BERTScore 0.375 0.58 0.414 0.563
Levenshtein Distance† 0.003 0.284 0.064 0.224

Table 5: Spearman and Pearson correlation coefficients against the human judgements (an average of precision and
recall) from the study. † denotes lack of statistical significance (p ≥ 0.05).

6 Results & Discussion

6.1 Inter-Annotator Agreement

One of the advantages of the Consultation Check-
lists protocol is that it allows us to compute inter-
annotator agreement at a item level, as opposed to
just error counts as done in Moramarco et al. (2022).
Table 3 shows Krippendorff’s Alpha4 (Krippen-
dorff, 2018) scores for the raw pairwise values of
Present / Absent, Correct / Incorrect, and Impor-
tance. We use nominal agreement for the first two,
which have binary values and ordinal agreement for
Importance by converting irrelevant, non-critical,
and critical to integers.

In order to compare agreement to Moramarco
et al.’s reported results, we also compute interval
agreement on error counts. While the results are not
directly comparable since the dataset, sample size
and annotator count are different, the agreement
using the Consultation Checklists protocol is much
higher (Table 4). It is also a considerable increase
over the average NLG human evaluation agreement
of 0.3 to 0.5 reported by van der Lee et al. (2021).

6.2 Accuracy Trade-off

As mentioned in Section 3, when generating Con-
sultation Checklists, the goal is to capture as much
of the consultation as possible. However, it is diffi-
cult to capture all points while keeping the Consul-
tation Checklist concise, and some nuances which
might be needed to faithfully assess the generated
notes could be missed.

This trade-off between evaluation accuracy and
standardisation is a limitation of our approach that
we quantified by checking how often evaluators
changed their Correct / Incorrect answers after lis-
tening to the consultation audio (Table 6). On
average, this only happened for a small number

4https://pypi.org/project/krippendorff/

of generated note items (3.91%). Most changes
were from Incorrect to Correct, which highlights
the importance of making sure the Consultation
Checklists are a thorough representation of the con-
sultation. For example, consider a checklist that
includes the item “was feeling cold” but omits the
extra information of “had to wear more clothes than
usual”. In this case, a generated note item referring
to this extra information would be marked as In-
correct based on the Consultation Checklist, but as
Correct based on the audio.

Evaluator # Changes Correct ->
Incorrect

Incorrect ->
Correct

Eval 1 44 (4.87%) 9 35
Eval 2 39 (4.31%) 4 35
Eval 3 23 (2.54%) 3 20
Avg 35 (3.91%) 5.33 30

Table 6: Changes in Correct / Incorrect values after
listening to the consultation recording.

6.3 Time Efficiency

It took clinicians a self-reported 45 minutes on av-
erage to complete each evaluation task: 5 minutes
to understand the Consultation Checklist; 15 min-
utes for each of the two notes to evaluate correct vs.
incorrect and present vs. absent items, including
item importance; and 10 minutes to listen to the
consultation audio and modify any answers. For
context, Moramarco et al. (2022) report that their
evaluators need 1 hour to listen to a consultation
audio recording and evaluate 5 consultation notes.

6.4 Consultation Checklists for automatic
evaluation

Since Consultation Checklists aim to be a stan-
dardised reference, we expected that their textual

126

representation5 can also be used as a more objec-
tive reference than a single clinician’s consultation
note for automatic metrics. To test this, we com-
puted the scores for a few common NLG metrics:
ROUGE (Lin, 2004), BERTScore (Zhang et al.,
2019) and Levenshtein distance (Levenshtein et al.,
1966) using either clinician-written notes or Con-
sultation Checklists as the reference text. Table
5 reports both Spearman and Pearson correlation
coefficients against our human judgements (an av-
erage of precision and recall). For all three met-
rics, using Consultation Checklists as references
increases the correlation with human judgements,
with BERTScore showing the highest gain at 20.5%
Spearman’s correlation increase.

7 Conclusion

In this work we proposed a novel reference data
structure called Consultation Checklists (CC), and
a protocol that uses it for evaluating automatically
generated consultation notes. Our experiments
show good inter-annotator agreement levels when
parallel CCs are created from the same set of clini-
cal consultations. We also report good agreement
when the Consultation Checklist protocol is used by
different clinicians to evaluate the same consulta-
tions. Finally, we showed that expertly-crafted Con-
sultation Checklists are better than human-written
notes when used as references for automatic evalu-
ation.

While we have tested our protocol only on note
generation for primary care consultations, we pos-
tulate that consultation checklists would apply to a
number of medical domains, including secondary
care and

8 Ethical Considerations

We considered the ethical implications of this work
and found no concerns. The study participants are
senior clinicians with at least 5-10 years of experi-
ence consulting. They are paid £70 an hour, have
agreed to work for a maximum of 8 hours per week,
and able to withdraw at any time. The consultations
they are asked to evaluate are real doctor-patient
interactions. These are stored securely following
GDPR practices and the patients have consented
for their data to be used for research purposes.

Finally, while we hope it can be generalised and
applied to other domains, medical and otherwise,

5We get the textual representation of a Consultation Check-
list by concatenating all items in a single string.

the evaluation protocol we propose in this paper
has only been tested in the domain of primary care
UK consultations.

References
Brian G. Arndt, John W. Beasley, Michelle D. Watkin-

son, Jonathan L. Temte, Wen-Jan Tuan, Christine A.
Sinsky, and Valerie J. Gilchrist. 2017. Tethered to the
EHR: Primary Care Physician Workload Assessment
Using EHR Event Log Data and Time-Motion Obser-
vations. The Annals of Family Medicine, 15(5):419–
426. Publisher: The Annals of Family Medicine
Section: Original Research.

Anja Belz, Anastasia Shimorina, Shubham Agarwal,
and Ehud Reiter. 2021. The reprogen shared task
on reproducibility of human evaluations in nlg:
Overview and results. In Proceedings of the 14th
International Conference on Natural Language Gen-
eration, pages 249–258.

Seppo Enarvi, Marilisa Amoia, Miguel Del-Agua Teba,
Brian Delaney, Frank Diehl, Stefan Hahn, Kristina
Harris, Liam McGrath, Yue Pan, Joel Pinto, Luca Ru-
bini, Miguel Ruiz, Gagandeep Singh, Fabian Stem-
mer, Weiyi Sun, Paul Vozila, Thomas Lin, and Ran-
jani Ramamurthy. 2020. Generating Medical Reports
from Patient-Doctor Conversations Using Sequence-
to-Sequence Models. In Proceedings of the First
Workshop on Natural Language Processing for Medi-
cal Conversations, pages 22–30, Online. Association
for Computational Linguistics.

Gregory Finley, Erik Edwards, Amanda Robinson,
Michael Brenndoerfer, Najmeh Sadoughi, James
Fone, Nico Axtmann, Mark Miller, and David
Suendermann-Oeft. 2018. An automated medical
scribe for documenting clinical encounters. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Demonstrations, pages 11–15, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sel-
lam. 2022. Repairing the cracked foundation: A sur-
vey of obstacles in evaluation practices for generated
text. arXiv preprint arXiv:2202.06935.

Helen Hastie and Anja Belz. 2014. A comparative eval-
uation methodology for nlg in interactive systems. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 4004–4011.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28.

David M Howcroft, Anja Belz, Miruna-Adriana Clinciu,
Dimitra Gkatzia, Sadid A Hasan, Saad Mahamood,

127

Simon Mille, Emiel van Miltenburg, Sashank San-
thanam, and Verena Rieser. 2020. Twenty years of
confusion in human evaluation: Nlg needs evaluation
sheets and standardised definitions. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 169–182.

Anirudh Joshi, Namit Katariya, Xavier Amatriain, and
Anitha Kannan. 2020. Dr. summarize: Global sum-
marization of medical dialogue by exploiting local
structures. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 3755–3763.

Tom Knoll, Francesco Moramarco, Alex Papadopou-
los Korfiatis, Rachel Young, Claudia Ruffini, Mark
Perera, Christian Perstl, Ehud Reiter, Anya Belz, and
Aleksandar Savkov. 2022. User-driven research of
medical note generation software. In press: NAACL.

Klaus Krippendorff. 2018. Content analysis: An intro-
duction to its methodology. Sage publications.

Kundan Krishna, Sopan Khosla, Jeffrey P Bigham, and
Zachary C Lipton. 2020. Generating soap notes
from doctor-patient conversations. arXiv preprint
arXiv:2005.01795.

Vivian Lai, Alison Smith-Renner, Ke Zhang, Ruijia
Cheng, Wenjuan Zhang, Joel Tetreault, and Alejan-
dro Jaimes. 2022. An exploration of post-editing ef-
fectiveness in text summarization. In press: NAACL.

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Hans Moen, Laura-Maria Peltonen, Juho Heimonen,
Antti Airola, Tapio Pahikkala, Tapio Salakoski, and
Sanna Salanterä. 2016. Comparison of automatic
summarisation methods for clinical free text notes.
Artificial Intelligence in Medicine, 67:25 – 37.

Sabine Molenaar, Lientje Maas, Verónica Burriel, Fabi-
ano Dalpiaz, and Sjaak Brinkkemper. 2020. Medical
Dialogue Summarization for Automated Reporting
in Healthcare. Advanced Information Systems Engi-
neering Workshops, 382:76–88.

Francesco Moramarco, Alex Papadopoulos Korfiatis,
Mark Perera, Damir Juric, Jack Flann, Ehud Reiter,
Anja Belz, and Aleksandar Savkov. 2022. Human

evaluation and correlation with automatic metrics in
consultation note generation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5739–5754.

Shashi Narayan, Andreas Vlachos, et al. 2019. Highres:
Highlight-based reference-less evaluation of summa-
rization. arXiv preprint arXiv:1906.01361.

Ani Nenkova and Rebecca J Passonneau. 2004. Evaluat-
ing content selection in summarization: The pyramid
method. In Proceedings of the human language tech-
nology conference of the north american chapter of
the association for computational linguistics: Hlt-
naacl 2004, pages 145–152.

Alex Papadopoulos Korfiatis, Francesco Moramarco,
Radmila Sarac, and Aleksandar Savkov. 2022. Pri-
mock57: A dataset of primary care mock consulta-
tions. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 588–598.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Ehud Reiter and Anja Belz. 2009. An investigation into
the validity of some metrics for automatically evalu-
ating natural language generation systems. Computa-
tional Linguistics, 35(4):529–558.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
and Emiel Krahmer. 2021. Human evaluation of
automatically generated text: Current trends and best
practice guidelines. Computer Speech Language,
67:101151.

Longxiang Zhang, Renato Negrinho, Arindam Ghosh,
Vasudevan Jagannathan, Hamid Reza Hassanzadeh,
Thomas Schaaf, and Matthew R Gormley. 2021.
Leveraging pretrained models for automatic summa-
rization of doctor-patient conversations. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3693–3712.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

128

A Appendix

A.1 Evaluating Clinicians instructions
1. Read through the checklist (on the left side of the spreadsheet) and familiarise yourself with the

consultation.

2. Based on the information in the checklist, go through the generated note (on the right side of the
spreadsheet) and mark each statement of the note as correct (y) / incorrect (n). [Column G]

3. Mark each statement in the note as either critical, non critical or irrelevant: [Column I]

(a) Critical: The statement is of critical medical importance. If it’s a correct statement, the note
would not be medically complete without the statement present; if it’s an incorrect statement, its
presence in a consultation note would be a medical risk (for example, could lead to a different
diagnosis).

(b) Non-critical: The statement is of medical value, but its presence or absence in the note is not
critical medically. For example, some doctors might include a non-critical statement in their
note but other doctors could skip it.

(c) Irrelevant: The statement is irrelevant; if correct, most doctors would not include it in the note
(for example, “Patient reports they prefer to wear green clothes”). If incorrect, its presence in
the note is inconsequential.

4. Go through each statement in the checklist and mark it as either present or absent in the generated
note. [Column C]

5. Repeat this for each generated note

6. Now, listen to the actual consultation recording. Take notes if you need to, especially if something
you hear is different from what you understood through reading the consultation checklist.

7. Finally, fill the “Correct / Incorrect (after audio)” field, essentially amending your earlier answers
after listening to the consultation audio. This will allow us to evaluate how much information and
context is lost by using the consultation checklist instead of the actual recording. [Columns D,I]

129

A.1.1 Checklists comparison

Figure 3: Example of two checklists for the same mock consultation.

130

Proceedings of EMNLP 2022 Industry Track, pages 131–137
December 9–11, 2020. ©2022 Association for Computational Linguistics

Towards Need-Based Spoken Language Understanding Model Updates:
What Have We Learned?

Quynh Do∗
Amazon Alexa AI

doquynh@amazon.de

Judith Gaspers∗
Amazon Alexa AI

gaspers@amazon.de

Daniil Sorokin∗
Amazon Alexa AI

dsorokin@amazon.de

Patrick Lehnen
Amazon Alexa AI

plehnen@amazon.de

Abstract

In productionized machine learning systems,
online model performance is known to deteri-
orate over time when there is a distributional
drift between offline training and online ap-
plication data. As a remedy, models are typ-
ically retrained at fixed time intervals, imply-
ing high computational and manual costs. This
work aims at decreasing such costs in produc-
tionized, large-scale Spoken Language Under-
standing systems. In particular, we develop a
need-based re-training strategy guided by an
efficient drift detector and discuss the arising
challenges including system complexity, over-
lapping model releases, observation limitation
and the absence of annotated resources at run-
time. We present empirical results on histori-
cal data and confirm the utility of our design
decisions via an online A/B experiment.

1 Introduction

Traditionally, a Spoken Language Understanding
(SLU) system like Google Assistant, Siri or Alexa,
is a cascade of an Automatic Speech Recogni-
tion (ASR) component converting speech into text
followed by a Natural Language Understanding
(NLU) component that interprets the meaning of
the text through domain classification (DC), intent
classification (IC) and slot filling (SF). Once de-
ployed to customers, the machine learning (ML)
models implemented for DC, IC and SF may expe-
rience distributional drifts between offline training
and online application data over time which leads to
serious performance degrades. This is known as a
model drift phenomenon. In most real-world cases,
model drift can be avoided by retraining the ML
models with regular cadence. However, this strat-
egy often entails a significant amount of human,
computational and environmental costs in each re-
lease cycle, especially for large systems. Hence,
it should be optimized with an intelligent decision

*These authors contributed equally to this work

making mechanism that is able to automatically
predict if a particular model needs to be updated or
can be left in place as is for another release cycle.

Given a deployed ML model, drift detection is
a task to identify model drifts when the model is
applied on a new data set, and therefore can be used
to guide decisions on when to retrain the model.
However, academic work in this field often makes
simplifying assumptions that render the problem
more manageable but do not hold in the industrial
practice, e.g., that there is exactly one model that
needs to be kept or updated, and that it is possible
to create non-overlapping detection and reference
data windows, which are aligned with a model
release cycle. This makes productionizing drift
detection nontrivial.

This paper describes our effort to develop a drift
detector to produce decisions whether to update
the NLU models in the next release cycle for a
productionized SLU system. First, we generally
discuss the challenges that may arise when apply-
ing drift detection on a large-scale SLU production
system: i) the complexity when the SLU system
is supporting multiple domains with several ML
models and architectures; ii) the possible overlap-
ping model releases in production; iii) the limited
number of observations for each individual ML
model; iv) the absence of annotated SLU data at
runtime. Moreover, for each challenge, we con-
sider the necessary system design decisions and
possible solutions that are needed to apply drift de-
tection in practice. Finally, we describe our offline
and online experiments on real-world SLU data to
confirm the utility of our design decisions.

2 Background on drift detection

Lu et al. (2018) classifies automatic drift detection
methods into three categories: i) methods which
rely on labeled data to monitor error rates, ii) meth-
ods which use distance measures to estimate the
similarity between distributions of previous and

131

current (unlabeled) data, and iii) methods that make
use of multiple hypothesis tests to detect concept
change. While the first category requires manually
labeled data representing the current data distribu-
tion, the last two categories require at least two
data windows: a reference window containing the
instances that belong to the same distribution that
was used to train the most recent model, and a de-
tection window which represents the current data
distribution. The detection window can consist of
unlabeled data only (Gemaque et al., 2020). Thus,
the methods of the second and the third categories
can be both classified as unsupervised drift detec-
tion methods (Elsahar and Gallé, 2019; Qin et al.,
2021). For example, Koh (2016) compare the ref-
erence and detection data windows by Hoeffding
bound. The difference in terms of sample means
between both the windows is compared to a value
ε defined by the Hoeffding bound. Then, a drift is
signaled when this difference is greater than ε. An
obvious advantage of unsupervised methods is that
they do not require labeled data. However, it can
be difficult to interpret the drift signal due to the
lack of an indication on how much the performance
drop is.

While drift detection is considered as one of
the stages in modern AI workflows, corresponding
work in NLP and SLU has been limited. Recently,
Do et al. (2021) have proposed a regression model
to detect temporal performance drop in SLU. The
authors evaluated their approach via small-scale
simulated release cycles for a joint IC+SF model
in isolation, thus abstracting away from the com-
plexity of a production SLU system. They built
one regression model per domain, assuming the
availability of a large number of previous model
releases for training the regression model, which is
unrealistic for many real-world scenarios.

3 NLU drift detection definition

In this work, we consider multi-domain NLU as
one part of a more complex production SLU sys-
tem, leaving out ASR and other components. The
main NLU tasks include DC, IC and SF, and there
are different ways to approach them. Usually,
pipelined systems are constructed with DC being
applied as the first step to determine the domain for
a given utterance. Subsequently, the utterance is
fed into the corresponding domain-specific IC+SF
model that jointly detects the intent and extracts
semantic slots from the utterance. For instance, an

ASR transcribed utterance “play Hello by Adele”
can be parsed into {domain: Music, intent: “play”,
song name (slot): “Hello”, artist (slot): “Adele”}.

To simplify the problem, we focus on building
a drift detector to decide on IC+SF model updates.
In our experiments, we make an assumption that
DC models also face distributional drifts when their
corresponding IC+SF models do, since their data
ages are usually similar.

Given a trained IC+SF model M, a data ref-
erence window, Wref , containing the testing in-
stances considered belonging to the data distribu-
tion at the timeM was developed offline, and a de-
tection window,Wdetect, which contains the testing
utterances representing the data distribution when
the model update decision needs to be made. Then,
we define thatM has suffered a drift if the error
rate on the detection window exceeds the error rate
on the reference window by a certain threshold:

∆E = E(M,Wdetect)− E(M,Wref) > α (1)

where α is a drift threshold, and E is a pre-defined
function to compute an error rate. In this work, E
is a semantic error rate and defined as follows:

SemER =
#(slot+intent errors)

#slots in reference + 1
(2)

A drift detector should be able to identify auto-
matically whetherM has suffered a drift or not.

4 NLU system and challenges

In this section, we describe the considered NLU
system, and discuss the potential challenges arising
when applying drift detection on such a system.

4.1 NLU architecture and Challenge 1 -
system complexity

In this work, we consider a real-world SLU sys-
tem with multiple domains and each of them has
a single IC+SF model. Each IC+SF model is a
combination of a pre-trained encoder and two sepa-
rate decoders for the target tasks. Depending on its
domain, the IC+SF model may receive gazetteers
as an additional token-level input in parallel to the
BERT-encoder embeddings, resulting in two vari-
ants of IC+SF model architectures. In the rest of
this paper, we refer the gazetteer-based and non-
gazetteer architectures as Gaz and Non-Gaz, re-
spectively.

Traditionally, academic work on drift detection
often assumes that there is exactly one model that

132

needs to be kept or updated to make the problem
more manageable. Unfortunately, it does not hold
in industrial practice. As in our case, a real-world
SLU system is often multi-domain. Each domain
IC+SF model can be updated individually and there
is no requirement for these models to have the same
architecture. Thus, we face the first challenge: A
separate drift detector should be developed per do-
main and architecture or a single detector needs to
cover all supported domains.

4.2 NLU lifecycle and Challenge 2 -
overlapping model releases

Figure 1 presents a simplified SLU model produc-
tion lifecycle, where each release has three main
phases: Build, Deploy and Production. Let us ap-
ply the drift detection definition (Sec. 3) to the
lifecycle of a single IC+SF domain model. For
IC+SF modelMDN that was released for a domain
D during a release cycle N , the task is to predict
if there is a drift afterMDN was deployed (that is
if ∆E > α) using the data windowWref collected
during the model build and the window Wdetect

collected after the deployment. Consequently, the
drift detection decision indicates ifMDN needs to
be updated during the release cycle N + 1. Thus,
the detection window Wdetect must be available
before the build phase of release N + 1, but after
the deployment of N .

However, in practice, the build, deploy and pro-
duction phases of subsequent releases may overlap
significantly which make defining disjoint Wref

andWdetect for releases N and N + 1 our second
challenge. For a complex and large-scale produc-
tion system, the required time for each phase is con-
siderable and the human and computational cost of
each phase are usually distributed between teams.
Once the model development team is finished with
the latest model build, it is handed over for deploy-
ment and the team can start the work on the next
release. Therefore, overlaps tend to occur between
the cycles of two consecutive releases. In Figure 1,
the Build phase of release N + 1 starts before the
model of releaseN goes to production. In this case,
the data from the detection window for the current
release after its deployment is not yet available at
the start of the build phase for the next release.
Thus,Wdetect is not available for application of a
drift detector.

To overcome this challenge, we take that the
online data collected after the development of a

Figure 1: A simplified NLU lifecycle with three phases
per release: Build, Deploy and Production. The phases
overlap for subsequent releases and the development
for the next release N + 1 may start as soon as the
previous release is deployed.

model for a release N during its build phase is
indicative of the drift that might occur after the
model go to the deployment stage.

Since the build phase of a model is sufficiently
long so that new data can be collected that didn’t
go into the model development, we will use this
data forWdetect. We adjust the definitions for the
reference and detection windows as follows:

• Reference window: De-identified online data
that was manually transcribed and labeled
with domain, intent and slots and that was
collected before the build phase of a release.
This data is used for testing during the build
phase. We use the annotated domain labels to
split that data between IC+SF domain models.
The gold domain labels are used to decide the
data flow for each domain’s IC+SF model.

• Detection window: De-identified online data
that was automatically transcribed and auto-
matically classified into domains with the cur-
rent release DC model and that was collected
after the Build phase of N has started, but
before the Build phase of N + 1. We use the
automatically generated domain labels to filter
the data for a specific domain.

These definitions result in a time gap between
the defined detection window and the real online
window, during which the IC+SF model will be
deployed. We evaluate this decision in an online
experiment in Section 7.

4.3 Challenge 3 - limited observations
The drift detection problem is domain dependent
and different domains may experience different
drift patterns. For example, the Video domain
should observe large drifts more often than the
Calendar domain. That would call for learning a
separate drift detection function for each domain in
production. To learn a drift detector, we need to col-
lect historical data of model releases and reference
and detection windows. And to learn a domain

133

specific drift detector the same data needs to be col-
lected per domain, leading to the third challenge:

For a real-world SLU system, only a very limited
amount of available historical data points may be
available for training per domain. The availability
of historical data for learning a drift detector is
restricted by the age of the production system and
privacy guidelines for data and model storage. This
implies that a per-domain drift detector needs to be
learned on a handful of data points, which is often
infeasible.

To avoid this issue, we build a single drift detec-
tor for all IC+SF domain models of the same type
(Gaz or Non-Gaz). We evaluate a single unified
drift detection function for multiple domains in the
next sections in offline experiments.

4.4 Challenge 4 - the absence of annotated
data at runtime

The amount of unlabeled live data flowing into a
production SLU system may be on the order of a
million of utterances per day. However, due to the
associated costs, only a comparatively small subset
gets manually transcribed and annotated, leading
to the forth challenge: Manually labeled data for
any given period in time may be limited, with po-
tentially only few – or in rare cases even none
– manually labeled utterances being available for
low-frequency domains in certain time periods. In
addition, since manually transcribing and annotat-
ing data takes time, this data may not be available
at runtime to construct the detection window. As
mentioned in the previous section, we use the ASR
and DC components to obtain textual per-domain
data. The amount of data instances per window can
be huge in production, which makes data process-
ing a challenge and may slow down the process. As
drift detection should enable quick decisions, we
downsample the data amounts to a reasonable size.
Since we cannot rely on manually annotated data
to extract the features for the detection window, we
focus on methods that require only unlabeled data
at runtime.

5 Supervised drift detection from
unsupervised signals

5.1 Learning problem definition

Motivated by recent work, which successfully pre-
dicts a performance drop using unsupervised sig-
nals (Elsahar and Gallé, 2019; Do et al., 2021),
we aim to learn a function to map from a set of

measures estimating the similarity between the ref-
erence and detection data windows to a binary label
indicating whether a significant performance drop
occurs or not. By predicting directly if a model
drift and performance drop occurred instead of es-
timating a magnitude of the drift, we simplify the
learning problem, so that it can be approached with
only a limited amount of training data points avail-
able. At the same time, the drift detector predic-
tions remain clearly interpretable for the user.

More formally, we learn a function predicting
if there is a performance drop when the test data
window for modelM trained onWtrain is moved
fromWref toWdetect:

F (f1(x), f2(x), . . .)→ {Drop,No-Drop} (3)

where f1, f2, . . . are features, x is a data instance
containing the information about M, Wtrain,
Wref and Wdetect. The No-Drop label indicates
that ∆SemER ≤ α while the Drop label indicates
that ∆SemER > α.

5.2 Features and learning algorithms
For f1, f2, . . . in Equation 3, we explore 17 fea-
tures representing the differences between Wref

andWdetect as follows:
Discriminative classifier: Disriminative classi-

fiers have been used for drift detection (Elsahar
and Gallé, 2019; Do et al., 2021). WhenWref and
Wdetect are separable by a discriminative classifier,
it is likely that there is a drift. In this work, we
apply a Logistic Regression classifier trained on
the pre-trained BERT sentence representations as
the discriminative classifier, and its 5-fold cross-
validation accuracy on each of the unions of (Wref ,
Wdetect), (Wref ,Wtrain), and (Wdetect,Wtrain) is
used as the drift signal.

Distributional distance: For each of the win-
dow pairs (Wref , Wdetect), (Wref , Wtrain), and
(Wdetect,Wtrain), we compute Euclidean and Co-
sine distances between two mean pre-trained BERT
sentence representations.

Prediction confidence differences: Confidence
scores have been proven to be effective in detecting
drifts (Do et al., 2021). We use the SF and IC
prediction confidence scores separately. For each
case, we compute the difference between the mean
confidence scores that model M obtains on the
two data windows. We also compute the average,
minimum and maximum difference between the
per tag mean IC confidence scores on the two data
windowsWref andWdetect.

134

Kullback-Leibler (KL) divergence at token
level: KL divergence measures the difference be-
tween two probability distributions and is also
known as the relative entropy. It has been used as
an effective measure in drift detection (Lindstrom
et al., 2011). We consider each data window as a
large text and compute the KL divergence between
the token distributions of the two texts represent-
ing each of the data window pairs among Wref ,
Wdetect andWtrain .

Targeting fast drift detection, to learn F we ap-
ply classical binary classification algorithms like
multinomial logistic regression, k-nearest neigh-
bors, or decision tree. In some cases, it may be
desired to reduce the amount of features, e.g., when
we have a limited amount of training data points.
Therefore, we include feature selection methods
into our experiments.

6 Offline experiment

We evaluate the proposed feature set and the se-
lected learning algorithms for Gaz and Non-Gaz
architectures using historic data.

6.1 Experimental set-up

In offline experiments, we build two drift detection
models for two different IC+SF architectures: i)
Gaz: Including domains which use gazetteers as
an extra input. ii) Non-Gaz: Including domains
which do not use gazetteers. Following previous
work (Do et al., 2021), we define the baseline and
metrics as follows. Given N NLU models and
historic performance data, a subset S ⊆ N are the
models that have no drift (that is, on historic data
windows ∆SemER ≤ α) and thus belong to the
class No-Drop. Using the learned drift detector F ,
P ⊆ N models are predicted as low-risk of being
drifted, i.e. predicted as No-Drop. To evaluate
F , we compute precision: P = |S∩P |

|P | and recall:

R = |S∩P |
|S| for the No-Drop class.

We consider precision for the class No-Drop as
the most important metric in a user-facing setting.
This class includes the models that can be left in
place for the next release, thus having the poten-
tial to negatively impact customer satisfaction. If a
drifted model is left in place, then there is the risk
of increased friction for the customers. Recall does
not have an impact on customer satisfaction, but
on training costs, which we consider less important
than customer satisfaction. We aim to reduce train-
ing costs without negatively impacting customers.

α Bp Model Feat. R P

0.0 45.0

MLR ALL 55.6 56.8
Knn ALL 46.7 55.3
DT ALL 57.8 56.5
MLR SUB 55.6 75.8
Knn SUB 68.9 70.5
DT SUB 57.8 68.4

0.002 46.0

MLR ALL 56.5 61.9
Knn ALL 43.5 54.1
DT ALL 60.9 56.0
MLR SUB 58.7 75.0
Knn SUB 56.5 59.1
DT SUB 58.7 61.4

0.01 59.0

MLR ALL 72.9 75.4
Knn ALL 66.1 70.9
DT ALL 66.1 72.2
MLR SUB 84.7 73.5
Knn SUB 72.9 72.9
DT SUB 83.1 75.4

Table 1: Evaluation results for non-Gaz drift detection
model on class No-Drop. Bp, R, P are the precision
baseline, Recall and Precision, respectively.

Therefore, our goal is to build a drift detector which
reaches a high precision and an acceptable recall
for the drift class No-Drop. We compare our mod-
els against a baseline (Bp) obtained by selecting
instances for the No-Drop class randomly.

We collected past NLU model release data points
resulting in 134 instances for Gaz and 100 instances
for Non-Gaz model architectures. For each release
model instance, the utterances representingWref

andWdetect windows are sampled. All data used
in our experiments was de-identified.

We compare the performance of three binary
classifiers to learn F : multinomial logistic regres-
sion (MLR), k-nearest neighbors (Knn) and deci-
sion tree (DT). The classifiers are built using all
features (ALL) defined in Section 5.1 or a selected
subset of features (SUB) obtained with correlation-
based feature selection (Hall, 1999). For training
classifiers and feature selection, we use scikit-learn
(Pedregosa et al., 2011). We report 10-fold cross-
validation performance for the No-Drop class with
three different drift thresholds α, used to assign the
gold labels based on the historic data: 0.0, 0.02,
and 0.1.

6.2 Results

Table 1 and Table 2 show the offline evaluation
results for the two model architecture types. In
most cases, drift detection models outperform the
precision baseline. MLR reaches the best precision
of 75.8% to select models to be left in place for the
next release on non-gazetteer data instances (α =

135

α Bp Model Feat. R P

0.0 47.01

MLR ALL 50.8 58.2
Knn ALL 38.1 45.3
DT ALL 68.3 59.7
MLR SUB 49.2 72.1
Knn SUB 50.8 59.3
DT SUB 69.8 65.7

0.002 50.75

MLR ALL 63.2 58.1
Knn ALL 42.6 49.2
DT ALL 50.0 65.4
MLR SUB 76.5 64.2
Knn SUB 60.3 64.1
DT SUB 61.8 64.6

0.01 61.19

MLR ALL 78.0 61.0
Knn ALL 48.8 58.0
DT ALL 85.4 71.4
MLR SUB 93.9 65.8
Knn SUB 59.8 68.1
DT SUB 80.5 72.5

Table 2: Evaluation results for Gaz drift detection
model on class No-Drop. Bp, R, P are the precision
baseline, Recall and Precision, respectively.

0.0) compared to the random baseline precision of
45.0%. There seems be no benefit to use a higher
threshold to create the gold Drop/No-Drop labels
to train a drift detector, so we set α to 0.0 in the
online experiment.

Feature selection is often useful in boosting the
drift detection performance. From 17 features, de-
pending on the dataset, 1 to 4 features were nor-
mally selected. The following features were se-
lected at least once: The Euclidean distance be-
tween the mean pre-trained BERT sentence rep-
resentations, the difference between two mean
SF confidence scores, the difference between two
mean IC confidence scores, and discriminative clas-
sification score. Among these feature, the differ-
ence between the two mean SF confidence scores
seems to be the most important feature, as it is
selected in all cases.

7 Online A/B experiment

We conducted an online A/B experiment to eval-
uate our drift detection approach in the context
of a complex large-scale production SLU system
(i.e., including several components in addition to
NLU, such as ASR). We picked a point in time
in which all domain NLU models were scheduled
for re-training and re-deployment. The production
system with all models updated served as the A
model. Our B system comprises exactly the same
components, except that we re-trained only a sub-
set of the domain NLU models, according to the
decision of our drift detector. We acknowledge that

it would be desirable to include another baseline
model with none of the domain models updated
into the comparison. Yet, simply leaving all do-
main models in place as they are increases the risk
of model drift, thus potentially increasing friction
for the customers being exposed to such a system.

We generated the features for each domain
IC+SF model and applied our MLR drift detection
model with feature selection and drift threshold
α = 0.0 (see Section 6). A low threshold for the
SemER drop also reduces the risk of negatively
impacting customers. If the predicted class was No-
Drop, the IC+SF model for the domain was left in
place, otherwise it was retrained on current traffic.
Roughly half of the domain models were re-trained
vs left in place. In this work, we assumed that a
DC model faces model drift simultaneously with
its corresponding IC+SF model as their data ages
were usually similar. Therefore, the DC model
also followed the same retraining decision as its
corresponding IC+SF unless there was a special
circumstance like the appearance of a new domain
in the next release. Both, the A and the B systems
were deployed, and we ran our experiment over 10
days.

By applying a need-based approach to domain
model re-training in the B system, our main goal is
to decrease costs for model re-training compared
to the A system (in which all domain models are
re-trained), while keeping model performance the
same. To measure the impact on performance, we
have monitored online friction metrics that reflect
the overall end-to-end system performance (as op-
posed to the NLU only component in the offline
experiments). Unlike in the offline experiments, all
metrics were computed automatically and concern
overall system performance rather than NLU in iso-
lation. We compared the A and B system’s perfor-
mances using the selected online metrics, indicat-
ing that there was no significant increase recorded
in any of the error metrics for the B system com-
pared to the A system. Thus, we conclude that even
though we left around half of the domain models
in place according to the decision of our drift detec-
tor, there was no negative effect on overall system
performance. Due to re-training fewer models, we
observed a decrease in costs for expensive GPU
instances of 46.4% for training IC+SF models (no
GPUs were used for detector building).

136

8 Conclusions

We presented an efficient drift detection approach
to guide IC+SF model retraining decisions, which
requires only unlabeled data during the application
phase in a multi-domain large-scale SLU system.
We discussed the challenges that we faced while
developing the approach and the corresponding
design decisions to address them. We presented
experimental results using historical data and we
evaluated our approach via both offline and online
experiments with a large-scale SLU system, con-
firming the utility of our design decisions.

Acknowledgements

We would like to thank Yannick Versley, Caglar
Tirkaz, Tobias Falke and Debjit Paul for valuable
feedback on this work.

References
Quynh Do, Judith Gaspers, Daniil Sorokin, and Patrick

Lehnen. 2021. Predicting temporal performance
drop of deployed production spoken language under-
standing models. In Proc. Interspeech.

Hady Elsahar and Matthias Gallé. 2019. To annotate
or not? predicting performance drop under domain
shift. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2163–2173, Hong Kong, China. Association for
Computational Linguistics.

Rosana Noronha Gemaque, Albert Franca Josua Costa,
Rafael Giusti, and Eulanda Miranda dos Santos.
2020. An overview of unsupervised drift detection
methods. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 10.

Mark A. Hall. 1999. Correlation-based Feature Selec-
tion for Machine Learning. Ph.D. thesis.

Yun Sing Koh. 2016. Cd-tds: Change detection in
transactional data streams for frequent pattern min-
ing. 2016 International Joint Conference on Neural
Networks (IJCNN), pages 1554–1561.

Patrick Lindstrom, Brian Mac Namee, and Sarah Jane
Delany. 2011. Drift detection using uncertainty
distribution divergence. In 2011 IEEE 11th Inter-
national Conference on Data Mining Workshops,
pages 604–608.

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and
Guangquan Zhang. 2018. Learning under concept
drift: A review. IEEE Transactions on Knowledge
and Data Engineering, page 1–1.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Libo Qin, Tianbao Xie, Wanxiang Che, and Ting Liu.
2021. A survey on spoken language understanding:
Recent advances and new frontiers.

137

Proceedings of EMNLP 2022 Industry Track, pages 138–147
December 9–11, 2020. ©2022 Association for Computational Linguistics

Knowledge Distillation Transfer Sets and their Impact on Downstream
NLU Tasks

Charith Peris ∗

Amazon, Cambridge, USA
perisc@amazon.com

Lizhen Tan
Amazon, Cambridge, USA

ltn@amazon.com

Thomas Gueudre
Amazon, Turin, Italy
tgueudre@amazon.it

Turan Gojayev
Amazon, Berlin, Germany
tgojayev@amazon.de

Pan Wei
Amazon, Cambridge, USA

panwei@amazon.com

Gokmen Oz
Amazon, Cambridge, USA
ogokmen@amazon.com

Abstract

Teacher-student knowledge distillation is a
popular technique for compressing today’s pre-
vailing large language models into manage-
able sizes that fit low-latency downstream ap-
plications. Both the teacher and the choice
of transfer set used for distillation are cru-
cial ingredients in creating a high quality stu-
dent. Yet, the generic corpora used to pre-
train the teacher and the corpora associated
with the downstream target domain are often
significantly different, which raises a natural
question: should the student be distilled over
the generic corpora, so as to learn from high-
quality teacher predictions, or over the down-
stream task corpora to align with finetuning?
Our study investigates this trade-off using Do-
main Classification (DC) and Intent Classifi-
cation/Named Entity Recognition (ICNER) as
downstream tasks. We distill several multilin-
gual students from a larger multilingual LM
with varying proportions of generic and task-
specific datasets, and report their performance
after finetuning on DC and ICNER. We ob-
serve significant improvements across tasks
and test sets when only task-specific corpora
is used. We also report on how the impact of
adding task-specific data to the transfer set cor-
relates with the similarity between generic and
task-specific data. Our results clearly indicate
that, while distillation from a generic LM bene-
fits downstream tasks, students learn better us-
ing target domain data even if it comes at the
price of noisier teacher predictions. In other
words, target domain data still trumps teacher
knowledge.

1 Introduction

In the recent past, large language models (LMs;
BERT-Large, Devlin et al., 2019; GPT-2, Radford
et al., 2019; T5, Raffel et al., 2020) pretrained
in a self-supervised manner on massive web cor-
pora have consistently shown state-of-the-art per-

∗* Corresponding Author

formance for multiple natural language understand-
ing (NLU) tasks. Therefore, it is no surprise that
these models are of much interest for virtual as-
sistants such as Amazon Alexa, Apple Siri, and
Google Assistant. Some studies have shown that
these large models trained on generic corpora seem
to be more robust to data distributional shifts, rely-
ing less on domain-specific training data to perform
well (Brown et al., 2020).

Since large models cannot be directly used for
low-latency applications on devices with limited
computing capacity, many techniques have been
developed to compress them in size. Knowledge
distillation (referred to simply as distillation here-
after; Hinton et al., 2015), has shown promising
results, especially at the high compression rates
typically required in NLU (Jiao et al., 2020, Soltan
et al., 2021). In this paradigm, lightweight models
referred to as students, are trained to mimic the
teacher predictions over a transfer set (Hinton et al.,
2015). When the pretraining and task-specific cor-
pora have significantly different distributions, as is
often the case, the choice of data for the transfer set
can be ambiguous. On the one hand, using pretrain-
ing corpora in the transfer set ensures high quality
teacher predictions that are important for effective
distillation. On the other, using the downstream
corpora, although it might cause noisier teacher
predictions, ensures the adaptation of the student
to its final use case.

To investigate this trade-off, we present a set
of experiments where we distill several multilin-
gual students from a large multilingual teacher LM
trained using a masked language modeling (MLM)
objective. We perform the distillations using trans-
fer sets that comprise of generic and task-specific
data in varying proportions. The students are then
finetuned and evaluated on two downstream NLU
tasks of interest: a Domain Classification (DC)
task and a joint Intent Classification/Named Entity
Recognition (ICNER) task. For each input utter-

138

ance DC predicts the relevant domain (Books, Mu-
sic, Shopping, etc.), IC identifies the user’s intent
(find a book, play a song, buy an item, etc.) and
NER extracts the entities in the utterance (dates,
names, locations, etc.).

Our contributions: (1) We confirm for our
setup that model preparation via distillation from a
larger LM is more beneficial for downstream task
performance when compared to encoder training
from scratch. (2) We show that the largest improve-
ments are seen when using only the downstream
task’s unlabelled data during the distillation pro-
cess. Even though teacher predictions are expected
to be noisy over data that is different from pre-
training corpora, our results clearly indicate that
students learn best in this setting. (3) Because our
ICNER corpora is divided per domain, we are also
able to provide a finer-grained analysis of the im-
pact of corpora similarity on downstream results.
(4) Finally, we also confirm that further adaptation
of the teacher to the target-domain data, results in
improved student performance across tasks.

2 Relevant Work

Building models with inference speeds that are
suitable for production systems is of utmost impor-
tance in the industrial setting. Therefore techniques
for model compression (quantization Gong et al.,
2014; pruning redundant connections Han et al.,
2015) have been active research topics, with dis-
tillation (Romero et al., 2015, Hinton et al., 2015,
Jiao et al., 2020) showing much promise for NLU
models (Sanh et al., 2019). Distillation processes
and their data have evolved over the past few years.
In the teacher-student framework proposed by Hin-
ton et al. (2015), they recommend using the original
pretraining set as the transfer set. Jiao et al. (2020)
proposes a more complex two-stage process with
generic and task-specific distillation phases, each
with their own data sets, designed to augment the
performance of the final model towards the task at
hand.

Our work is focused on exploring how varying
proportions of generic and task-specific data within
the transfer set of a single distillation process im-
pacts downstream NLU performance. Since our
scope does not include optimizing the distillation
process itself, we use a cheaper alternative to Jiao
et al. (2020), via a single-stage distillation setup
to conduct our exploration (see Section A.3 for
details).

Gururangan et al. (2020) showed for the pretrain-
ing phase, that continued domain-adaptive and task-
adaptive pretraining using the downstream task’s
unlabeled data can improve performance. Our work
presents similar results for the distillation phase.

3 Data

3.1 Distillation data

For distillation, we created the transfer sets by mix-
ing two types of data with different distributions:

• Generic data: This data set consisted of
Wikipedia and Common Crawl processed by
an in-house tokenizer.

• Task-specific data: This in-house data set
comprised of de-identified utterances from a
voice assistant across domains of interest. The
text data collected here was the output of an
Automatic Speech Recognition (ASR) model,
which assigned a confidence score per utter-
ance. In order to retain only the highest quality
data, we filtered it by an ASR score threshold.
The data was de-identified, prior to use.

Our distilled students were trained as part of
a larger program resulting in a collection of nine
European and Indic languages being used for dis-
tillation. The language list and counts are shown in
Table A1.

We built transfer sets that had three ratios of
generic to task-specific data: (1) generic-only (base-
line) (2) 7:3 generic to task-specific, to mimic the
commonly encountered low task-specific data set-
ting and (3) task-specific-only. To have a com-
parable distribution of data from each language,
we created samples of equal size for each language
using either generic only, task-specific only or com-
bining both the generic and the task-specific data
based on the targeted ratio. Upsampling is used
when a source data set contains a number less than
the required number. The 7:3 ratio consisted of
Wikipedia, Common Crawl and task-specific data
upsampled to counts of 35M, 35M and 30M respec-
tively, for each language. For two languages Indian-
English and Marathi, where some data constituents
were unobtainable, available data was used in pro-
portion (see Table A1). Once the data sets were
created with the targeted mixing ratio, they were
split into train and validation sets with a ratio of
0.995:0.005 and then used in the transfer sets.

139

3.2 Data for downstream tasks

We evaluated our multilingual distilled students in
the context of two commonly utilized NLU tasks
of interest, DC and ICNER. We limit the scope
of our evaluation to just four languages German,
French, Italian and Spanish. Our finetuning data
consisted of 26 domains (see fractional utterance
counts in Table A4) across each language, with
each domain comprising a set of intents (similar
to Su et al. 2018). As with the task-specific data
used in our transfer sets, this data has also been
de-identified prior to use.

It is important to note that, although collected
over non-overlapping time intervals (and thus con-
sisting of different absolute counts), the finetuning
data was from the same distribution as the task-
specific data described in Section 3.1. We sam-
pled the finetuning data so as to have equal counts
across each domain in all four languages (see Ap-
pendix A.1 for the evaluation data set sampling
strategy). We then combined all languages and
split the data into proportions of 80:10:10 for train,
validation and test, respectively.

For the DC task, we classified the input utter-
ances into one of the 26 domains. Therefore, the
DC model is trained using the combined training
data from the four languages across all domains
and is tested on language-specific test data sets. For
the joint ICNER task, we classified each utterance
within a domain to its corresponding intent and
also recognized its named-entities. For this task,
we trained a model per domain, using the com-
bined training data from the four languages for that
domain. The model was evaluated using language-
specific test data sets for that domain. We present
results on two types of test sets. test comprises of
the full test set obtained from the split above while
tail_test is the subset of data points within test that
have a frequency of occurrence less than or equal to
3. The relative data proportions used can be found
in the Appendix (Table A4).

4 Models

Figure 1 shows a schematic of the models and ex-
perimental setup described in this section.

4.1 Distilled students and baselines

We use a 170 million parameter teacher (170M-
teacher) that was prepared using Wikipedia, Com-
mon Crawl and mC4 (Xue et al., 2021) data.
See Appendix A.2 for details on teacher prepa-

ration. From this teacher, we distilled a total of
five students. We use our three transfer sets de-
scribed in Section 3.1, i.e. (1) generic-only (2) 7:3
(generic:task-specific) and (3) task-specific-only,
to distill the first three students. We refer to the stu-
dent distilled using (1) as the generic-distilled base-
line. The latter two are referred to as experiment-
7:3 and experiment-task-specific-only; the naming
aligned with the transfer set used. In addition to
these, we create another two students where the
teacher was finetuned using an MLM task before
being used for distillation. In each case, the teacher
was finetuned for 15625 steps using the same trans-
fer set that was used for the subsequent distilla-
tion. We refer to these two students as experiment-
7:3-FT and experiment-task-specific-only-FT. The
teacher finetuning was run on a p3.16X instance
with an average run time of approximately 45 hours.
We collectively refer to all distilled students that
are not a baseline as experimental students.

The architectures of our teacher and students are
as follows. As in the paper by Devlin et al. (2019),
we denote the number of layers (i.e., Transformer
blocks) as L, the hidden size as H, and the number
of self-attention heads as A.

• 170M-teacher: L=16, H=1024, A=16,
feed-forward/filter size=3072, total parame-
ters=170M

• Students: L=4, H=768, A=16, feed-
forward/filter size=1200, total parame-
ters=17M

For a description of the distillation setup, see
Appendix A.3. Distillation was run for 1 epoch
with each student extracted at 78125 steps, which
equates to approximately 80M data points seen.
We ran distillation on a single p3.16X instance
utilizing 8 GPUs with batch-size of 2 and gradient
accumulation at every 64 steps. The average run
time was approximately 195 hours. Note that each
distillation run used only a sample of the full data
set mentioned in Section 3.1, determined by the
step count. However, since the data is sampled
uniformly, the language ratios and the generic:task-
specific data ratio stays consistent during training.

In addition to the distilled baseline, we also cre-
ated another baseline (without distillation) that was
directly pretrained using the generic-only data. The
architecture and size of this baseline was identical
to that of the distilled students and it is referred
to, here onward, as the directly-pretrained baseline.

140

Figure 1: A schematic of the models that we present in this paper and how they are evaluated.

We used this baseline to observe performance dif-
ferences between models that use students distilled
from the large teacher and those that use a directly
pretrained encoder.

4.2 DC and ICNER models

In order to evaluate the impact of the different trans-
fer sets on our targeted downstream NLU tasks, we
finetune the experimental students and baselines
toward DC and ICNER tasks. Each DC model
consisted of an encoder, embedding and positional
embedding obtained from an experimental student
or baseline combined with a decoder consisting of
an MLP classifier for domain prediction with layer
size 128, dropout set at 0.1 and ReLU activation.
Each ICNER model consisted of the same encoder,
embedding and positional embeddings used for the
corresponding DC model with an MLP classifier
output layer for the IC task with layer size 128,
dropout set at 0.1 and ReLU activation and a CRF
sequence-labeler output layer for the NER task with
layer size 256, dropout set at 0.1 and GeLU activa-
tion. We trained each DC model for 1 epoch and
each ICNER model for 4 epochs.

Evaluation: The DC performance was evalu-
ated using the F1 score while the ICNER perfor-
mance was evaluated using the Semantic Error Rate
(SemER; Su et al., 2018, Varada et al., 2020, Peris
et al., 2020). The definition of SemER is

SemER =
(D + I + S)

(C +D + S)
(1)

where D (deletion), I (insertion), S (substitution),
C (correct slots). The Intent was treated as a slot in
this metric, and the Intent error was considered as
a substitution.

5 Experiments

5.1 Experimental results

In this section, note that model refers a model that
uses an experimental student or baseline encoder
and has been finetuned towards a DC or ICNER
task. Experimental models comprise of experimen-
tal student encoders and baseline models comprise
of baseline encoders (see lower panel in Figure 1).

We used data across 26 domains to train and eval-
uate the DC and ICNER models (see Section 3.2).
We compare the performance of each experimental
model against the two baseline models (see Sec-
tion 4.1). The improvements we quote in this sec-
tion are ∆F1 (↑) (higher is better) and ∆SemER
(↓) (lower is better; we use the weighted average
of SemER across all domains) for DC and ICNER
respectively, measured against the baseline models
(Tables 1, 2, A2, A3).

The results in Tables 1 and 2 show that in general
for both DC and ICNER tasks, all experimental
students distilled with a mix of task-specific data

141

Distilled encoder Baseline Test Set German (%) French (%) Italian (%) Spanish (%)

experiment-7:3 generic distilled test 0.19± 0.02 0.19± 0.04 0.21± 0.03 0.24± 0.03
experiment-task-specific-only generic distilled test 0.51± 0.01 0.54± 0.03 0.47± 0.03 0.55± 0.03
experiment-7:3-FT generic distilled test 0.31± 0.03 0.3± 0.02 0.31± 0.03 0.35± 0.03
experiment-task-specific-only-FT generic distilled test 0.69± 0.02 0.79± 0.03 0.7± 0.03 0.79± 0.02

experiment-7:3 generic distilled tail test 0.34± 0.05 0.31± 0.09 0.42± 0.05 0.42± 0.05
experiment-task-specific-only generic distilled tail test 1.0± 0.03 1.05± 0.04 1.02± 0.06 1.07± 0.06
experiment-7:3-FT generic distilled tail test 0.56± 0.06 0.61± 0.04 0.65± 0.06 0.6± 0.07
experiment-task-specific-only-FT generic distilled tail test 1.38± 0.05 1.51± 0.06 1.48± 0.06 1.51± 0.05

Table 1: Relative DC ∆F1 (↑), measured against the generic distilled baseline for each experimental student
(positive is better). We run three iterations of each experimental student and show the percentage change of their
means and its standard deviation.

Distilled encoder Baseline Test Set German (%) French (%) Italian (%) Spanish (%)

experiment-7:3 generic distilled test −0.55± 0.09 −0.31± 0.07 −0.17± 0.12 −0.17± 0.09
experiment-task-specific-only generic distilled test −1.25± 0.07 −0.81± 0.07 −0.56± 0.08 -1.3± 0.09
experiment-7:3-FT generic distilled test −0.83± 0.09 −0.49± 0.13 −0.06± 0.14 −0.58± 0.09
experiment-task-specific-only-FT generic distilled test -1.57± 0.15 -1.18± 0.07 -0.6± 0.25 −1.26± 0.04

experiment-7:3 generic distilled tail test −0.49± 0.07 −0.31± 0.06 −0.16± 0.09 −0.23± 0.11
experiment-task-specific-only generic distilled tail test −1.19± 0.05 −0.86± 0.07 −0.67± 0.08 -1.44± 0.09
experiment-7:3-FT generic distilled tail test −0.83± 0.09 −0.52± 0.1 −0.13± 0.09 −0.65± 0.11
experiment-task-specific-only-FT generic distilled tail test -1.53± 0.12 -1.26± 0.07 -0.79± 0.14 −1.32± 0.06

Table 2: Relative ICNER ∆SemER (↓), measured against the generic distilled baseline for each experimental stu-
dent (negative is better). As with DC, we run three iterations of the experimental students and show the percentage
change of their means and its standard deviation. In calculating these percentage changes, we use the weighted
average of the SemER for each domain in a given language, as the overall SemER in that language.

(30% or 100%) perform significantly better than the
generic distilled baseline. We further observe that
models with encoders distilled with task-specific-
only data yields the best overall performance which
means that, in our setup, students learn better using
target-domain data even if it comes at the price of
noisier teacher predictions.

For all four languages across DC and for three
out of four languages across ICNER, the best per-
formances are observed with student models that
were distilled from the finetuned teacher. This
confirms that the additional step of finetuning the
teacher and adapting it to the task-specific dataset,
results in students that perform better on the in-
tended downstream tasks.

We also note that across all task, language
and test set combinations, the improvements seen
against the directly pretrained baseline (see Ta-
bles A2 and A3) are larger than the improvements
seen against the generic distilled baseline. For our
setup, this shows that distilling from a large LM
can benefit downstream tasks as opposed to using
a similar-sized encoder pretrained from scratch; in
other words our findings suggest that it is better to
distill than to directly pretrain. However, we note

that additional resources (in our case approximately
45 p3.16X hours) are required for this.

The tail_test, comprising of low frequency utter-
ances within test, provides insights on the ability
of the model to generalize to rarely seen utterances.
For DC, we note that the improvements on tail_test
are significantly larger (∼2X) than the improve-
ments seen on the test set. This indicates that pre-
diction on examples that appear infrequently in the
task-specific data benefits more, from task-specific
data being included in the distillation process.

5.2 Dataset similarity and its correlation to
SemER improvements for ICNER

To further explore our conclusion that students
learn better using target-domain data we explore
how ∆SemER for each domain, correlate to the
similarity of the domain’s data to the generic data.
Note that, here, negative ∆SemER represents im-
provements of the experimental students against
the generic distilled baseline while the opposite is
true for positive ∆SemER. SemER results are from
the test set.

The hypothesis here is that the more distant a
domain is from the generic data, the more value we
should see in adding this domain’s data to the distil-

142

Figure 2: Cosine similarity of tf-idf vectors vs. change in SemER for each domain for languages German, French,
Italian and Spanish. We represent only domains with >1000 test utterances to avoid noise added by smaller domains
which have higher variability.

lation transfer set, even though teacher predictions
might be noisy. We note here that we calculate co-
sine similarity on a very rudimentary corpus-level
embedding (i.e. tf-idf) for measuring similarity,
as explained below. We leave more sophisticated
similarity measurements for later work.

To calculate similarity between domain-level
and generic data, we use the following process.
For each domain in each of the four languages,
we sample up to 100K utterances. All available
data is considered for domains with <100K utter-
ances. We then sample 50K utterances each, from
the Wikipedia and Common Crawl data sets of the
corresponding language. We create a tf-idf vector
for each sampled dataset and calculate their co-
sine similarity as a measure of dataset similarity.
In order to account for any variability associated
with the sampling, we repeat the process 3 times
and obtain the mean similarity and the standard
deviation per domain. We plot dataset similarity
against ∆SemER (a single point represents one do-
main and a panel represents a language as seen in
Figure 2). We neglect domains with lower data
and thus high variability and fit a line to show how
∆SemER correlates to dataset similarity.

In Figure 2, we observe that a majority of cases
(all except German) show a positive correlation.
A positive correlation shows that domains that
are less similar to Wikipedia/CommonCrawl have
relatively larger improvement in SemER, when

compared to domains that are more similar to
Wikipedia/CommonCrawl. This suggests that the
addition of task-specific data in the distillation
transfer sets helps domains that are less similar
to the generic data available for distillation, even
though teacher predictions on them will be more
noisy.

It should be noted that the domains of the one
exception, German, display low similarity values
across the board unlike the other languages which
show a wider spread (German has 65% of domains
< 0.2 whereas French, Italian and Spanish has 23%,
31% and 12% < 0.2 respectively). The lack of
domains with high similarity might explain the
failure for a stable correlation to be observed in
German.

6 Conclusions

We have explored how the use of transfer sets that
comprise different ratios of generic to task-specific
data, impacts downstream results. Encoders dis-
tilled from a large teacher perform better than ones
trained from scratch, showing that it is better to
distill than to directly pretrain, when possible. The
largest benefits are shown when using the down-
stream task’s unlabelled data to distill, a student
despite noisier teacher predictions. We also find
that domains with data that are dissimilar to the
generic data show greater performance improve-
ments against a generic baseline when using a stu-

143

dent distilled using task-specific data. These im-
provements further confirm that distilling using
target-domain data can be helpful for downstream
performance. Finally, we show that if costs permit,
teacher-adaptation to the target-domain data via
finetuning can result in improved student perfor-
mance across downstream tasks.

Acknowledgements

We thank Karolina Owczarzak, Fabian Triefenbach
and Rahul Gupta for their support of this work and
Wael Hamza for helpful discussions on the topics
covered.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jack G. M. FitzGerald, Shankar Ananthakrishnan, Kon-
stantine Arkoudas, David Bernardi, Abhishek Bha-
gia, Claudio Delli Bovi, Jin Cao, Rakesh Chada,
Amit Chauhan, Luoxin Chen, Anurag Dwarakanath,
Satyam Dwivedi, Turan Gojayev, Karthik Gopalakr-
ishnan, Thomas Gueudré, Dilek Z. Hakkani-Tür,
Wael Hamza, Jonathan Hueser, Kevin Martin Jose,
Haidar Khan, Bei Liu, Jianhua Lu, A. Manzotti,
Pradeep Natarajan, Karolina Owczarzak, Gokmen
Oz, Enrico Palumbo, Charith S. Peris, Chandan
Prakash, Stephen Rawls, Andrew Rosenbaum, An-
jali Shenoy, Saleh Soltan, Mukund Sridhar, Lizhen
Tan, Fabian Triefenbach, Pang Wei, Haiyang Yu,
Shuai Zheng, Gokhan Tur, and Premkumar Natara-
jan. 2022. Alexa teacher model: Pretraining
and distilling multi-billion-parameter encoders for
natural language understanding systems. ArXiv,
abs/2206.07808.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir
Bourdev. 2014. Compressing deep convolutional
networks using vector quantization.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural networks.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li,
Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2019. Improved knowledge distilla-
tion via teacher assistant.

Charith Peris, Gokmen Oz, Khadige Abboud, Venkata
sai Varada Varada, Prashan Wanigasekara, and
Haidar Khan. 2020. Using multiple ASR hypothe-
ses to boost i18n NLU performance. In Proceed-
ings of the 17th International Conference on Natural
Language Processing (ICON), pages 30–39, Indian
Institute of Technology Patna, Patna, India. NLP As-
sociation of India (NLPAI).

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Saleh Soltan, Haidar Khan, and Wael Hamza. 2021.
Limitations of knowledge distillation for zero-shot
transfer learning. In Proceedings of the Second
Workshop on Simple and Efficient Natural Language
Processing, pages 22–31, Virtual. Association for
Computational Linguistics.

144

Chengwei Su, Rahul Gupta, Shankar Ananthakrish-
nan, and Spyridon Matsoukas. 2018. A re-ranker
scheme for integrating large scale nlu models.
2018 IEEE Spoken Language Technology Workshop
(SLT), pages 670–676.

Venkat Varada, Charith Peris, Yangsook Park, and
Christopher Dipersio. 2020. Using alternate repre-
sentations of text for natural language understanding.
In Proceedings of the 2nd Workshop on Natural Lan-
guage Processing for Conversational AI, pages 1–
10, Online. Association for Computational Linguis-
tics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498, Online. Association for Computa-
tional Linguistics.

A Appendix

A.1 Data for finetuning DC and ICNER
models

For finetuning our distilled students for DC and IC-
NER, we use labelled datasets from four languages
(German, French, Italian and Spanish) each con-
sisting the same 26 domains (Table A4) and each
domain supporting a set of intents (similar to Su
et al. 2018). In order to have equivalent utterance
counts across domains for each language, we used
a stratified sampling strategy as follows. First, we
ranked each language per domain based on its utter-
ance counts. In order to prevent heavy upsampling
or downsampling in any single language when cre-
ating equivalently sampled domains, we picked
the language that had the second highest utterance
counts in most domains (in our case French). We
sampled utterances from the domains of other lan-
guages to match the domain-level utterance fre-
quency distribution of French (i.e. random sample
utterances with replacement, from each domain in
each language until that number matches the ut-
terance count of the respective domain in French).
We then combined all languages and split the data
into proportions of 80:10:10 for train, validation
and test, respectively.

A.2 Teacher model
The 170M-teacher used in this work was, itself, a
student that was distilled from a larger model with 2
billion parameters (see Stage 1 pretraining section
in FitzGerald et al. (2022) for details on creation

and architecture). The 170M-teacher was distilled
using a transfer set that comprised Wikipedia, Com-
mon Crawl and mC4 (Xue et al., 2021) data. Pick-
ing this intermediate-sized model helped us avoid
potential performance degradation due to having
too large a size gap between teacher and student
(Mirzadeh et al., 2019).

A.3 Student setup
For our single-stage distillation setup, we skip
the generic distillation phase done by Jiao et al.
(2020) and use a non-finetuned teacher model to
directly distill our students. In addition, as a sanity
check, we also explore distillation from a finetuned
teacher model to verify improved student perfor-
mance across tasks. Similar to the hidden states
based distillation followed in TinyBERT (Jiao et al.,
2020), we mapped the student layers [0, 1, 2, 3]
to learn from the teachers hidden layers [3, 7, 11,
15], respectively. We ignored attention based distil-
lation (Jiao et al., 2020) since we did not observe
significant improvements by using it. We also pe-
nalized the soft cross-entropy loss between the stu-
dent network’s logits against the teacher’s logits, to
fit the students predictions to those of the teacher
as in Hinton et al. (2015). We use a MLM objective
for the distillation process. In our loss, we weight
the hidden layer matching, the logit matching and
the MLM at a 1:2:1 ratio.

145

Common Crawl
(cc100) Wikipedia Task Specific Data

German 12,045,483 2,731,840 32,081,929
French 13,323,804 2,174,531 21,278,820
Italian 7,131,950 1,278,255 31,013,233
Spanish 11,690,123 1,825,389 22,054,722
English 14,330,660 6,360,372 19,576,081
English (IN) - - 27,406,082
Hindi 2,538,698 94,891 21,315,004
Tamil 919,763 66,190 -
Tamil (MT) - - 18,414,285
Telugu 378,812 77,179 -
Telugu (MT) - - 18,895,352
Marathi 263,189 21,705 -

Table A1: Raw data counts used for transfer set creation. Counts represent the number of sentences for generic
data and the number of de-identified utterances for task-specific data. For task-specific data for Telugu and Tamil,
machine-translated (MT) data from Indian English was used. Only task-specific data was used for Indian English
because Wikipedia and Common Crawl data were not available. Only generic data was used for Marathi as the
translation system used for this work did not support the language as yet.

Distilled encoder Baseline Test Set German (%) French (%) Italian (%) Spanish (%)

experiment-7:3 directly pretrained test 0.31± 0.02 0.19± 0.04 0.32± 0.01 0.28± 0.03
experiment-task-specific-only directly pretrained test 0.63± 0.01 0.54± 0.02 0.57± 0.01 0.6± 0.02
experiment-7:3-FT directly pretrained test 0.42± 0.03 0.3± 0.02 0.41± 0.01 0.4± 0.02
experiment-task-specific-only-FT directly pretrained test 0.81± 0.01 0.79± 0.03 0.8± 0.02 0.83± 0.01

experiment-7:3 directly pretrained tail test 0.57± 0.04 0.36± 0.08 0.57± 0.01 0.45± 0.03
experiment-task-specific-only directly pretrained tail test 1.23± 0.02 1.1± 0.02 1.17± 0.03 1.09± 0.04
experiment-7:3-FT directly pretrained tail test 0.78± 0.05 0.66± 0.02 0.8± 0.03 0.62± 0.06
experiment-task-specific-only-FT directly pretrained tail test 1.61± 0.04 1.56± 0.05 1.63± 0.03 1.54± 0.04

Table A2: Relative DC ∆F1 (↑) measured against the directly pretrained baseline for each experimental student
(positive is better)

Distilled encoder Baseline Test Set German (%) French (%) Italian (%) Spanish (%)

experiment-7:3 directly pretrained test −1.73± 0.06 −0.7± 0.04 −2.3± 0.11 −2.44± 0.09
experiment-task-specific-only directly pretrained test −2.42± 0.02 −1.19± 0.04 −2.69± 0.07 -3.54± 0.08
experiment-7:3-FT directly pretrained test −2.01± 0.06 −0.88± 0.12 −2.2± 0.13 −2.84± 0.09
experiment-task-specific-only-FT directly pretrained test -2.74± 0.13 -1.57± 0.05 -2.73± 0.24 −3.5± 0.04

experiment-7:3 directly pretrained tail test −1.72± 0.05 −0.7± 0.05 −2.62± 0.09 −2.62± 0.09
experiment-task-specific-only directly pretrained tail test −2.41± 0.02 −1.24± 0.05 −3.11± 0.07 -3.8± 0.07
experiment-7:3-FT directly pretrained tail test −2.05± 0.08 −0.9± 0.09 −2.59± 0.08 −3.03± 0.09
experiment-task-specific-only-FT directly pretrained tail test -2.74± 0.11 -1.64± 0.05 -3.23± 0.13 −3.68± 0.03

Table A3: Relative ICNER ∆SemER (↓) measured against the directly pretrained baseline for each experimental
student (negative is better). In calculating these percentage changes, we use the weighted average of the SemER
for each domain in a given language, as the overall SemER in that language.

146

Ta
bl

e
A

4:
Fr

ac
tio

ns
of

fin
et

un
in

g
da

ta
us

ed
pe

r
do

m
ai

n.
N

ot
e

th
at

th
e

fa
ct

io
n

in
ea

ch
ce

ll
re

pr
es

en
ts

th
e

ut
te

ra
nc

e
co

un
tf

or
th

at
pa

rt
iti

on
,f

or
th

at
do

m
ai

n,
as

a
fr

ac
tio

n
of

th
e

to
ta

lu
tte

ra
nc

e
co

un
ti

n
th

at
la

ng
ua

ge
.A

s
m

en
tio

ne
d

in
Se

ct
io

n
3.

2,
th

es
e

fr
ac

tio
ns

ar
e

no
tb

as
ed

on
th

e
co

un
ts

in
Ta

bl
e

A
1

tr
ai

n
va

lid
at

io
n

te
st

ta
il_

te
st

G
er

m
an

Fr
en

ch
It

al
ia

n
Sp

an
is

h
G

er
m

an
Fr

en
ch

It
al

ia
n

Sp
an

is
h

G
er

m
an

Fr
en

ch
It

al
ia

n
Sp

an
is

h
G

er
m

an
Fr

en
ch

It
al

ia
n

Sp
an

is
h

D
om

ai
n

1
0.

01
4%

0.
01

4%
0.

01
4%

0.
01

4%
0.

00
2%

0.
00

2%
0.

00
2%

0.
00

2%
0.

00
2%

0.
00

2%
0.

00
2%

0.
00

2%
0.

00
2%

0.
00

2%
0.

00
2%

0.
00

2%
D

om
ai

n
2

0.
63

4%
0.

63
4%

0.
63

0%
0.

63
2%

0.
07

8%
0.

07
9%

0.
07

8%
0.

07
7%

0.
08

1%
0.

08
0%

0.
08

0%
0.

07
9%

0.
05

9%
0.

06
3%

0.
05

8%
0.

05
5%

D
om

ai
n

3
0.

66
3%

0.
66

4%
0.

66
2%

0.
66

3%
0.

08
2%

0.
08

2%
0.

08
2%

0.
08

4%
0.

08
3%

0.
08

3%
0.

08
2%

0.
08

2%
0.

05
9%

0.
06

4%
0.

06
2%

0.
06

0%
D

om
ai

n
4

0.
07

2%
0.

07
2%

0.
07

2%
0.

07
1%

0.
00

9%
0.

00
9%

0.
00

9%
0.

00
9%

0.
00

9%
0.

00
9%

0.
00

9%
0.

00
9%

0.
00

7%
0.

00
8%

0.
00

7%
0.

00
7%

D
om

ai
n

5
6.

02
4%

6.
03

7%
6.

02
4%

6.
02

6%
0.

76
0%

0.
75

4%
0.

75
7%

0.
75

7%
0.

75
5%

0.
75

1%
0.

75
6%

0.
75

1%
0.

34
6%

0.
34

3%
0.

35
5%

0.
35

7%
D

om
ai

n
6

0.
52

4%
0.

52
5%

0.
52

5%
0.

52
3%

0.
06

7%
0.

06
5%

0.
06

5%
0.

06
4%

0.
06

7%
0.

06
6%

0.
06

5%
0.

06
7%

0.
02

8%
0.

03
3%

0.
03

6%
0.

03
4%

D
om

ai
n

7
0.

36
9%

0.
36

9%
0.

36
8%

0.
36

8%
0.

04
5%

0.
04

7%
0.

04
6%

0.
04

8%
0.

04
7%

0.
04

7%
0.

04
6%

0.
04

6%
0.

03
1%

0.
03

6%
0.

02
7%

0.
03

0%
D

om
ai

n
8

1.
04

3%
1.

04
2%

1.
04

1%
1.

04
2%

0.
13

1%
0.

13
1%

0.
13

2%
0.

13
1%

0.
13

3%
0.

12
8%

0.
13

2%
0.

13
2%

0.
07

7%
0.

06
0%

0.
06

6%
0.

06
6%

D
om

ai
n

9
18

.4
74

%
18

.4
62

%
18

.4
64

%
18

.4
66

%
2.

30
7%

2.
30

0%
2.

29
9%

2.
30

5%
2.

30
5%

2.
31

0%
2.

31
2%

2.
30

3%
0.

20
2%

0.
26

3%
0.

34
2%

0.
29

2%
D

om
ai

n
10

0.
00

5%
0.

00
5%

0.
00

5%
0.

00
5%

0.
00

1%
0.

00
0%

0.
00

1%
0.

00
1%

0.
00

1%
0.

00
1%

0.
00

1%
0.

00
1%

0.
00

1%
0.

00
1%

0.
00

1%
0.

00
1%

D
om

ai
n

11
0.

46
2%

0.
46

5%
0.

46
4%

0.
46

4%
0.

05
7%

0.
05

8%
0.

05
7%

0.
05

7%
0.

05
7%

0.
05

9%
0.

05
9%

0.
05

6%
0.

02
9%

0.
03

4%
0.

02
1%

0.
03

4%
D

om
ai

n
12

9.
73

7%
9.

72
0%

9.
73

5%
9.

73
0%

1.
21

8%
1.

21
7%

1.
21

5%
1.

21
6%

1.
21

6%
1.

21
4%

1.
20

9%
1.

21
6%

0.
40

1%
0.

37
3%

0.
35

2%
0.

37
7%

D
om

ai
n

13
5.

91
5%

5.
91

6%
5.

92
3%

5.
91

7%
0.

74
1%

0.
74

0%
0.

73
7%

0.
73

9%
0.

73
6%

0.
73

5%
0.

73
3%

0.
74

0%
0.

51
1%

0.
49

7%
0.

47
8%

0.
47

8%
D

om
ai

n
14

1.
45

4%
1.

45
6%

1.
45

7%
1.

45
5%

0.
18

3%
0.

18
4%

0.
18

3%
0.

18
4%

0.
18

1%
0.

18
2%

0.
18

3%
0.

18
2%

0.
16

2%
0.

17
1%

0.
17

2%
0.

15
5%

D
om

ai
n

15
13

.6
58

%
13

.6
67

%
13

.6
66

%
13

.6
63

%
1.

70
3%

1.
71

7%
1.

70
5%

1.
71

0%
1.

70
9%

1.
71

0%
1.

71
4%

1.
70

8%
0.

99
8%

1.
10

1%
1.

10
0%

1.
02

6%
D

om
ai

n
16

3.
47

0%
3.

47
1%

3.
47

2%
3.

47
4%

0.
43

5%
0.

43
4%

0.
43

7%
0.

43
2%

0.
43

5%
0.

43
5%

0.
43

5%
0.

43
9%

0.
20

9%
0.

24
5%

0.
23

1%
0.

23
4%

D
om

ai
n

17
0.

02
8%

0.
02

9%
0.

02
9%

0.
02

9%
0.

00
4%

0.
00

4%
0.

00
4%

0.
00

3%
0.

00
4%

0.
00

3%
0.

00
4%

0.
00

4%
0.

00
3%

0.
00

3%
0.

00
3%

0.
00

3%
D

om
ai

n
18

0.
65

5%
0.

65
6%

0.
65

7%
0.

65
9%

0.
08

2%
0.

08
3%

0.
08

3%
0.

08
3%

0.
08

2%
0.

08
2%

0.
08

4%
0.

08
1%

0.
02

6%
0.

02
9%

0.
03

0%
0.

02
1%

D
om

ai
n

19
0.

42
8%

0.
42

9%
0.

42
8%

0.
42

7%
0.

05
3%

0.
05

3%
0.

05
3%

0.
05

3%
0.

05
5%

0.
05

3%
0.

05
3%

0.
05

2%
0.

04
6%

0.
04

6%
0.

04
6%

0.
04

7%
D

om
ai

n
20

10
.2

09
%

10
.2

10
%

10
.2

11
%

10
.2

14
%

1.
27

1%
1.

27
6%

1.
28

3%
1.

27
7%

1.
27

3%
1.

27
7%

1.
27

2%
1.

27
9%

0.
67

8%
0.

64
2%

0.
70

6%
0.

92
3%

D
om

ai
n

21
0.

04
6%

0.
04

5%
0.

04
5%

0.
04

4%
0.

00
6%

0.
00

6%
0.

00
5%

0.
00

6%
0.

00
6%

0.
00

6%
0.

00
6%

0.
00

6%
0.

00
3%

0.
00

3%
0.

00
3%

0.
00

2%
D

om
ai

n
22

1.
24

7%
1.

25
3%

1.
25

0%
1.

25
2%

0.
15

9%
0.

15
5%

0.
15

9%
0.

15
6%

0.
15

6%
0.

16
0%

0.
15

7%
0.

15
8%

0.
12

8%
0.

12
9%

0.
10

7%
0.

12
0%

D
om

ai
n

23
0.

22
3%

0.
22

3%
0.

22
2%

0.
22

1%
0.

02
8%

0.
02

9%
0.

02
9%

0.
02

8%
0.

02
8%

0.
02

8%
0.

02
9%

0.
02

8%
0.

02
8%

0.
02

6%
0.

02
6%

0.
02

5%
D

om
ai

n
24

2.
98

6%
2.

98
1%

2.
97

8%
2.

98
4%

0.
37

2%
0.

36
9%

0.
37

2%
0.

37
0%

0.
37

3%
0.

37
3%

0.
37

2%
0.

37
5%

0.
26

5%
0.

28
9%

0.
28

9%
0.

27
0%

D
om

ai
n

25
1.

61
7%

1.
61

4%
1.

61
7%

1.
61

3%
0.

20
2%

0.
20

3%
0.

20
4%

0.
20

3%
0.

20
2%

0.
20

2%
0.

20
1%

0.
20

2%
0.

08
3%

0.
09

1%
0.

09
8%

0.
08

3%
D

om
ai

n
26

0.
04

2%
0.

04
2%

0.
04

2%
0.

04
2%

0.
00

6%
0.

00
5%

0.
00

5%
0.

00
5%

0.
00

5%
0.

00
5%

0.
00

6%
0.

00
5%

0.
00

4%
0.

00
3%

0.
00

4%
0.

00
4%

To
ta

lF
ra

ct
io

n
80

.0
00

%
80

.0
00

%
80

.0
00

%
80

.0
00

%
10

.0
00

%
10

.0
00

%
10

.0
00

%
10

.0
00

%
10

.0
00

%
10

.0
00

%
10

.0
00

%
10

.0
00

%
4.

38
6%

4.
55

4%
4.

62
2%

4.
70

8%

147

Proceedings of EMNLP 2022 Industry Track, pages 148–154
December 9–11, 2020. ©2022 Association for Computational Linguistics

Exploiting In-Domain Bilingual Corpora for Zero-Shot Transfer Learning
in NLU of Intra-Sentential Code-Switching Chatbot Interactions

Maia Aguirre, Manex Serras, Laura García-Sardiña, Jacobo López-Fernández
Ariane Méndez and Arantza del Pozo

Vicomtech Foundation, Basque Research and Technology Alliance (BRTA)
Parque Científico y Tecnológico de Gipuzkoa, Paseo Mikeletegi 57, Donostia / San Sebastián (Spain)

{magirre, mserras, lgarcias, jlopez, amendez, adelpozo}@vicomtech.org

Abstract

Code-switching (CS) is a very common phe-
nomenon in regions with various co-existing
languages. Since CS is such a frequent habit
in informal communications, both spoken and
written, it also arises naturally in Human-
Machine Interactions. Therefore, in order for
natural language understanding (NLU) not to
be degraded, CS must be taken into account
when developing chatbots. The co-existence
of multiple languages in a single NLU model
has become feasible with multilingual language
representation models such as mBERT. In this
paper, the efficacy of zero-shot cross-lingual
transfer learning with mBERT for NLU is eval-
uated on a Basque-Spanish CS chatbot corpus,
comparing the performance of NLU models
trained using in-domain chatbot utterances in
Basque and/or Spanish without CS. The results
obtained indicate that training joint multi-intent
classification and entity recognition models on
both languages simultaneously achieves best
performance, better capturing the CS patterns.

1 Introduction

Multilingual speakers outnumber monolingual
speakers in the world (Tucker, 2001). In regions
with various coexisting languages, a common fea-
ture of natural interactions amongst speakers is
the continuous casual switching between the con-
cerned languages or “codes”. This phenomenon,
known as Code-Switching (CS), is very frequent
in both spoken and written informal interactions
(Ahn et al., 2020). In fact, the percentage of CS in
social networks ranges from 14.5% to 49.06% for
the corpora explored in Gambäck and Das (2016).
Moreover, in the study Al-Qaysi and Al-Emran that
explores the educators and learners’ attitudes to-
wards using CS online, 86.40% of the students and
81% of the teachers claim to actively code-switch
while chatting on social networks.

As is to be expected, CS also arises sponta-
neously during human-machine interactions such

as conversing with chatbots (i.e., conversational
agents). This being the case, Bawa et al. (2020)
reveal that these interlocutors strongly prefer chat-
bots that do understand CS.

The most common strategy employed by chat-
bots to understand the interlocutor is to employ
intent and entity-based annotation schemata. This
involves intent –communicative purpose– detec-
tion and entity –key words– classification processes
(Tur et al., 2010). For example, in the utterance “I
want to have an Italian meal that does not exceed
15 euros”, the intent behind the user’s query is to
order food given the entity labels cheap and italian.

Allowing multilingual interactions with chat-
bots involves running a language identifier prior to
each speaker turn and executing language-specific
Natural Language Understanding (NLU) models.
However, this approach is only effective for inter-
sentential CS, where the code alternation hap-
pens at utterance boundaries. In the case of intra-
sentential CS, where the same utterance contains
words or phrases belonging to two or more lan-
guages (Gumperz, 1982), detecting every intent
and entity of the utterance poses a major challenge
for existing algorithms (Banerjee et al., 2018). The
previous sentence with intra-sentential CS would
be "Quiero an Italian meal que no supere los 15
euros" (Spanish in italics). In this case, neither
an NLU model in English nor an NLU model in
Spanish would detect that the intent is order food.

One strategy to solve this problem would be
treating CS as a language itself and training an
NLU model with examples containing CS. How-
ever, collecting data with CS is quite challenging,
as it hardly exists in written form and requires
bilingual annotators. Instead, obtaining labeled
monolingual data in multiple languages is easier
and zero-shot cross-lingual transfer learning (TL)
has been proved to perform well across different
Natural Language Processing (NLP) tasks, includ-
ing NLU (M’hamdi et al., 2021). Thus, this TL

148

approach would be more practical to exploit in
real-world industrial chatbot applications to be de-
ployed in CS regions. Unfortunately, such method-
ology has not yet been explored in the literature,
mainly due to the scarcity of real intra-sentential
CS datasets.

In this paper, a Basque-Spanish CS corpus is ex-
ploited to evaluate different zero-shot cross-lingual
TL experiments aiming to examine whether such
multilingual training methodologies are capable of
addressing the NLU problem of intra-sentential CS
chatbot interactions. For this purpose, the effec-
tiveness of three multilingual models is analysed in
their ability to understand CS: one fine-tuned using
a chatbot corpus in Basque, another one fine-tuned
on a corpus of Spanish chatbot utterances and a
third one fine-tuned using both corpora simultane-
ously. It is important to underline that none of the
models was exposed to CS during training, and that
the monolingual Basque and Spanish training cor-
pora belong to the same domain of the CS corpus
used for testing purposes. Through this comparison
it has been determined that models fine-tuned on in-
domain bilingual corpora simultaneously are able
to generate cross-lingual bonds and perform better
against CS. The fact that zero-shot fine-tuning of
multilingual BERT models on both monolingual
languages enhances their effectiveness in under-
standing CS stands as one of the main contributions
of this work.

The remaining of the paper is structured as fol-
lows: Section 2 reviews recent work in the area of
joint intent and entity detection and multilingual
models. Section 3 analyzes the main characteristics
of the corpora used both for training and evaluation
purposes. Section 4 presents the architecture and
specifications of the joint intent and entity detec-
tion implementation employed. Section 5 shows
the results obtained in the different experiments
carried out and, finally, Section 6 highlights the
main conclusions and proposes tentative lines for
future work.

2 Related Work

Intent Detection and Entity Classification

The traditional way of approaching intent detec-
tion and entity classification tasks for NLU is to
address them separately. However, treating each
task as an individual problem leads to inefficient
usage of training resources. Among others, Chen
et al. (2019); Lorenc (2021) have shown that com-

bining intent and entity recognition in a single
system achieves significant improvements in both
tasks with lower computational resources. Cai et al.
(2022) and Qin et al. (2020) propose novel meth-
ods that consider joint learning of both tasks by
correlating the intents and entities and reach new
state-of-the-art performance. In addition, Castel-
lucci et al. (2019) have explored how these joint
approaches also perform better in multilingual set-
tings.

Multilingual models

Contextualised multilingual models, such as
mBERT and XLM-R (Conneau and Lample, 2019),
have achieved state-of-the-art results in monolin-
gual and multilingual tasks on NLU benchmark
tests (Wang et al., 2019; Hu et al., 2020; Liu et al.,
2020). However, the effectiveness of NLU models
on CS interactions remains unknown (Winata et al.,
2021).

Still, there have been several attempts to use mul-
tilingual representations to encode CS sentences
(Srinivasan, 2020; Aguilar et al., 2020; Khanuja
et al., 2020), showing promising results and sur-
passing previously achieved performances (Aguilar
et al., 2020; Khanuja et al., 2020).

Recent work has shown that, even if the embed-
dings across the 12 multi-head attention layers of
mBERT are clustered across languages (Krishnan
et al., 2021), they can be split into two components:
a language-specific one and a language-neutral one
(Krishnan et al., 2021; Libovickỳ et al., 2020; Tanti
et al., 2021). Pires et al. (2019) have also found
that a shared subspace representing relevant linguis-
tic information is common to cross-lingual BERT
representations. Likewise, Chi et al. (2020) claim
that part of the representation space of the syntactic
level of mBERT is shared between languages and
identify that mBERT has a cross-lingustic cluster-
ing of gramatical relations. In addition, Cao et al.
(2019) suggest that mBERT also aligns semantics
across languages. Libovickỳ et al. (2020) use a set
of semantic-oriented tasks to show that unsuper-
vised multilingual contextual embeddings based on
BERT capture similar semantic phenomena in very
similar ways across languages.

Moreover, Krishnan et al. (2021) and Tanti
et al. (2021) have also demonstrated that the cross-
lingual capacity of mBERT models increases after
fine-tuning as the models switch their ability to
cluster embeddings by language to cluster them

149

according to the needs of the task. For example,
regarding the intent detection task, the embeddings
will be grouped by intents after fine-tuning.

On the other hand, several benchmarking experi-
ments in NLP tasks other than NLU against CS test
sets have shown that mBERT fine-tuning achieves
the best performance compared to alternative multi-
lingual models. Khanuja et al. (2020) presented the
first model evaluation benchmark against CS. After
testing various embedding techniques for all tasks
and datasets, they concluded that the multilingual
BERT model performs the best. They also demon-
strate that, for most datasets, a modified version of
mBERT that has been subsequently fine-tuned with
synthetically generated CS data performs consis-
tently better. Aguilar et al. (2020) propose another
benchmark metric that combines ten corpora cov-
ering four different CS language pairs and four
NLP tasks for the evaluation of linguistic CS. Su-
perior performance of the mBERT models for each
available language pair is observed across the vast
majority of the tasks.

3 Data

3.1 Training and validation corpus

Three corpora have been used to train and validate
the models:

1. A Basque corpus, consisting of utterances in
the Basque language

2. A Spanish corpus, formed by utterances in
Spanish language

3. A Bilingual corpus, grouping both corpora
together

The Basque and Spanish corpora comprise a col-
lection of text samples used to train the NLU mod-
ules of four bilingual (Basque-Spanish) chatbots.
These chatbots were designed to answer specific
questions related to the fields of administration,
taxation, and transport. In addition, they were
able to respond to greetings, requests for help, and
some common social questions such as "Are you a
robot?", etc. Besides their domain label, the exam-
ples in each corpus were annotated with semantic
information regarding their intents and entity val-
ues. The preprocessing of the training data involved
removing stress marks, capitalisation and punctu-
ation marks, considering that users tend to write
without respecting spelling rules while chatting.

The three training corpora are divided into a
training set and a validation set, with a ratio of
75/25 and with an even distribution of intents and
entities. The total number of unique entities is 39
and the number of unique intents is 90.

The partition size of each corpus in the training
and validation sets is reflected in Table 1.

Training Validation
Basque corpus 1662 555
Spanish corpus 1452 485
Bilingual corpus 3114 1040

Table 1: Number of utterances associated with the train-
ing and validation set of each corpus.

3.2 Test corpus
In our experiments, The BaSCo –Basque-Spanish
Code-Switching– corpus (Aguirre et al., 2022) is
used to evaluate the robustness of the different NLU
models against Basque-Spanish CS.

It is a compendium of 1377 utterances contain-
ing Basque-Spanish intra-sentential CS that belong
to the same domain as the corpora used for training
(i.e. chatbot interactions related to the fields of ad-
ministration, taxation and transport) and also share
the same set of intent and entity labels.

4 Implementation Strategies

The joint intent detection and entity classification
NLU model developed in this work takes the one
presented by Chen et al. (2019) and its correspond-
ing implementation1 as a baseline. For our exper-
iments, the baseline model architecture has been
adapted as shown in Figure 1 to support the detec-
tion of multiple intents in the same utterance.

This adaptation has involved two major changes.
On the one hand, intent label representation has
been adapted to allow assigning more than one in-
tent to each utterance. For this purpose, one-hot 2

encoding has been adopted and consequently the ac-
tivation function of the final layer has been changed
from softmax to sigmoid. On the other hand, the
loss function selected for multi-intent classifica-
tion optimisation has been changed to binary cross-
entropy, as it allows each utterance to have more
than one associated intent (Ho and Wookey, 2019).

1https://github.com/90217/joint-intent-classification-and-
slot-filling-based-on-BERT

2https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.MultiLabelBinarizer.html

150

Figure 1: Architecture of the joint multi-intent and en-
tity detection model. It consists of a first module that
tokenises the input sentence and translates the informa-
tion to the BERT model, which returns an embedding
for each element of the sequence and a global embed-
ding of the utterance. Entities are predicted using the
individual embeddings of the sequence and intents are
predicted using sentence embeddings.

This loss function predicts whether each possible
intent appears in the utterance regardless of the rest
of the intents. The loss function used to classify
entities remains sparse categorical cross-entropy,
since it meets the assumption that each token be-
longs to a single entity category. The goal of the
implemented joint multi-intent and entity classifier
is to minimise the sum of the two individual loss
functions.

The BERT model employed is BERT-Base-
Multilingual-Cased or mBERT, which has 12 lay-
ers, 768 hidden states and 12 heads. And the best
performing hyperparameters are a maximum length
and batch size of 128; the Adam optimiser (Kingma
and Ba, 2015); a learning-rate of 9e-5; a dropout
probability of 0.1; and 50 epochs.

5 Results

5.1 Validation results

Table 2 collects the results returned by the different
models when evaluated over the Basque and Span-
ish validation sets. This table allows to directly
compare the performance of the model trained on
the bilingual corpus versus the performances of the
models trained on the monolingual corpora.

The model trained with the bilingual corpus uses
the same train/validation partition as the models
trained on the monolingual corpora (i.e., the utter-
ances used for training and evaluating the model
are identical). Still, the results obtained with the
model trained on the bilingual corpus outperform
the results of the models trained on the monolin-
gual corpora as more intents are properly classi-
fied. Therefore, it can be determined that, as ex-
pected, cross-lingual learning actually happens in
the model trained with both languages.

This learning improvement occurs because in the
fine-tuning process the model is trained with the
same set of intent and entity labels for the Basque
and Spanish corpora. In this way, it learns to relate
and project text entries in different languages onto
a common label space.

5.2 Test results

To better assess the cross-lingual learning capa-
bilities of the trained models, the BaSCo corpus
of intrasentential Basque-Spanish CS utterances is
used as test set.

The results obtained for each model are shown
in Table 3. As it can be seen, the cross-lingual
comprehension acquired by the model trained on
the Bilingual corpus is also evidenced against the
CS test set, showing a clear improvement over the
models trained on the monolingual corpora with
results such as:

• +38 and +17 points in F1 micro and macro
metrics respectively for intent classification.

• +2 and +15 points in F1 micro and macro
metrics respectively for entity classification.

A more intuitive way of visualising the cross-
lingual learning of the model trained on the Bilin-
gual corpus is by means of a two-dimensional rep-
resentation of the embeddings (i.e. the result given
by mBERT’s pooling layer for each sentence input
to the model). For this purpose, the t-SNE method
(t-distributed Stochastic Neighbor Embedding) is
used to assign each high-dimensional data vector a
position in a two-dimensional map (Van der Maaten
and Hinton, 2008). In this way, Figure 2 shows the
two-dimensional representation that each of the
three models assigns to each of the following sets:
the validation set of the Basque corpus, the vali-
dation set of the Spanish corpus and the BaSCo
intra-sentential CS test set.

151

Metrics Validation set Models
Basque Spanish Bilingual

Intent classifier loss Basque corpus 0.0292 / 0.0241
Spanish corpus / 0.0274 0.0214

Table 2: Loss metrics of the three multilingual models: (i) fine-tuned on the Basque corpus, (ii) fine-tuned on the
Spanish corpus and (iii) fine-tuned on the Bilingual corpus, in their ability to understand multiple intents and entities.
The results obtained at the end of training (epoch 50) are shown for the Basque and Spanish corpus validation sets
separately.

Metrics Model

Basque Spanish Bilingual
Multiple Intent
Classification

Intent classifier loss 0.0594 0.0676 0.0351

F1 Score micro 0.4339 0.3958 0.8148
F1 Score macro 0.2889 0.3081 0.4714

Entity Classification F1 Score micro 0.7162 0.6567 0.7358
F1 Score macro 0.3593 0.4420 0.5933

Table 3: Loss and F1 metrics of the three multilingual models: (i) fine-tuned on the Basque corpus, (ii) fine-tuned
on the Spanish corpus, and (iii) fine-tuned on the Bilingual corpus, in their ability to understand multiple intents and
entities. The results obtained at the end of training (epoch 50) are shown when evaluated over the BaSCo test set.

(a) Model trained on the Basque cor-
pus.

(b) Model trained on the Spanish cor-
pus.

(c) Model trained on the Bilingual cor-
pus.

Figure 2: t-SNE representation of the sentence embeddings of the validation set of the Basque corpus (green), the
validation set of the Spanish corpus (yellow), and the BaSCo test set (purple) of the models trained on the Basque,
Spanish, and Bilingual corpus.

As it can be appreciated, the models trained on
the monolingual Basque and Spanish corpora (Fig-
ures 2a and 2b) present a major dispersion of the
points in the plane, having greater difficulty in de-
termining clear groupings. In contrast, in Figure 2c
there is a very noticeable overlapping of dots of dif-
ferent colours (i.e. of different languages) yielding
clearly delimited groupings. These clusters have a
clear semantic charge because they concentrate sen-
tences that share the same intent. This property can
be easily ascertained in the interactive web version
of the figure3, where sentences with, for example,

3https://clusters-mbert.dialogue.vicomtech.org

the intent label “greeting” are grouped around the
same point on the map, regardless of whether they
are in Spanish, Basque or Basque-Spanish CS.

These results are very positive, as they show that
state-of-the-art NLU models have the ability to un-
derstand intra-sentential CS chatbot interactions
when they are fine-tuned using in-domain monolin-
gual corpora in both CS languages.

6 Conclusions and Future Work

The main contribution of this work is proving that
fine-tuning a mBERT NLU model with in-domain
bilingual data enables it to detect intents and en-

152

tities of intra-sentential CS chatbot interactions
with industrial grade robustness. It is essential for
the corpora employed in the fine-tuning process to
share the same intent and entity labels; with this
proviso, the model learns to relate and project text
entries from the different languages onto a com-
mon label space. As a result, the model represents
utterance embeddings of the same meaning but
different language in the same area of the vector
space. Hence, unlike the original mBERT model
that groups embeddings into clusters depending on
their language, the NLU model fine-tuned on the
bilingual in-domain corpus of chatbot interactions
happens to be language agnostic, classifying ut-
terances by their meaning regardless of language.
This property endows the model with the ability to
correctly classify utterances with intra-sentential
CS. Given the scarcity of annotated CS data, this
outcome is very promising. Considering the re-
sults achieved, we strongly recommend exploiting
in-domain bilingual corpora to fine-tune mBERT
NLU models of real-world chatbot applications
in CS regions. Such type of corpora can be eas-
ily compiled from the collection of annotated text
samples used to train monolingual NLU models
without CS, as it has been done in this work.

Overall, it can be stated that progress has been
made towards building multilingual conversational
assistants that incorporate CS strategies and that
can therefore better understand multilingual users.
The results obtained for CS between Basque and
Spanish, languages belonging to different families,
should in principle also be extrapolated to other
language pairs.

A tentative line of future research would be to
try to further improve performance using data aug-
mentation techniques. To this end, methods that
recombine the sentences of the Basque and Span-
ish corpora while maintaining their semantic labels
could be explored. An alternative line of research
would be to explore whether the performance of
mBERT models fine-tuned on multiple languages
sharing utterance labels improves proportionally
to the number of languages they are trained with.
This would require translating the training corpora
to other languages and revising their labelling a
posteriori.

References
Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.

2020. Lince: A centralized benchmark for linguis-

tic code-switching evaluation. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 1803–1813.

Maia Aguirre, Laura García-Sardiña, Manex Serras, Ar-
iane Méndez, and Jacobo López. 2022. Basco: An
annotated basque-spanish code-switching corpus for
natural language understanding. In Proceedings of
the Language Resources and Evaluation Conference,
pages 3158–3163, Marseille, France. European Lan-
guage Resources Association.

Emily Ahn, Cecilia Jimenez, Yulia Tsvetkov, and
Alan W Black. 2020. What code-switching strate-
gies are effective in dialog systems? In Proceedings
of the Society for Computation in Linguistics 2020,
pages 213–222.

Noor Al-Qaysi and Mostafa Al-Emran. Code-switching
usage in social media: A case study from oman. In-
ternational Journal of Information Technology and
Language Studies, 1(1).

Suman Banerjee, Nikita Moghe, Siddhartha Arora, and
Mitesh M Khapra. 2018. A dataset for building code-
mixed goal oriented conversation systems. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 3766–3780.

Anshul Bawa, Pranav Khadpe, Pratik Joshi, Kalika Bali,
and Monojit Choudhury. 2020. Do multilingual users
prefer chat-bots that code-mix? let’s nudge and find
out! Proceedings of the ACM on Human-Computer
Interaction, 4(CSCW1):1–23.

Fengyu Cai, Wanhao Zhou, Fei Mi, and Boi Falt-
ings. 2022. Slim: Explicit slot-intent mapping with
bert for joint multi-intent detection and slot filling.
In ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7607–7611. IEEE.

Steven Cao, Nikita Kitaev, and Dan Klein. 2019. Multi-
lingual alignment of contextual word representations.
In International Conference on Learning Representa-
tions.

Giuseppe Castellucci, Valentina Bellomaria, Andrea
Favalli, and Raniero Romagnoli. 2019. Multi-lingual
intent detection and slot filling in a joint bert-based
model.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert for
joint intent classification and slot filling.

Ethan A Chi, John Hewitt, and Christopher D Man-
ning. 2020. Finding universal grammatical relations
in multilingual bert. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5564–5577.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Advances in
Neural Information Processing Systems, 32:7059–
7069.

153

Björn Gambäck and Amitava Das. 2016. Comparing the
level of code-switching in corpora. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 1850–
1855.

John J Gumperz. 1982. Discourse strategies. Cam-
bridge University Press.

Yaoshiang Ho and Samuel Wookey. 2019. The real-
world-weight cross-entropy loss function: Modeling
the costs of mislabeling. IEEE Access, 8:4806–4813.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generalisa-
tion. In International Conference on Machine Learn-
ing, pages 4411–4421. PMLR.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choudhury.
2020. Gluecos: An evaluation benchmark for code-
switched nlp. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3575–3585.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Jitin Krishnan, Antonios Anastasopoulos, Hemant Puro-
hit, and Huzefa Rangwala. 2021. Multilingual code-
switching for zero-shot cross-lingual intent predic-
tion and slot filling. In Proceedings of the 1st Work-
shop on Multilingual Representation Learning, pages
211–223.

Jindřich Libovickỳ, Rudolf Rosa, and Alexander Fraser.
2020. On the language neutrality of pre-trained mul-
tilingual representations. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, pages 1663–1674.

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng
Xu, and Pascale Fung. 2020. Attention-informed
mixed-language training for zero-shot cross-lingual
task-oriented dialogue systems. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8433–8440.

Petr Lorenc. 2021. Joint model for intent and entity
recognition.

Meryem M’hamdi, Doo Soon Kim, Franck Dernoncourt,
Trung Bui, Xiang Ren, and Jonathan May. 2021. X-
metra-ada: Cross-lingual meta-transfer learning adap-
tation to natural language understanding and question
answering. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3617–3632.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4996–5001.

Libo Qin, Xiao Xu, Wanxiang Che, and Ting Liu. 2020.
Agif: An adaptive graph-interactive framework for
joint multiple intent detection and slot filling. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1807–1816.

Anirudh Srinivasan. 2020. Msr india at semeval-2020
task 9: Multilingual models can do code-mixing too.
In Proceedings of the Fourteenth Workshop on Se-
mantic Evaluation, pages 951–956.

Marc Tanti, Lonneke van der Plas, Claudia Borg, and
Albert Gatt. 2021. On the language-specificity of
multilingual bert and the impact of fine-tuning.

G Richard Tucker. 2001. A global perspective on bilin-
gualism and bilingual education. GEORGETOWN
UNIVERSITY ROUND TABLE ON LANGUAGES
AND LINGUISTICS 1999, page 332.

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck. 2010.
What is left to be understood in atis? In 2010 IEEE
Spoken Language Technology Workshop, pages 19–
24. IEEE.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu,
Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2021. Are multilingual models effective in code-
switching? NAACL 2021, page 142.

154

Proceedings of EMNLP 2022 Industry Track, pages 155–163
December 9–11, 2020. ©2022 Association for Computational Linguistics

Calibrating Imbalanced Classifiers with Focal Loss: An Empirical Study

Cheng Wang, Jorge Balazs, Gyuri Szarvas

Patrick Ernst, Lahari Poddar, Pavel Danchenko
Amazon

{cwngam, jabalazs, szarvasg, peernst, poddarl, danchenk}@amazon.com

Abstract

Imbalanced data distribution is a practical and
common challenge in building machine learn-
ing (ML) models in industry, where data usu-
ally exhibits long-tail distributions. For in-
stance, in virtual AI Assistants, such as Google
Assistant, Amazon Alexa and Apple Siri, the
play music or set timer utterance is exposed to
an order of magnitude more traffic than other
skills. This can easily cause trained models
to overfit to the majority classes, categories or
intents, leading to model miscalibration. The
uncalibrated models output unreliable (mostly
overconfident) predictions, which are at high
risk of affecting downstream decision-making
systems. In this work, we study the calibra-
tion of models in the practical application of
predicting product return reason codes in cus-
tomer service conversations of an online retail
store; The returns reasons also exhibit class
imbalance. To alleviate the resulting miscali-
bration in the trained ML model, we stream-
line the model development and deployment
using focal loss (Lin et al., 2017). We empir-
ically show the effectiveness of model train-
ing with focal loss in learning better calibrated
models, as compared to standard cross-entropy
loss. Better calibration, in turn, enables better
control of the precision-recall trade-off for the
trained models.

1 Introduction

Building and developing ML models in industry
has many practical challenges. Imbalanced data
distributions (He and Garcia, 2009), particularly
long-tail distributions (Wang et al., 2021a), make
models overfit to majority data classes and lead to
miscalibration (Guo et al., 2017; Mukhoti et al.,
2020), i.e. the model-predicted probability fails to
estimate the likelihood of true correctness and pro-
vides over- or under-confident predictions. To ad-
dress imbalanced data, some mainstream strategies
are rebalancing the dataset through upsampling
minority and/or downsampling majority classes.

𝐷

𝐷𝑔

𝑀
𝑝𝑟𝑒𝑐.

𝑟𝑒𝑐𝑎𝑙𝑙

𝑀c

0

10

20

30

01.05.02 01.08.02

sample

calibration

data distribution
online traffic

Figure 1: Our procedure to calibrate the ML model that
trained with an imbalanced dataset D. With focal loss,
model M is learned to be a better calibrated model Mc.
In a follow-up stage, a dataset Dg is sampled from ac-
tual conversations (the inference distribution) and man-
ually annotated as a golden dataset. It is used to further
calibrate models and tune precision-recall threshold to
achieve specific precision or recall to serve customer
requests.

See SMOTE (Chawla et al., 2002) for an example.
However, miscalibration caused by imbalanced
data cannot be easily handled by these methods.
Guo et al. (Guo et al., 2017) recently found that
negative log likelihood (NLL) trained deep neural
networks (DNNs) tend to be poorly calibrated as
compared to traditional ML methods (Niculescu-
Mizil and Caruana, 2005a).

Calibrating models that have been trained with
imbalanced data plays an important role in industry.
In applications such as medical diagnosis (Caruana
et al., 2015), decisions do not only depend on a
predicted class, but also on the predicted proba-
bilities, e.g. to quantify patients’ risks (Caruana
et al., 2015) in order to determine appropriate treat-
ments. Therefore, it is of particular importance that
models are well calibrated in high-risk domains
such as medicine, financial management (Fischer
and Krauss, 2018), self-driving cars (Bojarski et al.,
2016), etc., to assure that the predicted probabilities
reflect the true values.

In this work, we empirically study the effective-
ness of focal loss (Lin et al., 2017) in building reli-
able ML models for a practical text classification

155

task – return reason code prediction in customer
service chatbots. Formally, focal loss is:

Lf = −
N∑

i=1

(1− pi,yi)γ log pi,yi (1)

where pi,yi is predicted probability of the i-th sam-
ple and γ is a hyper-parameter that is usually set to
γ = 1.

1.1 Practical Considerations

(1) Theoretical Effectiveness. Focal loss was origi-
nally proposed to handle the issue of imbalanced
data distribution which is frequently observed in
industrial data (Kilkki, 2007). In learning models,
the majority class samples dominate the optimiza-
tion and gradient descent to update weights in the
direction where models become more confident in
predicting the majority class. Focal loss can be
interpreted as a trade-off between minimizing Kull-
back–Leibler (KL) divergence and maximizing the
entropy, depending on γ (Mukhoti et al., 2020)1:

Lf ≥ KL(q ‖ p) + H(q)︸︷︷︸
constant

−γH(p) (2)

The rationale behind the equation is that we learn a
probability p to have a high value (confident) due to
the KL term, but not too high (overconfident) due
to the entropy regularization term (Pereyra et al.,
2017).

(2) Computational and Algorithmic Complex-
ity. Out of many popular calibration methods
such as temperature scaling (Platt et al., 1999),
Bayesian methods (Maddox et al., 2019), label
smoothing (Müller et al., 2019) and kernel-based
methods (Kumar et al., 2018), focal loss neither
increases computational overhead nor requires ar-
chitectural modifications. For example, the widely
used temperature scaling (Platt et al., 1999) re-
quires additional post-training calibration while
focal loss offers in-training implicit calibration (by
using eq. (2)).

In section 4, we will empirically show the in-
triguing properties of focal loss in calibrating the
trained ML models. Our contributions are summa-
rized as follows:

• We empirically examine the effectiveness of
using focal loss in handling model miscalibra-
tion in a practical application setting.

1More theoretical findings can be found in the paper

• We show that good calibration is important
to achieve a desired precision or recall target
by tuning the classification thresholds. The
standard cross-entropy loss is incapable of
achieving this goal due to a skewed predicted
probability distribution.

• We demonstrate the performance of calibrated
models through a chatbot that serves cus-
tomers’ requests across three conversational
bot use-cases.

2 Background and Preliminaries

2.1 Background

We consider the task of automatic classification
of return reason codes in an online retail store, to
showcase the development and deployment of ML
models. Whenever a customer requests to return
a purchased item, a reason code is determined to
select the most appropriate resolution and process
a return.

For instance, if a customer is not satisfied with
the item (its size, color or material, for example)
this would map to the return reason Customer Pref-
erence. In such a case, the appropriate resolution is
to process a return and issue a refund, while replace-
ment with the same item is not appropriate (as the
customer would face the same issue). In our case
study, we consider two use cases: binary reason
code prediction and multi-class reason code predic-
tion, where we consider 5 different categories.

2.2 Preliminaries

In this work, we consider the calibration of su-
pervised binary and multi-class classifiers that are
trained with imbalanced datasets.

2.2.1 Model Calibration

Calibration (Guo et al., 2017) measures and ver-
ifies how the predicted probability estimates the
true likelihood of correctness. Assume a model
m trained with dataset {x, y},x ∈ X , y ∈ Y . p̂
is the predicted softmax probability. If m makes
100 independent predictions, each with confidence
p = argmax(p̂) = 0.9, ideally, a calibrated m
approximately gives 90 correct predictions. For-
mally, accuracy(m(D)) = confidence(m(D)) if
m is perfectly calibrated on datasetD. It is difficult
to achieve perfect calibration in practice.

156

2.2.2 Reliability Diagrams
Reliability Diagrams (DeGroot and Fienberg, 1983;
Niculescu-Mizil and Caruana, 2005b) visualize
whether a model is over- or under-confident by
grouping predictions into bins according to their
prediction probability. Predictions are grouped into
N interval bins (each of width 1/N) and the accu-
racy of samples yi wrt. to the ground truth label ŷi
in each bin bn is computed as:

acc(bn) =
1

In

In∑

i

1(ŷi = yi) (3)

where In = |bn| i.e. the number of elements in
bn. Let p̂i be the probability for sample yi, then
average confidence is defined as

conf(bn) =
1

In

In∑

i

p̂i. (4)

A model is perfectly calibrated if acc(bn) =
conf(bn), ∀n and in a diagram the bins would fol-
low the identity function. Any deviation from this
represents a miscalibration.

2.2.3 Expected Calibration Error (ECE)
ECE (Naeini et al., 2015) is a scalar summary
statistic of calibration. It computes the differ-
ence between model accuracy and confidence as a
weighted average across bins,

ECE =
1

I

N∑

n=1

In|acc(bn)− conf(bn)|, (5)

where I is the total number of samples.

2.2.4 Maximum Calibration Error (MCE)
MCE (Naeini et al., 2015) measures the worst-case
deviation between accuracy and confidence,

MCE = max
n∈{1,...,N}

|acc(bn)− conf(bn)|. (6)

and is particularly important in high-risk applica-
tions where reliable confidence measures are abso-
lutely necessary. For a perfectly calibrated classi-
fier, both ECE and MCE are equal to 0.

3 Datasets and Implementation Details

We use historical logged data on return reasons for
past human-customer service interactions (which
is sometimes noisy), and use human annotated reli-
able data for model calibration before deployment.

Label 0
Binary Reason Codes

2

4

6

8

10

12

14

C
ou

nt
 (

×
10

4
)

Label 0 Label 1Label 1 Label 2 Lable 3 Label 4
Multi-Reason Codes

2

4

6

8

10

12

14

16

Figure 2: The distribution of randomly sampled
datasets for experiments, clearly, we can see the imbal-
anced label distribution.

Concretely, we prepared 1013 human annotated
samples as a golden dataset for the binary reason
code model, and a set of 1839 annotated samples
for the multi-reason code model. The numbers re-
ported in the tables in Section 4 are based on the
annotated dataset.

Figure 2 gives the statistics of randomly sam-
pled datasets from historical logs. We consid-
ered 4 widely used return reasons in online re-
tail stores (for details see link below2), subse-
quently referred as “item is defective or
does not work" (LABEL 0), “missing parts
or accessories" (LABEL 1), “performance
or quality not adequate" (LABEL 2), and
“customer preference" (LABEL 3). In the bi-
nary case, we aim to detect one particular return
type LABEL 0, and discriminate it from any other
return reason (referred as OTHERS (LABEL 1)).
Similarly in the multi-class case, we consider the
four broad return categories (LABELS 0 .. 3) and
gloss all other return types under OTHERS (LABEL
4). In both settings OTHERS is the most frequent
class. As we can see the label distribution in both
use-cases is imbalanced. For a full dataset D, we
split it into {Dtrain, Dval, Dtest} with 8:1:1 into
train/val/test splits. We train models with standard
cross-entropy (CE) and focal loss with different γ
values (FLγ).

We implemented our models with Py-
Torch (Paszke et al., 2019), each model consists of
2 bidirectional LSTM layers and 2 dense layers.
The embedding dimension is 1024. The hidden
layer dimension is set to 128 and 512 for the
binary and multi-reason code models respectively.
We apply dropout with rates of 0.1 and 0.2 to the
embedding and dense layers respectively. The
models are trained with Adam (Kingma and Ba,

2https://www.amazon.de/-/en/gp/help/customer/
display.html?nodeId=G6E3B2E8QPHQ88KF

157

2014) as the optimization algorithm

4 Model Selection and Calibration

This section describes how we build a model which
is well calibrated while retaining its original predic-
tive performance, e.g., 85% precision or 90% recall.
We adapt the focal loss (Lin et al., 2017) and empiri-
cally evaluate its calibration effectiveness (Mukhoti
et al., 2020) in both binary and multi-class text clas-
sification tasks in a practical setting.

We observed the two types of trade-offs
which are crucial for using models in practice:
(1) discrimination-calibration trade-off and (2)
precision-recall trade-off. We also found that the
value of γ in focal loss plays an important role in
learning better calibrated models. We denote the
models trained with cross-entropy as CE and with
focal loss, for a given value of γ, as FLγ .

4.1 Discrimination-Calibration Trade-Off

A calibration method should be predictive (discrim-
inative in our case) performance preserving (Zhang
et al., 2020).

4.1.1 Binary Reason Code Prediction

Table 1 presents the results of models with differ-
ent loss functions. Note that the CE based model
achieves the best predictive performance while FL-
based models give slightly lower scores. However,
FL performs significantly better than CE in terms
of calibration related metrics (i.e., NLL, ECE and
MCE). We can also observe that the higher the γ
value the better calibration performance on human
annotated samples.

Figure 3 presents the predicted softmax prob-
ability distribution (top) as well as the reliability
diagram (bottom). From (a)-(e), we can clearly see
that probabilities change from a spiking distribu-
tion (overconfident: p is close to either 1 or 0) to
a flatter distribution, for instance, p = {0.6, 0.4}.
Figure 3 (f)-(j) show that a miscalibrated model
exhibits high ECE and MCE scores. We can also
observe this miscalibration through the gaps be-
tween confidence and true likelihood of correct-
ness. In this binary imbalance classification case,
we find that calibration slightly hurts predictive per-
formance but it is modest. The best model can be
obtained by selecting the candidate that achieves
the best discrimination-calibration trade-off. Here
it should be FL5 according to Table 1.

4.1.2 Multi-Reason Code Prediction
We further conducted multi-reason code prediction
experiments covering 5 reason codes. Table 2 and
Figure 4 demonstrate the effectiveness of focal loss
in learning well calibrated models. It is important
to note that preparing a small set of human labeled
samples as a golden dataset is crucial to measure
whether a model is calibrated or not. The golden
dataset reflects the online data distribution which
our model will predict after deployment. The dif-
ference in calibration effects can be observed by
comparing Figure 4 (top row, (a)-(c)).

4.2 Precision-Recall Tradeoff
The trade-off between model precision and re-
call (Buckland and Gey, 1994) is an important as-
pect in deploying trained models. For instance, if
a certain prediction task requires high model pre-
cision (recall), it means recall (precision) needs to
be sacrificed to some extent. The trade-off can be
achieved through classification threshold tuning. In
this subsection, we empirically demonstrate that a
better calibrated model can help to accomplish this
goal.

Figure 5 presents the precision-recall curves for
binary reason code models. The corresponding soft-
max probability distribution is shown in Figure 3
(top). For CE model, Figure 5 (a) and Figure 3 (a),
we found that it gives more polarized probability,
i.e., the predicted probability is more spiky. Given
this skewed distribution, it is difficult to tune a pre-
cision based on a given recall, or a certain recall
based on an expected precision, e.g., 85%. On the
other hand, FL models in Figure 5 (b-d) learn a
flattened probability distribution, which is better
distributed across the [0, 1] interval and is there-
fore more amenable to thresholding for a particular
precision (or recall) target. This behavior can be
also observed in Figure 6 when we compare the
computed thresholds in CE and FL models.

5 Experimental Results

To serve customers’ requests, we use the binary
reason code model for three conversational use-
cases3. The model detects whether a product return

3This empirical study was conducted using the model
trained with focal loss, γ = 1 (FL1 in Table 1)). Thus it
was not the best model variant according to our findings. Note
that to minimize risk and maintain customer experience, we
don’t deploy and compare multiple models online, at same
time. However, the superiority of FL-based model as com-
pared to CE-based model is clearly observed from offline
results in previous sections.

158

0.0 0.2 0.4 0.6 0.8 1.0
Probability (Label 0)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

(L
ab

el
 1

)

(a) CE

0.0 0.2 0.4 0.6 0.8 1.0
Probability (Label 0)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(L

ab
el

 1
)

(b) FL1

0.0 0.2 0.4 0.6 0.8 1.0
Probability (Label 0)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(L

ab
el

 1
)

(c) FL3

0.0 0.2 0.4 0.6 0.8 1.0
Probability (Label 0)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(L

ab
el

 1
)

(d) FL5

0.0 0.2 0.4 0.6 0.8 1.0
Probability (Label 0)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(L

ab
el

 1
)

(e) FL10

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 16.78%
MCE = 72.00%

(f) CE (acc.=83.8%)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 16.64%
MCE = 72.98%

(g) FL1(acc.=82.4%)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 13.89%
MCE = 23.60%

(h) FL3 (acc.=83.1%)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 7.98%
MCE = 13.40%

(i) FL5 (acc.=83.4%)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 7.76%
MCE = 14.34%

(j) FL10 (acc.=81.2%)

Figure 3: The reliability diagram plots for binary-reason code models with 10 bins. The diagonal dash line presents
perfect calibration (on a specific bin, confidence is equal to accuracy.)

Metric CE FL1 FL3 FL5 FL10

Accuracy 0.836 0.824 0.831 0.834 0.816
Precision 0.838 0.822 0.830 0.834 0.807
Recall 0.823 0.814 0.821 0.823 0.805
F1 0.828 0.817 0.824 0.827 0.806
NLL 2.159 1.438 0.608 0.258 0.178
ECE 0.168 0.166 0.139 0.080 0.078
MCE 0.720 0.730 0.236 0.134 0.143

Table 1: The performance of binary reason code models with CE and Focal loss (with different γ values) on 1013
human annotated samples. For predictive performance (top rows e.g., accuracy) the differences across models are
negligible. However, on the calibration related metrics (bottom rows), FL-based models show significantly better
performance. The best scores are marked bold and the second best scores are underlined, same as Table 2

Metric CE FL1 FL5

Accuracy 0.751 0.760 0.751
Precision 0.814 0.807 0.814
Recall 0.757 0.755 0.757
F1 0.764 0.760 0.764
NLL 0.599 0.429 0.309
ECE 0.037 0.023 0.037
MCE 0.296 0.197 0.299

Table 2: The performance of multi-reason code models
with CE and focal losses (with different γ values).

is a special case LABEL 0 according customers’
free-text input. We analyze the performance of the
model through both intrinsic evaluation of model’s
accuracy of predicted reason code and extrinsic
evaluation on a downstream conversational chat-
bot system. Before deployment, we tuned model
to achieve expected 85% precision with thresh-

old=0.512 for LABEL 0.

5.1 Intrinsic Evaluation

We conduct a human evaluation of the model’s
prediction on a sample of contacts from actual con-
versations that the model has served. First, we
randomly sample 485 contacts where the reason
code model predicted the LABEL 0 code. By manu-
ally annotating those contacts, we found 384/485
to be correctly predicted, i.e. the model achieves a
precision of 83.8% after deployment. This aligns
well with the precision (81.4%) computed on the
offline test set.

Although we are primarily interested in the preci-
sion metric, we also analyze the negative predictive
value of the model for opportunity analysis of fu-
ture improvements. We randomly sampled 200
contacts where the model did not predict the LABEL
0 code. Out of 200 contacts, we find 194 predic-

159

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 3.70%
MCE = 29.61%

(a) CE (acc.=75.1%)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 2.26%
MCE = 19.75%

(b) FL1(acc.=76.0%)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 3.78%
MCE = 29.89%

(c) FL5 (acc.=75.1%)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Label 0
Label 1
Label 2
Label 3
Label 4

(d) CE (f1=76.4%)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Label 0
Label 1
Label 2
Label 3
Label 4

(e) FL1(f1=76.0%)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Label 0
Label 1
Label 2
Label 3
Label 4

(f) FL5 (f1=76.4%)

Figure 4: The reliability diagram plots for multi-reason
code models with 10 bins. The diagonal dash line
presents perfect calibration (on a specific bin, confi-
dence is equal to accuracy.)

tions are true, i.e. the model demonstrates a high
precision of 194/200 = 97% for OTHERS .

5.2 Extrinsic Evaluation

To evaluate the impact of our model in a down-
stream application, we run an online A/B experi-
ment, with and without the presented model, for a
conversational bot in three use-cases: (1) control
branch: conversational bot with customer selected
reason code; (2) treatment branch: conversational
bot with additional check for return reason code
(LABEL 0) in customer free text input.

To evaluate a conversational bot, we measure the
following three key metrics: (1) Automation Rate
(AR): The % of contacts that were resolved by the
conversational bot without requiring any human in-
volvement; (2) Positive Response Rate (PRR): The
rate measures the % of times customers responded
positively to the resolution provided by chatbot; (3)
Repeat Rate (24RR): The rate of customer contact
us again for the same issue in 24 hours.

Table 3 presents the results on these key metrics
over a period of two weeks. As can be observed
from the results, the reason code model improves
the performance of the conversational system on
both automation rate and customer experience re-
lated metrics. This is achieved through enabling
the bot to provide appropriate solutions based on
the specific customer situations.

Applications Metrics C(%) T (%)

use-case A
AR – + 2.13
PRR – + 3.18
24RR – - 0.65

use-case B
AR – + 2.10
PRR – + 0.97
24RR – - 0.68

use-case C
AR – + 3.98
PRR – +12.85
24RR – - 1.02

Table 3: Online evaluation of our model for three appli-
cations (top, middle, bottom). The relative numbers are
reported. AR and PPR, the higher the better. 24RR, the
lower the better. We only report performance relative
numbers due to confidential issues. C: Control branch;
T: Treatment branch.

6 Related Work

Guo et al. (Guo et al., 2017) and Mukhoti et al.
(Mukhoti et al., 2020) showed that the miscali-
bration of larger, modern networks is related to
the over-fitting on the likelihood of the training
dataset. Conventional NNs are trained to mini-
mize the negative log likelihood (NLL) which can
be positive even if the accuracy is already perfect.
Modern networks continue to minimize NLL dur-
ing training after accuracy is optimal, overfitting
to the training dataset and becoming increasingly
confident in incorrect predictions as a result. To
tackle this, researchers propose a variety of regular-
izers for model predicted probability including the
focal loss (Lin et al., 2017), acting as a maximum
entropy regularizer (Mukhoti et al., 2020), and
temperature scaling (Guo et al., 2017). Muller et
al. (Müller et al., 2019) suggest using label smooth-
ing to regularize network outputs. Besides, some
recent methods, such as Bayesian method (Maddox
et al., 2019), meta-learning (Bohdal et al., 2021),
Gumbel-softmax Trick (Jang et al., 2017; Wang
et al., 2021b) and kernel-based method (Kumar
et al., 2018) are proposed to learn better calibrated
model directly from training.

7 Discussion

When calibrating models in practical scenarios, the
complexity of calibration is an issue to consider.
Focal loss (Lin et al., 2017; Mukhoti et al., 2020)
offers in-training calibration via entropy regulariza-
tion (Pereyra et al., 2017). In this work we have
shown analytically (Section 4) that it provides a

160

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

Label 0
Label 1

(a) CE (f1= 82.8%)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Label 0
Label 1

(b) FL1 (f1= 81.7 %)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Label 0
Label 1

(c) FL3 (f1= 82.4%)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Label 0
Label 1

(d) FL5 (f1= 82.7%)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Label 0
Label 1

(e) FL10 (f1= 80.6%)

Figure 5: The precision-recall curves for binary reason code models. (a) CE model gives more polarized probability
and makes it difficult to tune a precision based on a given recall or vice versa. (b-d) FL learns to give better
distributed probability, precision or recall can be tuned more easily.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Recall
Precision

(a) CE (nll= 2.159)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Recall
Precision

(b) FL1 (nll=1.438)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Recall
Precision

(c) FL3 (nll= 0.608)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Recall
Precision

(d) FL5 (nll= 0.258)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Recall
Precision

(e) FL10 (nll=0.178)

Figure 6: The curves of precision and recall against threshold in binary reason code models.

simple and effective way to calibrate a trained ML
model. On the other hand, in some cases we need
to tune γ value for datasets. Experimentally, we
found that setting a high γ value would not signifi-
cantly hurt predictive performance while providing
good calibration performance.

8 Conclusion

In this paper, we empirically showed the effective-
ness of using focal loss in learning better calibrated
models and finding the precision-recall trade-off in
practical application of deep neural network mod-
els. We conducted an in-depth analysis of miscali-
bration caused by imbalanced data distribution and
the existing issues of using cross-entropy trained
models in practical settings. We also showed that
the hyperparameter γ, which theoretically controls
the entropy regularization term, is important to
model calibration. We studied the deployment of
an ML model in practical use cases and demon-
strated that better calibration helps to control the
precision-recall trade-off through posterior thresh-
olding and improves post-deployment metrics (in
an online A/B test).

Ethical Considerations

Development and Experiments. We used
anonymized text dialogue snippets to train the mod-

els. The particular model described in this work
has no way to reveal customer information. We do
not release the datasets used in the experiments.
Failure Modes. Regarding risks related to sys-
tem errors, incorrect predictions of the models de-
scribed in this work may result in wrong return
reason assignment. However, the practical risk re-
lated to such misclassification is limited, because
the customers interacting with the chatbot have an
option to talk to a human associate if they consider
the system doesn’t work as expected.

161

References
Ondrej Bohdal, Yongxin Yang, and Timothy

Hospedales. 2021. Meta-calibration: Meta-learning
of model calibration using differentiable expected
calibration error. arXiv preprint arXiv:2106.09613.

Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. 2016. End to
end learning for self-driving cars. arXiv preprint
arXiv:1604.07316.

Michael Buckland and Fredric Gey. 1994. The relation-
ship between recall and precision. Journal of the
American society for information science, 45(1):12–
19.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch,
Marc Sturm, and Noemie Elhadad. 2015. Intelli-
gible models for healthcare: Predicting pneumonia
risk and hospital 30-day readmission. In Proceed-
ings of the 21th ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1721–1730.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Morris DeGroot and Stephen Fienberg. 1983. The com-
parison and evaluation of forecasters. The Statisti-
cian.

Thomas Fischer and Christopher Krauss. 2018. Deep
learning with long short-term memory networks for
financial market predictions. European Journal of
Operational Research, 270(2):654–669.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International Conference on Machine
Learning, pages 1321–1330. PMLR.

Haibo He and Edwardo A. Garcia. 2009. Learn-
ing from imbalanced data. IEEE Transactions
on Knowledge and Data Engineering, 21(9):1263–
1284.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparametrization with gumble-softmax. In
International Conference on Learning Representa-
tions (ICLR 2017). OpenReview. net.

Kalevi Kilkki. 2007. A practical model for analyzing
long tails. First Monday.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. 2018.
Trainable calibration measures for neural networks
from kernel mean embeddings. In International
Conference on Machine Learning, pages 2805–2814.
PMLR.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollár. 2017. Focal loss for dense ob-
ject detection. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2980–
2988.

Wesley J Maddox, Pavel Izmailov, Timur Garipov,
Dmitry P Vetrov, and Andrew Gordon Wilson. 2019.
A simple baseline for bayesian uncertainty in deep
learning. Advances in Neural Information Process-
ing Systems, 32.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stu-
art Golodetz, Philip Torr, and Puneet Dokania. 2020.
Calibrating deep neural networks using focal loss.
Advances in Neural Information Processing Systems,
33:15288–15299.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? Ad-
vances in neural information processing systems, 32.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Mi-
los Hauskrecht. 2015. Obtaining well calibrated
probabilities using bayesian binning. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence (AAAI).

Alexandru Niculescu-Mizil and Rich Caruana. 2005a.
Predicting good probabilities with supervised learn-
ing. In Proceedings of the 22nd international con-
ference on Machine learning, pages 625–632.

Alexandru Niculescu-Mizil and Rich Caruana. 2005b.
Predicting Good Probabilities with Supervised
Learning. In Proceedings of the 22nd International
Conference on Machine Learning (ICML).

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In NeuIPS’19, pages 8024–8035.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Łukasz Kaiser, and Geoffrey Hinton. 2017. Regular-
izing neural networks by penalizing confident output
distributions. arXiv preprint arXiv:1701.06548.

John Platt et al. 1999. Probabilistic outputs for sup-
port vector machines and comparisons to regularized
likelihood methods. Advances in large margin clas-
sifiers, 10(3):61–74.

Cheng Wang, Sun Kim, Taiwoo Park, Sajal Choudhary,
Sunghyun Park, Young-Bum Kim, Ruhi Sarikaya,
and Sungjin Lee. 2021a. Handling long-tail queries
with slice-aware conversational systems. In ICLR
2021 Workshop on Weakly Supervised Learning.

Cheng Wang, Carolin Lawrence, and Mathias Niepert.
2021b. Uncertainty estimation and calibration with
finite-state probabilistic rnns. In ICLR.

162

Jize Zhang, Bhavya Kailkhura, and T Yong-Jin Han.
2020. Mix-n-match: Ensemble and compositional
methods for uncertainty calibration in deep learn-
ing. In International conference on machine learn-
ing, pages 11117–11128. PMLR.

163

Proceedings of EMNLP 2022 Industry Track, pages 164–170
December 9–11, 2020. ©2022 Association for Computational Linguistics

Unsupervised training data reweighting for natural language
understanding with local distribution approximation

Jose Garrido Ramas
Amazon Alexa AI

jrramas@amazon.com

Dieu-Thu Le
Amazon Alexa AI

deule@amazon.com

Bei Chen
Amazon Alexa AI

chenbe@amazon.com

Manoj Kumar
Amazon Alexa AI

abithm@amazon.com

Kay Rottmann
Amazon Alexa AI

krrottm@amazon.com

Abstract

One of the major challenges of training Nat-
ural Language Understanding (NLU) produc-
tion models lies in the discrepancy between the
distributions of the offline training data and of
the online live data, due to, e.g., biased sam-
pling scheme, cyclic seasonality shifts, anno-
tated training data coming from a variety of
different sources, and a changing pool of users.
Consequently, the model trained by the offline
data is biased. We often observe this problem
especially in task-oriented conversational sys-
tems, where topics of interest and the charac-
teristics of users using the system change over
time. In this paper we propose an unsuper-
vised approach to mitigate the offline training
data sampling bias in multiple NLU tasks. We
show that a local distribution approximation in
the pre-trained embedding space enables the
estimation of importance weights for training
samples guiding resampling for an effective
bias mitigation. We illustrate our novel ap-
proach using multiple NLU datasets and show
improvements obtained without additional an-
notation, making this a general approach for
mitigating effects of sampling bias.

1 Introduction

Production Natural Language Understanding
(NLU) models are typically trained on the offline
annotated data. Models learn from the offline data
to perform classification on the online live data in
production after the model being deployed.

The core of voice-controlled assistants, such as
Google Home, Amazon Alexa, or Siri, apply NLU
models to perform both intent classification and
slot labelling (Weld et al., 2021). For example,
the input utterance "set alarm at 9 am", would be
classified as "SetAlarmIntent" intent, and the slots
"9" and "am" would be labelled as Time.

In the deployed NLU systems, a distribution mis-
match between training and live data is common.
Some factors contributing to such a mismatch are

changes of the live data distribution over time (due
to, for example, new users or to seasonal changes),
and usage of data from other more or less unre-
lated tasks to enrich the training data, so called
out-of-domain data.

The issue with this mismatch in distribution be-
tween training and inference time is that models
learn a bias towards specific classifications that
is not existing at inference time. Even if the la-
bel distributions are matched, it is still possible
that the model will have biased performance, since
demographic and speech differences need not per-
fectly correlate with label distribution, resulting
in degraded accuracy and possibly unequal per-
formance across populations (Subramanian et al.,
2021). Thus, mitigation of this distribution mis-
match is an important step in the development of
models.

While a common approach of dealing with this
kind of bias is manual upsampling of classes in
the training data (Estabrooks et al., 2004), this ap-
proach is not always optimal, due to the complexity
and variation of natural language. Data of the same
class in a classification task often come from very
different forms of language, for example slang vs.
formal language. A simple upsampling based on
the classes does not mitigate differences in usage
of slang during inference time compared with the
training data.

Another difficulty in class based resampling is to
get the correct label distribution from the live data
in the case that it is missing ground-truth. For ex-
ample, when a model is deployed, its training data
will ideally match the distribution of the current
live data, since this is the data the model will be
applied to. This current live data distribution will
be more similar to recent live data, compared to
historical data. However, manually annotating data
to obtain the ground-truth labels takes time. Thus,
during deployment, the training data should match
the unannotated live data, and in this case it is only

164

feasible to use bias reduction methods which don’t
rely on manual annotation.

In this work we build on top of importance
weighting, which is an approach that has gained
traction in other machine learning fields, but until
now has found little attention on natural language
understanding. We propose a method to assign
weights to every individual utterance in a training
corpus based on observed live usage of the sys-
tem, by using utterances’ neighbourhood in the
embedding space. We choose to find the neigh-
bourhood of utterances with KNN and KMeans
(in the case of KMeans, each cluster is considered
a neighbourhood). We choose these methods due
to their easy interpretation: For example, in the
KMeans case, one can observe a cluster of utter-
ances, its frequency online and offline, and easily
understand why this specific pattern has a high or
small weight.

The two unsupervised re-weighting based on
KNN and KMeans are compared with two base-
lines: keeping the training data as it is (with the
distribution mismatch), and, on the other hand, a
semi-supervised intent-based approach, in effect
class up/down-sampling. We evaluate our methods
on both public data and in a deployed commercial
NLU system. In the public datasets, we simulate a
distribution mismatch by both introducing a label
mismatch and also combining different sources of
data with different distributions.

We show that the unsupervised approaches can
better mitigate certain kinds of sampling bias com-
pared to the intent-based approach, while also hav-
ing the advantage that we can perform re-weighting
of the training data without need of annotation:
thus our method is suitable for test data with
fast-changing distribution. Without the need for
any labeled data, our unsupervised approaches are
generic enough to be applicable to multiple differ-
ent natural language processing tasks.

2 Related Work

The problem of dealing with training data sam-
pling bias in machine learning is well studied. The
idea of adjusting training data distribution to meet
the distribution at inference time is discussed in
(Zadrozny, 2004), (Shimodaira, 2000) and (Dudík
et al., 2005). These methods however require esti-
mation of biased densities or selection probabilities,
which pose a challenge in the real world.

Similarly in (Grover et al., 2019), to deal with

Figure 1: Example of training (blue, left) and live data
(orange, left) with different distributions, as well as the
output of R-KNN resampling the training data (blue,
right). Darker points indicate higher weight.

bias in generative models, a classifier is learned to
distinguish the data distribution from the generative
model. This allows guidance of the generation of
additional data to better mimic the existing data.
In this work we extend on the work above towards
natural language understanding, and focus on the
real world problem in which the training data is
biased with respect to the unannotated real world
application data (live data).

In (Huang et al., 2006) unsupervised model-
agnostic importance weights for every training sam-
ple are computed. Our unsupervised approach dif-
fers from theirs in that we calculate the weights
based on the neighbourhood, which makes inter-
pretation of the individual weights easier in the case
of natural language data. A closer investigation of
importance weighting can also be found in (Cortes
et al., 2010) providing theoretical bounds, as well
as in the recent work of (Fang et al., 2020) that
looks specifically at the application of importance
weighting and weight estimation for deep learning
tasks. An important difference to these approaches
is that they focus on including importance weight-
ing directly into the learning of the models. In our
work we focus however solely on the underlying
data distribution of utterances, while keeping the
estimation model the same.

In contrast to importance weighting, another
common approach in real world applications is the
use of pure upsampling of training utterances for
certain classes, based on automatic labelling of the
live data. In (Estabrooks et al., 2004) the effect
of upsampling for certain underrepresented classes

165

is investigated, showing its effectiveness. On the
other hand looking at the class distribution alone
will also not reduce data bias as described in Sec 1,
making the requirement of an automatic way of
handling different kinds of distribution mismatch
more pronounced.

3 Utterance Weight Estimation

In this section, we describe our approach on how
to estimate the weight of each individual utterance
in offline training data based on a random sample
from online live data.

Let X represent the random variable of an ut-
terance from online live data, where X follows
some distribution PX , denoted as X ∼ PX . Let
Y be the random variable of true labels of X ,
where Y follows some distribution PY , denoted
as Y ∼ PY . Also, let X ′ and Y ′ be the corre-
sponding random variables of X and Y in offline
data, where X ′ ∼ PX′ and Y ′ ∼ PY ′ . The issue
we aim to resolve is that typically PX′ 6= PX and
PY ′ 6= PY .

Analysing the difference in distributions of ut-
terances PX and PX′ is particularly challenging in
NLP because the different surface forms of utter-
ances do not necessarily imply the semantic differ-
ence in classification tasks. However, due to the
advance of natural language embeddings, we are
now able to efficiently approximate the local distri-
butions over the semantic meanings of text which
allows the estimation of PX and PX′ . Specifically,
we propose to approximate the difference of local
distributions in offline and online utterances sum-
marized as follows:

1. Map all utterances of offline training and on-
line live data into the embedding space.

2. For every offline training utterance xi, es-
timate the local approximations of PX and
PX′ , denoted as P̂X and P̂X′ and compute the
weight using its neighbourhood utterances

wi =
P̂X(X = xi)

P̂X′(X ′ = xi)
.

3. Resample the utterance xi in offline training
data according to the weight wi.

3.1 Mapping utterances into embedding
space

Pre-trained BERT-based models sentence-level rep-
resentations do not guarantee that semantically sim-
ilar utterances will be close in the embedding space.

Thus, for the mapping of the text into the em-
bedding space, we use Sentence-BERT (Reimers
and Gurevych, 2019a), which modifies the original
BERT architecture via siamese and triplet network
structures to compute semantically meaningful em-
beddings which can be compared using several
functions such as cosine similarity or euclidean
distance.

3.2 Local Distribution Approximation

To mitigate the distribution mismatch we aim to de-
bias the local distribution of each training utterance
to match the live data distribution. Having embed-
ded utterances into the embedding space in the first
step, it is now possible to estimate the local neigh-
bourhood of text utterances by using the distances
in the embedding space. Then, we are able to de-
termine an approximation of the local distributions
PX and PX′ at some given utterance by looking at
the number of samples in this neighbourhood that
belong to either X or X ′. In the following we pro-
pose three different reweighting methods, which
differ on how the neighbourhood of each utterance
is defined: Reweighting K-Nearest-Neighbour (R-
KNN), Reweighting KMeans (R-KMeans) and, as
an additional method, an intent-based approach
(B-intent; effectively class up/down sampling).

R-KNN (Reweighting via KNN): The first lo-
cal approximation we discuss is based on k-nearest-
neighbours. We follow the standard procedure to
use K =

√
N with N being the total number of ut-

terances in training and the live sample combined.
We aim to determine the weight the individual

training utterance xi, by using a sample of embed-
ded training samples T and of live samples L. Let
KNN(x) be the set of K nearest neighbours to a
point x in the embedding space. We determine:

D
(i)
train =

⋃

e∈KNN(xi), e∈T
e

the set of all utterances that are part of both the
neighbourhood of a training utterance xi and the
training data. In a similar way we determine the
set of all utterances from the live traffic sample L
that fall into the neighbourhood of xi:

D
(i)
live =

⋃

e∈KNN(ui),e∈L
e

With these two sets, we approximate the probability
of having a training sample in this region of the

166

Figure 2: Pipeline for utterance reweighting. We combine many different sources of training data, and then assign
a high/low weight to each utterance depending on the recent, unannotated live data, which follows the most similar
distribution the data the model will be applied to (compared to, for example, historical annotated live data)

embedding space:

p(x ∈ T |neighbourhood(xi)) =
|D(i)

train|
|T |

And similarly we approximate the probability of
a live utterance x being seen in this region of the
embedding space as

p(x ∈ L|neighbourhood(xi)) =
|D(i)

live|
|L|

. The ratio of these two probability approximations
is the weight we assign to the utterance xi:

wi =
p(x ∈ L|neighbourhood(ti))
p(x ∈ T |neighbourhood(ti))

wi therefore indicates therefore how much more
likely it is that an utterance in a certain region is
part of the live traffic in comparison to being part
of the training data.

R-Kmeans (Reweighting via KMeans) An-
other way of approximating neighbourhoods is
with unsupervised clustering. In this case the train-
ing and live data are combined and then clusters
are computed in the embedding space. Then, the
neighbourhood is all utterances within the same
cluster. Thus, all utterances within a cluster obtain
the same weight. After having found the neigh-
bourhoodsD(i)

train andD(i)
live through clustering, we

follow exactly the same equations as above to com-
pute the weights. For simplicity we chose K-Means
clustering (MacQueen et al., 1967) and chose K as
K =

√
N . If the live data and the training data

came from the same distribution, it would be ex-

pected to find that, in each cluster i, D
(i)
train

D
(i)
live

≈ |T |
|L| .

After reweighting each utterance with a weight cal-
culated with R-KMeans, the above equality is true
on every cluster.

B-intent (Baseline via intent) As a baseline, we
reweight the data based on the label distribution.
The problem with this approach is it can’t address
latent distribution mismatches not directly related
to the labels, as for example formal and informal
language (see Sec 1). We train a classifier on the
biased training data to infer P̂Y , an approxima-
tion of PY , and we use P ′

Y as is known from the
annotated training data. We give each intent a
weight as: wintent = P̂Y (intent)

P ′
Y (intent) which is in line

with the description above for R-KNN, considering
the neighbourhood of an utterance to be made of
all utterances with the same label. As a result af-
ter reweighting the utterances of every intent with
the weight of their intent wintent, the labels of the
resampled data will follow P̂Y (intent).

3.3 Resampling the Training Data
With the computed weights for every training ex-
ample, we are now able to resample the training
data according to the live data distribution.

A weight < 1.0 means, that this training utter-
ance is less reflective of the live distribution, while
a weight > 1.0 reflects utterances more important
for matching the live distribution.

While there are different ways in the literature of
using this reweighting information, like (Fang et al.,
2020) and (Huang et al., 2006) using it directly
as part of the optimisation in the learning of the
machine learning model, we chose the most straight
forward of up- and down-sampling the utterances
directly in the training data. A toy example of
R-KNN resampling can be seen in Fig. 1.

4 Experiments

In our experiments we evaluated our methods on
multiple different NLU datasets to verify the feasi-

167

B-Bias B-intent R-KNN R-KMeans R-intent (rel) R-KNN(rel) R-KMeans (rel)
snips int 0.0164 0.0161 0.0162 0.0157 -1.82927 -1.21951 -4.26829
slurp int 0.1542 0.15 0.148 0.1462 -2.72374 -4.02075 -5.18807
snips utt 0.1329 0.13 0.1214 0.1258 -2.18209 -8.65312 -5.34236
slurp utt 0.34 0.3372 0.3324 0.3322 -0.82353 -2.23529 -2.29412

Table 1: Intent ("int") and utterance ("utt") error rates of the different methods in SLURP/ SNIPS datasets. Best
result in bold. Each experiment is run ten times, and the average is reported. Both absolute value and relative
change with respect to the first baseline is also reported.

bility of the approach.

4.1 Datasets
We tested our methods on a large commercial
voice assistant dataset, as well as in two public
ones: SLURP (Bastianelli et al., 2020) and SNIPS
(Coucke et al., 2018). In all these datasets, the NLU
task is intent classification and slot labelling. In the
commercial dataset case, data is de-identified.

The training and test data are manually anno-
tated, whereas the live data isn’t. In the commercial
voice assistant scenario, we take a sample of last
month’s unannotated live data as representative of
current usage of the system. The size of the sample
is the same as the offline training data. The anno-
tated live data (test data), is not available during
model deployment, but can be obtained afterwards
to estimate the performance of the method.

4.2 Bias simulation strategies
Most available natural language understanding
datasets are very well curated, with the test sets
closely resembling the distribution of the training
data. Thus, in the public datasets we simulate bias
that could occur in real world applications via two
different strategies on the training data:

Intent-based sampling bias: We introduce bias
in the label distribution in the following way: each
intent is assigned to either a low-sampling bucket
(with probaility 20%) or to a high-sampling bucket
(with probability 80%). The two intents that are
in common between SNIPS and SLURP tasks (re-
lated to weather and to music) are both assigned
to the low-sampling bucket. Finally, intents in the
low-sampling buckets are down-sized to 20% of
their original size, by randomly removing 80% of
utterances which are annotated as belonging to this
intent. The high-sampling intents are left as is.

Add OOD data: To introduce bias not directly
related to the labels, as well as mimic the real-life
scenario in which the training set is composed of
different data sources with different amounts of

noise, we also add, to each task, the training data
of the other task. That is, we add the SNIPS data
to the SLURP training set, and we add the SLURP
data to the SNIPS training set. Prior to adding the
data, we first produce machine-annotated labels for
the SNIPS utterances in the SLURP label space,
as well as labels to the SLURP utterances in the
SNIPS label space.

4.3 Experimental Setup

The embeddings were generated with paraphrase-
MiniLM-L6-v2 model part of (Reimers and
Gurevych, 2019a) sentence transformer model fam-
ily. This model is fine-tuned so that semantically
similar sentences are close in the embedding space
with respect to distance functions, including eu-
clidean distance (Reimers and Gurevych, 2019b).

To not leak information of the unseen test data
into the reweighting, we used the development data
for the distribution approximation.

For the resampling, we upsampled utterances
with a weight wi to frequency: ni = bwic + θ,
where θ is random variable that is 1 with p =
wi − bwic, and 0 otherwise. The expected value is
E[ni] = wi

We train a BERT model (Chen et al., 2019).
For hyperparameter tuning, we follow (Chen et al.,
2019), and use adam optimizer (Kingma and Ba,
2014) over 4 epochs, with a learning rate of 5e-
5 and batch size 32. We use the implementation
from (Wolf et al., 2019), with bert-base-uncased
pretrained model. We report f1-score on the test
data.

We compare our unsupervised approaches (R-
KNN and R-KMeans from Sec 3.2) with two base-
lines: B-Bias (baseline model trained on the biased
data) and B-Intent, baseline model in which the
biased data is up/down-sampled so that the label
distribution matches the live data (see Sec 3.2). The
BERT model described above is used to obtain the
hypothesised intent on the live data.

168

4.4 Results

Public datasets: The results of our experiments
can be seen in table 1. We report intent classifica-
tion error rate, as well as utterance error rate. We
define utterance error rate as the fraction of utter-
ances in which there is an error either in the slot
labelling or intent classification task.

Each experiment is run ten times, and the aver-
age error rate is reported. The difference between
both R-KMeans and the two baselines (B-intent
and B-bias) passes a two-sided paired t-test for
statistical significance at 95% confidence level.

The difference Between the R-KMeans and R-
KNN approaches is, however, not statistically sig-
nificant. R-KMeans has the advantage over R-KNN
of easier interpretation of the weights: one weight
is produced per cluster, instead of per utterance.
The clusters can manually be inspected, and, com-
paring the in-cluster frequency of the live and train-
ing data, understand why this cluster got a high/
low weight.

For example, we observe in our SNIPS run two
distinct clusters related to weather queries that get
different weights: the first one, related to questions
about specific weather events (such as snow or rain:
includes, for example, the utterance "is it snow-
ing in California". Using R-KMeans reweighting,
this cluster receives a weight of 1.04 (which can
be interpreted roughly as: this pattern of utterances
is equally frequent in the live data (development
SNIPS data in this case) as in the training data.
Thus, it does not need to be upsampled or down-
sampled.

However, a different cluster of weather queries
containing more general questions "what is the
weather forecast for Akers New Hampshire" re-
ceives a weight of 12: This cluster is 12 times less
frequent in the training data than in the live data.
Thus, this cluster is upsampled by 12.

Overall, in our experiments the two unsupervised
methods perform better than both intent-based re-
sampling and the baseline. A limitation of our
work, however, is that it requires live annotated
data to use as test data, to estimate the performance
post model deployment. Obtaining this data can be
a challenge in real-life applications.

Commercial dataset: On the commercial
dataset, we show that, in the case that the train-
ing data has a different distribution to the live
and test data, applying reweighting techniques
with local distribution approximation can improve

Intent Utterance
Overall -4.63 -1.99
Global -2.02 -1.29
HomeAutomation -13.77 -9.49
Knowledge -2.1 -2.17
ToDos -12.34 -3.99
Notifications -9.09 -6.29

Table 2: Relative reduction in error rates (both intent
and utterance) in the commercial dataset.

performance. We compare the results of apply-
ing reweighting on the training data vs. without
reweighting strategy and report the relative differ-
ences. We use R-KMeans reweighting, due to the
easier manual inspection of the assigned weights
(see Sec 3.2).

We report the relative difference in both intent
error rate and utterance-error rate. As shown in
Table 2, we see improvements in both utterance
and intent error metric, with the biggest coming
from Home Automation domain (13.77%), and an
overall improvement of 4.63% accross all domains.
The results with respect to the baseline passes a
two-sided paired t-test for statistical significance at
95% confidence level.

5 Conclusion and future work

In this work, we showed how the reweighting of
training data using local distribution approximation
helps in mitigating sampling bias in natural lan-
guage understanding production models. We simu-
lated the bias in public training datasets to mimic
real world application scenarios in which different
data sources are used, and they each come from
different distributions. We reweighted utterances
based on the approximation of local distribution to
minimise the mismatch between the training and
online live traffic data. The simplicity of our ap-
proach, and the fact that it does not require manual
or machine annotation, means that it can be used to
quickly adapt the training data to the ever-changing
live data in deployed models. Experiments in both
a commercial dataset and two public datasets have
shown that our approach can mitigate the mismatch
and bias in training data without additional manual
tuning. In the future, we want to experiment the
combined impact of our method with different data
augmentation techniques, study the impact on fair-
ness across populations, as well as bias detection
methods to trigger the reweighting model.

169

6 Ethical considerations

In this work we apply a reweighting method before
model deployment to mitigate the problem of bias
in the training data compared to the live data. We
target overall accuracy as the metric we aim to im-
prove, and we achieve so by tailoring the model
to the latest live data at model deployment. How-
ever, the impact of reweighting on per-population
accuracy has not been studied. There is a risk that,
due to focusing on current live data, populations
which at the time of a model deployment are not
extensively using the model are not well-served
by the reweighting, even though overall accuracy
improves.

References
Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojan-

ski, and Verena Rieser. 2020. SLURP: A spoken lan-
guage understanding resource package. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7252–7262, Online. Association for Computational
Linguistics.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Corinna Cortes, Yishay Mansour, and Mehryar Mohri.
2010. Learning bounds for importance weighting.
In Nips, volume 10, pages 442–450. Citeseer.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Miroslav Dudík, Steven Phillips, and Robert E
Schapire. 2005. Correcting sample selection bias in
maximum entropy density estimation. Advances in
neural information processing systems, 18:323–330.

Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz.
2004. A multiple resampling method for learning
from imbalanced data sets. Computational intelli-
gence, 20(1):18–36.

Tongtong Fang, Nan Lu, Gang Niu, and Masashi
Sugiyama. 2020. Rethinking importance weighting
for deep learning under distribution shift. arXiv
preprint arXiv:2006.04662.

Aditya Grover, Jiaming Song, Alekh Agarwal, Kenneth
Tran, Ashish Kapoor, Eric Horvitz, and Stefano Er-
mon. 2019. Bias correction of learned generative
models using likelihood-free importance weighting.
arXiv preprint arXiv:1906.09531.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt,
Bernhard Schölkopf, and Alex Smola. 2006. Cor-
recting sample selection bias by unlabeled data. Ad-
vances in neural information processing systems,
19:601–608.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. Cite
arxiv:1412.6980Comment: Published as a confer-
ence paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Nils Reimers and Iryna Gurevych. 2019a. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019b. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Hidetoshi Shimodaira. 2000. Improving predictive in-
ference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning
and inference, 90(2):227–244.

Shivashankar Subramanian, Xudong Han, Timothy
Baldwin, Trevor Cohn, and Lea Frermann. 2021.
Evaluating debiasing techniques for intersectional
biases. CoRR, abs/2109.10441.

Henry Weld, Xiaoqi Huang, Siqi Long, Josiah Poon,
and Soyeon Caren Han. 2021. A survey of joint in-
tent detection and slot-filling models in natural lan-
guage understanding. CoRR, abs/2101.08091.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

Bianca Zadrozny. 2004. Learning and evaluating clas-
sifiers under sample selection bias. In Proceedings
of the twenty-first international conference on Ma-
chine learning, page 114.

170

Proceedings of EMNLP 2022 Industry Track, pages 171–178
December 9–11, 2020. ©2022 Association for Computational Linguistics

Cross-Encoder Data Annotation for Bi-Encoder Based Product Matching

Justin Chiu Keiji Shinzato
Rakuten Institute of Technology

Rakuten Group Inc.
{justin.chiu, keiji.shinzato}@rakuten.com

Abstract
Matching a seller listed item to an appropriate
product is an important step for an e-commerce
platform. With the recent advancement in deep
learning, there are different encoder based ap-
proaches being proposed as solution. When
textual data for two products are available,
cross-encoder approaches encode them jointly
while bi-encoder approaches encode them sep-
arately. Since cross-encoders are computation-
ally heavy, approaches based on bi-encoders
are a common practice for this challenge. In
this paper, we propose cross-encoder data anno-
tation; a technique to annotate or refine human
annotated training data for bi-encoder models
using a cross-encoder model. This technique
enables us to build a robust model without an-
notation on newly collected training data or fur-
ther improve model performance on annotated
training data. We evaluate the cross-encoder
data annotation on the product matching task
using a real-world e-commerce dataset contain-
ing 104 million products. Experimental results
show that the cross-encoder data annotation
improves 4% absolute accuracy when no an-
notation for training data is available, and 2%
absolute accuracy when annotation for training
data is available.

1 Introduction

Product matching refers to the task of determining
whether two different entries in the product catalog
refer to the same real-world product. It is a core
task for an e-commerce company where product
catalog entries come from different sources and du-
plicates need to be identified and managed. There
are two popular types of deep learning models that
had been applied to the recent product matching
work; cross-encoder (Li et al., 2020; Peeters et al.,
2020) and bi-encoder (Shah et al., 2018; Tracz et al.,
2020). Figure 1 depicts the architectures to demon-
strate the difference between two models. When
you have textual data for two products such as title
pairs, the cross-encoder encodes them jointly, and

26

Knowledge Distillation from Cross-Encoder to Bi-Encoder

BERT

CLS title A CLS title B

CLS CLS

Score

Similarity

BERT

CLS title A SEP title B

Score

CLS

Classifier

BERT

Bi-encoder Cross-encoder

Figure 1: Bi- and cross-encoders using BERT.

the interaction between the two occurs through all
encoder layers. The bi-encoder encodes both of
them separately and there is no interaction between
them until computing similarity.

The cross-encoder can capture more context due
to its more complex interaction between the two
inputs of data. However, because of its complex-
ity, the model requires much more computational
resources and time. A previous work (Reimers and
Gurevych, 2019) reported that it takes 65 hours
to find the most similar pair from a collection of
10,000 sentences using the cross-encoder (which
requires us building 100,000,000 pairs for cross-
encoder to process), while it only takes 5 seconds
to encode all 10,000 sentences and compute co-
sine similarity for every possible pairs using the
bi-encoder; that is 46,800 times difference in pro-
cessing time. Since an e-commerce platform could
easily have millions of products in its product cat-
alog, such a volume will be a great challenge to
use an approach that requires lots of computing
resources, such as the cross-encoder. As a result,
the bi-encoder is more viable for product matching
in actual production systems.

In this paper, we propose cross-encoder data an-
notation, which is a technique that benefits from
both model architectures. We first apply a cross-
encoder on training data for a bi-encoder, and then
train a bi-encoder using the data with high predic-
tion scores from the cross-encoder. This process

171

is a way to utilize the knowledge learned in the
cross-encoder to support the bi-encoder training.
This approach is inspired by knowledge distilla-
tion (Hofstätter et al., 2020), where information
learned by the cross-encoder is passed to the bi-
encoder through the loss function. This can also
be considered as a semi-supervised approach for
product matching, where the new data is unlabeled.

In this paper, we make three major contributions.
First, we demonstrate that our cross-encoder data
annotation is effective for the product matching
task on a real-world e-commerce dataset. Select-
ing the subset that both cross-encoder prediction
and human annotation consider positive can train a
better performance model in comparison to base-
line. This can happen in an e-commerce company
where different existing trained models are avail-
able for research purposes and new data are coming
in. When building a model with the human anno-
tated new data, our approach is applicable.

Second, we show that even when the human
annotation of the bi-encoder training data is not
available, we can use the prediction result from the
cross-encoder as the data annotation, and build a
model that performs better than a model based on
product search results. This scenario can happen
when reliable annotation for the new data is not
available, and we can use the prediction of the
cross-encoder to replace human annotation.

Finally, from the first contribution, we get to
train a better model with less training data. This is
not a common practice in deep learning since more
training data is usually preferred. Our analysis
shows that through the cross-encoder data anno-
tation, we focus our training data on less queries.
Since the bi-encoder tries to learn the difference
between the two, the cross-encoder data annotation
removes extreme samples in training data, which
acts similarly to noise removal.

2 Product Matching

Given a product entry, a system is required to find
entries in a product corpus that represent the same
product, despite that the content in the entries are
different. A product entry contains a set of informa-
tion for a specific product, such as title, description,
image, or categories. The multiple entries for the
same product can be created by different vendors
using the same e-commerce system. Assuming that
our product corpus C contains M product entries
for N different products C = {p1, p2, p3..., pM},

when given a query product pq, we want to find a
target product pt that matches the query product in
the corpus. The product corpus can be the product
database for a deployed e-commerce system, which
means the corpus size can easily contain over tens
of millions of product entries.

We consider product matching as an informa-
tion retrieval problem. We learn the similarity be-
tween the product entries, and use the similarity
between query product pq and target product pt
to decide whether two product entries are for the
same product. This approach does not have to re-
train the model every time the number of products
N changes. By increasing theN in the product cor-
pus C, we can increase the coverage of our product
matching system.

3 Real-World E-Commerce Scenario

As a solution to the real-world product matching,
there are two different types of approaches. The
first is an approach based on a bi-encoder and an-
other is based on a cross-encoder. We refer to
the bi-encoder as known bi-encoder, and the cross-
encoder as known cross-encoder. These known
models require annotated data, which can be con-
sidered as the system that already exists in the e-
commerce platform or systems that researchers de-
velop as a proof-of-concept.

Each time a new item is received, sellers on the e-
commerce platform upload the product data to the
product database. Since the uploaded data some-
times contain incorrect information, a business unit
in the e-commerce company periodically inspects if
product data is correct. These inspection results can
be regarded as human annotated data. Therefore,
regardless of the annotation, new data is accumu-
lated in the e-commerce platform. To incorporate
the latest product information into a production sys-
tem, we want to build a new bi-encoder using the
new data. We exploit the known bi-encoder and
known cross-encoder to train the new bi-encoder
effectively, which is our key contribution for this
work.

In the rest of this section, we describe the known
bi-encoder, the cross-encoder, and how to train the
new bi-encoder using these existing models.

3.1 Known Bi-Encoder

The known bi-encoder serves as a simple search
engine to create training data for the known cross-
encoder and new bi-encoder. We train the known

172

bi-encoder using triplet loss and in-batch negative,
as reported in previous work (Karpukhin et al.,
2020) for the open-domain Question Answering
(QA) task. One key difference from the previous
work is that we use one encoder to encode product
title pairs although the bi-encoder for the QA task
requires two different encoders, one to encode the
question, and another to encode potential answer
passages. We use BERT (Devlin et al., 2019) as
an encoder, and regard the embeddings of [CLS]
token as a representation of the given product title.

After training the bi-encoder, we encode our en-
tire product corpus with the trained model, and then
index them using FAISS (Johnson et al., 2019) of-
fline. FAISS is an open-source library for similarity
search that can be easily applied onto billions of
vectors. After we have our entire corpus indexed,
whenever we received a new query product, we can
encode it with the same model and retrieve top k
product titles from the FAISS index that are clos-
est to the encoded query in the product embedding
space.

3.2 Known Cross-Encoder
The known cross-encoder serves as a complex
model you can built from the annotated training
data to capture the most contextual information
between product pairs. We employ BERT as an
encoder, and put a classifier layer on the top of
BERT. We convert product title pairs in the form of
[CLS] Title 1 [SEP] Title 2. We regard the
embeddings of [CLS] token obtained from BERT
as a representation of the title pairs, and feed it to
the classifier layer to judge if both titles refer the
same product.

3.3 New Bi-Encoder
The new bi-encoder is the model we want to build
when new data becomes available. The new data
might come with reliable annotations or not, yet
we still want to train model from it so our model
can capture the most up to date information.

To train the new bi-encoder, we first retrieve rel-
evant products for each query product using the
known bi-encoder, and then apply the known cross-
encoder to product pairs constructed from query
and relevant products. For the pairs that the known
cross-encoder predicts as matching pairs, we an-
notate positive pairs as training data. We call this
approach cross-encoder data annotation. When
using the cross-encoder data annotation, no human
annotations for this training set are required, which

we believe will be a convenient scenario in a real-
world, large-scale setup. Similarly to the known
bi-encoder, after training the new bi-encoder, we
index the entire product corpus using the model
and FAISS.

When building the new bi-encoder, in the ideal
scenario, annotation of the training data will be
accurate and available so we can simply use the
human annotations to decide what are the matching
pairs. We can further improve the quality of hu-
man annotation by using the known cross-encoder
to annotate the same data, and then use the inter-
section of both sets as positive training data. This
will lead to a smaller training set than human an-
notation. However, there could be situations where
such high quality human annotations are not avail-
able. As such, we directly use the set annotated by
the known cross-encoder as positive training data.

4 Experiments

Our experiments are focused on the new bi-encoder.
There are two main scenarios for our experiments,
depending on whether the human annotations of the
new products are available. For each scenario, we
compare the experimental result with and without
the cross-encoder data annotation. When the hu-
man annotations of the new products are available,
we intersect human annotations with cross-encoder
data annotations to improve the quality of train-
ing data. When the human annotations of the new
products are not available, we use the cross-encoder
data annotation for model training.

In future work, we will compare the new bi-
encoder with a bi-encoder model trained with all
query products used for training the known bi-
encoder, known-cross encoder, and the new bi-
encoder. The reason why we skip this compari-
son is that the goal of our experiments is to see
how changing the annotation of the same data such
as doing intersection with other annotations can
improve models.

4.1 Dataset

Our experiments are based on our in-house dataset.
The dataset contains product entries that are cre-
ated by sellers on our e-commerce platform, and
each entry consists of product ID,1 title and descrip-
tion written in Japanese. The entries that refer the
same product have the same product ID. The total
number of products is 104 million. We regard this

1More precisely, it is a global trade item number (GTIN).

173

Parameter Cross-encoder Bi-encoder

Batch size 128 128
Max seq. length 256 64
Learning rate 1e-05 1e-05
Temperature n/a 1.0
Warmup rate 0.1 n/a
Vocabulary size 32,000 32,000
Max epoch 10 20

Table 1: Hyper-parameters for each model.

dataset as the product corpus. We only use the title
in the product entry for model training. This avoids
the mismatch where some sellers provide rich prod-
uct descriptions while others provide limited or no
descriptions.

4.2 Model

As encoders for cross- and bi-encoder models, we
adopt BERT base (Devlin et al., 2019) in Japanese
from Huggingface2 and use its tokenizer to seg-
ment product titles into sub-words. We convert all
characters in the titles into full-width before the
segmentation. The average length of a product title
is 27 sub-words.

The hyper parameters we used for training are
reported in Table 1.

4.3 Training

To train the known bi-encoder, known cross-
encoder, and new bi-encoder, we use three unique
sets of 110K products as query products. We se-
lected these query products from the results of busi-
ness operation provided from a business unit in the
company. Each query product has a product ID that
the business unit assigned through the operation.
There is no overlap of the product IDs within the
three sets of the query products. We use 100K of
the products as a training set and 10K products as
a development set.

4.3.1 Known Bi-Encoder
For each entry in the first set of 110K query prod-
ucts, we randomly select a product title in the cor-
pus having the same product ID, and we use these
selected pairs as positive pairs for training. For neg-
ative pairs, we adopt the in-batch negative strategy
proposed by Karpukhin et al. (2020).

2https://huggingface.co/cl-tohoku/
bert-base-japanese

4.3.2 Known Cross-Encoder
The known cross-encoder is trained on the second
set of 110K query product titles. We search these
110K product titles on the product corpus with the
known bi-encoder to collect top 50 products for
each query. This creates 5.5 million pairs of prod-
uct titles, including both positive and negative pairs.
Five million pairs are used as training data and
the rest as development data. We randomly select
2.56 million pairs from the five million pairs and
build the known cross-encoder. The benefit for con-
structing training pairs following this approach is
to incorporate hard negative pairs into the training.
Since hard negative pairs are similar in text, but do
not refer to the same product, we can expect that
the model learns the difference between products
such as differences in product color.

4.3.3 New Bi-Encoder
The new bi-encoder is built on the third set of 110K
query product titles and is the main focus of this
paper. The set is similar to the situations where new
products come into the product corpus. We want
to build the bi-encoder using these new data. The
new bi-encoder is built differently depending on
whether the annotation for the new data is available.

When Available For each query product, we
search the product corpus with its title using the
known bi-encoder and collect the top 50 products.
After collecting the top 50 products, we first use our
human annotation to create training pairs based on
all matching according to the annotation between
the query product title and the retrieved product
titles. This setup creates 113,374 training pairs
that we called human annotated training pairs. We
then use the known cross-encoder to predict all the
product pairs in the top 50 retrieved results. For all
the pairs that the known cross-encoder predicted as
a match, we called them cross-encoder annotated
training pairs, which have 107,059 pairs. Lastly,
we perform an intersection on the human annotated
training pairs and the cross-encoder annotated train-
ing pairs to utilize the knowledge in both pairs.

As a result, we obtain 84,688 training pairs
which we called intersection pairs. The bi-encoder
trained with the intersection pairs is our proposed
approach for this scenario.

When Not Available The bi-encoder trained
with the cross-encoder annotated training pairs is
our proposed approach.

174

Training data Accuracy

Human (baseline) 0.7356
Intersection (ours) 0.7575

Table 2: Results when new data annotation is available.

4.4 Baselines

We prepare different baselines depending on
whether the annotation for the new data is avail-
able. When the annotation is available, the model
trained with the human annotated pairs is a base-
line. On the other hand, when the annotation is not
available, we first search the query product titles on
product corpus with the known bi-encoder. We still
collect the top 50 retrieved results. However, since
the annotation is not available, we only use all the
top 1 retrieved results for every query product to
create product pairs for training the baseline. Since
we have one pair per query, we will have 100,000
training pairs in this setup. We call this dataset top
1 product pairs.

4.5 Evaluation

We select 9,991 products from the operation results,
and use them as evaluation data. The data has
less than 2% overlap between each of the 110K
product sets described above. This set can help us
understand whether our models can be effective to
the product that is not in our training data.

For the evaluation, we chose a model with the
lowest loss value on the development set. The eval-
uation measure is the top 1 accuracy of the search
result. We check if the top 1 retrieved product and
the query product are the same product.

4.6 Results

Tables 2 and 3 show the results for using our cross-
encoder data annotation. When the annotation of
training data is available, we can further refine the
quality by conducting an intersection between the
human annotation and the cross-encoder data an-
notation. Since the human annotated training pairs
is larger than the intersection pairs, we can also
observe that more training data does not guarantee
better performances. When the annotation is not
available, we can see that the model with the cross-
encoder data annotation outperforms the baseline,
which relies on the retrieval approach, to form pos-
itive training data. Our cross-encoder annotation
result is also slightly better than the human annota-

Training data Accuracy

Top 1 product pairs (baseline) 0.6985
Cross-encoder (ours) 0.7423

Table 3: Results when new data annotation is not avail-
able.

Training data # of query products

Human 46,160
Cross-encoder 42,186
Intersection 36,872

Table 4: Number of query products in different training
data.

tion result. This could be caused by the randomness
on the training data, or our cross-encoder annota-
tion is focused on lesser queries, which will be
discussed in the section 5.1.

5 Analysis

Since our experiments use the identical modeling
approach, we focus on understanding the compo-
sition of training data and how such differences in
training data affects the prediction performance.

5.1 Analysis of Training Data

We studied how many matching pairs are created
for each query. In the retrieval phase, since we use
every matching pair available, it is possible to have
multiple matching pairs for a single query product.
Table 4 shows the number of query products in each
set. Note that although we have 100K query prod-
ucts to search the corpus to form query pairs, we
only have positive product pairs constructed from
46K product queries in the human annotation. This
is because there are query products that the known
bi-encoder does not return matching products in the
top 50 results. Those query products cannot form
any training pairs. As such, even if the human anno-
tation training data have 113K pairs, they are from
46K distinct products. The number of query prod-
ucts dropped to 42K for the cross-encoder training
pairs, and further lowered to 36K for the intersec-
tion of both sets. This reduced number of queries
makes training process focus on the product pairs
that are relatively easy to judge as the same product.
In other words, removing some extreme training
instances is effective to train better models, and it
might work similar to removing data noise. A set

175

Title 1 Title 2

【１ケース】ファンタグレープ　１６０ｍ
ｌ缶

【送料無料】　コカ・コーラ　ファンタグ
レープ　１６０ｍｌ缶　３０入　果汁ブレン
ドのフルーティーなおいしさ　果汁１％配合
　【コカコーラからお客様へ直接お届けしま
す】【代引不可】

[1 case] Fanta Grape 160 ml Can [Free Shipping] Coca-Cola Fanta Grape 160 ml
Can 30 Packs Fruity Taste of Fruit Juice Blend
Contain 1% Fruit Juice [From Coca-Cola to you
directly] [Cash on delivery is not available]

Table 5: Example of a positive title pair removed by the intersection process (top) and its translation (bottom).

Type # of pairs

Both incorrect 2,227
Only human correct 196
Only intersection correct 414
Both correct 7,154

Table 6: Number of title pairs in the test set for each
correct/incorrect type.

of less diverse training data could model the most
common difference between the two product titles
and contribute to better performance.

Table 5 shows an example of a positive product
title pair removed by the intersection process. Even
though they refer to the same product, and the iden-
tical product name (i.e., Fanta Grape) also shows
up in both titles, we can observe the differences
in both titles. In addition to the product name, the
product title 2 contains extra descriptions such as
a manufacturer name, a quantity, and shipping in-
formation. Learning from pairs with unbalanced
product information might impact the effectiveness
of features such as manufacturer names and quanti-
ties, which affects the overall performance of the
trained model. We can expect that the intersection
process removes such unbalanced pairs from the
training data.

5.2 Analysis of Prediction Results

Table 6 shows the numbers of title pairs in the
test set when we categorize the pairs according to
the judgment results of the human and intersection
models. From the table we can see that the number
of the pairs in “Only intersection correct” is two
times larger than that in “Only human correct.” To
see what kind of product pairs in the test set the

0

0.2

0.4

0.6

0.8

1

[1, 1999] [2000, 3998] [3999, 5997] [5998, 7996] [7997, 9991]
Ranking of query items in the test set

Both incorrect Only intersection correct

Only human correct Both correct

Figure 2: Ratio of correct and incorrect predictions of
each model at each range. The x-axis shows the ranges
of ranking when we sort title pairs in ascending order
according to the distance returned from FAISS for the
human annotation model. The title pair with shorter
distance is at higher ranking.

cross-encoder data annotation effectively works,
we investigate squared Euclidean (L2) distance be-
tween two product titles returned from FAISS for
our human annotation model. We first sort the
title pairs in ascending order according to the dis-
tances returned from the human annotation model,
and then categorize the title pairs into five ranges
equally. After that, for each pair in each range, we
check if the prediction of the intersection model is
correct.

Figure 2 shows the ratio of correct and incorrect
predictions of each model at each range. From
the figure, we can observe that the portion labeled
“Only intersection correct” gets larger as the rank-
ing gets lower, and is always larger than the portion
of “Only human correct.” This means that our in-

176

tersection model has improvement on the subset
of pairs that are far in distance in the embedding
space created by the human annotation model.

5.3 Analysis for Continuous Improvement

As new data keep coming into the system in the
real-world e-commerce scenario, we can continu-
ously improve our models by integrating the train-
ing data of new model into the training data of
known models. However, given the training data
of updated cross-encoder model has more negative
pairs comparing with positive pairs, this updated
might have class imbalance issue where it will be
mostly negative pairs. This can be addressed by
setting a threshold during training data updates to
ensure certain percentage of pairs that need to be
positive pairs, and ensure the proper class balance
in the updated training data.

6 Related Work

Product matching is a fundamental task for an e-
commerce platform. Given the text in product en-
tries, we want to match it to a specific product so
duplicates can be identified. Earlier works tried to
solve it by extracting defined product attributes and
perform matching based on the extraction results
(Mauge et al., 2012; Ghani et al., 2006).

Recently, more efforts have shifted toward focus-
ing on text (Shah et al., 2018; Tracz et al., 2020).
This avoids the need of doing attribute extraction
and can directly be used on product titles and de-
scriptions. There are two main directions for these
efforts. One is considering the product matching
task as an extreme classification problem, and an-
other considering it as a zero-shot learning prob-
lem. As an extreme classification problem (Shah
et al., 2018), the paper built a multi-class classi-
fier that categorizes each input product informa-
tion into a class, whereas each class represents a
different product. The challenge is how to man-
age a multi-class classifier with several millions
of classes, and the need to retrain the classifier ev-
ery time a new product has entered the database.
On the other hand, when considering a zero-shot
learning problem, it focuses on learning the differ-
ence between the product texts (Tracz et al., 2020;
Xiong et al., 2020). This makes it easier to apply
the model on new products and more ideal in a pro-
duction scaling environment. Both cross-encoder
and bi-encoder had been used for solving product
matching as a zero-shot learning problem. How-

ever, the computational complexity of the cross-
encoder makes it hard to scale millions of items.
For the bi-encoder models, different loss functions
(Reimers and Gurevych, 2019; Tracz et al., 2020)
had been applied to the task but the approaches are
fundamentally similar.

In addition, there are several works in different
domains that inspired our paper. Knowledge dis-
tillation (Hofstätter et al., 2020) is proposed to let
a teacher model instruct a student model through
learning. While their focus is on training, we ap-
plied similar ideas for data annotation. The bi-
encoder approach for retrieval was also used in
the open-domain QA task (Karpukhin et al., 2020;
Yamada et al., 2021). Though we do not need
two separate encoders for the question and answer
separately, the retrieval task is still similar in im-
plementation. There are also works (Luan et al.,
2021) focused on analysis representation for text
retrieval. Our cross-encoder and bi-encoder models
also use the difference in the representation created
by different encoder for the product matching task.

7 Conclusion

We demonstrated that we can use a cross-encoder
to provide data annotation and to improve product
matching performance on a bi-encoder. While such
an approach can be useful when human annotation
for new data is not available, it can also improve the
quality of human-annotated data by conducting in-
tersection. Our empirical analysis suggests that the
intersection of our cross-encoder annotation and hu-
man annotation creates more focused training data
that improves the quality of the product embedding
space. As a result of this annotation technique,
we obtained a new way to improve human annota-
tion quality or building bi-encoder model without
human annotation for product matching.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

177

4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema,
and Andrew Fano. 2006. Text mining for product
attribute extraction. ACM SIGKDD Explorations
Newsletter, 8(1):41–48.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury. 2020.
Improving efficient neural ranking models with cross-
architecture knowledge distillation. arXiv preprint
arXiv:2010.02666.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan,
and Wang-Chiew Tan. 2020. Deep entity matching
with pre-trained language models. arXiv preprint
arXiv:2004.00584.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of the
Association for Computational Linguistics, 9:329–
345.

Karin Mauge, Khash Rohanimanesh, and Jean-David
Ruvini. 2012. Structuring E-commerce inventory.
In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 805–814, Jeju Island, Korea.
Association for Computational Linguistics.

Ralph Peeters, Christian Bizer, and Goran Glavaš. 2020.
Intermediate training of bert for product matching.
small, 745(722):2–112.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Kashif Shah, Selcuk Kopru, and Jean-David Ruvini.
2018. Neural network based extreme classification
and similarity models for product matching. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 3 (Industry Papers), pages 8–15, New Orleans
- Louisiana. Association for Computational Linguis-
tics.

Janusz Tracz, Piotr Iwo Wójcik, Kalina Jasinska-
Kobus, Riccardo Belluzzo, Robert Mroczkowski,
and Ireneusz Gawlik. 2020. BERT-based similar-
ity learning for product matching. In Proceedings
of Workshop on Natural Language Processing in E-
Commerce, pages 66–75, Barcelona, Spain. Associa-
tion for Computational Linguistics.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi.
2021. Efficient passage retrieval with hashing for
open-domain question answering. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 979–986, Online.
Association for Computational Linguistics.

178

Proceedings of EMNLP 2022 Industry Track, pages 179–188
December 9–11, 2020. ©2022 Association for Computational Linguistics

Deploying a Retrieval based Response Model for Task Oriented Dialogues

Lahari Poddar ∗ Gyuri Szarvas ∗ Cheng Wang

Jorge Balazs Pavel Danchenko

Amazon
{poddarl, szarvasg, cwngam, jabalazs, danchenk, peernst}@amazon.com

Patrick Ernst

Abstract

Task-oriented dialogue systems in industry
settings need to have high conversational ca-
pability, be easily adaptable to changing sit-
uations and conform to business constraints.
This paper describes a 3-step procedure to
develop a conversational model that satis-
fies these criteria and can efficiently scale
to rank a large set of response candidates.
First, we provide a simple algorithm to semi-
automatically create a high-coverage template
set from historic conversations without any an-
notation. Second, we propose a neural archi-
tecture that encodes the dialogue context and
applicable business constraints as profile fea-
tures for ranking the next turn. Third, we de-
scribe a two-stage learning strategy with self-
supervised training, followed by supervised
fine-tuning on limited data collected through
a human-in-the-loop platform. Finally, we de-
scribe offline experiments and present results
of deploying our model with human-in-the-
loop to converse with live customers online.

1 Introduction

A Task Oriented Dialogue (TOD) system aims to
accomplish specific tasks such as hotel reserva-
tion (Budzianowski et al., 2018), flight booking,
customer support (Moore et al., 2021) and so on.
An end-to-end TOD system directly takes a multi-
turn dialogue context as input and predicts the next
response with a single model (Wen et al., 2016).
These can be developed using either retrieval-
based approaches (Tao et al., 2021; Chen et al.,
2017) where the model ranks a response from a
pre-constructed response pool; or generative ap-
proaches where a response is sequentially gener-
ated with encoder-decoder architectures (Serban
et al., 2017; Sordoni et al., 2015). Although gen-
erative models are widely studied in literature for
dialogue systems (Hosseini-Asl et al., 2020; Yang

*These authors contributed equally

(a) V0: Response Ranking with Poly-Encoder

(b) V1: Response Ranking with Shared Bert

Figure 1: Production Ranking Models. The dialogue
history, response and profile features are encoded with
transformers (top) or using a shared Bert. Cross-
attention layers learn the semantic correlation between
history, features and candidate response. A score func-
tion computes and ranks candidate responses.

et al., 2021) as they are capable to generate free
text, it is nearly impossible to provide guarantees
on the style, quality and privacy risks for their real-
world applications.

In this work, we focus on the development and
179

deployment of a retrieval-based conversational
system for an online retail store, in the customer
service domain.

Our main contributions are:

1. We design a simple yet effective algorithm
for generating a large, representative re-
sponse pool from un-annotated dialogues and
show that it can achieve high coverage for
handling natural language conversations.

2. We present an approach which combines self-
supervised training (from human-human con-
versations) and supervised fine-tuning (from
human-in-the-loop interactions) for learning
dialogue models in real industry settings.

3. We enhance state-of-the-art Poly-Encoders
architecture for retrieval based dialogue sys-
tem, incorporating multi-modal information
from dialogue text, and non-textual features
associated with the order and the customer.

4. We present a breakdown of development and
deployment stages of the conversational sys-
tem from offline evaluation –> controlled
human-in-the-loop setting –> fully online on
live traffic with real customer contacts.

2 Related Work

Retrieval-based dialogue systems (Tao et al.,
2021) involve single- and multi-turn response
matching (Chen et al., 2017; Lu et al., 2019;
Henderson et al., 2019; Gu et al., 2020; Whang
et al., 2020; Poddar et al., 2022; Xu et al., 2021;
Vig and Ramea, 2019). The selection of an ap-
propriate response is usually based on comput-
ing and ranking the similarity between context
and response. Two popular model architectures
for such similarity computation between inputs,
is Cross-encoders (Wolf et al., 2019), which per-
form full self-attention over a given input and label
candidate; and Bi-encoders (Dinan et al., 2018),
which encode the input and candidate separately
and combine them at the end for a final repre-
sentation. Bi-encoders have the ability to cache
the encoded candidates, and reuse their represen-
tations for fast inference. Cross-encoders, on the
other hand, often achieve higher accuracy but are
prohibitively slow at test time. A recent method,
Poly-encoders (Humeau et al., 2019), combines
the strengths from the two architectures, and al-
lows for caching response representations while

100 200 300 400 500 600
Number of Templates

22

24

26

28

30

32

34

36

S
co

re

BLEU
Upper Bound

Figure 2: Template coverage on general conversations
for Return Refund intent. Upper bound is established
by adding templates to the pool based on human expert
suggestions through several months of active use.

implementing an attention mechanism between
context and response for improved performance.
Transformer-based architectures (Vaswani et al.,
2017; Devlin et al., 2019) are widely used to en-
code information in TOD systems. For instance,
TOD-BERT (Wu et al., 2020) incorporates user
and system tokens into the masked language mod-
eling task and uses a contrastive objective func-
tion to simulate the response selection task. In this
work, we also adapt the Transformer architectures
and enhance Poly-Encoders to encode conversa-
tional history, response and profile features.

3 Response Pool Creation

We semi-automatically extract a broad template
pool from a large number of anonymized human
dialogues. We first select the template texts from
human responses in actual dialogues. This ensures
that the bot language conforms to the desired style.

Our primary selection criteria for response can-
didates are frequency and novelty. We iteratively
select sentences that are (1) most frequently used
in human dialogues, and (2) contain information
different from already selected responses (detailed
algorithm in Appendix A). This directly maxi-
mizes the dialogue model’s coverage, as measured
by the fraction of contexts for which the model has
a suitable response in the pool. An alternative ap-
proach would have been clustering frequent sen-
tences and selecting a representative for each clus-
ter (Hong et al., 2020) as templates. We instead
opted for the deterministic procedure which is
more intuitive for ingesting prior linguistic knowl-
edge and provides interpretability.
Quantitative Evaluation of Coverage: Figure 2

180

shows the BLEU score by aligning the best match-
ing templates to unconstrained human-human dia-
logues. As can be seen, with the growing size of
the template pool, the BLEU score approaches this
upper bound, proving that the proposed approach
can achieve strong conversational capacity. Simi-
lar to (Swanson et al., 2019), we see that a set of
500 − 1k sentences can achieve good coverage of
domain-specific conversations.

Template Decorations: We enhance the tem-
plates through attaching metadata, like calls to
external APIs and constraints on profile features.
For example, a template ‘I have issued a re-
fund to your credit card’, will have an action
that triggers an API call for issuing the refund.
Through profile feature constraints
we enforce consistency requirements on the dia-
logue, for example, filtering out the above tem-
plate if an order is not eligible for refund. This
establishes guarantees that the bot is always con-
sistent with business policies.

4 Model Architecture

We represent a dialogue Di = {a1, u1, . . . , an}
as a set of user (ui) and agent (ai) turns. While
conversing with a user, agents look up information
related to the particular order and item to deter-
mine applicable business policies and constraints.
This may include item category, its delivery sta-
tus, whether it was already refunded, among oth-
ers; we encode these as categorical features.

We create multiple input-output tuples by split-
ting a complete dialogue transcript at each agent
turn (e.g. at turn k). The model learns to pre-
dict the next agent response (ak) given the di-
alogue history so far and the features that en-
code item level, customer level information and
applicable policies. We flatten the history into
a single sequence by concatenating all agent and
user turns (xh). We introduce two marker tokens
[AGENTSTART] and [USERSTART] to mark the
beginnings of an agent and user turn respectively.
The features are also represented as a sequence,
where each feature is encoded as a key_value pair
(xf).

Figure 1 presents the overall architecture of
our proposed ranking model extended from Poly-
Encoder (Humeau et al., 2019). We use sepa-
rate transformers (Vaswani et al., 2017) as encoder

blocks (M) for all inputs and encode them as:

vh =Mh(xh),vh ∈ RLh×d (1)

vf =Mf (xf),vf ∈ RLf×d (2)

vr =Mr(xr),vr ∈ RLr×d (3)

where d is the dimension of the output vector, and
Lh, Lf , Lr are maximum sequence lengths of his-
tory, features and responses respectively, and xr is
the target response.

Over the sequences we apply self-attentions to
obtain latent representations. We represent the re-
sponse using a single vector zr ∈ Rd. For the
multi-turn dialogue context and feature sequence
we learn mh and mf representations, respectively,
i.e. zh ∈ Rmh×d and zf ∈ Rmf×d. We use 300
history representations (mh) and 50 profile repre-
sentations (mf) in our experiments.

To learn history-response and feature-response
correlations we apply cross-attention layers.

ah = Attcross(K = zh, V = zh, Q = zr) (4)

af = Attcross(K = zf , V = zf , Q = zr) (5)

where K,V,Q present the key, value, query re-
spectively, ah ∈ Rd and af ∈ Rd are the final
history and profile representations.

We then merge the two modalities of informa-
tion from history and profile features through a
2-layer MLP to represent the complete dialogue
context:

ahf = F([ah,af]) (6)

A score function is used to rank the candidate
responses given a (history, profile) pair through
computing similarity using dot-product.

s = fscore(ahf , zr) (7)

We train the model in end-to-end manner using
a binary cross-entropy loss.

5 Model Development

In order to protect customer experience and trust,
we do not simply train a model on human-human
conversation data and deploy it to live traffic di-
rectly. To utilize the expertise of our customer ser-
vice agents, we introduce a subsequent stage that
not only acts as an intermediate test-bed, but also
provides a fly-wheel to annotate data. Our model
training consists of the following two stages.

181

5.1 Self-supervised Training
A large volume of anonymized human-human
conversations is used for learning an initial dia-
logue model via Self-Supervised Training (SST).
The goal is to rank the correct next utterance
higher compared to other randomly sampled ut-
terances given the dialogue history and associated
profile features. Note that this model is indepen-
dent of the response pool discussed in Section 3.

5.2 Supervised Fine-Tuning
We use the model obtained from the previous stage
to collect supervision data within a human-in-the-
loop environment. In this setting, whenever a cus-
tomer starts a contact, the utterance, along with
profile features, is passed on to the SST model.
The entire response pool is ranked by the model
and top k responses are shown to human agents.
They have three options for responding to the
customer- a) accept the suggestion, b) pick a dif-
ferent template from the pool, c) indicate a failure
of the pool (no response in the pool can be used to
progress the conversation) or the constraints (e.g. a
refund should be offered but it is not available).

We utilize the data collected through this
human-in-the-loop setup for further Supervised
Fine-Tuning (SFT) of the model. The key dif-
ference compared to the previous stage is that in
this setup both the positive and negative responses
come from the response pool. We create a set of
N candidates with the one that the human expert
accepted or searched as positive. The negative
candidates are sampled randomly from the tem-
plate pool. Whenever the response used by the
expert was obtained through search, we leverage
the model-suggested responses as hard negatives.

The primary goal of this human-in-the-loop
stage is to collect the best possible data for su-
pervised training. Instead of the straightforward
approach of suggesting the top-scored template to
human experts, we found that a sampling strategy
among high scoring templates can boost impres-
sions for less frequent templates. This helps im-
proving the utility of the collected data. 1

6 Evaluation

We conduct offline and online experiments on in-
ternal conversational datasets of an e-commerce
customer service from the following two intents,

1For space constraints, the implementation details and
experimental results are found in Appendix C

Start Return Return Refund

Unlabeled Labeled Unlabeled Labeled

Dialogues 824K 30K 918K 21.6K
Avg. # Turns 18.9 13.5 30.6 8.7

Table 1: Overview of datasets.

1. Start-Return (SR): where a customer wants to
initiate a return of an item.
2. Return-Refund Status (RRS): all post-return
cases where customer may enquire about the sta-
tus of a return or refund already issued / currently
under processing.

6.1 Experimental Setup
Datasets. The dataset statistics are summarized in
Table 1. We tokenize and sentence split dialogue
turns using NLTK toolkit (Loper and Bird, 2002).
We split each dataset to train/dev/test sets with ra-
tio 90:5:5 and use the most frequent 30K, 10K to-
kens as dialogue encoder vocabulary for Start Re-
turn and Return Refund intent, respectively.
Model Training. We train and fine-tune the mod-
els on the unlabeled and labeled intent datasets, re-
spectively. We use a learning rate of 0.00015 and
train for 30 epochs with early stopping.
Metrics. For offline evaluation, we use the stan-
dard ranking metrics Recall@k, and MRR (Mean
Reciprocal Rank), and a metric for offline manual
evaluation for top scored template, namely,
1. Template Precision (TP): For 200 samples
drawn randomly from test set, we use the model
to rank templates in the pool. We manually evalu-
ate the acceptability of the top-ranked template by
the model and report an averaged precision.

For online evaluation we introduce:
2. Turn-level Acceptance Rate (TAR@k): Naccept

Ntotal
,

Naccept is the number of turns accepted by human
expert out of the number of total turnsNtotal. TAR
is an online correspondent of the Recall@k met-
ric. A higher value of TAR indicates model’s ca-
pability of handling a conversation well, through
ranking of the template pool.
3. Task Completion (TC): The percentage of con-
tacts that agents were able to resolve - either by
accepting model suggestion or searching the pool.
TC measures the quality and capacity of the pool
and sets an upper bound for the bot’s success rate.
4. Automated Task Completion (ATC): Success
rate of the deployed bot; i.e. the percentage of con-
tacts where the system is able to resolve the cus-
tomer issue, such that the same customer doesn’t

182

Intent
Offline Metrics Online Metrics

Rec@1/29 MRR TP TAR@4 TAR@1 TC

SR 76% 86% 76% – 71% 52%
RRS 71% 81% 71% 50% 17%† 39%

Table 2: Offline and Online results for initial dialogue
model trained with self-supervision. † RRS was launched
in top-4 suggestion mode, while the better performing SR in-
tent was launched in top-1 suggestion mode.

repeat the contact within next 24 hours.

6.2 Self-Supervised Training Results
We first report offline and online results of mod-
els trained using human-human dialogues in self-
supervised manner. We deploy the trained model
in online human-in-the-loop setup (described in
Section 5.2) and measure TAR@k and TC. We
share our key learnings in this section.
Performance varies depending on domain com-
plexity: From the results in Table 2, we first ob-
serve the significant gap in online metrics between
the two intents, which shows that the performance
of dialogue systems in real-world conversations
are highly dependent on the complexities of the
domain. This primarily reflects in the lower task
completion rates (TC) of RRS, where dialogues
often become open-ended when discussing issues
with a previous return, compared to the more pro-
cedural dialogues about starting a return.
Human choices are often arbitrary among close
alternatives: In the RRS intent we conducted the
online experiment by displaying top-4 templates
to the agents instead of a single one. This de-
creases TAR@1 by ~15%. Using more sugges-
tions generally improves the agent’s productivity
due to limited search. However, we observed that
human choices among similar templates are often
arbitrary, leading to performance drops.
Features are indisposable: For RRS the TAR@4
was also quite low, especially given that SR had
TAR@1 above 70%. The main reason was the lack
of crucial features, like granular tracking informa-
tion from the carrier companies about the return
package. This limited its ability to accurately con-
dition on external factors compared to human ex-
perts. This underlines the saliency of features (or
external knowledge) in a practical TOD setting.
Data-driven templates enable transfer learn-
ing: From the offline results we note that the man-
ually annotated TP metric closely resembles Re-
call@1 for both intents. This implies that the
model is able to learn from human-human conver-

Intent Offline Metrics Online Metrics

Rec@1/29 MRR TAR@1 TC

SR 80.9% 89.1% 84.9% 56.6%
RRS 76.4% 84.9% 46.6% 46.3%

Table 3: Offline and Online results post finetuning

sations and apply it for ranking the restricted tem-
plate set. Having a large template pool that follows
a similar data distribution as the original agent re-
sponses helps in achieving this smooth transition.
Large template pool is effective for handling
conversations at scale: The contact-level metric
(TC) shows that with the generated template pool
52.1% contacts could be fully resolved for the SR
intent. This demonstrates the potential of using
a large representative set of agent responses for
tackling in-domain task oriented conversations.

6.3 Results After Supervised Fine-Tuning
We explore two fine-tuning strategies with the lim-
ited data collected from human-in-the-loop stage.
Catastrophic Forgetting with training only on
restricted language: Figure 3a shows that fine-
tuning with only the limited supervised data leads
to better performance on the supervised test set
(SFT) but increasingly worse performance on the
general conversation test set (SST) as training pro-
gresses. This implies that as the model is be-
ing trained on this restricted data distribution, it is
‘forgetting’ previously learned knowledge through
self-supervision. To mitigate this, we adopt a
simple replay mechanism (Rolnick et al., 2019).
We augment the fine-tuning dataset by mixing
in equal number of training instances from the
self-supervised dataset. As seen from Figure 3b,
training with the balanced dataset leads to consis-
tently better results on both datasets. This proves
the ability of the model to learn from the lim-
ited supervised dataset without overriding previ-
ous knowledge. Similar results were observed for
RR intent Figure 3b ((c)-(d))
Supervision from human-in-the-loop signifi-
cantly boosts performance: Table 3 shows the
performance after supervised fine-tuning. In this
experiment, the offline test set contains template
responses from the human-in-the-loop setup, in
contrast to the general conversation responses con-
sidered in offline evaluation in Table 2. Offline
metrics for both intents are generally higher com-
pared to the general test set (Table 2). This is ex-
pected, since by restricting to specific template set

183

0 5 10 15 20
0.60

0.65

0.70

0.75

0.80

0.85

0.90

SFT_Rec@1
SFT_MRR
SST_Rec@1
SST_MRR

(a) SFT

0 5 10 15 20
0.60

0.65

0.70

0.75

0.80

0.85

SFT_Rec@1
SFT_MRR
SST_Rec@1
SST_MRR

(b) SFT+SST

0 5 10 15 20
Checkpoint

0.3

0.4

0.5

0.6

0.7

0.8

SFT_Rec@1
SFT_MRR
SST_Rec@1
SST_MRR

(c) SFT

0 2 4 6 8 10 12 14
Checkpoint

0.3

0.4

0.5

0.6

0.7

0.8

SFT_Rec@1
SFT_MRR
SST_Rec@1
SST_MRR

(d) SFT+SST

Figure 3: Evaluation after fine-tuning with labels collected from human-in-the-loop platform on the SR dataset ((a)
and (b)) and the RR dataset ((c) and (d)). X-axis: checkpoints, Y-axis: performance.

the language variation in agent turns is greatly re-
duced, making the ranking task easier. More im-
portantly, we observe the increase in the online
metric TAR post fine-tuning, demonstrating the ef-
fectiveness of the two-stage training strategy.

Human-in-the-loop setup also augments the
template pool: The increase in TC is indepen-
dent of training strategies and fueled by enhance-
ments to the template pool using suggestions from
the human experts engaged in the supervised data
collection process. It is noteworthy that the initial
(automatically collected) template pool attained a
high 92% and 84% of the TC compared to these
refinements. This demonstrates the efficacy of the
proposed template creation method (Section 3).

6.4 Deployment

A key advantage of the proposed model architec-
ture is its inference efficiency. The textual repre-
sentation of templates can be encoded once at ini-
tialization and cached for future calls. For each
template only the cross-attention layers and final
scoring needs to be re-computed. This lets the
inference latency scale linearly with template set
size (Figure 4). On c5.2xlarge CPU instances
with 1k templates the latency is below 0.5 sec,
which is sufficient for real time conversation with
users; on a small GPU instance g4dn.xlarge
up to 5k templates can be scored within 50 ms.

While the results after supervised fine tuning
for SR reach sufficiently high quality for deploy-
ment of the chatbot, additional improvements are
needed for RRS, especially in providing the es-
sential package tracking information through fea-
tures. The Start Return chatbot achieved 48.3%
Automated Task Completion (ATC) after deploy-
ment.

0 1000 2000 3000 4000 5000
Templates

0

500

1000

1500

2000

Ru
nt

im
e

(m
s)

c5.2xlarge inference
g4dn.xlarge inference

Figure 4: Inference speed with growing template pool

7 Developing with Pre-trained Language
Models

We continue developing and improving our mod-
els after deployment. With the initial model
launched, we explore plugging in pre-trained lan-
guage models like BERT as our text encoder (Fig-
ure 1b). We adopt a single shared encoder to sim-
plify our architecture and limit the memory foot-
print of training and hosting a large model. Addi-
tionally, we convert the item features to have more
semantic names (e.g. ‘eligible for refund’) and ap-
pend them to dialogue history for generating the
complete context. This allows the self-attention
mechanism of the transformer module to capture
multi-modal interactions between features and di-
alogue turns that are grounded on them. We use
batch negatives during training and learn the next
response prediction task using categorical cross-
entropy loss.

Table 4 shows the offline evaluation results
(analogous to Table 2) for the two intents. Us-
ing PLMs clearly help in improving performance
at a much higher data efficiency - with only 20%
of training data the BERT initialized model out-

184

Data Size Model
SR RRS

Rec@1 MRR Rec@1 MRR
100% no PLM 76.1% 85.5% 71.2% 81.0%
20% bert-base 83.2% 89.5% 76.3% 85.1%
50% bert-base 88.2% 92.9% 81.4% 88.7%

Table 4: Offline performance comparison for pre-
trained language model as text encoder

performs our previous model, which did not use
any pre-training but was trained on 100% available
in-domain dataset. We further fine-tune the mod-
els using the supervised data collected through the
human-in-the-loop setup described in Section 5.2.

Next, we deployed the improved BERT model
for SR intent to live customer traffic. Similar to
the offline results, we observed a significant im-
provement in ATC to 55.3% for the BERT model
compared to 48.3% for our previous model that
did not use any pre-trained language model. In fu-
ture we plan to deploy for the RRS intent as well
and compare both performance and efficiency.

8 Conclusion

We presented a neural, retrieval-based dialogue
model that ranks responses from a large, data-
driven template pool. Pre-defined responses make
it possible to enforce requirements for consistency
to business policies and the proposed template
mining method provides good conversational ca-
pacity. The model is accurate and efficient in terms
of inference speed to handle conversations in real
time. A human-in-the-loop setup lets us effec-
tively collect a small-sized labeled dataset to im-
prove the quality for online deployments.

Offline and online results demonstrate that this
is a viable approach for developing TOD systems
for practical usecases. While RRS showed good
improvements with our training protocol, it needs
further work to be deployed. Performance on the
SR intent permitted the deployment of the model;
its live success rate almost reaches the 56% up-
per bound that humans achieve in the controlled
setting. Anecdotal evidence2 from customer feed-
back shows that successful dialogues by the model
provide good conversational experience.

2We include few positive user feedback in Appendix B.

Ethical considerations

Development and experiments. We used
anonymized text dialogue snippets to train the
models. The system predicts template responses,
hence the model described in this work has no way
to reveal customer information. This is actually
a key theoretical advantage to generative models.
We do not release the datasets used in the experi-
ments.

Failure modes. Regarding risks related to sys-
tem errors, incorrect predictions of the models de-
scribed in this work may result in a confusing di-
alogue experience for customers. However, the
practical risk related to such confusion is limited,
because the chatbot operates in a semi-automation
setting where it naturally predicts and transfers the
contact to a human expert upon a drifting dialogue
history. Moreover, customers also have an option
to talk to a human associate upon request, if they
consider the system doesn’t work as expected.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Re-
cent advances and new frontiers. Acm Sigkdd Ex-
plorations Newsletter, 19(2):25–35.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. pages 4171–4186.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. In International Conference on Learning
Representations.

Jia-Chen Gu, Tianda Li, Quan Liu, Xiao-Dan Zhu,
Zhenhua Ling, Zhiming Su, and Si Wei. 2020.
Speaker-aware bert for multi-turn response selec-
tion in retrieval-based chatbots. Proceedings of the
29th ACM International Conference on Information
& Knowledge Management.

Matthew Henderson, Ivan Vulic, D. Gerz, I. Casanueva,
Paweł Budzianowski, Sam Coope, Georgios P. Sp-
ithourakis, Tsung-Hsien Wen, N. Mrksic, and Pei

185

hao Su. 2019. Training neural response selection for
task-oriented dialogue systems. In ACL.

Teakgyu Hong, Oh-Woog Kwon, and Young-Kil Kim.
2020. End-to-end task-oriented dialog system
through template slot value generation. In INTER-
SPEECH.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179–20191. Curran Associates,
Inc.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2019. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In International Conference
on Learning Representations.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
ICLR’17.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Compu-
tational Linguistics, pages 63–70.

Y. Lu, Manisha Srivastava, Jared Kramer, Heba El-
fardy, Andrea Kahn, Song Wang, and Vikas Bhard-
waj. 2019. Goal-oriented end-to-end conversational
models with profile features in a real-world setting.
In NAACL.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In ICLR’17.

Kristen Moore, Shenjun Zhong, Zhen He, Torsten
Rudolf, Nils Fisher, Brandon Victor, and Neha Jin-
dal. 2021. A comprehensive solution to retrieval-
based chatbot construction.

Lahari Poddar, Peiyao Wang, and Julia Reinspach.
2022. DialAug: Mixing up dialogue contexts in
contrastive learning for robust conversational mod-
eling. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 441–
450. International Committee on Computational
Linguistics.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. Advances in Neural
Information Processing Systems, 32:350–360.

Iulian Serban, Alessandro Sordoni, Ryan Lowe, Lau-
rent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 31.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In NAACL-HIT.

Kyle Swanson, Lili Yu, Christopher Fox, Jeremy
Wohlwend, and Tao Lei. 2019. Building a produc-
tion model for retrieval-based chatbots. In Proceed-
ings of the First Workshop on NLP for Conversa-
tional AI, pages 32–41, Florence, Italy. Association
for Computational Linguistics.

Chongyang Tao, Jiazhan Feng, Rui Yan, Wei Wu, and
Daxin Jiang. 2021. A survey on response selection
for retrieval-based dialogues. In Proceedings of the
Thirtieth International Joint Conference on Artifi-
cial Intelligence, IJCAI-21, pages 4619–4626. Inter-
national Joint Conferences on Artificial Intelligence
Organization. Survey Track.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Jesse Vig and Kalai Ramea. 2019. Comparison
of transfer-learning approaches for response selec-
tion in multi-turn conversations. In Workshop on
DSTC7.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

Taesun Whang, Dongyub Lee, Chanhee Lee, Kisu
Yang, Dongsuk Oh, and Heuiseok Lim. 2020. An
effective domain adaptive post-training method for
bert in response selection. In INTERSPEECH.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A trans-
fer learning approach for neural network based con-
versational agents. CoRR, abs/1901.08149.

Chien-Sheng Wu, Steven C.H. Hoi, Richard Socher,
and Caiming Xiong. 2020. TOD-BERT: Pre-trained
natural language understanding for task-oriented di-
alogue. pages 917–929.

Ruijian Xu, Chongyang Tao, Daxin Jiang, Xueliang
Zhao, Dongyan Zhao, and Rui Yan. 2021. Learning
an effective context-response matching model with
self-supervised tasks for retrieval-based dialogues.
In AAAI.

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2021.
Ubar: Towards fully end-to-end task-oriented dia-
log system with gpt-2. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(16):14230–
14238.

186

A Response Pool Creation

a-to-z book confirmation dropoff hold name price reimbursement security transaction
accept box contact e-mail id notification print reorder sell transfer
access business correspondence elaborate ignore number priority repeat seller transit
account call cost email inconvenience option problem replace sender understand
action cancel create error inform order proceed replacement service understanding
address card credit escalate information pack process representative ship update
allow carrier cvc exception initiate package product request shipment ups
alternative center damage exchange inventory packaging promo require shipping url
amount certificate delay expedite investigate party promotion research solution use
apologize charge deliver experience investigation patience provide resolution specialist verify
apology check delivery expire issue pay purchase resolve status visa
apply checking department extend item payment qr responsibility stay wait
arrange claim detail fee label perfect quantity restock stock waive
arrive click device feedback leadership phone re-order restocking store warehouse
assistance code digit find link photo reason resubmit subscription warranty
associate come disarm follow locker pick receipt retrocharge suggest website
authorization compensation discount fulfil mail pickup receive return supervisor window
availability complaint display fulfillment mailing picture refer returnable support
balance complete dispose fund manufacturer place reflect review team
bank concern disregard gift member policy refund safety time
billing condition donate guarantee method post regard scan track
birth confirm drop help money prefer register screenshot tracking

Table 5: Important lemmas utilized for template selection.

Algorithm 1 Response Pool Generation Process
1: Preprocess data by sentence splitting, tokenization, part-of-speech tagging lemmatization.
2: Transform each sentence into a sequence of verb, noun, adjective, adverb lemmas by dropping punctuation and

non-content words of other parts of speech.
3: Manually review top 1k frequent verb and noun lemmas to retain a list of keywords kw. . We kept altogether 215

lemmas that can be found in Table 5, with ~30 minutes of manual effort.
4: Template set T = ∅
5: for sentence s ∈ dataset do [in decreasing order of frequency]
6: for sentence t ∈ T do
7: sim(s, t) = exp(

∑2
k=1 ln(Jk(sn,tn))

2
)

8: sim(s, T) = argmaxt∈T (sim(s, t))
9: if sim(s, T) < λ then

10: if freq(s) > f1 then
11: T = T + {s}
12: if freq(s) > f2 & s ∩ kw 6= ∅ then
13: T = T + {s}
14: Manually remove sentences from T that have grammatical errors or are inappropriate for usecase (e.g. greetings). . We

used λ = 0.4, f1 = 350, f2 = 15. Jk denotes Jaccard similarity of unigrams (k = 1) and bigrams(k = 2)

B User Feedback

CHATBOT: You can also leave a comment about how your experience went. This helps me improve.
USER: Thanks so much!!! I was afraid I’d not get a refund, let alone get a return. Thanks so very much
CHATBOT: Again, I am sorry for the trouble that you had faced due to this circumstance and but for now do you have some clarification

or further question regarding with my resolution?
USER: No thank you
CHATBOT: How does that sound?
USER: Sounds ok.....is there another product you would recommend that will work?
CHATBOT: Would there be anything else I can do to help?
USER: no. Thanks for your help Mr. or Mrs. Bot

Table 6: Examples for positive user feedback.

187

C Template Exploration

One of limitations that we observed from model
online deployment is that our deterministic mod-
els always to try to rank the high volume tem-
plates. This gives less opportunity to the templates
with lower frequency. For instance, for some tem-
plates with similar semantic meaning, “No wor-
ries, let me see what I can do to help you out" is
a high frequency template, while “No worries, I
will check that for you real quick.” is a low fre-
quency template. To improve the diversity of tem-
plates, we enable the deterministic ranking mod-
els with exploration capability by using Gumbel-
Softmax Trick (Jang et al., 2017; Maddison et al.,
2017), which is originally proposed to make dis-
crete variables to be differentiable. Here we only
use the sampling functionality with temperature to
control the degree of exploration. The main idea
is to replace the original sigmoid score function
with Gumbel-Softmax. For each inference run, we
sample a template based on the computed scores.

C.1 Dataset and Implementations

We collected the human-in-the-loop data from de-
ployed deterministic ranking model and explo-
ration model. Over around 8 weeks, we collected
67, 136 samples as training set, 5000 and 8196
samples as validation and test set respectively, for
each model. To make a fair comparison, we en-
sure the evaluated sets for each model are same.
We have totally three types of datasets for eval-
uation: (1) DA: the test set is a combination of
the test set of deterministic SFT data, exploration
SFT dataset and general conversation SST dataset.
(2)DB: SST test dataset; (3) DC : SST validation
dataset.

We use the original ranking setting for experi-
ment as described in Sec.3, and set temperature=1.
We want to examine: (1) how fast the explo-
ration model can help to explore and lift those tail
templates; (2) and the predictive performance of
exploration model as compared to deterministic
model.

C.2 Exploration Results

Table 7 presents the accuracy, Recall@1 and MRR
performance for each model. As we can see, ex-
ploration ranking model doesn’t hurt the original
predictive performance when performing explo-
ration on templates. This is important in real-
world setting, because the degraded model perfor-

0 1 2 3 6 7 8 9 10 13 14 15 16 17 20 21 22 23 24 27 28 29 30 31 34 35 36 37 38
Days after deployment

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

1 2 3 4 5 6 6 8 9 9 10101212 11
14151616 161717

2021 20212324

40

2 4
7 8 10121416

19 1920222424 24
28

32
3536 363736

4445 45
49

45

53

68
deterministic ranking
exploration ranking

Figure 5: The median of cumulative frequency of tem-
plates over time (days) for deterministic and explo-
ration models.

Model / Dataset Loss Acc Recall@1 MRR

Md(DA) 0.2186 0.9203 0.9430 0.9707
Me(DA) 0.2161 0.9197 0.9434 0.9710

Md(DB) 0.2284 0.9161 0.9397 0.9691
Me(DB) 0.2257 0.9163 0.9397 0.9691

Md(DC) 0.1756 0.9322 0.6094 0.7547
Me(DC) 0.1749 0.9320 0.6162 0.7584

Table 7: The performance comparison between deter-
ministic ranking model (Md) and exploration ranking
model (Me) on different evaluated datasets.

mance usually leads to unsatisfactory customer ex-
perience.

Figure 5 demonstrates that the exploration rank-
ing model helps to generate a target K impression
for the average template 2-3 faster than that of de-
terministic ranking model.

188

Proceedings of EMNLP 2022 Industry Track, pages 189–197
December 9–11, 2020. ©2022 Association for Computational Linguistics

Tackling Temporal Questions in Natural Language Interface to Databases

Ngoc Phuoc An Vo, Irene Manotas, Octavian Popescu,
Hangu Yeo, Elahe Khorasani, Vadim Sheinin

IBM Research
{ngoc.phuoc.an.vo, irene.manotas}@ibm.com

{o.popescu, hangu, elkh, vadims}@us.ibm.com

Abstract

Temporal aspect is one of the most challeng-
ing areas in Natural Language Interface to
Databases (NLIDB). This paper addresses and
examines how temporal questions being stud-
ied and supported by the research commu-
nity at both levels: popular annotated dataset
(e.g. Spider) and recent advanced models.
We present a new dataset with accompanied
databases supporting temporal questions in
NLIDB. We experiment with two SOTA mod-
els (Picard and ValueNet) to investigate how
our new dataset helps these models learn and
improve performance in temporal aspect.

1 Introduction

Natural language interface to databases (NLIDB)
is a task to bridge the gap between storing complex
structured data in databases (DBs) and retrieving
structured data from databases using natural lan-
guage questions. An NLIDB system allows users
to access information stored in a DB by using ques-
tions in natural language (e.g. English). In reality,
temporal aspect is a common dimension existing
in any DBs since it is realistic and practical to store
data with associated date/time in DBs. However,
it is challenging to retrieve information from DBs
with temporal aspect due to difficulties and limita-
tions such as 1) complex and limited association be-
tween certain entities/attributes and temporal info
in DB that reflects different states of data in dif-
ferent time frames, and 2) complexity of natural
language expressions to decipher the actual value
of temporal expressions in given questions to cor-
rectly derive data from DBs. Temporal aspect is a
common yet distinct and complex dimension that
needs to be handled carefully in NLIDB.

Given its difficulties and complexity, temporal
aspect in NLIDB is currently under-attended by
the research community. First of all, it is diffi-
cult to design and create database that supports
temporal dimension. Next, it is more challenging

to create pairs of questions and associated SQL
queries that support the learning of temporal as-
pect in NLIDB (discussion in Section 4). Our
contribution is threefold: i) we investigated how
temporal aspect was defined and annotated in the
well-known Spider dataset, ii) we created the new
dataset TempQ4NLIDB supporting the learning
and understanding temporal questions in NLIDB,
and iii) we experimented with two SOTA models -
ValueNet (Brunner and Stockinger, 2021) and Pi-
card (Scholak et al., 2021) - to understand how
they learn and handle temporal questions. To the
best of our knowledge, this work is one of the first
attempts trying to explore this research area to sup-
port temporal questions in NLIDB.

2 Background and Related Works

NLIDB or Text-to-SQL is a long standing NLP
task with many references on its complexity and
achievements obtained recently (Navid et al., 2017;
Popescu et al.; Yao et al., 2010). Although there
is no official definition of temporal questions in
NLIDB, the study (Androutsopoulos et al., 1995)
mentioned about temporal questions with respect to
temporal databases (Jensen and Snodgrass, 2018).
In contrast, the study of temporal questions is a
strong interest in Question Answering (QA) com-
munity. In the scope of this paper, we adopt a def-
inition of temporal questions in QA for our work
that is "A temporal question is any question, which
contains a temporal expression, a temporal signal,
or whose answer is of temporal nature." (Jia et al.,
2018). In QA, temporal questions can be answered
by temporal information embedded in semantic re-
lations and timeline between events in corpus or
taxonomy, whereas DB records associated with
temporal dimension are answers in NLIDB.

The Spider dataset (Yu et al., 2018) and Spider
challenge was introduced in 2018 where partici-
pating teams can have their systems evaluated on
an unseen test set which is not available to public.

189

There are two Spider sub-challenges, the first one
for SQL inference without values and the second
for systems that handle the values in SQL queries.
Many attempts with different approaches, based
on neural networks, especially on encoder-decoder
architecture, have continuously improved the state
of the art (SOTA). First, the sequence-to-sequence
approach was introduced (Cai et al., 2018; Gehring
et al., 2017; Yin et al., 2016; Rabinovich et al.,
2017) in which a neural network with very good
proven qualities in translation tasks translates an
English query into an SQL query. These systems
infer the SQL formula directly as a standard trans-
lating task from one language to another.

Instead of translating into SQL, another ap-
proach translates questions into a representation
that captures semantics of a question, namely In-
termediate Representation (IR) (Guo et al., 2019;
Zhang et al., 2019; Bogin et al., 2019). The net-
work learns a more structured and compact form of
the query itself. From IR to SQL is a deterministic
process: a context free grammar is used to convert
one into another. The authors build on the work of
(Sun et al., 2019; Cheng et al., 2019) that used Ab-
stract Syntax Tree (AST). The decoder infers the IR
as an AST representation of the query. Among oth-
ers, ValueNet (Brunner and Stockinger, 2021) not
only uses IR approach but also extends the context
free grammar to include values and became one of
the best systems in the Spider challenge in 2020.
Recently, PICARD (Scholak et al., 2021), a state-
of-the-art algorithm for constrained decoding was
introduced and achieved top rank in Spider chal-
lenge. It relies on the structure and the content of
the database as well as the knowledge encapsulated
in the T5 language model (Raffel et al., 2020).

3 Discovering Temporal Aspect in Spider

Spider (Yu et al., 2018) is a popular large-scale
complex and cross-domain dataset supporting
Text-to-SQL task consisting of 10,181 questions
and 5,693 unique complex SQL queries on 200
databases with multiple tables covering 138 dif-
ferent domains. Since there is no description of
temporal aspect in Spider, we investigate temporal
questions in this dataset.

3.1 Questions Related to Temporal Aspect

Questions related to temporal aspect are questions
that query or process one or more column repre-
senting date/month/year/time in SQL queries.

Searching in Spider, among 7,000 questions in
Train set, we found 504 SQL queries (7.2%) and
67 SQL queries (6.46%) among 1,036 questions in
Dev set that hit our search keywords, respectively.
Questions associated with these SQL queries are
considered having temporal aspect.

3.2 Temporal Question Types

Among questions found in Section 3.1, we define
three question types regarding temporal aspect:

Type 1: Questions querying Temporal Info.
This type of question only queries for temporal in-
formation from DBs using the SELECT clause and
has no logical operation with temporal columns in
database, such as: {What are the first names
and birth dates of players from the USA?}

Type 2: Questions querying Temporal Informa-
tion with Grouping or Sorting. This type of
question may or may not query temporal informa-
tion but it has GROUP BY or ORDER BY process-
ing on one or more temporal columns in database.
These questions usually have one or more tem-
poral adverbs like {most recently, in the order of,
youngest, oldest, longest, the latest}. For examples:
{What is the first name and country code
of the oldest player?} or {How many total
tours were there for each ranking date?}.

Type 3: Questions with Temporal Conditions.
This type of question may (not) query temporal
information but always has one ore more tempo-
ral conditions to derive required information from
DB, such as: {Show the organizer and name
for churches that opened between 1830 and
1840}. In this paper, we only focus on this type
since it is the most practical and challenging type
in reality. We found 201 and 19 temporal condition
questions in Train/Dev sets of Spider, respectively.

4 TempQ4NLIDB Dataset for NLIDB

Since temporal dimension is practical and crucial
for DBs in any real-world applications, and the
lack of dataset for temporal questions in NLIDB,
we created TempQ4NLIDB - a dataset of temporal
condition questions for studying and experimenting
with the recent advanced NLIDB models.

4.1 Accompanied Databases

We release two synthetic DBs (SQLite compati-
ble) adopted from our real-world industry projects

190

WH HR
Temporal Train 65 46
Temporal Dev 7 4
Temporal Test 28 25

Total 100 75
Non-Temporal Train 146 99
Non-Temporal Dev 16 10
Non-Temporal Test 40 78

Total 202 187

Table 1: Temporal and Non-Temporal Questions in
TempQ4NLIDB

and fully anonymized for public use. All temporal
values are in standard format YYYY-MM-DD.

Human Resource (HR) is a one-table DB con-
taining employees information such as employee
number, name, birthdate, hire date, leave date, de-
partment, manager, salary, bonus.

Warehouse (WH) is a complex schema for sales
activities consisting of 8 tables. More details can
be found in our dataset.

4.2 Temporal Condition Questions and SQLs

We created new temporal conditional questions and
SQL queries for two accompanied DBs. We also re-
lease the non-temporal questions and SQL queries
for performance evaluation and comparison (Table
1). Our dataset is available here1. We may con-
tinue expanding this dataset with more questions of
different types and complexity levels in near future.

4.2.1 An ad-hoc Date Annotator (DA)
We use an ad-hoc date annotator (a part of another
rule-based NLIDB system) (Vadim et al., 2018;
Popescu et al., 2019; Vo et al., 2019; Yeo et al.,
2021) which was built on top of Duckling2. It de-
tects temporal expressions in a given question and
produces normalized values in standard YYYY-
MM-DD format. For some experiment settings, it
also re-writes original question by replacing orig-
inal temporal expressions with their normalized
values.

4.2.2 Data Variants
We create three variants (different natural language
questions but the same SQL query) as follows:

Original Temporal Questions. This variant is
questions having original temporal expressions

1https://github.com/IBM/TempQ4NLIDB-dataset
2https://duckling.wit.ai/

without normalizing by DA. It is the most chal-
lenging data format for any given model to learn
by mapping between original temporal expressions
in a given question and the actual DB date values
in the associated SQL query.

Full-DA Questions. Temporal questions that are
pre-processed and re-written with Data Annotation
and date values are appended at the end of ques-
tions. This variant is inspired by the mechanism
that ValueNet (Brunner and Stockinger, 2021) used
to learn values from given questions.

Partial-DA Questions. Temporal questions that
are pre-processed and re-written with Data Anno-
tation without date values appended at the end of
questions. This variant can ease the learning of a
given model by mapping between the normalized
date values in a question and the DB values from
its associated SQL query.

Examples of question variants and same SQL.

• Original question: What products were sold
from 2011 to 2015?

• Full-DA question: What products were sold
from 2011-01-01 to 2015-12-31?; 2011-01-
01#date#date; 2015-12-31#date#date

• Partial-DA question: What products were sold
from 2011-01-01 to 2015-12-31

• SQL: SELECT distinct T2.PRODUCT_ID
FROM SALES AS T1 JOIN SALES_DETAILS AS
T2 ON T1.SALES_ID=T2.SALES_ID WHERE
T1.DATE >= ‘2011-01-01’ AND T1.DATE
<= ‘2015-12-31’

4.3 Annotation Guideline

Data annotation for Text-to-SQL task is not trivial.
For every data point, we must create a pair of ques-
tion and associated SQL query. In addition, data
annotation for Text-to-SQL with temporal aspect
is even more challenging as every question needs
to have at least one new temporal dimension. We
define and practise the following guideline.

4.3.1 Temporal Dimension Annotation
We define the following annotation guideline for
temporal questions.

Mapping Temporal Operators to SQL. We fol-
low the standard temporal operators {BEFORE,
AFTER, ON, IN, BETWEEN...AND} in temporal
questions mapping into standard SQL operators
supported by SQLite for temporal aspect {<, >,

191

=, >= AND <=}. Especially, the BETWEEN operator
in Spider is not inclusive and mapped into (a_date
> start_date AND a_date < end_date) at SQL
level. Unlike Spider, our annotation for BETWEEN
at SQL level is inclusive. For example:

• Spider: What roles did staff members play
between ’2003-04-19’ and ’2016-03-15’?
SELECT role_code FROM Project_Staff
WHERE date_from > ‘2003-04-19’ AND
date_to < ‘2016-03-15’

• Our annotation: What are employees hired
between Jan 2012 and Jun 2012?
SELECT distinct EMPNAME FROM EMPLOYEE
WHERE HIREDATE >= ‘2012-01-01’ AND
HIREDATE <= ‘2012-06-30’

In our annotation, we support two new temporal
operators SINCE for after but including, and BY for
before but including (Table 2).

Mapping Temporal Expressions to SQL. For
mapping from temporal expressions to date val-
ues in SQL queries, we use our Date Annotator to
capture and convert all temporal expressions into
standard date format YYYY-MM-DD.

If we assume that time always exists as an in-
terval with a start_point and an end_point, we
can translate any temporal expression into a time
range. For example:

• Chirstmas 2000 = [2000-12-25, 2000-12-25]
• July 2020 = [2020-07-01, 2020-07-31]
• 2021 = [2021-01-01, 2021-12-31]
• Q1 of 1999 = [1999-01-01, 1999-03-31]

Depending on the combination between tempo-
ral operator and temporal expression in a given
question, we define rules to convert to SQL opera-
tors and values (Table 2).

Referring to the categories of temporal expres-
sions in the study (Jia et al., 2018), in the scope of
this paper, we only focus on using explicit tempo-
ral expressions for our dataset. We do not support
implicit temporal questions (e.g. 5 years ago, last
year) because for annotating normalized value of
implicit temporal expressions, it is required to have
a time anchor which we cannot embed into our
data for Text-to-SQL task. For example, given the
time anchor as 2022, last year = 2021. However,
when it is 2023 or later, the value 2021 is no longer
correct for last year. Due to the nature of current
data format of Text-to-SQL task, we cannot embed
a specific time anchor into each question and asso-
ciated SQL to support implicit temporal questions.

4.3.2 Temporal Questions and SQL Creation
Next we define the following procedure to create
natural language questions and SQL queries.

Step 1: Generating simple SQL queries with-
out temporal aspect. We first look into a given
database and generate SQL query based on the
database structure for expected information. For
example: in HR database, we can generate dif-
ferent simple queries to derive information from
every column in EMPLOYEE table: SELECT
EMPNO, SELECT EMPNAME, SELECT MGRNAME,
SELECT BIRTHDATE, SELECT HIREDATE, SELECT
LEAVEDATE, SELECT SALARY, SELECT DPNAME.

We also can generate SELECT for more than one
columns, for example: SELECT EMPNO, EMPNAME,
SALARY FROM EMPLOYEE. We define patterns of
table names and column names to automatically
generate simple SQL queries (Popescu et al., 2022).

Step 2: Identifying temporal column. We need
to verify which column has at least one temporal
aspect and establish the association between them.
For example:

1. There are 3 temporal columns: BIRTHDATE,
HIREDATE, LEAVEDATE

2. Columns that can have association with the 3
temporal columns: EMPNO, EMPNAME

3. Without columns in (2), these columns can
have no association with the 3 temporal
columns: MGRNAME, SALARY, DPNAME

Now we can attach the column having temporal
aspect with corresponding simple SELECT that we
created in Step 1 using following pattern: [SELECT
Column_from_(2) FROM EMPLOYEE WHERE
Temporal_Column_in_(1) Temporal_Operator
Temporal_Value]

For example: SELECT EMPNO, EMPNAME,
MGRNAME FROM EMPLOYEE WHERE LEAVEDATE =
‘2022-05-17’

Step 3: Searching Temporal Operator and Tem-
poral Value from DB. For evaluation with Exe-
cution Accuracy metric, the SQL query in Step #2
needs to return a valid result from DB submission.
Thus, we develop a search algorithm to find unique
temporal operator and temporal value so that the
SQL query will return a valid result from DB. At
the end of this step, we also manually verify cor-
rectness of the result of every SQL query against
the corresponding DB.

192

Temporal Operators and Expressions Operators and Values in SQL
BEFORE a_temporal_expression a_date < start_point of a time range
AFTER a_temporal_expression a_date > end_point of a time range
BY a_temporal_expression a_date <= end_point of a time range

SINCE a_temporal_expression a_date >= start_point of a time range
ON | IN a_temporal_expression a_date >= start_point AND a_date <= end_point

BETWEEN temp_exp_A AND temp_exp_B a_date >= start_point_A AND a_date <= end_point_B
FROM temp_exp_A TO temp_exp_B a_date >= start_point_A AND a_date <= end_point_B

BEFORE July 14th 2021 a_date < ’2021-07-14’
BEFORE July 2021 a_date < ’2021-07-01’
BEFORE 2021 a_date < ’2021-01-01’

AFTER Oct 25th 2020 a_date > ’2020-10-25’
AFTER Oct 2020 a_date > ’2020-10-31’
AFTER 2020 a_date > ’2020-12-31’

SINCE Mar 20th 2018 a_date >= ’2018-03-20’
SINCE Mar 2018 a_date >= ’2018-03-01’
SINCE 2018 a_date >= ’2018-01-01’

BY Apr 7th 2018 a_date <= ’2018-04-07’
BY Apr 2018 a_date <= ’2018-04-30’
BY 2018 a_date <= ’2018-12-31’

ON 1/1/2021 a_date >= ’2021-01-01’ AND a_date <= ’2021-01-01’
ON Christmas 2017 a_date >= ’2017-12-25’ AND a_date <= ’2017-12-25’

IN July 2022 a_date >= ’2022-07-01’ AND a_date <= ’2022-07-31’
IN 3rd quarter of 2016 a_date >= ’2016-07-01’ AND a_date <= ’2016-07-31’
BETWEEN 1990 AND 2000 a_date >= ’1990-01-01’ AND a_date <= ’2000-12-31’
FROM 2000 TO 2010 a_date >= ’2000-01-01’ AND a_date <= ’2010-12-31’

Table 2: Rules and Examples for Mapping Temporal Operators and Expressions into SQL Queries

Step 4: Generating Natural Language Ques-
tions. We manually generate natural language
questions for SQL queries created in Step #3 by
defining semantic relations between entities and at-
tributes. We also enrich the language of questions
by using semantic similarity/relatedness techniques
(e.g. paraphrasing, synonyms) and different syntax
structures (e.g. passive voice, relative clause, prepo-
sitional phrase) to generate various WH-questions
(Popescu et al., 2018; Vo and Popescu, 2016; Vo
et al., 2015; Vo and Popescu, 2015a,b). For exam-
ples:

• Employee {has | was born} BIRTHDATE.
• Employee {joined | is hired | is employed |

is recruited | started working} in a DEPART-
MENT on a HIREDATE.

• Employee {left | retired} a DEPARTMENT
on a LEAVEDATE.

We carefully generate explicit temporal expres-
sions from the temporal filters created in Step #3
and attach to our natural language questions to gen-
erate temporal questions. For examples:

1. How many employees were hired in Decem-
ber 2012?

2. Which employees left before April 2010?
3. What employees joined Marketing department

after Christmas 2010?
4. Show me employees hired for Manufacturing

department in 1970 and retired in 2000.
5. What are the Manufacturing employees with

birthdays between 1939 and 1945?
6. What are the employees in Sales department

that have birthdays before 1970?

4.3.3 Data Annotation Validation

The annotation is semi-automatic and then data
is manually curated by one worker. We not only
examine the correctness of SQL syntax for every
given question, we also submit every SQL query to
corresponding DB and examine the result returned
from DB. Thus, we ensure that every question al-
ways has a valid result returned from submitting its
SQL query to corresponding DB. Finally the data
is examined and validated by other two workers.

193

5 Experiments with SOTA Models

We define three settings to experiment with two
recent SOTA models: ValueNet (Brunner and
Stockinger, 2021) and Picard (Scholak et al., 2021)
for temporal questions.

Setting 1: Original Models trained on Spider.
We evaluate original ValueNet and Picard models
(that were trained only on Spider dataset) on tem-
poral questions in Test set of our new dataset.

Setting 2: Only Temporal Questions. We train
and evaluate ValueNet and Picard (which were al-
ready pretrained on Spider) on temporal questions
in Train and Test set of our dataset, respectively.

Setting 3: Blended Questions (NT+Full-DA).
We mix Full-DA temporal questions with other
Non-Temporal questions of the same database for
training (on top of Spider as in Setting 2) and test.

Picard. We fine-tuned T5-large with the data
splits described in settings 1 through 3 above for
each DB in the TempQ4NLIDB dataset. For set-
tings 2 and 3, we fine-tuned first on the Spider
dataset, took the best performing model, and con-
tinue the training on the corresponding training
data combination using the temporal data for each
schema. Each model was fine-tuned on 448 epochs.
Training the model for more epochs did not im-
prove the model performance on the validation set.
We used Adafactor (Shazeer and Stern, 2018), a
learning rate of 10−5, and a batch size per device
of 5. During testing, we enabled Picard with the
highest parsing mode.

Table 3 shows evaluation results of HR and WH
temporal test sets with Picard. For Setting 1, mod-
els trained without temporal data (using the default
Spider dataset for training) show very poor under-
standing of temporal questions. For Setting 2, mod-
els trained on temporal data understand temporal
questions much better. Setting 3 results show a
declining performance for models to handle both
temporal and non-temporal questions.

ValueNet (VL). We use the default configura-
tion for VL experiments. VL evaluation only re-
ports execution accuracy. For Setting 1 and 2, the
VL models performed poorly on the temporal ques-
tions. The model trained on the Spider dataset only,
but also adding the available trying, obtained less
than 1% accuracy. The main reasons is that the VL
encoder receives no information about the type of
the columns and values, and when there are more
than two values in the SQL query, the system sys-
tematically confound them. Because VL does not

implement any control over the correctness of SQL
formula, many of the SQL queries with multiple
values are wrong because the values are switched
between themselves or the wrong operator is used,
like "=" instead of ">=". As the temporal ques-
tions are at least two values with multiple operators
the inferred SQL was always wrong. For Setting
3 experiments (Table 4), as some of the questions
themselves were not multi-values, the accuracy was
significantly higher.

Observations. We learn the following lessons:

1. Only training on Spider is insufficient for un-
derstanding temporal condition questions.

2. Additional training on TempQ4NLIDB sig-
nificantly helps models to improve the under-
standing of temporal condition questions.

3. It is challenging for models to understand
temporal expressions in given questions then
generate corresponding temporal filters with
normalized values (error type 2). Rewriting
questions with normalized values of temporal
expressions (Partial-DA and Full-DA variants)
will help to generate temporal filters with cor-
rect values.

4. We mix temporal and non-temporal questions
for both training and testing to increase the
complexity (e.g. multi-table joins, multiple
selects, multiple values/filters, more complex
language and sentence structure, etc). It is
more challenging to handle both temporal and
non-temporal questions than just one type.

5. More works are needed to expand the cover-
age for other types of temporal questions (e.g.
implicit one).

6 Error Analysis

We present four error types in predictions made by
Picard and ValueNet for temporal questions.

Type 1. Models cannot detect temporal values in
question, thus, no corresponding filter created.

• How many iphones were sold since October
2013 in shops located in New York?
Prediction: select sum(t2.quantity)
from products as t1 join
sales_details as t2 on t1.product_id
= t2.product_id join sales as t3 on
t2.sales_id = t3.sales_id join shops
as t4 on t3.shop_id = t4.shop_id
where t4.address = 'New York' and

194

Setting 1

DB Test Match(%) Exec(%)

HR
Original 4.35 0.00
PartialDA 0.00 0.00
FullDA 0.00 0.00

WH
Original 3.57 10.71
PartialDA 0.00 10.71
FullDA 0.00 10.71

Setting 2

HR
Original 82.61 82.61
Partial-DA 95.65 95.65
Full-DA 100.00 100.00

WH
Original 67.86 60.71
Partial-DA 89.29 92.86
Full-DA 89.29 92.86

Setting 3

HR NT + Full-DA 58.42 66.34
WH NT + Full-DA 72.00 75.00

Table 3: Picard’s Performance for Setting 1, 2, and 3.

Setting 3 (ValueNet)

DB Test Match(%) Exec(%)

HR NT + Full-DA N/A 47%
WH NT + Full-DA N/A 39%

Table 4: ValueNet’s Performance for Setting 3.

t1.type = 'IPHONE'
Actual: select distinct
sum(T3.QUANTITY) from SHOPS AS
T1 JOIN SALES AS T2 on T1.SHOP_ID =
T2.SHOP_ID JOIN SALES_DETAILS AS T3
on T2.SALES_ID = T3.SALES_ID JOIN
PRODUCTS AS T4 on T3.PRODUCT_ID
= T4.PRODUCT_ID where T2.DATE >=
'2013-10-01' and T4.TYPE = 'IPHONE'
and T1.ADDRESS = 'New York'

Type 2. Original temporal expressions used in
predicted query without normalizing values.

• Who were recruited in Marketing department
since March 2012?
Prediction: select distinct empname
from employee where dptname =
'Marketing' and hiredate > 'March
2012'
Actual: select distinct
EMPLOYEE.EMPNO from EMPLOYEE where
EMPLOYEE.DPTNAME = 'Marketing' and
EMPLOYEE.HIREDATE >= '2012-03-01'

Type 3. Missing temporal filters in prediction in
case question has multiple temporal expressions.

• What are the names of Sales employees who
were hired after 1977-12-31 and departed
before 2020-01-01; 1977-12-31#date#date;
2020-01-01#date#date
Prediction: SELECT DISTINCT T1.empname
FROM employee AS T1 WHERE T1.dptname
= '1977-12-31' and T1.hiredate <
'Sales'
Actual: select distinct
EMPLOYEE.EMPNAME from EMPLOYEE where
EMPLOYEE.HIREDATE > '1977-12-31' and
EMPLOYEE.LEAVEDATE < '2020-01-01'
and EMPLOYEE.DPTNAME = 'Sales'

Type 4. Incorrect filters (matching with wrong
DB columns) created for temporal values.

• How many iphones were sold since 2013-
10-01 in shops located in New York;
2013-10-01#date#date
Prediction: SELECT DISTINCT
sum(DISTINCT T1.quantity) FROM
sales_details AS T1 JOIN products AS
T2 ON T1.product_id = T2.product_id
JOIN stock AS T15 ON T2.product_id =
T15.product_id JOIN shops AS T3 ON
T15.shop_id = T3.shop_id JOIN sales
AS T4 ON T3.shop_id = T4.shop_id
WHERE T2.type = '2013-10-01' and
T3.address = '2013-10-01' and
T4.date = '2013-10-01'
Actual: select distinct
sum(T3.QUANTITY) from SHOPS AS
T1 JOIN SALES AS T2 on T1.SHOP_ID =
T2.SHOP_ID JOIN SALES_DETAILS AS T3
on T2.SALES_ID = T3.SALES_ID JOIN
PRODUCTS AS T4 on T3.PRODUCT_ID
= T4.PRODUCT_ID where T2.DATE >=
'2013-10-01' and T4.TYPE = 'IPHONE'
and T1.ADDRESS = 'New York'

7 Conclusions and Future Work

In this paper, we attempt to tackle the temporal as-
pect in NLIDB. This is a practical and challenging
topic in real-world applications for which there are
not many studies. Being motivated by the necessity
and lack of available dataset for temporal ques-
tions, we created the new dataset TempQ4NLIDB.
We also experimented with two SOTA models in
NLIDB and show that they benefit from our dataset
for better learning temporal questions. In future, we
will increase the size of our dataset and expand dif-
ferent types of temporal questions (e.g. implicit).

195

References
Ion Androutsopoulos, Graeme D Ritchie, and Peter

Thanisch. 1995. Natural language interfaces to
databases–an introduction. Natural language engi-
neering, 1(1):29–81.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Representing schema structure with graph neural
networks for text-to-sql parsing. arXiv preprint
arXiv:1905.06241.

Ursin Brunner and Kurt Stockinger. 2021. Valuenet:
A natural language-to-sql system that learns from
database information. In 2021 IEEE 37th Inter-
national Conference on Data Engineering (ICDE),
pages 2177–2182. IEEE.

Ruichu Cai, Boyan Xu, Xiaoyan Yang, Zhenjie Zhang,
Zijian Li, and Zhihao Liang. 2018. An encoder-
decoder framework translating natural language to
database queries.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2019. Learning an executable neu-
ral semantic parser. Computational Linguistics,
45(1):59–94.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. arXiv
preprint arXiv:1905.08205.

Christian S Jensen and Richard T Snodgrass. 2018.
Temporal database.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jan-
nik Strötgen, and Gerhard Weikum. 2018. Tem-
pquestions: A benchmark for temporal question an-
swering. In Companion Proceedings of the The Web
Conference 2018, pages 1057–1062.

Yaghmazadeh Navid, Wang Yuepeng, Dillig Isil, and
Thomas Dillig. 2017. Query synthesis from natu-
ral language. International Conference on Object-
Oriented Programming.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
Towards a theory of natural language interfaces to
databases.

Octavian Popescu, Ngoc Phuoc An Vo, Vadim Sheinin,
Elahe Khorashani, and Hangu Yeo. 2019. Tackling
complex queries to relational databases. In Asian
Conference on Intelligent Information and Database
Systems, pages 688–701. Springer.

Octavian Popescu, Irene Manotas, Ngoc Phuoc An Vo,
Hangu Yeo, Elahe Khorashani, and Vadim Sheinin.
2022. Addressing limitations of encoder-decoder
based approach to text-to-SQL. In Proceedings of

the 29th International Conference on Computational
Linguistics, pages 1593–1603, Gyeongju, Repub-
lic of Korea. International Committee on Computa-
tional Linguistics.

Octavian Popescu, Ngoc Phuoc An Vo, and Vadim
Sheinin. 2018. A large resource of patterns for ver-
bal paraphrases. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901. Association for Computational
Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.

Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Guihong
Cao, Xiaocheng Feng, Bing Qin, Ting Liu, and Ming
Zhou. 2019. Semantic parsing with syntax and table
aware sql generation. 56th Annual Meeting of the
Association for Computational Linguistics.

Sheinin Vadim, Khorasani Elahe, Yeo Hangu, Xu Kun,
An Vo Ngoc, Phuoc, and Octavian Popescu. 2018.
Quest: A natural language interface to relational
databases. LREC.

Ngoc Phuoc An Vo, Simone Magnolini, and Octavian
Popescu. 2015. FBK-HLT: A new framework for
semantic textual similarity. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 102–106, Denver, Colorado.
Association for Computational Linguistics.

Ngoc Phuoc An Vo and Octavian Popescu. 2015a.
Learning the impact and behavior of syntactic struc-
ture: A case study in semantic textual similarity. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing, pages
688–696, Hissar, Bulgaria. INCOMA Ltd. Shoumen,
BULGARIA.

Ngoc Phuoc An Vo and Octavian Popescu. 2015b. A
preliminary evaluation of the impact of syntactic
structure in semantic textual similarity and seman-
tic relatedness tasks. In Proceedings of the 2015

196

Conference of the North American Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 64–70, Denver, Colorado.
Association for Computational Linguistics.

Ngoc Phuoc An Vo and Octavian Popescu. 2016. A
multi-layer system for semantic textual similarity.
In Proceedings of the International Joint Conference
on Knowledge Discovery, Knowledge Engineering
and Knowledge Management, pages 56–67.

Ngoc Phuoc An Vo, Octavian Popescu, Vadim Sheinin,
Elahe Khorasani, and Hangu Yeo. 2019. A natural
language interface supporting complex logic ques-
tions for relational databases. In International Con-
ference on Applications of Natural Language to In-
formation Systems, pages 384–392. Springer.

Ziyu Yao, Yu Su, Huan Sun, and Wen tau Yih. 2010.
Model-based interactive semantic parsing: A unified
framework and a text-to-sql case study. IJCNLP.

Hangu Yeo, Elahe Khorasani, Vadim Sheinin, Ngoc
Phuoc An Vo, Octavian Popescu, and Petros Zer-
fos. 2021. Programmatic database language gener-
ation for big data applications. In 2021 IEEE Inter-
national Conference on Big Data (Big Data), pages
2848–2856. IEEE.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2016. Neural enquirer: Learning to query tables
with natural language.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Rui Zhang, Tao Yu, He Yang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019. Editing-based sql query generation for cross-
domain context-dependent questions. arXiv preprint
arXiv:1909.00786.

197

Proceedings of EMNLP 2022 Industry Track, pages 198–207
December 9–11, 2020. ©2022 Association for Computational Linguistics

Multi-Tenant Optimization For Few-Shot Task-Oriented FAQ Retrieval

Asha Vishwanathan
Verloop.io

asha@verloop.io

Rajeev Unnikrishnan Warrier
Verloop.io

rajeev@verloop.io

Gautham Vadakkekara Suresh∗

Verloop.io
gautham.suresh09@yahoo.com

Chandra Shekhar Kandpal∗
Verloop.io

chandrashekhar1503@gmail.com

Abstract
Business-specific Frequently Asked Questions
(FAQ) retrieval in task-oriented dialog systems
poses unique challenges vis-à-vis community
based FAQs. Each FAQ question represents an
intent which is usually an umbrella term for
many related user queries. We evaluate per-
formance for such Business FAQs both with
standard FAQ retrieval techniques using query-
Question (q-Q) similarity and few-shot intent
detection techniques. Implementing a real-
world solution for FAQ retrieval in order to
support multiple tenants (FAQ sets) entails op-
timizing speed, accuracy and cost. We pro-
pose a novel approach to scale multi-tenant
FAQ applications in real-world context by con-
trastive fine-tuning of the last layer in sentence
Bi-Encoders along with tenant-specific weight
switching1.

1 Introduction

Business-specific Frequently Asked Questions
(FAQ) form an important part of many task-
oriented dialog systems today. Business FAQs
exhibit some common characteristics which dif-
ferentiate them from community-based FAQs. We
show few examples of such FAQs in Table 1. The
intent is often a user-defined umbrella term that
represents a group of questions in such FAQs. The
system needs to respond to user queries which in-
dicate the same intent as that of the FAQ question
(Example-1). In some cases, similar FAQ ques-
tions can lead to different answers (Example-2).
The answers may not always have overlap with the
question (Example-3). The response can also be
modeled as a system action rather than a text re-
sponse (Example-4). The system should also be
able to identify Out-Of-Scope (OOS) queries and
redirect to a human agent.

Since each question within an intent category
represents it loosely, having a single question for

*Work done while the authors were working at Verloop.io
1https://github.com/verloop/few-shot-faqir

an intent poses a challenge for intent detection.
Simple paraphrases do not suffice and therefore,
5-10 variations for each FAQ question representing
the intent is sourced from domain experts.

Common approaches in FAQ retrieval include
Query-Question similarity and Query-Answer en-
tailment (Sakata et al., 2019; Hammond et al., 1995;
Tomuro and Lytinen, 2004). Query-Question (q-
Q) methods focus on similarity between a user’s
query and a question to retrieve the relevant an-
swer. Query-Answer (q-A) methods predict the
relevance between the query and an FAQ answer
to re-rank the results obtained via q-Q. For FAQ
retrieval, we leverage q-Q similarity. The q-A en-
tailment method is infeasible in some FAQ sets due
to the generic nature of answers for several differ-
ent questions, owing to little match between the
q-A pair and responses being modeled as system
action instead of text.

We also prefer a single model based approach
over stacked models such as retriever-reranker mod-
els (Zhang et al., 2020; Gupta and Carvalho, 2019)
as inference latency gets compounded in such sys-
tems. We compare several q-Q retrieval approaches
using pre-trained models and fine-tuned embed-
dings. We also model the problem as a few-shot
intent detection and evaluate classifier based tech-
niques.

From an industry specific dialog solutions per-
spective, the approaches need to balance accuracy,
real time inference latency and costs while hav-
ing the ability to scale for multiple tenant (FAQ
sets) requirements. Our contribution is towards
implementing an FAQ retrieval system for Busi-
ness FAQs in real-world contexts. We describe a
low-cost approach to deploy multi-tenant FAQ ap-
plications at scale while optimizing for inference
latency and accuracy. We also evaluate different
methods and models against few-shot intent detec-
tion and conversational datasets.

198

No. Question Answer
1 How to check exchange rate? Please use the Rate Enquiry option on the Main Menu

Rate for Peso
2 Am I going to get a refund We issue refund for specific products

When am I going to get the refund Refund normally takes 7 days to process
3 My transaction failed Please contact on XXX or mail us at XXX

My checkout did not happen properly
4 Can I speak to an agent? System action: Transfer to agent

Table 1: Examples of actual business questions. All identifying information is masked.

1.1 Real world constraints
We process millions of chat messages every day,
of which a sizable percentage is related to FAQ
retrieval. The expected latency requirement is less
than 100 ms under production loads. Tenant spe-
cific FAQ sets vary in terms of the domain and
intent granularity. It is important to maximize the
retrieval accuracy for each tenant while not increas-
ing inference costs drastically.

As on-premise machines are expensive to set-up
and maintain, it is often cost-effective and con-
venient to leverage cloud providers. The applica-
tion efficiently needs to utilize machine resources
and scale for multiple tenants without significant
overhead. Since GPU costs are higher, it is cost-
effective to train using GPU machines and perform
inference with CPU machines.

Apart from this, many tenants require the sys-
tem to respond with certain standardized answers
based on company policy without too many modi-
fications. Therefore, retrieval based solutions are
more acceptable than generative solutions. The
problems of hallucinations which still exist in gen-
erative solutions (Roller et al., 2021; Shuster et al.,
2021) constraints the use of these approaches for
task-oriented FAQ responses in business contexts.

2 Related Work

The models based on transformer architectures
have enabled the usage of transfer learning for var-
ious tasks such as text similarity (Devlin et al.,
2019). Sakata et al. (2019) introduced an approach
to combine the query-question similarity from
TSUBAKI and query-answer relevance from BERT.
Arora et al. (2020) evaluated different providers
on three intent recognition datasets, created using
queries received by chatbots from real users.

In a few-shot setting, recent approaches lever-
age the transformer architecture. Casanueva et al.
(2020) demonstrated that using a dual sentence en-

coder as base model works better in low-resource
intent detection tasks as compared to BERT. Zhang
et al. (2021b) proposed the use of contrastive learn-
ing to improve the performance of BERT based
classifiers in few-shot intent detection tasks.

Pre-training methods for creating transferable
language representations is a common approach.
In-domain pre-training further increases the adapt-
ability of the model to domain related downstream
tasks. Specifically for few-shot setting, fine-tuning
pre-trained models with supervised learning is
found to be effective (Zhang et al., 2021a).

Cross-encoder approaches with BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) mod-
els have achieved SOTA scores using sentence
pair training. Training is done with question pairs.
During inference, question pairs are created using
query and train questions. These pairs are scored
by a classifier to predict the final label.

Bi-Encoder models have the advantage of be-
ing able to cache the representations and hence,
are highly efficient during inference (Reimers
and Gurevych, 2019). The research on STILTS
(Phang et al., 2018) found the advantages of in-
termediate training on data rich supervised tasks,
giving pronounced benefits in data constrained
regimes. Casanueva et al. (2020) discusses the
gains achieved via transfer learning using pre-
trained sentence encoders as a retriever model.
Cross-Encoder models entail a higher latency as
all the question pairs are required to be classified
during inference. Zhang et al. (2020) explores us-
age of the classifier model as a re-ranking model
following a Bi-Encoder based retriever to reduce
inference time.

We evaluate our FAQ retrieval use case
with simple baseline approaches, in-domain pre-
trained models, classifier based approaches, Cross-
Encoders and Bi-Encoders in a few-shot setting.

199

3 Datasets

We choose datasets that are similar to our real-
world tenant FAQs and perform experiments on
publicly available intent detection datasets for task-
oriented dialogues. We use datasets from HINT3
(Curekart, Powerplay11 and SOFMattress) (Arora
et al., 2020) which reflects real-world FAQ intents
and user queries. We also use DialoGLUE datasets
(Mehri et al., 2020) - HWU64 (Liu et al., 2021),
CLINC150 (Larson et al., 2019) and BANKING77
(Casanueva et al., 2020).

DialoGLUE datasets further provide train sets
for data constrained regimes with 5 and 10 samples
per class. Similarly, HINT3 also contains subset
variants of datasets which are created by retaining
only samples whose entailment score using the
ELMo model was less than 0.6. We use the few-
shot subsets for DialoGLUE and the full as well as
subset variant of HINT3 datasets. These datasets
are suitable for few-shot analysis. All the datasets
have separate train and test sets and we report our
evaluations on the test sets. The CLINC150 and
HINT3 datasets have separate in-scope and out-of-
scope queries and we use them to evaluate OOS
performance. The dataset size, intent and domain
distribution is listed in Appendix A.

4 Methodology

In this section, we elaborate on our experiments
for model training and deployment. We compare
different approaches of few-shot FAQ retrieval and
describe our deployment strategy for the same.

4.1 FAQ Retrieval approaches
4.1.1 Baseline
We consider BM25 (Mass et al., 2020; Karan and
Šnajder, 2016) and vector space using TF-IDF
(Karan and Šnajder, 2016) as baseline approaches.

4.1.2 Pre-trained and fine-tuned features
The following models are considered for feature
extraction:

• Pre-trained BERT

• Pre-trained ConvBERT: ConvBERT model is
pre-trained on open-domain conversational
data (Mehri et al., 2020).

• Fine-tuned ConvBERT: We further fine-tune
ConvBERT model as an intent classifier and
use the fine-tuned encoder as a feature extrac-
tor.

• Pre-trained Bi-Encoders: We use pre-trained
Sentence BERT models (mini-LM-L6-v2, all-
mpnet-base-v2) which are trained on more
than 1 Billion sentence pairs consisting of a
diverse set of duplicate question pairs, NLI
sets, QA pairs.

• Fine-tuned Bi-Encoders: We fine-tune pre-
trained Bi-Encoders for a Semantic textual
similarity task with a contrastive loss (Zhang
et al., 2021b).

• Fine-tuned Task adapted pre-trained Bi-
Encoders: We perform pre-training for adapta-
tion of pre-trained Bi-Encoders with a triplet
loss using a cosine distance metric and further
fine-tune using a contrastive loss

After the features are extracted, inference is im-
plemented using a cosine similarity of query and
question embeddings.

4.1.3 Classifier
We fine tune BERT with a linear layer on top to
predict the intent class directly (Mehri et al., 2020).

4.1.4 Cross-Encoders
Inspired by the success of Cross-Encoders and the
STILTS approach, we fine-tune a pre-trained Cross-
Encoder model from SBERT (stsb-distilroberta-
base).

4.2 Question Pair/Triplet Based fine-tuning
We form Question pairs to fine-tune all Bi-Encoder
and Cross-Encoder models. We mark the question
pairs belonging to same class as positive samples
and ones belonging to different classes as negative
samples.

If c ∈ C Where C is the set of all classes, then
we denote qc,i to be the ith element of the cth class.
Then, qc,i ∈ Q where Q is the set of all Questions.
i ∈ {1, . . . n} where n ∈ {5, 10, N} when testing
for few-shot training with 5 samples, 10 samples or
the entire set respectively. The question pairs are
labelled as defined below.

L(ql,j , qm,k) =

{
1 if l = m

0 if l ̸= m
(1)

∀ l ̸= m and j ̸= k
This method increases the data size as it gener-

ates nC2 question pairs given n questions. Even in
a few-shot setting where there are only 180 samples
across 21 intents (SOFMattress), 16110 question

200

pairs were generated. The Q-Q data can grow ex-
ponentially, so the train data is capped to 200K
for fine-tuning. We also check fine-tuning on 50K
Balanced samples. Hard sampling is done using
a probabilistic method based on sample weights.
For Q-Q pair with label 0, the weight is equal to
the cosine similarity between the Q-Q pair. For
label 1, the weight is (1 - cosine similarity) of the
Q-Q pair. We use the same pre-trained bi-encoder
model for the embeddings which we intend to fine-
tune. Sampling with replacement is then done for
labels 0 and 1 to get the required sample sizes. For
the triplet based pre-training, the triplets are con-
structed such that the anchor and positive belong to
the same label and the negative belong to a differ-
ent label. Q-Q pairs are first constructed using the
hard sampling approach described above. For each
sample which is the triplet anchor, we get its pos-
itives and negatives from the Q-Q pairs.Sampling
is then done based on weightage to construct the
triplets.

4.3 Training and deployment

The common approach for fine-tuning models in-
volves modifying weights in all layers of the pre-
trained model. Instead, we propose an approach
where only the final layer of the model is fine-
tuned. The weights of all layers which are not
fine-tuned are shared across tenant models. Dur-
ing inference in the production environment, we
load the base model only once for shared param-
eters. We keep the tenant-specific weights for all
tenants loaded in memory and we switch the tenant
specific weights in the model for every inference
request. The shared base model weights reduce the
memory requirement by a significant margin when
we scale to a large number of tenants. Since we
retain the tenant weights in memory, replacing the
model weights does not result in any significant
latency overhead. This allows us to support mul-
tiple tenants using the same machine and in-turn
reduces the inference costs by an order based on
the model size. We select the best model based on
expected number of tenants, throughput and mem-
ory requirement. We evaluate the performance of
all fine-tuned approaches under the following con-
straints: Freezing all layers of the encoder except
the last layer, training for a fixed number of itera-
tions and using few-shot samples.

5 Experimentation Approaches

Fine-tuning for all Bi-Encoder and Cross-Encoder
models is done using question pairs as elaborated in
Section 4. Based on the training method outlined
by Mosbach et al. (2021), we train for a higher
number of iterations to offset any fine-tuning in-
stability. For the Bi-Encoders, we fine-tune only
the final layer of the model using a contrastive or
an online triplet loss. The pre-trained BERT and
ConvBERT classifier models were fine-tuned using
a softmax cross-entropy loss. The Cross-Encoder
was also fine-tuned with the same approach using
question pairs with a binary cross-entropy loss. For
predicting the query label, we create q-Q pairs lim-
ited to 5 questions per intent. The model predicts a
score for these combinations, where the label for
the question with the highest score is considered to
be the predicted label. We trained all models for 10
K iterations with a learning rate of 2e-5, batch size
of 16, AdamW optimizer with 10% linear warm up
and gradient normalization.

5.1 Pre-training

Commonly pre-training is done for in-domain adap-
tation using unlabelled datasets. But in our case,
tenant FAQs are spread across multiple niche do-
mains, making it difficult to get domain related
data. Moreover, pre-training for each domain sepa-
rately would result in multiple models per domain,
making the hosting costs higher. In case of pre-
trained dense retrievers, training on the base lan-
guage model in an MLM fashion requires a further
training of the bi-encoder model. In the GPL pa-
per, Wang et al. (2021) adopt a pre-training method
which is a triplet based training where the triplets
are constructed from the unlabelled data. Guru-
rangan et al. (2020) describe an approach of a sec-
ond level pre-training using unlabelled corpus and
pre-training using task related samples within a
domain.

We experiment with a similar approach as GPL
but we use the labelled data for the same task avail-
able across different domains. We construct triplets
using an offline approach instead of an online batch
mode, to ensure in-domain triplets. We create 100
K triplets from each dataset and get a total training
corpus of 600 K samples. We do a second level of
pre-training of the pre-trained bi-encoder models
for 140 K iterations, with the Triplet loss using Co-
sine distance metric and a margin of 0.15. We then
use this pre-trained model for further finetuning

201

BANKING77 CLINC150 HWU64
Method 5 10 5 10 5 10
BM25 53.96 61.10 55.37 60.80 50.37 54.46
TF-IDF 49.51 58.14 60.91 58.14 60.91 54.36
BERT - MP 40.25 48.89 68.97 66.73 52.88 57.06
ConvBERT - MP 50.42 59.41 73.11 79.53 58.92 65.79
ConvBERT - FT(C) 56.98 66.91 76.44 82.91 64.86 71.46
SBERT (MiniLM-L6) 76.78 83.47 79.08 81.24 68.02 73.42
SBERT (MiniLM-L6) - FT(C) 80.74 86.00 84.55 87.13 76.20 79.73
SBERT (MiniLM-L6) - FT(C) 50K 76.42 83.18 83.97 86.86 73.97 77.60
SBERT (MiniLM-L6) - FT(T) 81.33 86.33 85.11 87.75 75.27 82.24
SBERT (MiniLM-L6) - PT-FT(C) 84.28 84.67 89.88 89.86 85.68 86.24
SBERT (MPNet) - FT(T) 83.21 88.18 88.68 91.00 78.06 83.05
SBERT (MPNet) - PT-FT(C) 86.98 87.27 92.51 92.68 86.24 85.5
BERT - FT(C) 22.13 23.64 17.35 15.12 39.98 41.13
SBERT Cross-Encoder - FT(C) 67.10 69.83 76.10 75.20 66.91 68.03

Table 2: Top-1 accuracy of models on the DialoGLUE test sets. MP stands for Mean-Pooling, FT for fine-tuning,
(C) for Contrastive loss, (T) for Triplet loss and PT for pre-training. Here, 5 and 10 refers to training subsets created
with 5 and 10 samples per intent, respectively.

with a contrastive loss.

6 Evaluation Metrics

For evaluation, we consider a combination of
FAQ Retrieval metrics along with Intent detection
metrics. Similar to the metrics used in Sakata
et al. (2019), we consider Top-k accuracy (same
as Success Rate referred in the paper), MRR@k
(Mean Reciprocal Rank), nDCG@k (normalized
Discounted Cumulative Gain) and MAP@k (Mean
Average Precision). From an intent detection per-
spective, we also evaluate out-of-scope accuracy
across different thresholds. We use accuracy as
the metric for evaluation of OOS queries. In case
the top predicted label score is less than a speci-
fied threshold, then the top-k results are shown as
suggestions to the user. Metrics like MRR, nDCG
and MAP put emphasis on the ordering of the final
responses and hence are useful for evaluating the
effectiveness of this approach.

7 Results

Table 2 and 3 show the Top-1 accuracy for all ex-
periments. Table 4 shows the performance of the
MiniLM-L6 model in top-3 setting. Figure 1 fur-
ther shows its OOS and in-scope accuracy against
different thresholds.

From our experiments, we find that the fine-
tuned Bi-Encoder models perform the best across
all datasets. All the Bi-Encoder embedding ap-

proaches significantly outperform the other ap-
proaches in few-shot setting in spite of being con-
strained with the last layer fine-tuning strategy.

For HINT3 datasets, we use the benchmarking
results as reported by Arora et al. (2020) for com-
parison. We find that the fine-tuned Bi-Encoder
shows better performance than all benchmarked
chatbot solutions on both full and constrained
datasets. We noticed improvement while fine-
tuning the pre-trained Bi-Encoder models using the
Question pair approach. We also note that online
triplet loss based fine-tuning performed marginally
better as compared to contrastive Loss for all the
base models other than MPNet model on Haptik
dataset. We observe that the question pair / triplet
training strategy mitigates the effect of fewer sam-
ples. Reducing sample sizes of the Q-Q pairs from
200 K to 50 K balanced samples hurts the perfor-
mance across all datasets.

Fine-tuning the task adapted pre-trained mod-
els shows much better results in comparison to the
base pre-trained models in most of the Dialoglue
datasets but the gains are either less or deteriorate
for Haptik datasets. In Haptik datasets, the median
examples per intent is quite low as compared to
Dialoglue, with some intents having only 1 sample.
There would be no triplets formed for such sam-
ples. We also see a wide variation in the number
of examples per intent ranging from 3 to 95 in the
Curekart dataset. This would reduce the number of

202

Curekart Powerplay11 SOFMattress
Method Full Set Subset Full Set Subset Full Set Subset
BM25 72.34 71.20 51.63 49.09 58.44 52.24
TF-IDF 72.56 70.35 53.81 52.72 59.74 54.54
BERT - MP 52.87 50.21 30.54 26.18 38.09 32.03
ConvBERT - MP 65.92 63.27 42.18 37.45 49.35 47.18
ConvBERT - FT(C) 77.40 75.22 46.9 43.6 62.33 56.27
SBERT (MiniLM-L6) 82.52 79.64 64.00 62.54 74.58 71.42
SBERT (MiniLM-L6) - FT(C) 87.38 86.06 64.00 63.2 78.78 77.48
SBERT (MiniLM-L6) - FT(C) 50K 86.28 86.94 61.45 58.9 75.32 74.89
SBERT (MiniLM-L6) - FT(T) 86.50 85.17 61.80 64.36 77.90 74.02
SBERT (MiniLM-L6) - PT-FT(C) 85.39 85.39 62.54 61.81 73.16 73.59
SBERT (MPNet) - FT(T) 85.61 84.51 66.54 64.00 74.45 73.59
SBERT (MPNet) - PT-FT(C) 88.05 87.83 62.18 61.81 75.32 76.19
BERT - FT(C) 55.75 58.63 18.18 18.91 41.56 38.96
SBERT Cross-Encoder - FT(C) 65.48 67.92 51.27 49.09 58.40 60.60
Dialogflow 75.00 71.20 59.60 55.60 73.10 65.30
Rasa 84.00 80.50 49.00 38.50 69.20 56.20
LUIS 59.30 49.30 48.00 44.00 59.30 49.30
Haptik 72.20 64.00 66.50 59.20 72.20 64.00
BERT Full Training 73.50 57.50 58.50 53.00 73.50 57.10

Table 3: Top-1 accuracy of models on HINT3(v1) test sets with a threshold of 0.1. Here, MP stands for Mean-
Pooling, FT for fine-tuning, (C) for Contrastive loss, (T) for Triplet loss and PT for pre-training.

triplets for such intents.

While Cross-Encoder strategies are supposed to
be superior, we find that the Cross-Encoder fine-
tuning suffers due to the restrictive training strategy
and performs sub-par when compared to the Bi-
Encoders.

The BERT based classifier also shows poor per-
formance which appears to degrade on datasets
with more classes. In comparison to training BERT
model with all layers unfreezed as reported in the
Arora et al. (2020), we see that the last layer fine-
tuning strategy severely impacts the model perfor-
mance.

We also observe that models pre-trained on in-
domain data such as ConvBERT is superior to base
BERT even as a feature extractor. Interestingly, we
see that even baseline approaches with BM25 and
TF-IDF show better results than pre-trained BERT
in such settings. Fine-tuning the ConvBERT model
on the supervised classification task shows an im-
provement over the pre-trained model. If we look
at the OOS accuracy for the fine-tuned MiniLM-
L6 model, the similarity scores are normally high
and lower thresholds do not have much impact.
We further observe that each dataset has different
thresholds where the best trade-off between OOS

and in-scope accuracy is achieved. The top-3 ac-
curacy of MiniLM-L6 on all datasets including the
challenging Powerplay11 dataset is above 70%. We
choose the fine-tuned Bi-Encoder models based on
superior performance with our training strategy.

8 Deployment

Smaller models give us more scalability at the cost
of accuracy while larger models tend to have lower
throughput and higher memory requirements. The
model selection is done based on the specific busi-
ness need which dictate these three metrics. Table 5
shows the load testing results using Locust frame-
work, where we measure the mean latency per re-
quest and the request per second (RPS) achieved.
The models were tested under increasing loads un-
til RPS was stagnant and latency shot up. The
results depict the performance at the maximum
load the model can comfortably handle. The mod-
els are hosted via Kubernetes and deployed as a
microservice using native Pytorch inference. Ma-
chine configuration used for locust testing was c2-
standard-4 machine (4 vCPU and 16GB RAM) on
Google Cloud Platform. From Table 6, we find
that weight switching saves 81.5% memory per ten-
ant for MiniLM-L6. For the larger model MPNet,

203

Curekart Powerplay11 SOFMattress CLINC150
Metrics Full Subset Full Subset Full Subset Sample-5 Sample-10
Success Rate 89.80 88.93 73.81 73.09 81.38 81.81 94.22 95.08
MRR 88.38 87.38 68.42 67.45 79.94 79.43 88.88 90.77
nDCG 89.33 88.69 72.74 71.48 81.06 81.33 93.09 94.33
MAP 88 87 68 67 80 79 89 91

Table 4: Top-3 accuracy of fine-tuned MiniLM-L6 on the OOS datasets

(a) In-scope accuracy (b) OOS accuracy

Figure 1: In-scope and OOS accuracy on different datasets for fine-tuned MiniLM-L6 model.

it saves 92.5% per tenant. The benefits of weight
switching increases as model sizes gets larger. We
see that fine-tuned Bi-Encoder models work best
in terms of accuracy in few-shot setting. We also
have a latency benefit as the question embeddings
are computed upfront and cached. At inference,
prediction are done as cosine similarity between
the query embeddings and the cached question em-
beddings. For further gains, we cache these tenant
specific embeddings using FAISS or ANNOY 2.
While the task adapted pre-trained models worked
quite well in terms of accuracy, it entails repeated
pre-training of the model for every new tenant from
a niche domain and the subsequent fine-tuning. It
poses a hindrance in decoupling tenant data seam-
lessly. However, it is still a very viable approach in
case of separate hosting of domain specific models.

Model Median 90%ile RPS
latency latency

MiniLM-L6 93 260 22.9
MPNet 210 500 6.2

Table 5: Load testing results with latency and requests
per second (RPS) for best models. All latency values in
milliseconds (ms).

Model Memory requirement
Full model Weight switch

MiniLM-L6 110 20.5
MPNet 560 41.5

Table 6: Memory increase per tenant for the best per-
forming models. All values are in MegaBytes (MBs)

We choose MiniLM-L6 as it handles higher load at
significantly lower latency as compared to the best
performing model MPNet, with a slight trade-off
in accuracy.

9 Conclusion

We evaluated various methods for retrieval of Busi-
ness FAQs by modeling the problem as an FAQ
retrieval and a few-shot intent detection task. We
proposed a realistic multi-tenant deployment solu-
tion with trade-offs in accuracy while balancing for
cost and latency. Our last layer weight-switching
strategy works well where the model has to be fine-
tuned on tenant specific tasks. We observed that
fine-tuned Bi-Encoder embeddings work best in
a few-shot setting even under a constrained fine-
tuning strategy.

2https://github.com/spotify/annoy

204

10 Limitations

Although the weight switching approach is highly
scalable with increase in number of tenants, it has
few limitations. Our last-layer weight switching
strategy is more effective for heavier models and
the benefit starts to diminish with lighter models.
Although this approach is highly scalable, imple-
menting it for inference frameworks such as ONNX
Runtime and NVIDIA Triton is not straightforward.
Hence, we are currently limited to using native Py-
Torch inference which has higher latency. Apart
from this, fine-tuning only the last layer also con-
straints the model training leading to lower accu-
racy as compared to training all the layers. All
our experiments showcase benefits only with base
models and do not showcase inference benefits us-
ing other strategies such as quantization, pruning,
ANNs and caching. Such strategies can make the
system more scalable.

11 Acknowledgements

This work was supported by Verloop.io. We wish
to thank Gaurav Singh and Peeyush Jain from Ver-
loop. We thank the anonymous reviewers whose
thoughtful comments improved our final work.

References
Gaurav Arora, Chirag Jain, Manas Chaturvedi, and Kru-

pal Modi. 2020. HINT3: Raising the bar for intent
detection in the wild. In Proceedings of the First
Workshop on Insights from Negative Results in NLP,
pages 100–105, Online. Association for Computa-
tional Linguistics.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sparsh Gupta and Vitor R. Carvalho. 2019. Faq re-
trieval using attentive matching. In Proceedings of
the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval,

SIGIR’19, page 929–932, New York, NY, USA. As-
sociation for Computing Machinery.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

K. Hammond, R. Burke, C. Martin, and S. Lytinen.
1995. Faq finder: a case-based approach to knowl-
edge navigation. In Proceedings the 11th Conference
on Artificial Intelligence for Applications, pages 80–
86.

Mladen Karan and Jan Šnajder. 2016. Faqir – a fre-
quently asked questions retrieval test collection. In
Text, Speech, and Dialogue, pages 74–81, Cham.
Springer International Publishing.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1311–1316, Hong Kong, China. Association
for Computational Linguistics.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2021. Benchmarking Natural Lan-
guage Understanding Services for Building Conver-
sational Agents, pages 165–183. Springer Singapore,
Singapore.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Yosi Mass, Boaz Carmeli, Haggai Roitman, and David
Konopnicki. 2020. Unsupervised FAQ retrieval with
question generation and BERT. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 807–812, Online. Asso-
ciation for Computational Linguistics.

S. Mehri, M. Eric, and D. Hakkani-Tur. 2020.
Dialoglue: A natural language understanding
benchmark for task-oriented dialogue. ArXiv,
abs/2009.13570.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
{bert}: Misconceptions, explanations, and strong
baselines. In International Conference on Learning
Representations.

205

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Wataru Sakata, Tomohide Shibata, Ribeka Tanaka, and
Sadao Kurohashi. 2019. Faq retrieval using query-
question similarity and bert-based query-answer rele-
vance.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3784–3803, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Noriko Tomuro and Steven Lytinen. 2004. Retrieval
models and q and a learning with faq files. pages
183–202.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna
Gurevych. 2021. Gpl: Generative pseudo labeling for
unsupervised domain adaptation of dense retrieval.
arXiv preprint arXiv:2112.07577.

Haode Zhang, Yuwei Zhang, Li-Ming Zhan, Jiaxin
Chen, Guangyuan Shi, Xiao-Ming Wu, and Al-
bert Y.S. Lam. 2021a. Effectiveness of pre-training
for few-shot intent classification. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 1114–1120, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jianguo Zhang, Trung Bui, Seunghyun Yoon, Xiang
Chen, Zhiwei Liu, Congying Xia, Quan Hung Tran,
Walter Chang, and Philip Yu. 2021b. Few-shot intent
detection via contrastive pre-training and fine-tuning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1906–1912, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jianguo Zhang, Kazuma Hashimoto, Wenhao Liu,
Chien-Sheng Wu, Yao Wan, Philip Yu, Richard
Socher, and Caiming Xiong. 2020. Discriminative
nearest neighbor few-shot intent detection by trans-
ferring natural language inference. In Proceedings

of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 5064–
5082, Online. Association for Computational Lin-
guistics.

Appendix

A Dataset details

The details regarding different datasets is given
in Table 7. The dataset BANKING77 consists of
77 intents for 1 domain, CLINC150 has 150 in-
tents across 10 domains and HWU64 has 64 intents
across 21 domains. Curekart, Powerplay11 and
SOFMattress have 28, 59 and 21 intents respec-
tively. Powerplay11 is a challenging set with some
intents having only 1 sample even in full dataset
and median samples per intent being 3 in the subset
variant. The total number of Query-Question (Q-Q)
pairs generated for each dataset is also shown.

206

Datasets Intents (Domains) Min Max Median Samples q-Q Pairs
BANKING77 77 (1) 30 167 108 8.6K -
BANKING77-5 77 (1) 5 5 5 385 73920
BANKING77-10 77 (1) 10 10 10 770 296065
CLINC150 150 (10) 100 100 100 15K -
CLINC150-5 150 (10) 5 5 5 750 280875
CLINC150-10 150 (10) 10 10 10 1500 1124250
HWU64 64 (21) 33 159 156 8.9K -
HWU64-5 64 (21) 5 5 5 320 51040
HWU64-10 64 (21) 10 10 10 640 204480
Curekart 28 (1) 3 95 14 600 179700
Curekart-Subset 28 (1) 2 72 8 413 85078
SOFmattress 21 (1) 9 34 12 328 53628
SOFmattress-Subset 21 (1) 3 18 7 180 16110
Powerplay 59 (1) 1 46 7 471 110685
Powerplay-Subset 59 (1) 1 24 3 261 33930

Table 7: Details of datasets used along with number of Q-Q pair generated.Min,Max and Median are on samples per
intent

207

Proceedings of EMNLP 2022 Industry Track, pages 208–215
December 9–11, 2020. ©2022 Association for Computational Linguistics

Iterative Stratified Testing and Measurement for Automated Model
Updates

Elizabeth Dekeyser∗, Nicholas Comment, Shermin Pei, Rajat Kumar†,
Shruti Rai, Fengtao Wu, Lisa Haverty, Kanna Shimizu

Amazon Alexa

Abstract

Automating updates to machine learning sys-
tems is an important but understudied chal-
lenge in AutoML. The high model variance
of many cutting-edge deep learning architec-
tures means that retraining a model provides
no guarantee of accurate inference on all sam-
ple types. To address this concern, we present
Automated Data-Shape Stratified Model Up-
dates (ADSMU), a novel framework that relies
on iterative model building coupled with data-
shape stratified model testing and improvement.
Using ADSMU, we observed a 26% (relative)
improvement in accuracy for new model use
cases on a large-scale NLU system, compared
to a naive (manually) retrained baseline and
current cutting-edge methods.

1 Introduction

Research in automated machine learning, includ-
ing Auto ML and Auto AI, has primarily focused
on automating the steps between data preparation
and creating a purpose-relevant machine learn-
ing model, which can include choosing model ar-
chitecture, tuning hyperparameters, and data pre-
processing (Truong et al., 2019; Feurer et al., 2020;
He et al., 2021).

However, in production machine learning sys-
tems, there is an equally important task of automat-
ing the maintenance and updates of existing models
currently in use. This task embodies two essen-
tial requirements: (i) sufficiently covering new use
cases; and (ii) not regressing already working use
cases.

In academic literature, there exist a range of
methods to meet these requirements, including
Bayesian approaches (Kirk, 2017; Theodoridis,
2015), mixture of experts models (Yuksel et al.,
2012; Shazeer et al., 2017), finetuning (Käding
et al., 2016; Finn et al., 2017; Yu et al., 2020), and

∗edekeyse@amazon.com
†kmardpl@amazon.com

training data selection (Moore and Lewis, 2010;
Axelrod et al., 2011; Iyer and Bilmes, 2013). How-
ever, production systems present unique challenges
that are not addressed by these methods.

First, in deep learning models, high model vari-
ance can result in changing interpretations across
model builds (Gal and Ghahramani, 2016; Belkin
et al., 2019; Pham et al., 2020). Because of this,
simply retraining a model with new training data
can result in uneven coverage across a new use case,
i.e. failing performance requirements for a subset
and, thus not providing sufficient coverage for the
new use case. Furthermore, retraining the model
for the new use case can shift formerly correct in-
terpretations, i.e. failing performance requirements
for previously existing use cases. A standard so-
lution to this challenge in the industry is repeated
manual retraining and failure analysis, requiring
weeks of modeler work for a simple model update.

Second, experimentation in production systems
is further hampered by the costs of changing model
architectures. Production systems can be in use
by hundreds of millions of customers and are sup-
ported by complex engineering systems. Changes
to these systems require extensive testing of both
inference and engineering performance. Because
of this, introducing architectural solutions to chal-
lenges of model variance or data diversity can be
prohibitively costly.

To address these challenges, we present
Automated Data-Shape Stratified Model Updates
(ADSMU). ADSMU builds and iteratively im-
proves models to optimize toward data-shape strati-
fied metrics. It can be applied on top of pre-existing
model architectures in any production system, mak-
ing it compatible with both legacy and cutting-edge
model architectures and methods for model updat-
ing.

Through stratified optimization, ADSMU en-
sures that models cover a diverse range of the data
space without requiring manual intervention. Auto-

208

mated model updates using this framework resulted
in a 26% (relative) decrease in new user experi-
ences error rate compared to alternate model up-
date approaches (refer to Table 1). In addition, the
adoption of this AutoML framework corresponded
to a 94% timeline reduction in its application to
selected model retraining for supporting new NLU
use cases, compared to manual retraining.

In the following sections, we discuss related
work, examine the details of ADSMU and how
it can be applied to automated model updates, and
discuss the limitations of ADSMU.

2 Related Work

AI automation can encompass all the steps of build-
ing an ML model, including problem definition,
data collection, data cleaning, data coding, metric
selection, algorithm selection, parameter optimiza-
tion, post-processing, deployment, online evalua-
tion, and debugging (Feurer et al., 2020; He et al.,
2021). Nevertheless, these steps tend to focus on
the importance of building a first, robust model,
with the assumption that updating and retraining
can be done using an identical pipeline and frame-
work (Truong et al., 2019).

Research on optimized model updates, separate
from AutoML, has focused on two primary fields:
First, model architectures, such as finetuning (Käd-
ing et al., 2016; Finn et al., 2017; Yu et al., 2020)
or Bayesian approaches (Kirk, 2017; Theodoridis,
2015), and second, training data selection, which
encompasses work on submodular optimization
(Moore and Lewis, 2010; Axelrod et al., 2011;
Iyer and Bilmes, 2013), cross-entropy comparison
(Moore and Lewis, 2010), selection by proxy (Cole-
man et al., 2019), and active learning (Cohn et al.,
1996; Settles, 2009; Liu et al., 2021).

Many of these methods are premised on devel-
oping rich training data that performs well across
feature spaces. However, despite this focus on data
diversity, performance is tested, measured, and im-
proved based on average performance across devel-
opment test sets. This inherently biases models to
perform well on the majority data type, allowing
more challenging or rarer test cases (corresponding
to newly launched user experiences) to fall through
the cracks.

3 Automated Data-Shape Stratified
Model Updating

ADSMU provides a framework for (1) automating
data stratification, (2) using this stratification for
model measurement, and (3) boosting performance
in failing stratification groups using model iteration.
We discuss an application of this method using an
iterative approach to model retraining, which is
compatible with any model architecture.

3.1 Data-shape Based Stratification
3.1.1 Stratification Methods
ADSMU requires the implementation of a strati-
fication “rule” that is used throughout the model
update process. This rule takes advantage of the la-
belled nature of training data and uses those labels
to split data up meaningfully. This can be done us-
ing various stratification methods, including exact
match, fuzzy match, or model-based.

Exact match stratification relies on holding one
part of the data constant and stratifying based
on other division areas. In the case of natu-
ral language understanding, this could rely on
utterance label shapes. For instance, the utter-
ances “{please: Other} {play: Other} {moana:
VideoName}” and “{please: Other} {play: Other}
{frozen: VideoName}” would have identical utter-
ance shapes and therefore, in a simplistic exact-
match setting, would be part of the same stratifica-
tion group.

Fuzzy match stratification relies on similar
manually-input heuristics but allows for more varia-
tion. In the case of natural language understanding,
this could be through matching slot trails rather
than labels, in which case “{play: Other} {moana:
VideoName}” and “{please: Other} {play: Other}
{frozen: VideoName}” could be part of the same
utterance shape.1

The final method of data stratification is model-
based. This uses unsupervised strategies to group
together training data in a meaningful way and en-
sures data is optimized within those groups. For
instance, a clustering method could be used on top
of sentence embeddings that would take into ac-
count both content and syntax, placing “please play
Moana” and “might you play Frozen” in Cluster

1Both of the above methods require modeler insight to
determine principled stratification heuristics, but this should
depend on the use case. In one use case, stratifying based
on entity content could be more valuable (with “Moana” and
“Frozen” being the meaningful inputs), while in others, the
semantic shape might matter more.

209

A and “it would be fantastic if you played Moana”
and “I would really appreciate if you played Frozen”
in Cluster B due to different carrier phrase struc-
tures i.e. the model learns to differentiate between
two possible classes of carrier phrases for slotting
in a named entity recognition task. While this
method has the benefit of relying less on labels
and manual input, it has the potential to introduce
more noise into the modeling process.

3.1.2 Measuring Stratified Performance
Once established, these stratification groups be-
come the foundation for future modeling and opti-
mization.

During model training, model performance is
not judged by a single accuracy metric but rather as
an average of the performance of each of the strat-
ification groups. This ensures each stratification
group is equally weighted and under-performance
in a less common test set is not overlooked.

In other words, traditional approaches measure
performance as x̄ = 1

n(
∑n

i=1 xi) where n is the
number of test cases and xi is a binary or continu-
ous success metric for observation i.

However, we propose a measurement method
that equally weights each stratification group, re-
gardless of the number of observations within it:

x̄ =
1

L
(

L∑

h=1

x̄h) (1)

where L is the number of stratum and x̄h is the
average of the binary or continuous success metric
for stratification group h.2

3.1.3 Resolving Stratification Group Failures
The final area in which stratification is applied
is failure resolution. When a model shows fail-
ures in a stratification group, it adds synthetically-
generated training data to improve performance in
that stratification group.

This data is generated based on the user-defined
heuristic for stratification. For instance, in an ex-
act match example where the semantic shape is
“play|Other TOKEN|VideoName” the system can
generate fill-in-the-blank data for VideoName, ei-
ther resampling from pre-existing training data (e.g.
finding all VideoName instances and using that as

2There is a range of potential extensions to these mea-
surement metrics. For instance, semantic groups could be
weighted based on modeler-defined heuristics, such as pre-
dicted popularity. Alternately, other metrics, such as harmonic
mean, could be used to calculate semantic group performance.

a catalog) or alternately using a user-provided cata-
log for data regeneration.3

3.2 Integration into Automated Model
Updates

In this section, we discuss one method for integrat-
ing stratification groups into an end-to-end model
update pipeline, following the steps indicated in
Figure 1 and addressed in more detail below.
1. The user provides updated data. The user
inputs data to be added and iterated on top of a
pre-existing model and dataset.
2. The system builds a stratified synthetic data
pool. The AI system ingests the user-provided
data and splits it using a pre-defined stratification
method (see Section 3.1.1).4

3. Training data addition and model buiding.
An initial amount of training data is added.5 Model
is then trained agnostic to architectures, hyperpa-
rameters, and loss functions.
4. Results of model training evaluated. The
model results are evaluated on each of the strati-
fication groups. Note that while the system may
have added varying amounts of training data from
different stratification groups, every stratification
group is tested, and test performance is weighted
equally.
5. Data addition for supporting failing stratifi-
cation groups. If a stratification group is underper-
forming, more data is added to support this failing
shape using methods discussed in Section 3.1.3.

Steps 3-5 are then repeated until net perfor-
mance, measured by the methods discussed in Sec-
tion 3.1.2, reaches an acceptable level or, alter-
nately, a preset maximum number of iterations is
reached.

3.3 Experimental Setup

We examine the impact of the ADSMU frame-
work applied to a machine learning task that mim-
ics a production-scale system and compare its re-
sults with other standard model update approaches.

3This data could also be created using cutting-edge, model-
based synthetic generation methods (Wan et al., 2017; Zhang
et al., 2019). As with model-generated semantic groups, the
additional value of these methods must be balanced against
the noise and lack of precision introduced by model-generated
data.

4This step can also include data generation or supplemen-
tation to increase the data size if necessary.

5This can be naive (equal amounts across stratification
groups) or more principled (using model-based training data
selection methods, e.g. Moore and Lewis (2010); Axelrod
et al. (2011); Iyer and Bilmes (2013)).

210

Figure 1: Exemplar integration of ADSMU in a model retraining pipeline. Data shape stratification is used for model
performance measurement and improvement. Steps 3-5 are performed in iteration to boost model performance on
weak stratification groups.

Experiment Data Model Overall New Use Case
Selection Training Accuracy Change Accuracy Change

(1, Baseline) Naive Naive 0% 0%
(2) Naive Finetuning 1% -2%
(3) Submodular Naive 0.6% 0.1%
(4) Submodular Finetuning 1.5% -0.5%
(5) ADSMU ADSMU 1% 26%
(6) ADSMU + Submodular ADSMU 1.5% 28%

Table 1: Results from experimentation on experimental domain, intent, and named entity recognition tasks. Results
reported are overall accuracy across classification tasks based on percent improvement from experiment (1, Baseline).
ADSMU results used three model iterations.

Our experiments focused on updating a two-stage
model for domain classification (DC) and a joint
intent classification (IC) and named entity recog-
nition (NER) task. For conducting experiments,
we chose a deep bidirectional language model ar-
chitecture based on their established success on
several NLP tasks (Peters et al., 2018). The pre-
existing training data (user data + synthetic data;
user data used was already preprocessed for de-
identification) proxied that of a large and com-
plex production system and represented utterances
across multiple domains and intents. We compare
ADSMU to other model update approaches (Ta-
ble 1) using a single model update task, wherein
the model update was performed in a single pre-
existing domain and introduced one new intent and
new slots. We used exact match stratification to
create 142 stratification groups for the training data
and measured performance using the method from
Equation (1). We set a goal of 95% accuracy for
stratification groups, meaning that more training
data was added only when groups did not meet that
bar. This accuracy threshold is an experimental
variable and can be tuned based on the trade-off
between performance requirements and training
data volume because error falls off as a power of
the training data volume (Sorscher et al., 2022).
Stratification group failures were generated using
the exact match heuristic resampling from a user-
provided catalog. All model update approaches
used comparable amounts of training data. For pur-

poses of scale estimation, ADSMU started with
training data measuring 0.004% of the pre-existing
training data (in-domain and out-of-domain data),
with each iteration (step 3-5 in Figure 2) adding
more data for the failing stratification groups. The
total utterances used during end-to-end ADSMU
measured 0.008% of all the pre-existing training
data.

We compared ADSMU to a naive retrained base-
line and two common model refresh methods– sub-
modular optimization and finetuning. The baseline
model update was performed by an expert modeler
by manual training data sampling to support the
new intent in a pre-existing domain. To implement
submodular optimization, we used methods pre-
sented in Schreiber et al. (2020); specifically, the
implementation of the feature-based optimization
method of Wei et al. (2014). This is based on a
generalized feature-based function:

f(X) = ΣD
d=1ϕ(Σ

N
i=1Xi,d) (2)

For the optimizer, we used an approximate lazy
greedy algorithm (Schreiber et al., 2020). We
added the same amount of training data for the
naive baseline, ADSMU and submodular optimiza-
tion. For comparison with finetuning, we froze the
weights of the encoder layers and retrained the de-
coder to learn the new intent category. We retrained
for 35% of the epochs of the baseline/ADSMU
model.

211

Figure 2: Comparison of manual model update vs. ADSMU. We obtained best model for the manual update after 14
iterations, and after 9 iterations for the ADSMU. Each manual iteration involved in-depth failure analysis and data
addition for failure resolution by an expert modeler. Figure shows error rate (range: 0 to 1).

3.4 Results

For experiments in section 3.3, we report results
based on percent improvement from current per-
formance (baseline) based on overall accuracy
across the three classification tasks (domain, intent,
named entity recognition). While we only com-
pared ADSMU to other approaches using a single
model update, we repeated use of ADSMU for sev-
eral other model building exercises that mimicked
large-scale NLU production systems and obtained
similar robust results. The results can be found in
Table 1.

We find that finetuning performs slightly better
overall than a naive retrained baseline but worse on
new use cases. Submodular optimization combined
with finetuning presents similar underperformance
issues on new model use cases, though it slightly
outperforms baseline when combined with a full re-
training. ADSMU shows marked improvements in
new use case accuracy compared with a naive base-
line and slight improvements in overall accuracy.
ADSMU combined with submodular optimization
shows even more significant gains on overall and
new use case accuracy, highlighting the potential
to combine ADSMU with other data selection and
model retraining approaches.

Additionally, we provide a specific exemplar
case, wherein we compared iteration-level perfor-
mance of model update performed by an expert
modeler possessing domain knowledge against the

ADSMU for a spoken language understanding use
case (Sarikaya et al., 2016) (same model and task as
in section 3.3). This model update was performed
in a single pre-existing domain and across multi-
ple pre-existing intents but with new slots (Figure
2). The stop-criteria (best model) for the manual
development work and the ADSMU iterations re-
quired: a) no regression of the pre-existing use
cases; and b) less than 5% error rate for domain
classification and intent and slot recognition for
the new use case. To support the new use case, the
expert modeler added training data measuring 0.5%
in total of the pre-existing in-domain training data,
and the ADSMU added data measuring 0.83% for
obtaining the best model. The ADSMU converged
faster than the manual model update process and
performed better for both the domain classification
and joint intent and named entity recognition task.
Overall, the best model for ADSMU performed
0.8% better than the model provided by the expert
modeler. ADSMU showed a relatively 24% lower
error rate than the modeler model for the new use
case. The iteration-level error rates (range: 0-1) for
the new use case (across various intents) are shown
in Figure 2.

The key to contextualizing these results is an
analysis on a second axis – modeler cost. Accuracy
results are compared against a single naive model
rebuild baseline. Yet in practice, modelers can in-
vest time to improve model accuracy through mul-
tiple rebuilds, offline testing, and tweaking training

212

data. Comparison of ADSMU to manual develop-
ment represented a 94% timeline decrease in model
updates from months to days.

4 Conclusions and Next Steps

ADSMU presents a framework for using strati-
fied testing and measurement to iteratively improve
models in the setting of automated model updates.
This highlights the need that focuses on automat-
ing model creation while largely ignoring the chal-
lenges associated with automated model refresh
processes (Truong et al., 2019; Feurer et al., 2020;
He et al., 2021).

One key extension of this approach is applica-
tions that remove the need for model iteration and
improve performance within stratified sub-groups
in a single model build. For instance, optimizing
on stratified loss functions might help ensure that
models cover diverse use cases in a more consis-
tent manner. More simplistically, a model could
have training data added incrementally in between
epochs based on weaker performing stratification
groups.

5 Limitations

There are three key limitations to this approach.
First, the reliance on user-defined stratification
groups requires a certain degree of domain knowl-
edge. Second, this framework is best suited to use
with high-variance model architectures, since these
are the most likely to show variable performance
across data types and model builds. Finally, the re-
liance on iterations imposes a higher computational
cost than a single model rebuild.

213

References
Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011.

Domain adaptation via pseudo in-domain data se-
lection. In Proceedings of the 2011 conference on
empirical methods in natural language processing,
pages 355–362.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik
Mandal. 2019. Reconciling modern machine-
learning practice and the classical bias–variance
trade-off. Proceedings of the National Academy of
Sciences, 116(32):15849–15854.

David A Cohn, Zoubin Ghahramani, and Michael I
Jordan. 1996. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145.

Cody Coleman, Christopher Yeh, Stephen Mussmann,
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. 2019. Selection
via proxy: Efficient data selection for deep learning.
arXiv preprint arXiv:1906.11829.

Matthias Feurer, Katharina Eggensperger, Stefan
Falkner, Marius Lindauer, and Frank Hutter. 2020.
Auto-sklearn 2.0: Hands-free automl via meta-
learning. arXiv preprint arXiv:2007.04074.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR.

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. Au-
toml: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622.

Rishabh K Iyer and Jeff A Bilmes. 2013. Submodular
optimization with submodular cover and submodular
knapsack constraints. Advances in neural informa-
tion processing systems, 26.

Christoph Käding, Erik Rodner, Alexander Freytag,
and Joachim Denzler. 2016. Fine-tuning deep neu-
ral networks in continuous learning scenarios. In
Asian Conference on Computer Vision, pages 588–
605. Springer.

Matthew Kirk. 2017. Thoughtful machine learning with
Python: a test-driven approach. " O’Reilly Media,
Inc.".

Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li,
Jifeng Dai, and Conghui He. 2021. Influence se-
lection for active learning. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 9274–9283.

Robert C Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 conference short papers,
pages 220–224.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. CoRR, abs/1802.05365.

Hung Viet Pham, Shangshu Qian, Jiannan Wang,
Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yao-
liang Yu, and Nachiappan Nagappan. 2020. Prob-
lems and opportunities in training deep learning soft-
ware systems: An analysis of variance. In Proceed-
ings of the 35th IEEE/ACM international conference
on automated software engineering, pages 771–783.

R. Sarikaya, P. A. Crook, A. Marin, M. Jeong, J.P. Ro-
bichaud, A. Celikyilmaz, Y.B. Kim, A. Rochette,
O. Z. Khan, X. Liu, D. Boies, T. Anastasakos,
Z. Feizollahi, N. Ramesh, H. Suzuki, R. Holenstein,
E. Krawczyk, and V. Radostev. 2016. An overview of
end-to-end language understanding and dialog man-
agement for personal digital assistants. pages 391–
397.

Jacob M Schreiber, Jeffrey A Bilmes, and
William Stafford Noble. 2020. apricot: Sub-
modular selection for data summarization in python.
J. Mach. Learn. Res., 21:161–1.

Burr Settles. 2009. Active learning literature survey.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya
Ganguli, and Ari S. Morcos. 2022. Beyond neural
scaling laws: beating power law scaling via data
pruning. arXiv preprint arXiv:2206.14486v3.

Sergios Theodoridis. 2015. Machine learning: a
Bayesian and optimization perspective. Academic
press.

Anh Truong, Austin Walters, Jeremy Goodsitt, Keegan
Hines, C Bayan Bruss, and Reza Farivar. 2019. To-
wards automated machine learning: Evaluation and
comparison of automl approaches and tools. In 2019
IEEE 31st international conference on tools with ar-
tificial intelligence (ICTAI), pages 1471–1479. IEEE.

Zhiqiang Wan, Yazhou Zhang, and Haibo He. 2017.
Variational autoencoder based synthetic data gener-
ation for imbalanced learning. In 2017 IEEE sym-
posium series on computational intelligence (SSCI),
pages 1–7. IEEE.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris Bartels,
and Jeff Bilmes. 2014. Submodular subset selec-
tion for large-scale speech training data. In 2014
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3311–3315.
IEEE.

214

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo
Zhao, and Chao Zhang. 2020. Fine-tuning pre-
trained language model with weak supervision: A
contrastive-regularized self-training approach. arXiv
preprint arXiv:2010.07835.

Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader.
2012. Twenty years of mixture of experts. IEEE
transactions on neural networks and learning sys-
tems, 23(8):1177–1193.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

215

Proceedings of EMNLP 2022 Industry Track, pages 216–227
December 9–11, 2020. ©2022 Association for Computational Linguistics

SLATE: A Sequence Labeling Approach for Task Extraction from
Free-form Inked Content

Apurva Gandhi1∗, Ryan Serrao2, Biyi Fang1,
Gilbert Antonius1, Jenna Hong1, Tra My Nguyen3, Sheng Yi4,

Ehi Nosakhare1, Irene Shaffer1, Soundararajan Srinivasan1, Vivek Gupta5

Microsoft
{1firstname.lastname, 2ryserrao, 4shengyi, 3nguyenm, 5vivgupt}@microsoft.com

Abstract

We present SLATE, a sequence labeling ap-
proach for extracting tasks from free-form con-
tent such as digitally handwritten (or "inked")
notes on a virtual whiteboard. Our approach
allows us to create a single, low-latency model
to simultaneously perform sentence segmenta-
tion and classification of these sentences into
task/non-task sentences. SLATE greatly out-
performs a baseline two-model (sentence seg-
mentation followed by classification model) ap-
proach, achieving a task F1 score of 84.4%,
a sentence segmentation (boundary similarity)
score of 88.4% and three times lower latency
compared to the baseline. Furthermore, we
provide insights into tackling challenges of per-
forming NLP on the inking domain. We release
both our code and dataset for this novel task.

1 Introduction

The shift to remote and hybrid working styles due
to COVID-19 has led to a large increase in virtual
meetings. It has become increasingly important for
participants to express themselves and brainstorm
as naturally and effortlessly as possible, leading
to an opportunity to extract entities from the large
amounts of content created in these meetings. A
natural entity of interest is a task created by a par-
ticipant during the meeting which can be assigned
to an individual to complete afterwards.

While past works have investigated extracting
tasks from typed content such as emails (Bennett
and Carbonell, 2005; Wang et al., 2019), there
has been less focus on task extraction from more
free-form content such as digitally handwritten (or
inked) content on a virtual whiteboard or spoken
content in a meeting. Extracting tasks from free-
form content is challenging as it is often not as well-
structured (e.g., poor grammar, inconsistent/lack
of punctuation, typos, etc.) Furthermore, since
this content first needs to be converted to text (e.g.,

∗Corresponding author.

Figure 1: Examples of inked content. Task sentences
are highlighted in red. Note the free-form style of the
content, containing lists, a paragraph and annotations.

through a handwriting recognition model for ink or
ASR for speech), downstream NLP models must
be robust to errors made by the recognition models.

Moreover, as we discuss in Section 2, past ap-
proaches for task extraction from typed content
assume text to already be segmented into sentences
and focus on building a separate sentence-level
task classification model. We cannot make this as-
sumption for our scenario since automatic sentence
segmentation models trained on typed content are
unlikely to generalize well to the inconsistent cap-
italization and punctuation in free-form content
(Stevenson and Gaizauskas, 2000; Rehbein et al.,
2020). Furthermore, separating classification and
sentence segmentation creates a latency-challenge:
Classifying each sentence separately can cause the
latency on CPU to scale linearly with the number of
sentences, making real-time extraction challenging.

In our work, we address these challenges with
our proposed approach SLATE – A Sequence La-
beling Approach to Task Extraction from free-form
content. Particularly, we apply this approach to
inked content, such as that in Fig. 1, and call this
application as Ink-SLATE. Our contributions are:

• We create a single, low-latency sequence label-
ing model to simultaneously perform sentence
segmentation and task sentence classification
for inked content in a document.

• We leverage ink document layout features to
overcome inking domain challenges such as

216

the lack of punctuation and capitalization.

• We discuss a custom evaluation procedure suit-
able for the problem of extracting task sen-
tences from free-form content and benchmark
our SLATE approach against a baseline two-
model approach.

• We compile a novel dataset for task extraction
from ink document text. We release both our
code and dataset in our linked repository.1

2 Related Work

Past work on analyzing digitally inked content has
dominantly fallen into either the category of hand-
writing recognition (Keysers et al., 2016; Gericke
et al., 2012) or document layout analysis – group-
ing words into document lines (Ye et al., 2005),
grouping document lines into blocks of spatially
related text (Ye et al., 2007), or detecting indenta-
tion (Ye and Viola, 2004). Our work differs from
these past works as it analyzes the semantics of
the inked content rather than the layout. Further-
more, in an ink-analysis pipeline our work would
sit downstream to handwriting recognition and lay-
out analysis rather than replace them; we use, as
input to our task extraction system, both recog-
nized text and layout information extracted from
the inked document. To our knowledge, our work
is the first to tackle both sentence segmentation and
task extraction for inked content.

Past work on task extraction has mainly been
applied to typed content such as emails (Bennett
and Carbonell, 2005; Wang et al., 2019). Other
than our different domain of inked content, our
work also differs in approach from these past works.
Particularly, these works assume input text to be
already segmented into sentences and focus only
on building a classification model to classify these
sentences into tasks/non-tasks. Thus, implicitly
the task extraction systems in these works rely on
a two-model approach: A sentence segmentation
model to produce sentence candidates, followed
by a classification model to classify sentences as
tasks/non-tasks or different sub-categories of tasks.
Our approach, on the other hand, uses a single
model to simultaneously perform both sentence
segmentation and classification for inked content.

Sequence labeling is an NLP approach that pre-
dicts a label for each token within a sequence,

1Dataset, code, and additional details available at:
https://github.com/SLATEAuthors/SLATE

rather than a label for the whole sequence. Ap-
plications of sequence labeling have traditionally
included named entity recognition (NER), part-of-
speech (POS) tagging, text segmentation, etc. In
our work, we reframe the typically two-stage prob-
lem of task sentence extraction from documents as
a single-stage sequence labeling problem. Since
our approach uses a single, shared model to both
segment and classify text, it can be thought of as
a form of multi-task learning. Multi-task learning
has shown to be data-efficient and less prone to
overfitting to any single task (Crawshaw, 2020).

Most previous works on sequence labeling use
Bi-LSTM and CRF layers in their models (He
et al., 2020; Chen et al., 2020). We instead use
a RoBERTa architecture, following the recent suc-
cess of fine-tuning pretrained transformer LMs for
data-constrained NLP. (Wolf et al., 2020).

3 Our Approach
3.1 Dataset

Our dataset consists of 200 vendor-created ink doc-
uments. To generate these documents, the ven-
dors were provided various example templates with
different content (to-do lists, recipes, brainstorms,
general notes, etc.) that contain tasks and non-
tasks written in various styles (single sentences,
paragraphs, lists, diagrams, etc.) For additional di-
versity, the vendor employed 50+ different donors
from different genders and age groups, and with
various writing habits (e.g., left/right-handed).

After obtaining these ink documents, we passed
them through a handwriting recognition engine
(with 9.8% word error rate) and document layout
analysis engine similar to ones referred to in Sec-
tion 2 or to publicly available APIs (Apr, 2022).
The result of this is 200 document text blocks and
associated layout metadata (line breaks, bullets,
etc.; see Section 3.2.4). The layout analysis also
groups spatially related regions of text into separate
blocks (similar to (Ye et al., 2007)), which we refer
to as writing regions. We then split these writing
regions between 6 annotators who performed two
kinds of annotations: (1) Inserting sentence bound-
aries for sentence segmentation; (2) Annotating
each sentence segment as a task/non-task.

Furthermore, the annotators also specially
marked certain sentences which were only tasks
or non-tasks in the context of the neighboring sen-
tences. An example is a sentence with many mis-
recognized words, making it incomprehensible in
isolation; nevertheless, in the context of a to-do

217

list it may become apparent that the sentence is a
task. Additional examples of tasks/non-tasks due
to context can be found in Appendix A. Table 1
shows dataset split and annotation statistics. For
annotation consistency, the annotators were pro-
vided a comprehensive annotation guide with ex-
ample categories of sentences to be labeled as tasks
and non-tasks. We release this guide in our linked
repository. Since our task is novel, for reproducibil-
ity and to support future research, we also make the
document texts, layout metadata, and task/sentence
annotations available in our repository1.

Next, we share domain-specific challenges:

Digital handwriting is often misrecognized:
We rely on existing handwriting recognition mod-
els to convert handwritten strokes to text. Since
handwriting is often messy and diverse, recognized
text that is inputted to our task extraction model is
often ridden with typos and non-sensical words.

Inked content is often overly concise: Users are
generally not verbose when inking. Rather, they
distil their content to important keywords, phrases,
acronyms, phrases, etc. This concise style often
lacks proper punctuation and grammar, making
NLP tasks such as sentence segmentation to find
the boundaries of task/non-task sentences quite
challenging. For example, the first inked bullet
in Fig. 1 lacks grammar, punctuation and is a list
of keywords rather than a proper sentence. Further-
more, the lack of verbosity and the use of esoteric
short-hands and acronyms make it even more chal-
lenging for a model to understand the meaning of
the text. The third bullet in Fig. 1 shows such a
shorthand – using ‘

⊕
ve’ instead of ‘positive.’

Ink users want to write in an unrestricted, free-
form manner: Inking is conducive to brainstorm-
ing. Since people brainstorm tasks in various for-
mats (to-do list, paragraphs, diagrams, mix of these
styles, etc.), NLP systems built to analyze inked
content must be able to handle this diversity. Fig. 1
shows an example of the free-form nature of inked
content. Additional examples are in Appendix A.

3.2 Sequence Labeling Approach

At the heart of SLATE is sequence labeling. A
sequence labeling approach treats the input docu-
ment text as a sequence of tokens (or sub-words).
It classifies each token as being part of one of a
predefined set of classes. To extract our desired en-
tities (e.g., sentences for sentence segmentation or
task sentences for task extraction) we post-process

Content
Count

Train set Test set

Ink documents 124 83

Sentences 2496 1416

Task sentences 704 440

Non-task sentences 1522 857

Task sentences
due to context 173 54

Non-task sentences
due to context 97 65

Table 1: Dataset statistics after annotation process.

the sequence of tokens according to their predicted
class labels. A particular sequence labeling scheme
determines the set of classes and the logic to post-
process the predicted token-level class labels for en-
tity extraction. In this work, we define and try three
different sequence labeling schemes, described in
the sections below. As will be discussed in Sec-
tion 3.2.3, sequence labeling is key to letting us
simultaneously perform sentence segmentation and
task sentence classification with a single model.

3.2.1 Sentence-BI Labeling Scheme for
Sentence Segmentation

The sentence-BI labeling scheme is used for sen-
tence segmentation and is similar to schemes
adopted by past works in sentence segmentation
(Rehbein et al., 2020; Le, 2020). In this labeling
scheme, tokens are assigned one of two labels: (B)
- Beginning of Sentence; (I) - Inside of Sentence.

After the sequence labeling model classifies each
token, we aggregate token-level class labels to
word-level labels. This is done to make sure that
we do not split sentences in the middle of words.
The rule used for this aggregation is described in
Algorithm 1 of Appendix B. Once we have pre-
dicted word-level labels, the words labeled as ‘B’
indicate the beginning of a new sentence, giving
us the predicted sentence boundaries for sentence
segmentation as shown in the top row of Fig. 2.

Since a model trained with the sentence-BI la-
beling scheme is only useful for sentence segmen-
tation, for our task extraction scenario, we need
an additional classification model to classify the
segmented sentences into tasks/non-tasks. This
two-model approach is precisely what we use as
our baseline, described in Section 3.3.

3.2.2 SLATE-BIO Labeling Scheme for Task
Extraction

The SLATE-BIO labeling scheme is used to extract
task sentences from the input text. It assigns one

218

<.> Call Pete </> tomorrow
sounds like a plan. </> <.>
Cut the grass

Input Text

Sentence-BI

SLATE-NTI

SLATE-BIO

Sequence Labeling Approach

Call Pete tomorrow sounds

like a plan. Cut the grass

B B

B

I I

I I I I

Call Pete tomorrow sounds

like a plan. Cut the grass

B O

B

I O

O O I I

Call Pete tomorrow sounds

like a plan. Cut the grass

T N

T

I I

I I I I

Call Pete
tomorrow sounds like a plan.
Cut the grass

Call Pete
Cut the grass

Text with Sequence Labels

List of Extracted Sentences

List of Extracted Task Sentences

Inked Content

Handwriting
Recognition &
Layout Analysis

Figure 2: Illustration of the various sequence labeling configurations and how they are used to extract sentences
and tasks from inked content.

of the following three labels to each token: (B) -
Beginning of Task Sentence; (I) - Inside of Task
Sentence; (O) - Outside of Task Sentence. BIO
labeling schemes have commonly been used for
NER and text chunking tasks (Sang and Buchholz,
2000; Ramshaw and Marcus, 1999). In our work,
we adapt it for task sentence extraction.

Similar to sentence-BI, we aggregate predicted
token-level labels to word-level labels (described
in Algorithm 2 of Appendix B). Once we have the
predicted word labels, a sequence of labels that
starts with a ‘B’ and ends in zero or more ‘I’ labels
indicates a task sentence. Task extraction with
SLATE-BIO is illustrated at the bottom of Fig. 2.

3.2.3 SLATE-NTI Labeling Scheme for Task
and Sentence Extraction

A disadvantage of SLATE-BIO is that while it finds
the boundaries surrounding task sentences, it can-
not be used for sentence segmentation as it does
not find the boundaries between a contiguous block
of non-task sentences. For this, we propose the
SLATE-NTI labeling scheme to simultaneously
train a sequence labeling model for both task sen-
tence extraction and sentence segmentation (a form
of multi-task learning). This scheme assigns one
of the following three labels to each token: (N) -
Beginning of a Non-Task sentence; (T) - Beginning
of a Task Sentence; (I) - Inside of a Sentence.

Similar to the other schemes, we aggregate pre-
dicted token-level labels to word-level labels (Al-
gorithm 3 of Appendix B). Once we have the pre-
dicted word labels, a sequence of word labels that
starts with a ‘T’ and ends in zero or more ‘I’ labels
indicates a task sentence, whereas a sequence that
starts with an ‘N’ and ends in zero or more ‘I’ labels
indicates a non-task sentence. Sentence segmenta-
tion and task sentence extraction using SLATE-NTI
is illustrated in the middle row of Fig. 2.

3.2.4 Tackling Inking Peculiarities using
Document Layout Metadata as Features

As mentioned in Section 3.1, inked content is of-
ten written in a casual style, lacking punctuation,
proper grammar, verbosity, etc. Furthermore, up-
stream components like handwriting recognition
can introduce errors. This makes modeling espe-
cially difficult as standard sentence segmentation
relies on punctuation and capitalization to deter-
mine sentence boundaries. Similarly, misspelled
words, acronyms and improper grammar make it
difficult for a model to make sense of the sentence’s
meaning and thus classify it. To compensate for
these peculiarities of inked content, we supplement
the input to our sequence labeling model with doc-
ument layout metadata. Particularly, we add the
following to our model input.

Line breaks indicate where a document line ends
and a new one begins. While line breaks do not
correspond exactly to sentence boundaries, we ex-
pect there to be strong correlation between their
positions, providing a useful signal to the model
for sentence segmentation purposes. We use the
‘</>’ token to indicate a line break in text.

Bullets are used to indicate the start of list items.
People tend to write tasks in the form of to-do lists
and thus it is common for tasks to be bulleted. Fur-
thermore, bullets almost always indicate the start
of a new sentence. Thus, we expect bullets to pro-
vide useful signal for both sentence segmentation
and task classification. We use the ‘<.>’ token to
indicate a bullet in text.

The left side of Fig. 2 shows how we add line
breaks and bullets to the model input.

3.3 Baseline Approach

Our baseline approach is a two-model approach
where we first train a sentence segmentation model

219

that takes as input the document text and outputs
sentence boundaries. In our work, to build the
sentence segmentation model, we use sequence
labeling with the Sentence-BI labeling scheme as
discussed in Section 3.2.1. We then train a separate
sentence classification model that takes as input a
sentence and outputs a task/non-task label.

3.4 Model Architecture
For each of the models we train, we fine-tune a
pretrained RoBERTa (Liu et al., 2019) encoder
implemented in the HuggingFace transformers li-
brary (Wolf et al., 2020). For the sequence label-
ing (SLATE-NTI, SLATE-BIO, and Sentence-BI)
approaches, we add classification heads for each
input token, to obtain the token-level sequence la-
bels. For the classification model in the baseline ap-
proach, we use only a single classification head in-
stead, for classifying one sentence at a time. Lever-
aging a pretrained transformer model allows us to
obtain good performance even with our relatively
small training set. For training and implementation
details, please refer to Appendix C.

3.5 Evaluation Procedure
A challenge of evaluating SLATE is that since it
performs sentence segmentation and classification
jointly, it is ambiguous how to evaluate its task
classification performance. Particularly, since the
predicted sentence segments may not match the
ground truth sentence segments, it is unclear how
to compare their task/non-task labels. For example,
consider Fig. 3. At the top, this figure shows sam-
ple input text for our task extraction system. The
lower left shows the predicted annotation (sentence
segmentation and task classification labels) while
the lower right shows the ground truth annotation.
The predicted task “send email & doc results" has
words from two ground truth sentences – “send
email & doc" and “results look great." It is unclear
which ground truth sentence we should compare its
classification label with. Thus, without an explicit
matching from predicted task segments to ground
truth segments, it is ambiguous how to compare
the labels of predicted and ground truth sentences.
In our work, we use a bipartite graph matching
algorithm to construct such an explicit matching
using IOU similarity as edge weights between pre-
dicted and ground-truth sentences (Section 3.5.1).
The result of this procedure is an explicit matching,
allowing us to port typical classification metrics to
our scenario. For example, Fig. 3 shows how we

Ground Truth

send email & doc (t1)
results look great (t0)
always plan email for Bob (t0)

Predicted

send email & doc results (t1)
look great always (t1)
plan (t1)
email for Bob (t0)

tp: 1 fp: 1 tn: 1 fn: 0

Segmentation Label Segmentation Label

Send email & doc results look
great always plan email for Bob

Input Text

Figure 3: Example of calculating the number of true
positives (tp), false positives (fp), true negatives (tn) and
false negatives (fn) for the given input text, predictions
and ground truth annotations. The t0/t1 labels are used
as abbreviations for non-task/task labels.

can calculate true/false positives/negatives, from
which further classification metrics (e.g., accuracy,
F1, etc.) can be computed. Additional discussion
on our evaluation procedure and comparison to
standard NER metrics is provided in Appendix D.

For evaluating the sentence segmentation per-
formance of SLATE, we use the boundary simi-
larity (B) sentence segmentation metric introduced
in (Fournier, 2013). Concisely, B penalizes a pre-
dicted segmentation based on the number of edits
required to transform the predicted segmentation
to the ground truth segmentation. Near bound-
ary misses are penalized less compared to full
misses/additions. B is a score from 0-1 where a
higher score represents a better predicted segmen-
tation and a 1 represents a perfect segmentation.
More metric details are in Appendix D.3.

In our application, since the segmentation qual-
ity of extracted task sentences matters more than
that of non-task sentences, we also compute a mod-
ified version of B which we call the true positive
boundary similarity (Btp). The formula to compute
Btp is the same as Equation 2 (Appendix D.3) ex-
cept that in the segmentations that we compare, we
only include the boundaries of true positive tasks.

3.5.1 Matching Predicted Task Sentences to
Ground Truth Sentences

In this section, we describe the procedure used to
obtain a matching between predicted task sentences
and ground truth sentences. Let D represent the
document text provided to the model to perform
inference on. D is then a sequence of words wi

where index(wi) represents the positional index of
wi in D. Let G be a partition of D corresponding
to the ground truth sentences (task and non-task)
in D, i.e, each element Gi ∈ G is a set of words

220

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)

G1

G2

G3

P1

P2

P3

IOU(P1, G1)
= 0.80

0.5

0.2

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)
G1

G2

G3

P1

P2

P3

0.80

0.5

0.2

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)
G1

G2

G3

P1

P2

P3

0.80

0.5

0.2

0 1

7

2 3 4

5 6

8

0 1 2 3

64 5

7 8 9 10 11

(a) Step 1 of the matching process constructs a complete
weighted bipartite graph between the sets of predicted task
sentences and ground truth sentences. The edge weights repre-
sent the IOU similarity between sentences, calculated on their
respective sets of word indices (purple). The light gray edges
have zero edge weights.

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)

G1

G2

G3

P1

P2

P3

IOU(P1, G1)
= 0.80

0.5

0.2

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)
G1

G2

G3

P1

P2

P3

0.80

0.5

0.2

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)
G1

G2

G3

P1

P2

P3

0.80

0.5

0.2

0 1

7

2 3 4

5 6

8

0 1 2 3

64 5

7 8 9 10 11

(b) Step 2 of the matching process finds the maximum weight
full matching for the constructed graph.

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)

G1

G2

G3

P1

P2

P3

IOU(P1, G1)
= 0.80

0.5

0.2

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)
G1

G2

G3

P1

P2

P3

0.80

0.5

0.2

send email & doc results

look great always

plan

send email & doc

results look great

always plan email for Bob

Ground Truth Sentences (G)Predicted Tasks Sentences (P)
G1

G2

G3

P1

P2

P3

0.80

0.5

0.2

0 1

7

2 3 4

5 6

8

0 1 2 3

64 5

7 8 9 10 11

(c) Step 3 of the matching process prunes out edges that do not
meet a minimum similarity threshold.

Figure 4: Illustration of the procedure used to match
predicted task sentences to ground truth sentences.

wj ∈ D representing a sentence in the ground truth
segmentation of D. After performing inference
with our model on D we observe the set P corre-
sponding to the set of predicted task sentences, i.e,
each element Pi ∈ P is a set of words wj ∈ D
representing a predicted task sentence. With this
notation, we are now ready to describe the steps of
the matching procedure:

1. Construct a complete weighted bipartite
graph between the sets P andGwhere each
element (sentence) in the sets is a node and
edge weights represent similarity between
the node sentences. A complete bipartite
graph between sets P and G is one where
every pair of nodes from differing sets have
an edge but no pair of nodes from the same
set has an edge. We use the Intersection over
Union (IOU) between sentences in the graph
to measure similarity. In our scenario, we
define IOU as follows:2

IOU(Pi, Gj) =
|Pi−ind ∩Gj−ind|
|Pi ∪Gj |

where S−ind := {index(wl) | wl ∈ S}. (1)

2Using Pi−ind ∩Gj−ind in the numerator of the definition
of IOU(Pi, Gj) instead of simply Pi ∩ Gj is important to
avoid spurious matches when the same words may be repeated
more than once in D.

2. Find the maximum weight full matchingM
for the bipartite graph constructed above.
We desire a matching between the sets P and
G to maximize the overall similarity between
matched sentences. Let C = ((P,G), E) rep-
resent the weighted complete bipartite graph
we constructed in first step, where the set E
represents the set of edges in the graph and
weight(e) for e ∈ E represents the IOU sim-
ilarity score between the nodes that e con-
nects. We construct a matching M ⊆ E such
that each node in the graph is included in
at most one edge in M and so that |M | =
min(|P |, |G|). When |P | = |G|, this is com-
monly known as a perfect matching. Since in
our scenario we allow |P | and |G| to differ, we
follow Karp (1980) and refer to this as a full
matching. Furthermore, we choose the edges
in M so as to maximize

∑
e∈M weight(e),

makingM the maximum weight full matching
for graphC. Essentially,M chooses the edges
between predicted task sentences and ground
truth sentences that maximizes the overall sim-
ilarity between matched sentences. Also, note
that the full matching allows at most one pre-
dicted segment to be matched to a ground
truth sentence, preventing overcounting in the
case where there are more than one predicted
sentences for a single ground truth sentence.

3. Prune M to remove matches that have non-
significant overlap. To provide credit only
when predicted tasks are sufficiently similar
to ground truth task sentences, we define a
threshold t and remove edges e ∈ M with
weight(e) < t. In our work, we set t = 0.25.

Fig. 4 illustrates the matching procedure steps.

4 Results

The performance of the various modeling approach
configurations are presented in Table 2. The first
four rows show the performance of the different
SLATE configurations tried and the last row shows
the performance of the baseline approach. Our
flagship approach is SLATE-NTI which has the fol-
lowing advantages: (1) The highest segmentation
performance (B and Btp); (2) Much lower latency
compared to the baseline approach; (3) Better or
at least comparable task classification performance
with respect to the other approaches. The remain-
der of this section discusses some observed trends.

221

Method Task (%) Non-task (%) Acc (%) Btp (%) B (%) Latency
(ms)

Rec Prec F1 Context Rec Rec Prec F1 Context Rec

SLATE-NTI with
Doc Metadata 87.4 81.7 84.4 69.6 89.3 92.9 91.1 60.9 88.7 89.1 88.4

34.2SLATE-BIO with
Doc Metadata 88.9 80.4 84.4 75.6 88.3 93.6 90.8 64.0 88.5 86.6 -

SLATE-NTI 90.2 81.2 85.5 78.1 88.6 94.4 91.4 59.1 89.2 84.3 83.4 26.5
SLATE-BIO 87.4 83.2 85.3 70.4 90.4 93.0 91.7 63.7 89.4 83.0 -

Baseline 83.1 81.5 82.3 43.0 89.8 90.1 90.2 57.8 87.4 85.5 85.3 90.6

Table 2: Performance comparison of the various modeling approach configurations on our test set. The classification
(recalls, precisions, F1s and accuracy) and segmentation metrics (Btp and B) are averages over five distinctly seeded
training runs for the corresponding modeling method. The latency values were obtained by first finding the mean
latency of the model inference over each sample in the test set and then performing the average of five such runs.

4.1 The Latency Advantage of SLATE
As shown in Table 2, the SLATE approaches have
2.6 to 3.4 times lower inference latency compared
to the the baseline approach, depending on whether
they use document metadata or not. This lower la-
tency of SLATE can be attributed to two main rea-
sons. The first is that SLATE uses a single model
for both segmentation and classification, whereas
the baseline approach suffers from the combined
latency of two separate models. The second reason
is that since the classification model of the baseline
approach acts on each sentence independently, its
inference time scales linearly with the number of
sentences in the input. The SLATE approach on
the other hand can perform inference on an input
containing multiple sentences in a single inference.

4.2 SLATE Benefits from Context
Unlike the sentence classification model in our
baseline which has access to only a single sentence
per inference, the SLATE approach has access to
contextual information since it performs inference
on a whole block of text at once. Table 2 shows
the advantage that access to context gives SLATE
compared to the baseline approach: Every SLATE
approach has better classification performance (F1
scores and Accuracy) compared to the baseline. To
further zoom in on the effect of contextual informa-
tion, Table 2 also shows the recall of the approaches
on sentences in the test set that were annotated as
being tasks or non-tasks only due to context (see
the Context Rec. columns). We see that each of the
SLATE approaches has significantly higher recalls
compared to the baseline on such sentences.

4.3 The Benefit of Multi-task Learning
SLATE with either the BIO or NTI labeling
schemes is inherently a form of multi-task learning
as it is trained to both segment text and classify

segmented text simultaneously. Still, SLATE-NTI
has a stronger multi-task component compared to
SLATE-BIO since unlike the BIO scheme, the NTI
scheme forces the model to not only learn how to
segment out task sentences but non-task sentences
as well. Learning how to find the boundaries of
non-task sentences is complementary to learning
to find boundaries of task sentences. Thus, SLATE-
NTI learns to be more effective at segmenting the
text compared to SLATE-BIO. This can be seen
in Table 2 by observing that the Btp scores for
SLATE-NTI configurations are higher than their
corresponding SLATE-BIO configurations.

4.4 Adapting to Ink using Layout Metadata
As discussed in Section 3.2.4, we expect that
adding document layout information such as line
breaks and bullets to the model input should help
compensate for the lack of traditional characteris-
tics of natural language such as proper grammar,
punctuation, capitalization, verbosity, etc. The re-
sults in Table 2 substantiate this expectation as
we see large margins of improvement (> 3.6%)
in the segmentation metrics (B and Btp) when we
compare the SLATE approaches that use document
metadata against those that do not. Thus, supple-
menting the model with document layout informa-
tion is an effective method to adapt to the segmen-
tation challenges of the inking domain.

5 Conclusion

We have presented SLATE, a single-model, se-
quence labeling approach for extracting tasks from
free-form content. It overcomes ink domain chal-
lenges via our custom ink dataset and ink-document
layout information. Our flagship configuration,
SLATE-NTI, is a single, low-latency model trained
for both accurate sentence segmentation and task
sentence classification on inked content.

222

References

2022. Cross-platform handwriting recognition and
interactive ink apis. https://developer.
myscript.com/.

Paul N Bennett and Jaime Carbonell. 2005. Detect-
ing action-items in e-mail. In Proceedings of the
28th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 585–586.

Luoxin Chen, Weitong Ruan, Xinyue Liu, and Jianhua
Lu. 2020. Seqvat: Virtual adversarial training for
semi-supervised sequence labeling. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8801–8811.

Nancy Chinchor and Beth Sundheim. 1993. MUC-5
evaluation metrics. In Fifth Message Understanding
Conference (MUC-5): Proceedings of a Conference
Held in Baltimore, Maryland, August 25-27, 1993.

Michael Crawshaw. 2020. Multi-task learning with
deep neural networks: A survey. arXiv preprint
arXiv:2009.09796.

Chris Fournier. 2013. Evaluating text segmentation us-
ing boundary edit distance. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1702–1712.

Chris Fournier and Diana Inkpen. 2012. Segmen-
tation similarity and agreement. arXiv preprint
arXiv:1204.2847.

Lutz Gericke, Matthias Wenzel, Raja Gumienny, Chris-
tian Willems, and Christoph Meinel. 2012. Handwrit-
ing recognition for a digital whiteboard collaboration
platform. In 2012 International Conference on Col-
laboration Technologies and Systems (CTS), pages
226–233. IEEE.

Zhiyong He, Zanbo Wang, Wei Wei, Shanshan Feng,
Xianling Mao, and Sheng Jiang. 2020. A survey
on recent advances in sequence labeling from deep
learning models. arXiv preprint arXiv:2011.06727.

Richard M Karp. 1980. An algorithm to solve the m×
n assignment problem in expected time o (mn log n).
Networks, 10(2):143–152.

Daniel Keysers, Thomas Deselaers, Henry A. Rowley,
Li-Lun Wang, and Victor Carbune. 2016. Multi-
language online handwriting recognition. IEEE
Transactions on Pattern Analysis and Machine In-
telligence.

The Anh Le. 2020. Sequence labeling approach to the
task of sentence boundary detection. In Proceed-
ings of the 4th International Conference on Machine
Learning and Soft Computing, pages 144–148.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Chunping Ma, Huafei Zheng, Pengjun Xie, Chen Li,
Linlin Li, and Luo Si. 2018. Dm_nlp at semeval-
2018 task 8: neural sequence labeling with linguistic
features. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 707–711.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Ines Rehbein, Josef Ruppenhofer, and Thomas Schmidt.
2020. Improving sentence boundary detection for
spoken language transcripts. In Proceedings of
the 12th International Conference on Language Re-
sources and Evaluation (LREC), May 11-16, 2020,
Palais du Pharo, Marseille, France, pages 7102–
7111. European Language Resources Association.

Erik F Sang and Sabine Buchholz. 2000. Introduction to
the conll-2000 shared task: Chunking. arXiv preprint
cs/0009008.

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint cs/0306050.

Isabel Segura Bedmar, Paloma Martínez, and María
Herrero Zazo. 2013. Semeval-2013 task 9: Extrac-
tion of drug-drug interactions from biomedical texts
(ddiextraction 2013). Association for Computational
Linguistics.

Mark Stevenson and Robert Gaizauskas. 2000. Ex-
periments on sentence boundary detection. In Sixth
Applied Natural Language Processing Conference,
pages 84–89.

Julien Tourille, Matthieu Doutreligne, Olivier Ferret,
Aurélie Névéol, Nicolas Paris, and Xavier Tannier.
2018. Evaluation of a sequence tagging tool for
biomedical texts. In proceedings of the Ninth In-
ternational Workshop on Health Text Mining and
Information Analysis, pages 193–203.

Wei Wang, Saghar Hosseini, Ahmed Hassan Awadallah,
Paul N Bennett, and Chris Quirk. 2019. Context-
aware intent identification in email conversations. In
Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 585–594.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

223

Ming Ye, Herry Sutanto, Sashi Raghupathy, Chengyang
Li, and Michael Shilman. 2005. Grouping text lines
in freeform handwritten notes. In Eighth Interna-
tional Conference on Document Analysis and Recog-
nition (ICDAR’05), pages 367–371. IEEE.

Ming Ye and Paul Viola. 2004. Learning to parse hier-
archical lists and outlines using conditional random
fields. In Ninth International Workshop on Frontiers
in Handwriting Recognition, pages 154–159. IEEE.

Ming Ye, Paul Viola, Sashi Raghupathy, Herry Sutanto,
and Chengyang Li. 2007. Learning to group text lines
and regions in freeform handwritten notes. In Ninth
International Conference on Document Analysis and
Recognition (ICDAR 2007), volume 1, pages 28–32.
IEEE.

A Ink Document Examples

Here we provide additional examples of task/non-
task sentences occurring in various styles in ink
documents. Fig. 5 is an example of a to-do list style
ink document. Here we see task sentences mainly
written in the form of bullets some of which also
span over multiple lines. Note certain sentences
are tasks only based on the context and might not
seem like task sentences otherwise.

Similarly, Fig. 6 shows an example of an inked
recipe content. Although some of the sentences
may seem like tasks, they are not in the context of
being a recipe. For example, while “add tomato
and garlic to make sauce" may be written like a
task sentence, it is not considered a task sentence
as it is an instruction in a recipe.

B Token-level to Word-level label
Aggregation Rules for Sequence
Labeling

Algorithm 1: Sentence-BI rule for aggre-
gating token-level labels to word-level la-
bels.
Input :tokenLabels is a list of a

token-level labels for a given word.
Output :Word-level label aggregated from

tokenLabels.
1 if ‘B’ in tokenLabels then
2 return ’B’;
3 else
4 return ’I’;
5 end

Figure 5: Example of task sentences in an ink docu-
ment.

Figure 6: Example of non-task sentences in an ink
document.

Algorithm 2: SLATE-BIO rule for aggre-
gating token-level labels to word-level la-
bels.
Input :tokenLabels is a list of a

token-level labels for a given word.
Output :Word-level label aggregated from

tokenLabels.
1 if ‘B’ in tokenLabels then
2 return ’B’;
3 else
4 return mode(tokenLabels);
5 end

224

Algorithm 3: SLATE-NTI rule for aggre-
gating token-level labels to word-level la-
bels.
Input :tokenLabels is a list of a

token-level labels for a given word.
Output :Word-level label aggregated from

tokenLabels.
1 if ‘N’ or ‘T’ in tokenLabels then
2 if # of ‘T’ labels > # of ‘N’ labels then
3 return ‘T’;
4 else
5 return ‘N’;
6 end
7 else
8 return ‘I’;
9 end

C Training, Implementation and
Hyperparameter Details

Each of our models were implemented using the
HuggingFace Transformers library (Wolf et al.,
2020). For sequence labeling models, we use
the AutoModelForTokenClassification class
with the RoBERTabase architecture. For our sen-
tence classification model in the baseline, we use
the AutoModelForSequenceClassification
class with the RoBERTabase architecture.
The model encoders were initialized using the
pretrained weights provided by the library.

For training we use a batch size of 3 and 16
for the sequence labeling models and classification
model respectively. All models were fine-tuned on
our training set for 100 epochs. The objective for
all the models was a class-weighted cross-entropy
loss. The learning rate was kept constant at 1 ×
10−6 for all of the models.

While training we use a machine with an
NVIDIA RTX 2080ti GPU, Intel i9-9900K CPU
and 64GB of RAM. For latency experiments, infer-
ence was done on the CPU of the above machine.

D Evaluation Procedure

D.1 Our Evaluation Approach

Our evaluation procedure has the following steps:

1. Match predicted task sentences to ground
truth sentences (task and non-task) that have
significant overlap. The matching procedure
is described in more detail in Section 3.5.1.

2. Calculate the number of true/false posi-
tives/negatives according to the following def-
initions:
True Positive: Predicted task sentence that is
matched to a ground truth task sentence.
False Positive: Predicted task sentence that is
matched to a ground truth non-task sentence.
True Negative: Ground truth non-task sen-
tence that is not matched to any predicted task
sentence.
False Negative: Ground truth task sentence
not matched to any predicted task sentence.

Fig. 3 shows the calculation of true/false posi-
tives/negatives for a sample input text, predic-
tion and ground truth annotation.

3. Calculate standard classification metrics (ac-
curacy, recall, precision, f1-scores, etc.) from
the true/false positives/negatives to under-
stand the task classification performance.
When calculating non-task recall/precision,
we treat true/false positives as true/false nega-
tives and vice versa.

4. Calculate sentence segmentation metrics to
evaluate the quality of the extracted task sen-
tences. In this work we use the boundary
similarity (B) sentence segmentation metric
introduced in (Fournier, 2013). The boundary
similarity metric is based on the boundary edit
distance (BED) introduced in (Fournier and
Inkpen, 2012). Concisely, the boundary simi-
larity metric penalizes a predicted segmenta-
tion based on the number of edits required to
transform the predicted segmentation to the
ground truth segmentation. Near boundary
misses are penalized less compared to full
boundary misses/additions. B is a score from
0-1 where a higher score represents a better
predicted segmentation and a 1 represents a
perfect match to the ground truth segmenta-
tion. More metric details are in Appendix D.3.

In our application, since the segmentation
quality of extracted task sentences matters
more than that of non-task sentences, we also
compute a modified version of this metric
which we call the true positive boundary sim-
ilarity (Btp). The formula to compute Btp is
the same as Equation 2 (Appendix D.3) except
that in the segmentations that we compare,
we only include the boundaries of true posi-
tive tasks in the predicted segmentation and

225

the corresponding boundaries for the matched
tasks in the ground truth segmentation.

D.2 Why not use standard NER Evaluation
instead?

An alternative approach could be to leverage
Named Entity Recognition (NER) metrics where
the entities we are trying to recognize are task sen-
tences. But these metrics are not without issues
either. NER systems are typically evaluated by
calculating precision, recall, and F1-scores at ei-
ther the token level (Ma et al., 2018; Tourille et al.,
2018) or at the entity level (Sang and De Meulder,
2003; Segura Bedmar et al., 2013). Token-level
metrics suffer from being difficult to interpret com-
pared to entity-level metrics. However, entity-level
metrics are often too strict, giving credit only when
predicted entities match the ground truth exactly
(Sang and De Meulder, 2003). For example, in our
scenario, if our model misses only a single token in
an extracted task sentence, it would get no credit.

To address this, other evaluation schemes that
provide credit for partial entity matches have been
proposed (Segura Bedmar et al., 2013; Chinchor
and Sundheim, 1993), but these tend to be more
complex and difficult to interpret compared to the
standard sentence classification metrics. In this
work, we propose an evaluation procedure that al-
lows us to calculate metrics that can be interpreted
in the same way that standard sentence classifica-
tion and segmentation metrics are, but at the same
time provides enough slack to allow partial matches
of predicted and ground truth task sentences.

D.3 The Boundary Similarity (B) Metric
Let us define a segmentation S of text to be a se-
quence of boundary positions where each boundary
represents where a sentence begins and/or ends. A
boundary can be placed between words and by de-
fault we place boundaries before the first word and
after the last word in the text. Boundary edit dis-
tance (BED) is a measure of the minimum number
of edits that need to be made to a given segmenta-
tion S1 to make it identical to another segmentation
S2. There are three types of edit operations we can
make to S1 in order to bring it into parity with S2:

• Addition (A): When S1 is missing a boundary
that is in S2 we can add a boundary to S1.

• Deletion (D): When S1 has a boundary where
S2 does not, we can delete this boundary from
S1.

• n-wise Transposition (T): When S1 misses a
boundary in S2 but has one in the near neigh-
borhood, instead of making two edits to S1
(one A and one D operation), we allow a
single T operation which involves transpos-
ing/shifting the near boundary in S1 to the
corresponding position in S2. The parameter
n determines how far boundaries in S1 and
S2 can be to be considered for a T operation
instead of an A or D operation. In this work,
we set n = 2, allowing transpositions when
boundaries differ by a maximum of 2 posi-
tions.

Suppose we calculate the BED for two seg-
mentations of the same text S1 and S2. The BED
outputs the following: NM is the number of perfect
matches between boundaries, requiring no edits;
NA is the number of A operations required; ND is
the number of D operations required; the set St =
{t | t = # positions a boundary should be shifted
∀ T operations required}. Then boundary sim-
ilarity (B) between S1 and S2 is calculated as
follows:

B(S1, S2) = 1−
NA +ND +

∑
t∈St

t
n

NM +NA +ND + |St|
(2)

Essentially, B gives no credit when a boundary is
completely missed (A or D operation required) but
gives partial credit when a near miss occurs (T op-
eration required). For a more detailed explanation
of this metric you may refer to (Fournier, 2013).

E Limitations

Here we discuss limitations of the work. First,
since there are no past works and open datasets in
the literature for our task, we are unable to bench-
mark against past works directly. To help address
this, we have decided to open-source our dataset,
modeling code, and evaluation code, so future re-
search works can leverage these for benchmarking
purposes. Still, this dataset is not very large. It
consists of roughly 200 annotated ink documents.
While this gave us a decent number of task and non-
task sentences for fine-tuning a pretrained model
and evaluating it on our task, with more data there
are other approaches that we could take to further
supplement our approach. For example, while we
do try to address domain-specific noise such as er-
rors introduced by handwriting recognition or poor
grammar in inked content using document layout
information, with a larger ink document corpus, we

226

could try supplementing our methodology for do-
main adaptation with language modeling. Finally,
while we work with free-form content like inked
documents, our work assumes the input to be rec-
ognized text from this content rather than the raw
content (ink strokes). For example, handwriting
recognition and document layout analysis methods
are out of scope for this work. We cite examples
of other works in literature and APIs that deal with
these components in Sections 2 and 3.1.

227

Proceedings of EMNLP 2022 Industry Track, pages 228–235
December 9–11, 2020. ©2022 Association for Computational Linguistics

Gaining Insights into Unrecognized User Utterances
in Task-Oriented Dialog Systems

Ella Rabinovich Matan Vetzler David Boaz Vineet Kumar
Gaurav Pandey Ateret Anaby-Tavor

IBM Research
{ella.rabinovich1, matan.vetzler}@ibm.com

{vineeku6, gpandey1}@in.ibm.com
{davidbo, atereta}@il.ibm.com

Abstract

The rapidly growing market demand for auto-
matic dialogue agents capable of goal-oriented
behavior has caused many tech-industry lead-
ers to invest considerable efforts into task-
oriented dialog systems. The success of these
systems is highly dependent on the accuracy
of their intent identification – the process of
deducing the goal or meaning of the user’s re-
quest and mapping it to one of the known in-
tents for further processing. Gaining insights
into unrecognized utterances – user requests
the systems fail to attribute to a known intent
– is therefore a key process in continuous im-
provement of goal-oriented dialog systems.

We present an end-to-end pipeline for process-
ing unrecognized user utterances, deployed in
a real-world, commercial task-oriented dialog
system, including a specifically-tailored clus-
tering algorithm, a novel approach to clus-
ter representative extraction, and cluster nam-
ing. We evaluated the proposed components,
demonstrating their benefits in the analysis of
unrecognized user requests.

1 Introduction

The development of task-oriented dialog systems
has gained much attention in both the academic and
industrial communities over the past decade. Com-
pared with open-domain dialog systems aimed at
maximizing user engagement (Huang et al., 2020),
task-oriented (also referred to as goal-oriented) di-
alog systems help customers accomplish a task in
one or multiple domains (Chen et al., 2017). A
typical pipeline system architecture is divided into
several components, including a natural language
understanding (NLU) module, which is responsible
for classifying the first user request into potential
intents, performing a decisive step that is required
to drive the subsequent conversation with the vir-
tual assistant in the right direction.

Goal-oriented dialog systems often fail to rec-
ognize the intent of natural language requests due

Figure 1: Natural language understanding (NLU) mod-
ule. Based to the intent classifier’s confidence level,
first user utterances are ‘recognized’ and associated
with an execution flow, or stored in an unhandled pool.

to system errors, incomplete service coverage, or
insufficient training (Grudin and Jacques, 2019;
Kvale et al., 2019).1 In practice, these cases are
normally identified using intent classifier uncer-
tainty. Here, user utterances that are predicted to
have a level of confidence below a certain thresh-
old to any of the predefined intents, are identified
and reported as unrecognized or unhandled. Fig-
ure 1 presents the NLU module from a typical task-
oriented dialog system: the user utterance is either
transformed into an intent with an appropriate flow
of subsequent actions, or labeled as unrecognized
and stored in the unhandled pool (Figure 1).

Unhandled utterances often carry over various
aspects of potential importance, including novel
examples of existing intents, novel topics that may
introduce a new intent, or seasonal topical peaks
that should be monitored but not necessarily mod-
eled within the system. In large deployments, the
number of unhandled utterances can reach tens of
thousands on a daily basis. Despite their evident
importance for continuous bot improvement, tools
for gaining effective insights into unhandled utter-
ances have not been developed sufficiently, leaving
a vast body of knowledge, as well as a range of

1In most virtual assistants, a user utterance is considered
unhandled by the system’s NLU module either by design
(often referred to as “out-of-domain”), or due to the system’s
failure to attribute the utterance to one of its existing intents.

228

potentially actionable items, unexploited.
Gaining insights into the topical distribution of

unrecognized requests can be achieved using unsu-
pervised text analysis tools, such as clustering or
topic modeling. Indeed, identifying clusters of se-
mantically similar utterances can surface topics of
interest to a conversation analyst. We show that tra-
ditional clustering algorithms result in sub-optimal
performance due to the unique traits of unhandled
utterances in dialog systems: an unknown number
of expected clusters and a very long tail of outliers.
Consequently, we propose and evaluate a radius-
based variant of the k-means clustering algorithm
(Lloyd, 1982), that does not require a fixed number
of clusters and tolerates outliers gracefully. We
show that it outperforms its out-of-the-box counter-
parts on a range of real-world customer, as well as
public datasets. The algorithm has recently been
evaluated on the task of intent discovery in the
context of large-scale, production chatbot, being
ranked first (out of 4) at coverage metrics, and sec-
ond at utterance partitioning (Gretz et al., 2022).

We propose an end-to-end pipeline for surfac-
ing topical clusters in unhandled user requests, in-
cluding utterance cleanup, a designated clustering
procedure and its extensive evaluation, a novel ap-
proach to cluster representatives extraction, and
cluster naming. We approach this task in a real-
world setting of commercial task-oriented dialog
systems, and demonstrate the benefits of the sug-
gested approach on multiple publicly available, as
well as proprietary, datasets.

2 Clustering of Unrecognized Requests

Consider a virtual assistant aimed to attend to pub-
lic questions about Covid-19. The rapidly evolving
situation with the pandemic means that novel re-
quests are likely to be introduced to the bot on a
daily basis. As such, changes in international travel
regulations would entail requests related to PCR
test availability, and the decision to offer booster
shots for seniors might cause a spike in questions
about vaccine appointments for elderly citizens.
Monitoring and prompt detection of these topics
are fundamental for continuous bot improvement.

2.1 Clustering Utterances

Here we describe the main clustering procedure
followed by an optional single merging step.

2.1.1 Main Clustering Procedure
Clustering requirements Multiple traits make
up an effective clustering procedure in our scenario.
First, the number of clusters is unknown, and has
to be discovered by the clustering algorithm. Sec-
ond, the nature of data typically implies several
large and coherent clusters, where users repeatedly
introduce very similar requests, and a very long
tail of unique (often noisy) utterances that do not
have similar counterparts. While the latter are of
somewhat limited importance, they can amount to
a significant ratio of the input data. There is an
evident trade-off between the size of the generated
clusters, their density or sparsity, and the number
of outliers: smaller and denser clusters entail larger
amounts of outliers. The decision regarding the
precise outcome granularity may vary according to
domain and bot maturity. Growing deployments,
with a high volume of unrecognized requests, could
benefit from surfacing large and coarse topics that
are subject to automation. That said, mature deploy-
ments are likely to focus on fine-grained coherent
clusters of utterances, introducing enhancements
into the existing solution. Our third requirement
is, therefore, a configurable density of the outcome
clusters, which can be set up prior to the clustering
procedure. Figure 2 illustrates a typical outcome
of the clustering process; identified clusters are de-
picted in color, while the outliers, which constitute
approximately half of the instances, appear in grey.

Existing clustering solutions can be roughly cat-
egorized across two major dimensions in terms of
functional requirements: those requiring a fixed
number of output clusters (1.a) and those that do
not (1.b); those forcing cluster assignment on the
entire dataset (2.a) and those tolerating outliers
(2.b). Our clustering solution should accommodate
(1.b) and (2.b): the number of clusters is deter-
mined by the clustering procedure, allowing for out-
liers. DBSCAN (Ester et al., 1996) and its descen-
dant variants constitute a popular family of cluster-
ing solutions that satisfies these requirements; we,
therefore, evaluate our algorithm against implemen-
tations of DBSCAN and its hierarchical version
HDBSCAN (McInnes et al., 2017).

Data representation Given a set of m unhan-
dled utterances U=(u1,u2, ...,um), we compute
their vector representations E=(e1,e2, ...,em) using
a sentence encoder. Multiple available encoders
were evaluated for this purpose, considering both
effectiveness and efficiency (see Section 2.2.1).

229

Figure 2: t-SNE projection of a sample of unrecognized
user requests in a production task-oriented dialog sys-
tem. Identified clusters are in color, outliers – in grey.

Radius-based clustering (RBC) We introduce a
variant of the popular k-means clustering algorithm,
complying with our clustering requirements by (1)
imposing a strict cluster assignment criterion and
(2) eventually omitting points that do not constitute
clusters exceeding a predefined size.

Specifically, we iterate over randomly-ordered
vectors in E, where each utterance vector can be
assigned to an existing cluster if certain conditions
are satisfied; otherwise, it initiates a new cluster. In
order to join an existing cluster, the utterance is re-
quired to surpass a predefined similarity threshold
min_sim with the cluster’s centroid,2 implying its
placement within a certain radius from the centroid.
If multiple clusters satisfy the similarity require-
ment, the utterance is assigned to the cluster with
the highest proximity i.e., the cluster with the high-
est semantic similarity to its centroid. Additional
iterations over the utterances are further performed,
re-assigning them to different clusters if needed,
until convergence, or until a pre-defined number
of iterations is exhausted.3 The amount of clusters
generated by the final partition is controlled by the
min_size value: elements that constitute clusters
of small size (in particular, those with a single item)
are considered outliers. Algorithm 1 presents the
algorithm’s pseudo-code.

2.1.2 Cluster Merging
Cluster merging has been extensively used as a
means to determine the optimal clustering out-
come in the scenario where the ‘true’ number of

2Following the k-means notation, we compute a cluster’s
centroid as the arithmetic mean of its member vectors.

3Contrary to k-means, our algorithm is not sensitive to
its (random) initialization, since we are not required to se-
lect K centroids; utterance processing order has shown only
negligible effect on the final outcome.

Algorithm 1: Radius-based Clustering
input: E (e1, e2, ... en) /* elements */
input: min_sim /* min similarity */
input: min_size /* min cluster size */

C ← ∅
while convergence criteria are not met do

for each element ei∈E do
if the highest similarity of ei to any existing

cluster exceeds min_sim then
assign ei to its most similar cluster c
re-calculate the centroid of c

else
create a new cluster c′ and assign ei to it
set the centroid of c′ to be ei
add c′ to C

/*clusters with fewer elements than
the predefined min_size are
considered outliers */

return: each c∈C of size exceeding min_size

partitions is unknown (Krishnapuram, 1994; Kay-
mak and Setnes, 2002; Xiong et al., 2004). These
start with a large number of clusters and iteratively
merge compatible partitions until the optimization
criteria is satisfied. Beginning with fine-grained
partitioning, we perform an (optional) single step
of cluster merging, combining similar clusters into
larger groups. A similar outcome could poten-
tially be obtained by relaxing the min_sim simi-
larity threshold and thereby, generating more het-
erogeneous flat clusters in the first place. However,
a single step of cluster merging yielded results that
outperform flat clustering on a range of datasets
(see Table 3 and Section 2.2.2 for details). Clas-
sical agglomerative hierarchical clustering (AHC)
algorithms merge pairs of lower-level clusters by
minimizing the agglomerative criterion: a similar-
ity requirement that has to be satisfied for a pair of
clusters to be merged. Similar to AHC, we seek
to merge clusters exhibiting high mutual similarity.
In contrast to AHC, our approach is not pair-wise,
rather it constitutes a subsequent invocation of the
RBC that takes embeddings of the flat cluster cen-
troids as its input.

Formally, given a set of clustersC of size k=|C|,
identified by the algorithm, we compute the set
of cluster centroid vectors Ec=(ec1,ec2, ...,eck); these
vectors are assumed to reliably represent the seman-
tics of their corresponding clusters. Ec is further
used as an input to subsequent invocation of the
RBC algorithm, where the min_sim parameter can
possibly differ from the previous invocation.

230

cluster name: difference covid flu (28) cluster name: covid pregnancy (17)
is covid the same as the flu? (4) covid 19 and pregnancy (10)
how is covid different from the flu? (3) covid risks for a pregnant woman (4)
what is the difference between covid 19 and flu? what is the risk of covid for pregnant women?
what’s the difference between covid and flu is covid-19 dangerous when pregnant?
is the covid the same as cold? 7 months pregnant and tested positive for covid, any risks?
covid vs flu vs sars covid 19 during pregnancy

Table 1: Example clusters of user requests generated by the RBC algorithm when applied on the Covid-19 dataset.
Only a partial list of cluster members is presented in the table; the number in parenthesis denotes a cluster size.

Example Clustering Result Table 1 presents
two example clusters generated from user requests
to the Covid-19 bot. We applied the main RBC
clustering procedure and a single subsequent merge
step. Semantically related utterances are grouped
together, where the number beside an utterance re-
flects its frequency in the cluster. As a concrete
example, ‘is covid the same as the flu?’ was asked
four times by different users.

2.2 Evaluation

We performed a comparative evaluation of the pro-
posed clustering algorithm and HDBSCAN4, using
common clustering evaluation metrics. The nature
of the topical distribution of unrecognized utter-
ances is probably most closely resembled by dialog
systems intent classification datasets, where seman-
tically similar training examples are grouped into
classes, based on their intent. We used these classes
to simulate cluster partitioning for the purpose of
evaluation. We make use of three publicly avail-
able intent classification datasets (Liu et al. (2019),
Larson et al. (2019) and Tepper et al. (2020)), as
well as three datasets from real-world task-oriented
chatbots in the domains of telecom, finance and
retail. Table 2 presents the datasets details.

dataset intents examples mean STD
Liu et al. (2019) 46 20849 453.23 896.34
Larson et al. (2019) 150 22500 150.00 0.00
Tepper et al. (2020) 57 844 14.80 14.16
telecom 167 6364 38.10 26.74
finance 142 2301 16.20 25.28
retail 103 1714 16.64 11.42

Table 2: Datasets details: the number of intents, total
training examples, mean and STD of the num of ex-
amples. We excluded out-of-scope examples from the
Larson et al. (2019) dataset for the sake of evaluation.

4DBSCAN resulted in outcomes systematically inferior to
HDBSCAN; hence, it was excluded from further experiments.

2.2.1 Evaluation Approach

The main approaches to clustering evaluation in-
clude extrinsic methods, which assume a ground
truth, and intrinsic methods, which work in the
absence of ground truth. Extrinsic techniques com-
pare the clustering outcome to a human-generated
gold standard partitioning. Intrinsic techniques
assess the resulting clusters by measuring charac-
teristics such as cohesion, separation, distortion,
and likelihood (Pfitzner et al., 2009). We employ
two popular extrinsic and intrinsic evaluation met-
rics: adjusted random index (ARI, (Hubert and
Arabie, 1985)) and Silhouette Score (Rousseeuw,
1987). We vary the parameters of the RBC algo-
rithm: merge type with none vs. single step (see
Section 2.1.2); the encoder used for distance ma-
trix construction: the SentenceTransformer (ST)
encoder (Reimers and Gurevych, 2019) vs. the Uni-
versal Sentence Encoder (USE) (Cer et al., 2018);
min similarity threshold used as a cluster “radius”
was optimized on a held-out set of intents, per
dataset. Both ARI and Silhouette yield values in
the [-1, 1] range, where -1, 0 and 1 mean incorrect,
arbitrary, and perfect assignment, respectively. The
unique nature of our clustering requirements intro-
duces a challenge to standard extrinsic evaluation
techniques. Specifically, the min cluster size at-
tribute controls the number of outliers, by consider-
ing only clusters that exceed the minimum number
of members (see Figure 2). Aiming to mimic the
ground truth partition (i.e, the intent classification
datasets), we set the min_size attribute to the mini-
mal class size in the dataset, subject to evaluation.
As such, this attribute was set to 150 for the Larson
et al. (2019) dataset, but to 2 for the finance dataset.

Both evaluation techniques assume full partition-
ing of the input space. Therefore, for our evalua-
tion, we exclude the set outliers generated by our
clustering algorithm altogether: only the subset of
instances constructing the outcome clusters (e.g.,
instances depicted in color in Figure 2) was used to

231

compute both ARI and Silhouette. For complete-
ness, we also report the ratio of a dataset utterances
covered by the generated partition (‘% clst’ in Ta-
ble 3), where the higher, the better.

2.2.2 Evaluation Results
Table 3 presents the results of our evaluation.
Clearly, the RBC algorithm outperforms HDB-
SCAN across the board for both ARI and Silhou-
ette scores, with the exception of the retail dataset,
where the second best ARI score (0.37) is obtained
by RBC along with over 80% of clustered utter-
ances (compared to only 49.79% by HDBSCAN).
HDBSCAN also outperforms RBC in terms of the
ratio of clustered utterances for Liu et al. (2019)
and the telecom dataset. However, these results are
achieved by a nearly arbitrary partition of the input
data, as mirrored by the extremely low ARI and
Silhouette scores. We conclude that RBC outper-
forms its out-of-the-box counterpart on virtually
all datasets in this work. The ratio of clustered
examples (‘% clst’) exhibits considerable variance
among the datasets; this result is indicative of the
varying levels of semantic coherence of the un-
derlying intent classes, which are typically con-
structed manually by a bot designer. As such, over
87% of all training examples were covered by the
clustering procedure for the retail dataset, but only
33.90% for Larson et al. (2019).

The extremely poor results obtained for the tele-
com dataset by HDBSCAN stem from its clustering
outcome that only contains two clusters: (1) a small
group of unique examples and (2) all the rest.

Runtime and Memory Due to its nearly polyno-
mial complexity, the proposed clustering algorithm
may entail efficiency considerations for a very large
amount of data. As such, with pre-computed re-
quest embeddings, clustering 20K unhandled re-
quests results in less than 10 seconds, while clus-
tering 85K requests takes 82 seconds with over
850MB of RAM consumption. All experiments
were conducted on a server with 8 CPUs.

3 Selecting Cluster Representatives

Contemporary large-scale deployments of virtual
assistants must cope with increasingly high vol-
umes of incoming user requests. A typical large
task-oriented system can accept over 100K requests
(i.e., user utterances) per day, where the amount
of conversations that pass the initial step of intent
identification varies between 40% and 80%. Con-

algo RBC HDBSCAN
merge type no merge single step —
encoder USE ST USE ST USE ST

L
iu

ARI 0.42 0.40 0.74 0.44 0.42 0.03
Silhouette 0.47 0.42 0.67 0.50 0.39 0.09
% clst 12.12 12.03 12.12 16.09 12.69 38.36

L
ar

so
n ARI 0.89 0.86 0.68 0.76 0.49 0.69

Silhouette 0.47 0.50 0.48 0.50 0.39 0.47
% clst 16.29 32.60 16.29 33.90 24.92 32.98

Te
pp

er ARI 0.66 0.65 0.73 0.52 0.69 0.67
Silhouette 0.45 0.49 0.51 0.37 0.45 0.46
% clst 79.68 85.12 79.68 88.18 58.31 60.15

te
le

co
m ARI 0.32 0.54 0.63 0.38 0.00 0.00

Silhouette 0.17 0.20 0.18 0.11 0.00 0.00
% clst 25.18 46.87 25.18 59.78 83.24 97.90

fin
an

ce ARI 0.40 0.42 0.45 0.56 0.45 0.49
Silhouette 0.37 0.39 0.35 0.32 0.34 0.35
% clst 47.59 63.26 47.59 74.28 23.46 36.22

re
ta

il ARI 0.28 0.37 0.31 0.24 0.37 0.38
Silhouette 0.24 0.28 0.22 0.27 0.23 0.32
% clst 68.19 80.43 68.19 87.18 37.55 49.79

Table 3: Clustering evaluation results; ‘% clst’ denotes
the ratio of clustered examples out of total; the best
result in a row is boldfaced.

sequently, tens of thousands of requests can be
identified as unrecognized on a daily basis. Cluster-
ing these utterances would result in large clusters
that are often impractical for manual processing.
Providing conversation analysts with a limited set
of cluster representatives is a fundamental step to-
ward extracting value from the unrecognized data.

3.1 Representative Characteristics

A plausible set of representative cluster utterances
has to satisfy two desirable properties: utterance
centrality and diversity. We define an utterance
centrality to be proportional to its frequency in a
cluster: requests with higher frequency should be
boosted, since they are typical of the way people
express their needs to the bot. The diversity of the
utterance set mirrors the subtle differences in the
phrasing and meaning of utterances; these reflect
the various ways people can express the same need.

Sampling randomly from a cluster may result
in a sub-optimal set of representatives, in terms of
both centrality and diversity. Consider the example
where no ‘covid 19 and pregnancy’ requests (Table
1, right) are selected as representatives (low central-
ity), or both ‘what is the difference between covid
19 and flu?’ and ‘what’s the difference between
covid and flu’ (Table 1, left) are selected (low di-
versity). Contrary to these examples, the set {‘is
covid the same as the flu?’, ‘is the covid the same
as cold?’, ‘covid vs flue vs sars’} contains utterance
of high centrality (the first utterance), and compre-

232

hensive coverage of the entire cluster semantics.

3.2 Selecting Representatives

To ensure diversity and centrality among the se-
lected representatives, we use determinantal point
process (DPP). Specifically, we consider a re-
stricted class of DPPs known as L-ensembles.
Given a set of items, S , L-ensembles define a prob-
ability distribution over the power set of S . Equiv-
alently, L-ensembles define a probability distribu-
tion over binary vectors of length |S|, where the
ith entry in the vector indicates if the ith item in S
was included in the subset or not. These indicator
variables are negatively correlated where the cor-
relations are governed by a positive semidefinite
matrix K. L-ensembles ensure that the more simi-
lar two items are, as indicated by the corresponding
entry in the kernel matrix, the less likely are they
to occur in the same sampled subset. Thus, it is an
excellent model for ensuring diversity among the
selected representatives.

Given a positive semi-definite kernel matrix
K, the probability of A⊂S is governed in an L-
ensemble as P (A) ∝ det(KA), where KA is the
restriction of K to the indices present in the subset
A. We construct the kernel matrix to ensure that
samples from the L-ensemble have high centrality
while also being diverse. To achieve this, we first
project the embeddings of the utterances within the
cluster onto a unit sphere. We further take into
consideration the factor of centrality by scaling the
vectors’ length based on their frequency in the clus-
ter. Given the resultant embeddings E, where the
embedding of the ith entry is the ith row vector
in E, the kernel matrix is obtained by K=EET.
Thus, the (i, j)th entry of the kernel corresponds
to the angle between the ith and jth vector scaled
by the frequency of occurrence of those vectors.
We make use of the freely available DPPy Python
package for sampling a subset of representatives,
given the above kernel matrix.

Evaluation Using the clustering approach in Sec-
tion 2 we extracted 50 clusters of varying sizes of
unhandled user requests from a large-scale produc-
tion system. A set of three cluster representatives
was extracted using the technique described in this
section, along with two baselines: (1) three ran-
dom cluster members, (2) three unique most fre-
quent cluster members. Three in-house annotators
labeled their preferred alternative, satisfying cen-
trality and diversity properties in the best way. The

majority vote was obtained in 47 out of 50 cases,
with 37 out of 47 (79%) choices preferring the
centrality-diversity approach. The mean pairwise
Cohen’s Kappa between the annotators was 0.44.

4 Cluster Naming

Assigning cluster with names, or labels, is an es-
sential step toward their consumability. Common
approaches to this task resort to simple but reliable
techniques based on word n-gram extraction, such
as tf-idf ; many of these techniques made their way
into the first large-scale information retrieval (IR)
systems (Ramos et al., 2003; Aizawa, 2003). Here,
we distinguish between the task of cluster naming
(extracting a coherent phrase reliably reflecting a
cluster’s content) and the task of keyword extrac-
tion (providing a sequence of one or more words
for a compact representation of a document).

Common approaches to cluster naming include
extracting one of the cluster’s members to reflect
the cluster’s content; extracting such a member
can be done by by naively selecting the most fre-
quent member in the cluster or by choosing a mem-
ber satisfying maximum cosine similarity to the
cluster’s centroid (Alicante et al., 2016). In other
cases, a good name may not occur directly as one
of the cluster’s members, and hence requires differ-
ent handling. Some works were trying to investi-
gate the contribution of external knowledge-bases
for cluster naming, by incorporating Wikipedia
pages’ meta-data corresponding to the cluster’s
content (Carmel et al., 2009), while others were
trying to generate clusters’ queries, as a mixture
of cluster-internal and differential labeling (Hagen
et al., 2015). Contemporary large pretrained large
language models can also be used for the task of
keyword extraction. Here we make use of Key-
BERT – an approach based on BERT (Devlin et al.)
– for identifying key phrases in a cluster, and evalu-
ate the outcome against tf-idf.

Cluster Labeling with tf-idf We treat all
utterances in individual clusters from a set
C=(c1, c2, ..., ck) as distinct documents. We first
applied lemmatization to these documents using
the spacy toolkit (Honnibal and Montani, 2017),
excluded stopwords, and further ranked all ngram
token sequences of length N (for N∈(1, 2, 3)) by
their tf-idf score. The ngram with the highest score
was selected as the cluster name.

233

Cluster Labeling with KeyBERT Treating
each cluster as a document, we first extract
document-level representation using a pretrained
BERT language model.5 We further extract ngram
representations for all unique word ngrams in the
document, and compute semantic similarity be-
tween each ngram’s embedding and that of the
document. Ngram with the highest cosine similar-
ity to the document is selected as the cluster name.6

Evaluation Adhering to the same evaluation
paradigm as Section 2.2, we use the six intent clas-
sification datasets for assessing the quality of clus-
ter naming techniques. A common practice for
building an intent training dataset involves assign-
ing each class in the training set with a meaningful
name, typically mirroring the semantics of the class.
As such, an intent class grouping example requests
about Covid-19 testing information in Tepper et al.
(2020), is named ‘testing information’. For each
class in the intent training set, we compare the au-
tomatically extracted class name to that assigned to
the class by the dataset creator, where the similar-
ity is obtained by encoding the two phrases – the
original class name and the candidate one – and
computing their cosine similarity.

Table 4 presents the results for the two methods.
Neither approach systematically outperforms the
other, and the only significant difference in favor
of the tf-idf approach is found for Liu et al. (2019).
We, therefore, conclude that the two approaches
are roughly comparable and adhere to the faster
tf-idf method in our pipeline solution.

dataset tf-idf KeyBERT
Liu et al. (2019) 0.718* 0.626
Larson et al. (2019) 0.555 0.489
Tepper et al. (2020) 0.481 0.460
telecom 0.437 0.470
finance 0.438 0.426
retail 0.375 0.393

Table 4: Cluster naming evaluation: for each dataset,
the mean pairwise similarity between the predefined in-
tent name and the assigned keyphrase is presented. ‘*’
denotes significant difference at p-val<0.01 using the
Wilcoxon (Mann–Whitney) ranksums test.

5 Conclusions and Future Work

Analyzing unrecognized user requests is a funda-
mental step toward improving task-oriented dia-

5We use ‘all-MiniLM-L6-v2’ model in our experiments.
6We make use of the freely available KeyBERT package.

log systems. We present an end-to-end pipeline
for clustering, representatives selection, and cluster
naming – procedures that facilitate the effective and
efficient exploration of utterances unrecognized by
the NLU module. We propose a clustering variant
of the popular k-means algorithm, and show that
outperforms its out-of-the-box alternatives on mul-
tiple metrics. We also suggest a novel approach to
extracting representative utterances while simulta-
neously optimizing their centrality and diversity.

Our future work includes the evaluation of our
clustering approach with additional datasets, explo-
ration of additional approaches to representative set
selection, and advanced techniques for cluster nam-
ing. Leveraging clustering results to automatically
identify actionable recommendations for conversa-
tion analyst is another venue of significant practical
importance, we plan to pursue.

6 Ethical Considerations

Cluster representative sets (Section 3) were anno-
tated by in-house workers who were compensated
with above minimum wages. To protect user pri-
vacy, no personally identifiable information (e.g.,
name, address) were presented to the annotators.

Acknowledgements

We are grateful to the anonymous reviewers and
the meta reviewer for their constructive feedback.
We would also like to thank Chani Sacharen for her
kind help with earlier versions of this work.

References
Akiko Aizawa. 2003. An Information-Theoretic Per-

spective of tf–idf Measures. Information Processing
& Management, 39(1):45–65.

Anita Alicante, Anna Corazza, Francesco Isgrò, and
Stefano Silvestri. 2016. Semantic cluster labeling
for medical relations. In International Conference
on Innovation in Medicine and Healthcare, pages
183–193. Springer.

David Carmel, Haggai Roitman, and Naama Zwerdling.
2009. Enhancing cluster labeling using wikipedia.
In Proceedings of the 32nd international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 139–146.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
et al. 2018. Universal Sentence Encoder. arXiv
preprint arXiv:1803.11175.

234

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A Survey on Dialogue Systems: Recent
Advances and New Frontiers. Acm Sigkdd Explo-
rations Newsletter, 19(2):25–35.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. 1996. Density-Based Spatial Clustering
of Applications with Noise. In Int. Conf. Knowledge
Discovery and Data Mining, volume 240, page 6.

Shai Gretz, Assaf Toledo, Roni Friedman, Dan La-
hav, Rose Weeks, Naor Bar-Zeev, João Sedoc,
Pooja Sangha, Yoav Katz, and Noam Slonim. 2022.
Benchmark data and evaluation framework for intent
discovery around covid-19 vaccine hesitancy. arXiv
preprint arXiv:2205.11966.

Jonathan Grudin and Richard Jacques. 2019. Chatbots,
Humbots, and the Quest for Artificial General Intel-
ligence. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems.

Matthias Hagen, Maximilian Michel, and Benno Stein.
2015. What was the query? generating queries for
document sets with applications in cluster labeling.
In International Conference on Applications of Nat-
ural Language to Information Systems, pages 124–
133. Springer.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural Language Understanding with Bloom Em-
beddings, Convolutional Neural Networks and Incre-
mental Parsing. Sentometrics Research.

Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. 2020.
Challenges in Building Intelligent Open-Domain Di-
alog Systems. ACM Transactions on Information
Systems (TOIS), 38(3):1–32.

Lawrence Hubert and Phipps Arabie. 1985. Compar-
ing Partitions. Journal of classification, 2(1).

Uzay Kaymak and Magne Setnes. 2002. Fuzzy Clus-
tering with Volume Prototypes and Adaptive Clus-
ter Merging. IEEE Transactions on Fuzzy Systems,
10(6):705–712.

Raghu Krishnapuram. 1994. Generation of Member-
ship Functions via Possibilistic Clustering. In Pro-
ceedings of 1994 IEEE 3rd International Fuzzy Sys-
tems Conference, pages 902–908. IEEE.

Knut Kvale, Olav Alexander Sell, Stig Hodnebrog, and
Asbjørn Følstad. 2019. Improving Conversations:
Lessons Learnt from Manual Analysis of Chatbot
Dialogues. In International workshop on chatbot re-
search and design, pages 187–200. Springer.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A

Laurenzano, Lingjia Tang, et al. 2019. An Eval-
uation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1311–1316.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2019. Benchmarking Natural Lan-
guage Understanding Services for Building Conver-
sational Agents. In 10th International Workshop on
Spoken Dialogue Systems Technology 2019, volume
714, pages 165–183. Springer.

Stuart Lloyd. 1982. Least Squares Quantization in
PCM. IEEE transactions on information theory,
28(2):129–137.

Leland McInnes, John Healy, and Steve Astels. 2017.
hdbscan: Hierarchical Density Based Clustering.
Journal of Open Source Software, 2(11):205.

Darius Pfitzner, Richard Leibbrandt, and David Powers.
2009. Characterization and Evaluation of Similarity
Measures for Pairs of Clusterings. Knowledge and
Information Systems, 19(3):361–394.

Juan Ramos et al. 2003. Using tf-idf to Determine
Word Relevance in Document Queries. In Proceed-
ings of the first instructional conference on machine
learning, volume 242, pages 29–48. Citeseer.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992.

Peter J Rousseeuw. 1987. Silhouettes: a Graphical Aid
to the Interpretation and Validation of Cluster Anal-
ysis. Journal of computational and applied mathe-
matics, 20:53–65.

Naama Tepper, Esther Goldbraich, Naama Zwerdling,
George Kour, Ateret Anaby Tavor, and Boaz
Carmeli. 2020. Balancing via Generation for Multi-
Class Text Classification Improvement. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 1440–1452.

Xuejian Xiong, Kap Luk Chan, and Kian Lee Tan.
2004. Similarity-Driven Cluster Merging Method
for Unsupervised Fuzzy Clustering. In Proceedings
of the 20th conference on Uncertainty in artificial
intelligence, pages 611–618.

235

Proceedings of EMNLP 2022 Industry Track, pages 236–246
December 9–11, 2020. ©2022 Association for Computational Linguistics

CoCoID: Learning Contrastive Representations and Compact Clusters for
Semi-Supervised Intent Discovery

Qian Cao1 , Deyi Xiong2,∗, Qinlong Wang1 and Peng Xia1

1Leyan Tech, Shanghai, China
2College of Intelligence and Computing, Tianjin University, Tianjin, China

caoqian0905@gmail.com; dyxiong@tju.edu.cn;
qinlong.wang@leyantech.com; pengxia24@163.com

Abstract

Intent discovery is to mine new intents from
user utterances, which are not present in the set
of manually predefined intents. Previous ap-
proaches to intent discovery usually automati-
cally cluster novel intents with prior knowledge
from intent-labeled data in a semi-supervised
way. In this paper, we focus on the discrim-
inative user utterance representation learning
and the compactness of the learned intent clus-
ters. We propose a novel semi-supervised in-
tent discovery framework CoCoID with two
essential components: contrastive user utter-
ance representation learning and intra-cluster
knowledge distillation. The former attempts
to detect similar and dissimilar intents from a
minibatch-wise perspective. The latter regu-
larizes the predictive distribution of the model
over samples in a cluster-wise way. We con-
duct experiments on both real-life challeng-
ing datasets (i.e., CLINC and BANKING) that
are curated to emulate the true environment of
commercial/production systems and traditional
datasets (i.e., StackOverflow and DBPedia) to
evaluate the proposed CoCoID. Experiment re-
sults demonstrate that our model substantially
outperforms state-of-the-art intent discovery
models (12 baselines) by over 1.4 ACC and
ARI points and 1.1 NMI points across the four
datasets. Further analyses suggest that CoCoID
is able to learn contrastive representations and
compact clusters for intent discovery.

1 Introduction

Intent discovery is to pinpoint novel intents from
user utterances, which are not present in the set
of predefined intents. Discovering novel intents
for goal-oriented dialogue has recently attracted
growing attention and interest (Lin et al., 2020;
Zhang et al., 2021), not only because it is difficult
to manually define all potential user intents for
conversational agents deployed in a wide range of

∗Corresponding author

Model NMI ↑ ARI ↑
sup-simcse-bert-large-uncased 80.25 66.93
sup-simcse-bert-base-uncased 75.09 59.52

Table 1: Comparison results of the DeepAligned model
with supervised SimCSE-BERT_base vs. SimCSE-
BERT_large on the test set of DBPedia.1Normalized
Mutual Information (NMI) and Adjusted Rand Index
(ARI) are widely-used clustering evaluation metrics (see
Section 5.1 for more details).

real-world scenarios, but also due to the cost of
curating intent-labelled data.

Approaches to intent discovery usually include
unsupervised clustering methods (Kathuria et al.,
2010; Cheung and Li, 2012; Padmasundari and
Bangalore, 2018) and semi-supervised methods
(Basu et al., 2004; Hsu et al., 2018; Han et al.,
2019). The former performs unsupervised cluster-
ing algorithms, e.g., K-means clustering, to group
user utterances into clusters according to their
underlying intents. The latter attempts to inject
weakly supervised signals (Haponchyk et al., 2018;
Caron et al., 2018), or external knowledge (Lin
et al., 2020; Zhang et al., 2021) into the procedure
of clustering. Compared with the unsupervised
clustering methods, models that explore supervised
signals or external knowledge are capable of dis-
covering better user intents (Zhang et al., 2021). In
this paper, we follow the semi-supervised research
philosophy for intent discovery.

However, different from previous works (Lin
et al., 2020; Zhang et al., 2021), our focus lies
on two aspects: user utterance representation and
the compactness of clusters. For utterance rep-
resentation, we have conducted a simple inves-
tigation in our preliminary experiments. With
the DeepAligned model (Zhang et al., 2021), we

1We run three times of K-means clustering algorithm and
report the average results to avoid the unstable issue in K-
means clustering.

236

have compared two different settings for user utter-
ance representation learning: supervised SimCSE-
BERT_base2 vs. SimCSE-BERT_large3 (Gao
et al., 2021). The results are shown in Table 1,
which clearly demonstrate that better user repre-
sentations lead to more accurate intent discovery.
For the compactness of clusters, intuitively, the
more compact a cluster is, the more possible user
utterances in the cluster share the same intent.

To learn better user utterance representations
for clustering and to improve the compactness
of learned clusters, we propose CoCoID that
learns Contrastive user utterance representations
and Compact clusters for semi-supervised Intent
Discovery. To learn contrastive representations, we
define a user utterance to be clustered as the anchor
utterance and feed it to the feature extractor twice
with different dropout masks. In doing so, we ob-
tain two different representations for the anchor
utterance and use them as positive pairs. Other
utterances in the same minibatch serve as nega-
tive samples. We then perform contrastive learning
to improve utterance representations so that utter-
ances with similar underlying intents tend to be
close to each other while utterances with dissimilar
intents are separated from each other.

To improve the compactness of clusters, we pro-
pose an intra-cluster knowledge distillation (ICKD)
method. We randomly sample utterances from the
cluster where the anchor utterance locates. The
intent label of the anchor utterance is used to guide
knowledge distillation from the anchor utterance
to the sampled utterances. The motivation behind
ICKD is to help shorten the distance between utter-
ances in the cluster, which can be also considered
as a regularization strategy for the clustering model.

In summary, our contributions are twofold.

1) We propose a novel semi-supervised intent
discovery framework CoCoID that learns con-
trastive user utterance representations and
presents an intra-cluster knowledge distilla-
tion to improve the compactness of learned
intent clusters.

2) We have conducted extensive experiments on
four challenging datasets, including CLINC,
BANKING, StackOverflow and DBPedia, to
examine the effectiveness of the proposed Co-

2https://huggingface.co/princeton-nlp/sup-simcse-bert-
base-uncased

3https://huggingface.co/princeton-nlp/sup-simcse-bert-
large-uncased

CoID. We have achieved significant improve-
ments over state-of-the-art clustering meth-
ods by over 1.4 ACC and ARI and 1.1 NMI
points. Further analyses demonstrate that the
proposed model can indeed learn contrastive
representations and compact clusters.

2 Related Work

Our work is related to intent discovery, contrastive
learning and knowledge distillation. We briefly
review these topics within the constraint of space.

2.1 Intent Discovery

User intent detection is an essential component in
dialogue systems. A wide range of approaches,
including unsupervised (Padmasundari and Banga-
lore, 2018), supervised (Hakkani-Tür et al., 2013)
and semi-supervised (Basu et al., 2004; Hakkani-
Tür et al., 2015; Han et al., 2019) methods, have
been explored for intent discovery. In the unsu-
pervised research strand, Kathuria et al. (2010)
propose to exploit K-means clustering to under-
stand user intents. In addition to unsupervised
clustering approaches, Haponchyk et al. (2018)
solve intent discovery by using powerful semantic
classifiers to categorize user questions into intents
with structured outputs in a supervised way. Caron
et al. (2018) propose to produce clustering assign-
ments as pseudo labels and then train a pseudo
classifier. For semi-supervised methods, Zhang
et al. (2021) investigate the label inconsistent is-
sue and propose a deep alignment strategy. Other
semi-supervised studies approach intent discovery
by guiding the clustering process with pairwise
constraints, such as KCL (Hsu et al., 2018) and
CDAC+ (Lin et al., 2020). Our model is also semi-
supervised. The significant differences from pre-
vious semi-supervised intent discovery lie in the
contrastive learning of user utterance representa-
tions and intra-cluster knowledge distillation for
improving the compactness of clusters.

2.2 Contrastive Learning

The main idea behind contrastive learning is to
force semantic representations of similar objects
to be close to each other and those of dissimilar
objects to be far away from each other, which is
widely used in unsupervised visual representation
learning. Recent years have witnessed that con-
trastive learning has also been explored in textual
representation learning. Fang and Xie (2020) pro-

237

K-means

Limited
Labeled

Data

......

Contrastive User Utterance
Representation Learning

: positive
: negative

Intra-Cluster
Knowledge Distillation

...

different dropout
mask

UFE : Utterance Feature Extractor

Unlabeled
+

Labeled
UFE

Supervised
Fine-tuning

UFE

Could[CLS] ... ?

Transformer Layer1
......

Transformer Layer12

Mean Pooling

Dense Layer

Utterance
Representation m

ini batch

: Position Embedding

Figure 1: The diagram of CoCoID. We first fine-tune the utterance feature extractor on intent-labeled data. After
fine-tuning, we obtain representations for both labeled and unlabeled user utterances. We cluster them via the
K-means cluster algorithm. Our contributions lie in the contrastive user utterance representation learning and
intra-cluster knowledge distillation used in the semi-supervised clustering procedure.

pose CERT and construct positive and negative ut-
terances through back translation. Gao et al. (2021)
find that dropout can act as an efficient data aug-
mentation method for contrastive textual represen-
tation learning. Yan et al. (2021) also explore dif-
ferent data augmentation strategies on contrastive
learning for sentence representation modeling. In
this paper, we follow Gao et al. (2021) to use dif-
ferent dropout masks to create positive samples.

2.3 Knowledge Distillation

Knowledge distillation usually refers to training a
large teacher model and distilling its knowledge
into a small student model (Hinton et al., 2015).
Zhang et al. (2018) propose a strategy where an
ensemble of students learn collaboratively and then
teach each other. Yuan et al. (2019) find that knowl-
edge distillation is a more general label smoothing
regularization and present a teacher-free knowl-
edge distillation framework where a student model
learns from itself. Yun et al. (2020) propose a
class-wise knowledge distillation method which
distills the predictive distribution between different
samples of the same label during training, which
is similar to our intra-cluster knowledge distilla-
tion in the sense of distilling predictive distribu-
tion between samples from the same group. The
significant difference is that we distill knowledge
between user utterances in the same cluster under

the semi-supervised setting rather than in the super-
vised condition for images (Yun et al., 2020).

3 Approach

We elaborate the proposed CoCoID in this sec-
tion. The diagram of CoCoID is shown in Fig-
ure 1. It consists of three major components:
semi-supervised clustering backbone, contrastive
utterance representation learning and intra-cluster
knowledge distillation.

3.1 Semi-supervised Clustering Backbone

The traditional clustering-based approach for in-
tent discovery produces clustering assignments as
pseudo labels (Caron et al., 2018), which may re-
sult in an inconsistent clustering assignment is-
sue as different labels could be assigned to the
same utterance in different training epochs. We
therefore use the DeepAligned framework (Zhang
et al., 2021) as our semi-supervised clustering back-
bone, which is composed of three essential compo-
nents: utterance feature extractor, fine-tuning and
DeepAligned clustering (addressing the inconsis-
tent issue). We briefly introduce the first two parts
here. More details on the third component can been
found in (Zhang et al., 2021).

Utterance Feature Extractor We use BERT
(Devlin et al., 2019) to extract features from user ut-

238

terances. For notational convenience, we define the
training corpus as D = {x1,x2, ...,xn} where xi

is the i-th utterance with or without intent label. We
assume that D is composed of Dlabel and Dunlabel
that indicate utterances with intent labels and those
without manual intent labels, respectively. We feed
xi into BERT and extract the last layer of BERT
as Hi = [CLS, s1, s2, ..., sm] where CLS is a spe-
cial classification token and m denotes the length
of the utterance xi. We then obtain an averaged
representation for the corresponding utterance as
follows:

Ri = f(Hi) (1)

where f indicates the meaning-pooling operation.
To further enhance the feature extractor, we add a
dense layer g:

hi = g(Ri) = σ(WgRi + bg) (2)

where σ is a ReLU activation function, Wg and bg
are learnable parameters.

Fine-tuning To incorporate prior knowledge
from limited intent-labeled data, we follow Zhang
et al. (2021) to fine-tune the BERT-based feature
extractor on labeled data Dlabel. Specifically, we
stack a simple intent classification layer over the
BERT-based feature extractor and fine-tune the ex-
tractor with a cross-entropy loss in a supervised
fashion. After fine-tuning, we remove the clas-
sification layer and keep the rest of the network
as feature extractor for later use in the clustering
process.

3.2 Contrastive User Utterance
Representation Learning

After fine-tuning, we obtain a full-fledged feature
extractor. We learn representations of utterances in
D through this feature extractor. Over these learned
representations, we perform K-means clustering to
categorize utterances into groups. We define groups
as {G}Ki=1 where K is the number of groups for
clustering.

We define an utterance xi in question as anchor
utterance and its group as Gµ(xi) where µ is a
mapping function that maps xi to a cluster index
∈ [1,K]. Similar to SimCSE (Gao et al., 2021),
we input each anchor utterance xi to the encoder
(as shown in the red dashed box) twice with two
different dropout masks d and d

′
. We let hd

i and

hd
′

i (calculated according to Eq. 2) denote the rep-
resentation of xi with the two different dropout

masks. We consider hd′
i as the positive representa-

tion to hd
i for the anchor utterance since they are

only different in dropout masks. That is to say, they
are semantically similar to each other. Represen-
tations of other utterances in the same minibatch
are regarded as negative representations to hd

i . In
this way, we construct positive and negative repre-
sentations for contrastive learning. The contrastive
learning objective is hence optimized as follows:

LCL = − log
exp(sim(hd

i ,h
d
′

i)/τ)
∑N

j=1(exp(sim(hd
i ,h

d′
j)/τ))

(3)

where N is the number of utterances in the mini-
batch and τ is a temperature hyperparameter. sim
is a similarity measurement function, which can be
computed as the cosine similarity as follows:

sim(a, b) =
a⊤b

∥a∥ · ∥b∥ (4)

3.3 Intra-cluster Knowledge Distillation
Dark knowledge can not only be distilled from
a large teacher model to a small student model,
but also be distillable among continual instances
within the same model via self-learning. The lat-
ter self-knowledge distillation is feasible as dark
knowledge can be regularized to produce the same
prediction pattern for instances in the same class
(Yun et al., 2020). This inspires us to perform self-
knowledge distillation within the same cluster.

Specifically, for each anchor utterance xi, we
randomly sample different utterances inGµ(xi) (de-
noted as xin) to form multiple (xi,x

in
i) pairs. Let

ui denote logit from xi and uin
i logit from xin

i .
We then distill dark knowledge from ui to each
sampled logit. Mean square error (MSE) is used
as the intra-cluster distillation objective, which is
computed as follows:

LICKD =
1

k + 1

k∑

in=0

∥ui − uin
i ∥22 (5)

where k is the number of sampled utterances, which
is a hyperparameter to be tuned. Note that u0

i is
logit from the anchor utterance itself with a differ-
ent dropout mask.

Forcing the predictive distributions (i.e., logit)
from sampled utterances to be close to that from
the anchor utterance in the same cluster, we want
these utterances in the same cluster to be similar to
each other. In other words, their distance could be

239

Model CLINC BANKING StackOverflow DBPedia

ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI

KM† 45.06 26.86 70.89 29.55 12.18 54.57 13.55 1.46 8.24 61.00 49.93 67.26
AG† 44.03 27.70 73.07 31.58 13.31 57.07 14.66 2.12 10.62 56.07 43.92 65.63
SAE-KM† 46.75 29.95 73.13 38.92 22.85 63.79 34.44 17.07 32.62 50.29 31.72 59.70
PCK-means† 54.61 35.40 68.70 32.66 16.24 48.22 24.16 5.35 17.26 83.11 71.27 79.76
DEC† 46.89 27.46 74.83 41.29 27.21 67.78 13.09 3.76 10.88 39.60 29.43 53.36
DCN† 49.29 31.15 75.66 41.99 26.81 67.54 34.26 15.45 31.09 47.48 32.31 54.54
DAC† 55.94 40.49 78.40 27.41 14.24 47.35 16.30 2.76 14.71 63.96 56.30 75.37
BERT-KCL† 68.86 58.79 86.82 60.15 46.72 75.21 13.94 7.81 8.84 60.62 61.03 83.16
DeepCluster† 35.70 19.11 65.58 20.69 8.95 41.77 - - - - - -
BERT-DTC† 74.15 65.02 90.54 56.51 44.70 76.55 - - - - - -
CDAC+† 69.89 54.33 86.65 53.83 40.97 72.25 73.48 52.59 69.84 91.66 89.41 94.74
DeepAligned† 86.49 79.75 93.89 64.90 53.64 79.56 - - - - - -

CDAC+‡ 70.18 58.68 87.23 54.34 41.86 72.68 74.8 50.75 76.96 91.31 87.47 93.01
DeepAligned‡ 86.69 80.19 94.07 65.44 53.76 79.80 78.55 61.21 75.97 92.89 89.54 94.04

CoCoID (ours) 87.51 81.35 94.49 67.81 57.08 81.32 78.43 60.25 77.60 95.56 91.91 94.95
w/o ICKD 86.74 80.31 94.06 66.44 54.83 80.26 79.10 60.13 77.46 95.45 91.52 94.72
w/o CL 86.13 80.7 94.53 66.52 56.51 81.75 78.35 59.04 77.52 93.74 90.34 94.37

Table 2: Clustering results on the four datasets. †: results from Zhang et al. (2021) and Lin et al. (2020). ‡: results
that we reproduced.

shortened by the proposed intra-cluster knowledge
distillation so that clusters are more compact.

4 Training Objective

Contrastive utterance representation learning at-
tempts to pull utterances with similar semantic in-
tents together and push apart utterances with differ-
ent intents in a minibatch-wise manner. By contrast,
intra-cluster knowledge distillation is to shorten dis-
tances of utterances in the same cluster by regular-
izing predictive distributions in a cluster-wise way.
These two approaches are complementary to each
other and therefore can be combined in a unified
framework CoCoID. The final joint loss of CoCoID
with the two components can be formulated as:

J = LCE + LCL + LICKD (6)

where LCE is the cross-entropy loss used in the
DeepAligned model (Zhang et al., 2021).

5 Experiments

We conducted a series of experiments on four
widely-used datasets to evaluate the proposed Co-
CoID. More details about the datasets and baselines
can be found in the appendix A and B.

5.1 Evaluation Metrics

We used three metrics to evaluate performance in
our experiments. Normalized Mutual Information
(NMI) is commonly used in measuring the quality

of clustering by estimating the similarity of clus-
tering results to the ground-truth results. Adjusted
Rand Index (ARI) treats the analysis of cluster-
ing as a series of decisions, one for each of the
N(N − 1)/2 pairs of collections. The Rand index
measures the percentage of decisions that are cor-
rect while ARI is the corrected-for-chance version
of it, ensuring that the value for random clustering
tends to be 0. In addition to the two metrics, we
follow Zhang et al. (2021) to use the Hungarian
algorithm to obtain the mapping between the pre-
dicted classes and ground-truth classes to estimate
clustering Accuracy (ACC). For all metrics, the
higher the score is, the better the performance is.

5.2 Settings

To make fair comparisons, we used the same set-
tings that randomly select 10% of the data as the
labeled data, and 75% of the intents as the known
intents as in previous works (Zhang et al., 2021).
The division of the datasets also follows Zhang et al.
(2021) and Lin et al. (2020). We first fine-tuned
our model on the labeled data and performed con-
trastive learning and intra-cluster knowledge dis-
tillation during clustering. We set the wait patient
as 20 to avoid overfitting. We evaluated the clus-
ter performance with Silhouette Coefficient which
is an unsupervised metric to evaluate clustering
performance. After training, we evaluated the per-
formance on test sets and averaged 10 random-seed
results as our final result. Note that we set the num-

240

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
percentage of labeled data used

70
72
74
76
78
80
82

NM
I

CoCoID
DeepAligned
CDAC+

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
percentage of labeled data used

40

45

50

55

60

AR
I CoCoID

DeepAligned
CDAC+

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
percentage of labeled data used

52.5
55.0
57.5
60.0
62.5
65.0
67.5
70.0
72.5

AC
C

CoCoID
DeepAligned
CDAC+

Figure 2: Comparison results along varying labeled data ratios on the BANKING dataset.

ber of intents as ground-truth during clustering,
which is consistent with Zhang et al. (2021).

We employed the pre-trained BERT model (base-
uncased, with 12-layer Transformer) to build the
feature extractor. We set the training batch size
as 128, and the learning rate as 5e−5.The tem-
perature for contrastive utterance representation
learning was set to 1.0 for CLINC, StackOverflow
and DBPedia dataset. For BANKING dataset, we
set the temperature of contrastive learning as 0.05.
We also followed Zhang et al. (2021) to freeze all
BERT parameters except the last layer to avoid
overfitting and speed up the training process. For
each anchor utterance, we sampled 3 utterances.

5.3 Main Results

Table 2 shows the results on the four datasets. Our
reproduced CDAC+ and DeepAlighed model are
better than those reported by Zhang et al. (2021)
and Lin et al. (2020) in most cases, indicating
strong baselines to be compared. Our proposed
CoCoID outperforms the 12 state-of-the-art base-
lines on the majority of cases on the four datasets.
Particularly, we achieve an average improvement
of 1.43 ACC, 1.47 ARI and 1.12 NMI over the
reproduced DeepAligned (better than the original).

Interestingly, it is worth noting that the length
of utterances in datasets seems to have an impact
on the performance improvements. The average
length of utterances in both CLINC and StackOver-
flow datasets is relatively shorter than 10, hence
the improvement obtained by our proposed model
is limited. In contrast, on the BANKING and DB-
Pedia datasets, utterances are longer. The improve-
ments in terms of the three metrics are substantially
higher than those on the other two datasets.

5.4 Ablation Study

To examine the effectiveness of the proposed two
methods , we further conducted ablation study. In
the last two rows of Table 2, we show the results of

our model without contrastive learning and intra-
cluster distillation. It can be found that the removal
of contrastive learning will reduce the ACC of the
model to some extent, while the removal of ICKD
will negatively affect the NMI and ARI metric. The
absense of contrastive learning causes ACC to de-
crease by 1.14 on average, suggesting that con-
trastive learning is able to boost intent discovery
accuracy. The absence of intra-cluster knowledge
distillation results in larger performance drops in
CLINC and BANKING than those in StackOver-
flow and DBPedia. This indicates that ICKD is
beneficial to intent discovery with a larger number
of novel intents (37/19 vs. 5/4)

6 Analysis

We carried out in-depth analyses to investigate how
the proposed methods improve intent discovery.

6.1 Analysis on the Impact of the Percentage
of Labeled Data Used

As our CoCoID is a semi-supervised intent dis-
covery approach that utilizes intent-labeled data
to fine-tune the feature extractor, we would like to
know the impact of the percentages that used intent-
labeled data account for among all data on the per-
formance. For this, we conducted experiments on
the BANKING dataset by gradually increasing the
percentage of labeled data used for fine-tuning from
0.05 to 0.2. Results of CoCoID against the two
state-of-the-art models DeepAligned and CDAC+
are illustrated in Figure 2. Under all settings, all
the three models benefit from the growing amount
of intent-labeled data used. But our CoCoID is
always the best among the three models, indicating
its strong capacity in exploring intent-labeled data.

6.2 Analysis on the Impact of the Ratio of
Unknown Intent Classes

Our approach is able to detect both known (prede-
fined) and unknown (novel) intent classes. There-

241

0.3 0.4 0.5 0.6 0.7
unknown class ratio

70

72

74

76

78

80

NM
I

CoCoID
DeepAligned
CDAC+

0.3 0.4 0.5 0.6 0.7
unknown class ratio

40

45

50

55

AR
I

CoCoID
DeepAligned
CDAC+

0.3 0.4 0.5 0.6 0.7
unknown class ratio

50.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5

AC
C

CoCoID
DeepAligned
CDAC+

Figure 3: Comparison results along varying known class ratios on the BANKING dataset.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

(a) DeepAligned

1
2
3
4
5
6
7
8
9
10
11
12
13
14

(b) CoCoID

Figure 4: Visualization of the 14 intents on the DBPedia
dataset and 5, 6, 9, 13 are the unknown intents.

fore, we further analyzed the impact of the un-
known intent class ratio on the performance. Fig-
ure 3 shows the results of CoCoID in comparison
to CDAC+ and DeepAligned. The performance of
the three models drops when the ratio of unknown
intent classes increases, which is reasonable as it
is more challenging to detect novel intents without
labeled data than predefined intents with labeled
data. However, our model achieves smaller perfor-
mance drops in all three evaluation metrics along
growing unknown intent class ratios, suggesting
that our model is more capable of detecting novel
intents than both DeepAligned and CDAC+.

6.3 Visualization of Intent Distribution
Figure 4 visualizes the distribution of 14 intents
in the semantic space of the DBPedia dataset. We

merged the training data and test data to gener-
ate utterance representations. We then visualized
them through t-sne. To obtain a better global struc-
ture, we set the perplexity of t-sne to 500. Fig-
ure 4(a) visualizes the intent distribution yielded
by DeepAligned while figure 4(b) displays results
yielded by our CoCoID. Note that the same color
across the two sub-figures represents the same in-
tent cluster. From the visualization, we can easily
find that the area of intent clusters produced by
CoCoID is smaller than that by DeepAlighed. And
some clusters are even compacted into strips (e.g.,
intent 3 and 9 in Figure 4(b)).

In order to explicitly show the degree of com-
pactness of intent clusters, we also calculated the
average distance from each utterance to the cluster
centroid. The average distance for DeepAligned
is 0.34 while only 0.14 for our CoCoID, which
strongly suggests that our proposed method does
make clusters more compact.

7 Conclusions

In this paper, we have presented a semi-supervised
intent discovery framework CoCoID. It consists
of two essential components: contrastive user ut-
terance representation learning and intra-cluster
knowledge distillation. Extensive experiments and
analyses on real-life challenging datasets demon-
strate that CoCoID outperforms previous state-of-
the-art intent discovery models (12 baselines) and
is able to learn contrastive representations and com-
pact clusters.

Acknowledgments

Deyi Xiong was supported by Zhejiang Lab (No.
2022KH0AB01). We would like to thank the
anonymous reviewers for their insightful com-
ments.

242

References
Sugato Basu, Arindam Banerjee, and Raymond J

Mooney. 2004. Active semi-supervision for pair-
wise constrained clustering. In Proceedings of the
Fourth SIAM International Conference on Data Min-
ing, pages 333–344.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. 2018. Deep clustering for unsuper-
vised learning of visual features. In Proceedings of
the European conference on computer vision (ECCV),
pages 132–149.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020. Efficient
intent detection with dual sentence encoders. CoRR,
abs/2003.04807.

Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shim-
ing Xiang, and Chunhong Pan. 2017. Deep adaptive
image clustering. In 2017 IEEE International Confer-
ence on Computer Vision (ICCV), pages 5880–5888.
IEEE.

Jackie Chi Kit Cheung and Xiao Li. 2012. Sequence
clustering and labeling for unsupervised query intent
discovery. In Proceedings of the fifth ACM interna-
tional conference on Web search and data mining,
pages 383–392.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Hongchao Fang and Pengtao Xie. 2020. CERT: con-
trastive self-supervised learning for language under-
standing. CoRR, abs/2005.12766.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

Dilek Hakkani-Tür, Asli Celikyilmaz, Larry P. Heck,
and Gökhan Tür. 2013. A weakly-supervised ap-
proach for discovering new user intents from search
query logs. In INTERSPEECH 2013, 14th Annual
Conference of the International Speech Communica-
tion Association, Lyon, France, August 25-29, 2013,
pages 3780–3784. ISCA.

Dilek Hakkani-Tür, Yun-Cheng Ju, Geoffrey Zweig, and
Gökhan Tür. 2015. Clustering novel intents in a con-
versational interaction system with semantic parsing.
In INTERSPEECH 2015, 16th Annual Conference
of the International Speech Communication Asso-
ciation, Dresden, Germany, September 6-10, 2015,
pages 1854–1858. ISCA.

Kai Han, Andrea Vedaldi, and Andrew Zisserman. 2019.
Learning to discover novel visual categories via deep
transfer clustering. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 8400–
8408. IEEE Computer Society.

Iryna Haponchyk, Antonio Uva, Seunghak Yu, Olga
Uryupina, and Alessandro Moschitti. 2018. Super-
vised clustering of questions into intents for dialog
system applications. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2310–2321.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. 2018.
Learning to cluster in order to transfer across do-
mains and tasks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings.

Ashish Kathuria, Bernard J. Jansen, Carolyn Theresa
Hafernik, and Amanda Spink. 2010. Classifying the
user intent of web queries using k-means clustering.
Internet Res., 20(5):563–581.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An evaluation
dataset for intent classification and out-of-scope pre-
diction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1311–1316.

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. Dis-
covering new intents via constrained deep adaptive
clustering with cluster refinement. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8360–8367.

Padmasundari and Srinivas Bangalore. 2018. Intent dis-
covery through unsupervised semantic text clustering.
In Proceedings of Interspeech, pages 606–610.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analysis.
In Proceedings of the 33rd International Conference
on International Conference on Machine Learning-
Volume 48, pages 478–487.

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun
Zhao, Fangyuan Wang, and Hongwei Hao. 2015.
Short text clustering via convolutional neural net-
works. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing,
pages 62–69.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. Consert: A con-
trastive framework for self-supervised sentence repre-
sentation transfer. In Proceedings of the 59th Annual

243

Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5065–5075.

Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi
Hong. 2017. Towards k-means-friendly spaces: si-
multaneous deep learning and clustering. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 3861–3870.

Li Yuan, Francis E. H. Tay, Guilin Li, Tao Wang, and
Jiashi Feng. 2019. Revisit knowledge distillation: a
teacher-free framework. CoRR, abs/1909.11723.

Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo
Shin. 2020. Regularizing class-wise predictions via
self-knowledge distillation. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 13876–13885.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu. 2021.
Discovering new intents with deep aligned clustering.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 14365–14373.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and
Huchuan Lu. 2018. Deep mutual learning. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 4320–4328.

244

Dataset #Intents (Known+Unknown) #Training #Validation #Test Vocabulary Length (max/mean)

CLINC 150 (113 + 37) 18,000 2,250 2,250 7,283 28/8.31
BANKING 77 (58 + 19) 9,003 1,000 3,080 5,028 79/11.91

StackOverflow 20 (15 + 5) 18,000 1,000 1,000 17,182 41/9.18
DBPedia 14 (10 + 4) 12,600 700 700 45,077 54/29.97

Table 3: Statistics on the used datasets. Intents are divided into known (predefined) and unknown (novel intents).

A Datasets

Detailed statistics of the four datasets are shown in
Table 3.

CLINC is a multi-domain intent classification
dataset (Larson et al., 2019), which contains 150
intents and 23,700 utterances across 10 domains.
To compare with previous works, we used the same
data division as in (Zhang et al., 2021).

BANKING is a single-domain intent classification
dataset (Casanueva et al., 2020), which provides a
fine-grained set of intents in the banking domain. It
contains 13,083 utterances labeled with 77 intents.
In our experiments, the split of training, validation
and test set follows Zhang et al. (2021).

StackOverflow is an intent classification dataset
collected and processed by Xu et al. (2015) from
Kaggle.com.4 Xu et al. (2015) randomly select
20,000 question titles from 20 different labels. In
our experiments, the division of training, validation
and test set follows Lin et al. (2020).

DBPedia is a DBpedia ontology dataset which con-
tains 14 non-overlapping classes (Zhang and Le-
Cun, 2015). We follow Lin et al. (2020) on data
division to compare with their results fairly.

B Baselines

We compared with 12 different baselines, listed as
follows.

K-means (KM): an iterative algorithm of cluster-
ing, which first randomly selects K objects as the
initial cluster centroids and then assigns each object
to the nearest cluster.

Agglomerative Clustering (AG): a bottom-up hi-
erarchical clustering method which calculates the
distance/similarity between classes.

SAE-KM: a method similar to K-means. The dif-
ference is that the feature extractor is a stacked
autoencoder (SAE).

4https://www.kaggle.com/c/predict-closed-questions-
onstack-overflow/download/train.zip.

PCK-means (Basu et al., 2004): a clustering frame-
work with paired constraints and a new theoreti-
cally motivated method that actively selects good
paired constraints for semi-supervised clustering.

DEC (Xie et al., 2016): a method that uses self-
training target distribution to iteratively optimize
clustering targets according to KL divergence.

DCN (Yang et al., 2017): a method that combines
a dimension reduction and K-means clustering ap-
proach to maintain the advantages of both tasks.

DAC (Chang et al., 2017): a method that converts
the clustering problem to a binary pair classification
to determine whether a pair of images belongs to
the same cluster.

BERT-KCL (Hsu et al., 2018): an approach using
predictive pairwise similarity as the knowledge to
be transferred, and formulating a learnable objec-
tive function to utilize pairwise information in a
manner similar to constrained clustering.

DeepCluster (Caron et al., 2018): a clustering
method which jointly learns the parameters of the
neural network and the cluster assignments from
extracted features.

BERT-DTC (Han et al., 2019): a modified variant
of DEC (Xie et al., 2016) which can cluster data
during learning data representations. The purpose
of this change is to allow clustering to be guided
by known classes.

CDAC+ (Lin et al., 2020): an end-to-end clustering
method that can naturally use paired constraints as
prior knowledge to guide the clustering process.

DeepAligned (Zhang et al., 2021): a semi-
supervised intent discovery method based on Deep-
Cluster, which uses an alignment strategy to tackle
the label inconsistency issue.

Limitations

For the combination of multi-task losses, we inter-
polate them with equal weights. We believe that
there are better strategies to combine these losses

245

which we leave to our future work. Additionally,
the impact of query length on the performance is
yet to be investigated.

246

Proceedings of EMNLP 2022 Industry Track, pages 247–253
December 9–11, 2020. ©2022 Association for Computational Linguistics

Tractable & Coherent Multi-Document Summarization:
Discrete Optimization of Multiple Neural Modeling Streams

via Integer Linear Programming

Litton J Kurisinkel, Nancy F. Chen
Institute for Infocomm Research, A*STAR, Singapore

litton_kurisinkel, nfychen@i2r.a-star.edu.sg

Preprocessor

(Syntactic Parser + Named Entity

Recognizer)

Input Documents

Corpus Graph

Generic Discrete Optimization
Framework

(Integer Linear Programming +
Neural Models)

 EXTRACTED

SUBGRAPH

SUMMARY

Sentence
Relevance

Syntactic Node
Relevance

Sentence
Ordering
Measure

Entity Similarity

Measure

DOMAIN SPECIFIC

MODELS

Figure 1: System Architecture(Ref. Figure 2 for a more
detailed view)

Abstract

One key challenge in multi-document summa-
rization is the generated summary is often less
coherent compared to single document summa-
rization due to the larger heterogeneity of the
input source content. In this work, we propose
a generic framework to jointly consider coher-
ence and informativeness in multi-document
summarization and offers provisions to replace
individual components based on the domain
of source text. In particular, the framework
characterizes coherence through verb transi-
tions and entity mentions and takes advantage
of syntactic parse trees and neural modeling for
intra-sentential noise pruning. The framework
cast the entire problem as an integer linear pro-
gramming optimization problem with neural
and non-neural models as linear components.
We evaluate our method in the news and legal
domains. The proposed approach consistently
performs better than competitive baselines for
both objective metrics and human evaluation.

1 Introduction

Multi-Document summarization (MDS) ap-
proaches generate the summary of a corpus of

documents consisting of a set of related topics.
Extractive summarization techniques extract a
subset of sentences which topically represent the
input corpus in a stipulated summary space (Lin
and Bilmes, 2011). On the other hand, abstractive
summarization techniques constructs a semantic
representation of the source text and constructs
the summary in its own learnt writing style (Tan
et al., 2017). Despite the attempts for abstractive
summarization techniques using neural methods,
extractive summarization techniques reserve its
space for formulating ready to use summarization
approaches. However, a set of (selected) sentences
put together without considering the ordering and
coherence of the content may not make much
sense to the summary reader (Guinaudeau and
Strube, 2013; Barzilay and Lapata, 2008). Hence,
the to make such text generation applications
more accessible to users, it is essential to improve
qualitative dimensions such as coherence. Studies
on human written summaries shows that generic
information is more relevant for summary content
while more specific information is considered to
be irrelevant (Louis and Nenkova, 2011). In MDS,
the unit of extraction is sentences. Long sentences
could often contain irrelevant information that is
not essential to the summary and thus regarded
as noisy information (Knight and Marcu, 2000).
Hence MDS systems should ideally be equipped
for pruning intra-sentential noise.

Most previous work for extractive MDS gave
less importance in improving summaries in qual-
itative dimensions such as coherence and pro-
vided an incoherent reading to the summary
reader(Takamura and Okumura, 2009). A subset of
previous work aimed at removing intra-sentential
noise by sentence compression (Berg-Kirkpatrick
et al., 2011). Such works were successful in remov-
ing intra- sentential noise, however the problem of
incoherent reading can be more severe as the parts
of the sentences pruned away can be important

247

S1

S2

S3

nubj

obj

compelled

called

admod
obj

Alberta one Statues

concerned

dep

which

the Accurate News and
Information Act

amod

nmod

nmod

provinceeach

det
nmod

advcl

called

Alberta Press Act
Reference(1938)

were

obj

conj

advcl

Ensure

question

nmod
det

The Bank Taxation
Act

Act

appos

Alberta Regulation Act

Publication

obj

nmod

announced

october
reserving

obl

nsubj

ccomp

Lieutenant Governor

Bowen

num

num

Reference Re Alberta
Legislation

news and Information

bills

were

objconj

advcl

Ensure

The Bank Taxation Act

Alberta Regulation Act
Publication

obj

nmod news and Information

bills

objcompelled

Alberta one Statues

concerned

dep

amod

Alberta Press Act
Reference(1938)

the Accurate News and
Information Actnubj

announced reserving

nsubj

ccomp

Lieutenant Governor

Bowen Assent

bills

obj

nmod

S2

S1

S3

Input Document Sentences

S1) Alberta Press Act Reference(1938), also called Reference Re Alberta Legislation, concerned 4 Alberta statutes, one of which, the Accurate News and Information Act, would have compelled each newspaper in the
province, when called upon to do so by a government official, to publish the government's rebuttal of criticism that had appeared in the newspaper.

S2) The new bills in question were the Bank Taxation Act, an Act to Amend the Credit of Alberta Regulation Act and the Act to Ensure the Publication of Accurate News and information.

S3) ” On October 6, 1937, Lieutenant Governor Bowen announced that he was reserving Royal Assent on the three bills until they could be sent to the Supreme Court for review.

Preprocessor

(Syntactic Parser + Named Entity

 Recognizer)

The new bills in question were the Bank Taxation Act, an Act to Amend the Credit of Alberta
Regulation Act and the Act to Ensure the Publication of Accurate News and information. Alberta
Press Act Reference(1938), concerned 4 Alberta statutes, one of which, the Accurate News and
Information Act, would have compelled each newspaper in the province, to publish the
government's rebuttal of criticism that had appeared in the newspaper. Lieutenant Governor
Bowen announced that he was reserving Royal Assent on the three bills.

nsubj

Newspaper

newspaper

Sstart Send

INPUT: CORPUS
GRAPH OUTPUT :

EXTRACTED
SUBGRAPH

CORPUS GRAPH

 EXTRACTED SUBGRAPH

OUTPUT SUMMARY

INPUT: SENTENCES IN
INPUT DOCUMENTS

OUPUT :
CORPUS GRAPH

Generic
Discrete
Optimization
Framework

Figure 2: Flowchart for Coherent and Noise-Free Multi-Document Summarization with Input and Intermediate and
Final Outputs: Figure depicts the summarization of an input corpus containing three sentences. Left side of the
figure depicts the corpus graph constructed while right portion depicts the extracted sub-graph. Sentence nodes and
sentence pair edges are depicted in red, syntactic tree nodes and edges are depicted in black and entity nodes, and
entity pair edges are depicted in blue.

for topical continuity and for coherence. Very few
works formulated methods to improve topical co-
herence between sentences in the summary by con-
structing corpus level discourse graph or by com-
puting entity transition probabilities (Christensen
et al., 2013; Wang et al., 2016). However such
works had no mechanism for pruning intra- senten-
tial noise. Through the current work we present a
hybrid approach using Integer Linear Programming
(ILP) and neural models which jointly does relevant
and informative content selection, sentence com-
pression for noise pruning and content ordering
for coherence. We investigate for a framework as
shown in Figure 1 which gives good cross-domain
performance with minimal replacement of compo-
nents.

2 Related Work

Text summarization can be achieved using ex-
tractive (Takamura and Okumura, 2009; Lin and
Bilmes, 2011; Wang et al., 2008) and abstractive
methods (Bing et al., 2015; Li, 2015). Extractive
summarization has the advantage of output fluency
due to direct use of human-written texts. However,
because of the higher level of granularity exhib-
ited by sentences, these approaches cannot ensure
a noise free and coherent summary. A subset of pre-
vious extractive summarization approaches utilized
parsed sentence structures to execute noise prun-
ing while extracting content for summary (Morita
et al., 2013; Berg-Kirkpatrick et al., 2011). But
these techniques can merely prune noise, and can-

248

not ensure a coherent reading for the summary
reader. The attempt to achieve coherence in muti-
document summarization was attempted by some
of the extractive summarization system. (Chris-
tensen et al., 2013; Wang et al., 2016). However
the attempts to achieve coherence in an MDS sce-
nario often cope with intra- sentencial noise for
coherence.

3 Method

Approach: We formulate an approach which en-
sures the construction of multi-document extractive
summaries encompassing relevant and coherent
content as depicted using Figures 1 and 2. The
approach involves two steps, represented by blue
rectangular boxes in the figure.

• Preprocessing: Identify named entities in the
documents and parse the sentences in the input
set of documents using a syntactic dependency
parser. Construct a ‘Corpus Graph’ which pro-
vides means for tracking coherent and relevant
content and for noise removal.

• Summary Extraction: Extract a sequence of
noise- pruned sequence of syntactic subtrees
which hold coherent, relevant and grammati-
cally accurate information. The sequence of
subtrees can be directly linearized to a coher-
ent sequence of sentences.

The following subsections explain each one of
these steps in detail.

3.1 Prepossessing and Corpus Graph
Construction

At this stage, named entities in the input corpus sen-
tences are identified and chunked 1. Subsequently,
the sentences in the input corpus is parsed into syn-
tactic dependency trees 2. The set of syntactic de-
pendency trees are transformed into a corpus graph
by adding extra nodes and edges (Figure 2). The
graphs contains Sentence nodes (Si) and Dummy
start (Sstart) and end nodes (Send), Sentence Pair
Edges (Eij), Syntactic Trees Nodes Nij , Named
Entity Node Nij , Entity Pair Edges (EEij,mn) rep-
resented by red colored circles, red colored arrows,
ellipses drawn in black lines, rectangles drawn in
blue colored lines and blue colored double lines
respectively.

1https://stanfordnlp.github.io/CoreNLP/ner.html
2https://nlp.stanford.edu/software/lex-parser.shtml

3.2 Summary Extraction
Using Corpus Graph, we tranform summary
extraction into a sub- graph extraction problem.
The extracted subgraph SG should be of the
form of the graph depicted at the right portion
of the Figure 2. The extract should represent a
sequence of sentence nodes with syntactic subtrees
containing the most salient information attached
to them. The syntactic substrees are formed by
removing noisy portions of the original syntactic
trees. The sequence should maximize coherence
quantified by the selected set of sentence pair and
entity pair edges. The total size of the text content
held by the selected sequence of subtrees should be
within the specified summary size. We formulate
the sub- graph extraction from corpus graph as an
integer linear programming(ILP) problem. Our
ILP formulation is given below.

Maximize,

F(X) = λ1
∑

SiϵSN
SSal(Si) ∗ sxi+

λ2
∑

nijϵTN
NSal(nij) ∗ nxij+

λ3
∑

eij,ikϵTE
ESal(eij,ik) ∗ eyij,ik+

λ4
∑

eij,ikϵEE
eSim(neij , neik) ∗ syij,ik+

λ5
∑

EijϵSE
Prob(Si, Sj) ∗ Eyij−

λ6
∑

EijϵSE
SSim(Si, Sj) ∗ Eyij

(1)
Subject to Constraints,

∀SiϵS, SjϵS

2 ∗ (Eyij + Eyji)− (Sxi + Sxi) <= 1(c1)

∀Si,
∑
j
Eyij = 1,

∑
j
Eyji = 1(c2)

∑
SiϵS

Eystart,i = 1,
∑
SiϵS

Eyi,end = 1(c3)

249

∑
j
Eyij −

∑
j
Eyji = 0(c4)

∑
SiϵS

Sxi +
∑

EijϵSE
Eyij = 0(c5)

∀NijϵTN, Sxi − nxij >= 0(c6)

∀SjϵS,
∑

NijϵTN
nxij − Sxi >= 0(c7)

∀eij,ikϵTE

nxij + nxij − 2eyij,ik <= 1(c8)

nxij + nxij − 2eyij,ik >= 0(c9)

if DepReln(eij,ik)ϵGramRelns

nxij − nxik = 0(c10)

∀SiϵS,

sxi − nxiroot = 0(c11)

sxi − (
∑

NijϵTN
nxij −

∑
NijϵTE

eyij,ik) = 0(c12)

∀nijϵTN,
∑

eij,ikϵTE
eyij,ik − nxij(c13)

∀eeij,mnϵEE,

2 ∗ syij,mn − (nxij + nxmn) >= 0(c14)

2 ∗ syij,mn − (nxij + nxmn) <= 1(c15)

(Eyim + Eymi)− syij,mn >= 0(c16)

∑
nijϵTN

size(nij) ∗ nxij <= SumSize(c17)

∑
SiϵS

sxi <= N(c18)

Where,

X = (.sxi., .Eyij ., .nxij ., .eyij,ik., .syij,ik.)
represents a binary indicator vector corresponding
to a candidate subgraph SG to be extracted. SN is
the set of sentence nodes, SE is the set of sentence
pair edges, TN is the set of synatctic tree nodes,
TE is the sentence tree edges and EE is the set
of entity pair edges. Indicator variables in SG
represents different components of the graph as

follows.

3.2.1 Linear Components of F:
SSal, NSal and ESal computes salience of sen-
tence, node and edge respectively. SSim computes
the similarity between sentences whileESim com-
putes similarity between entities. Prob returns the
transition probablity of main verbs of parameter
sentences, pre- computed using a large domain
specific corpus. SSim is used to penalize the re-
dundant content in candidate summaries. ESim
and Prob contributes for encouraging coherence
of the summary to be extracted.

3.2.2 ILP Constraints:
The constraints c1 to c5 ensures the consistency be-
tween sentences nodes and sentence pair edges in
SG. Also ensures that extracted subgraph contains
a sequence of sentence nodes. c6 to c9 ensures the
consistency of selection between sentence nodes,
tree nodes and tree edges. DepReln return the
dependency relation corresponding to the param-
eter tree edge and GramRelns contains the de-
pendency relations required ensure grammaticality.
The constraint c10 ensures that nodes which are
essential for a syntactic subtree to hold grammati-
cally accurate information won’t be pruned away.
nxiroot indicates the root node of the syntactic tree
corresponding to Si and the constraint c11 ensures
that subtrees extracted are rooted at the original
root node. Constraints c12 to c16 ensures that en-
tity pair edges are active only when corresponding
named entity nodes are selected and when corre-
sponding sentences are neighbours in the sequence
of sentence nodes contained in SG.

4 Experiments and Results

4.1 Data
We evaluate our method using the test sets of DUC
2004 3 and corpus MDS testset released by (Zopf
et al., 2016) for law & Politics domain. We resort to
standard ROUGE metric (Lin, 2004) for measuring
content selection and rely on human evaluation for
measuring coherence and linguistic quality. We
tune our hyper parameters using the DUC 2003
dataset4.

3http://duc.nist.gov/data.html
4http://duc.nist.gov/data.html

250

D-2004(News) Law
System R-1 R-2 R-L R-W R-1 R-2 R-L R-W
Lin and Bilmes (2011) 39.3 10.7 38.7 15.7 41.4 9.7 40.75 21.90
Berg-Kirkpatrick et al. (2011) 36.3 8.3 37.3 13.7 40.14 9.12 39.91 21.70
Bing et al. (2015) 34.0 7.3 33.0 11.6 41.3 8.09 41.3 21.12
Christensen et al. (2013) 37.3 8.2 37.0 13.9 36.25 7.18 37.0 18.16
Wang et al. (2016) 39.0 9.3 37.3 13.7 39.30 8.75 38.25 19.30
Current System + G-Flow 38.3 9.8 38.0 13.6 40.7 9.33 40.91 21.37
Current System + BertSum 37.7 9.3 37.7 12.9 - - - -

Table 1: Comparison with state of the art. In the Table R represents Rouge

Coh Inf Gram
Peer Systems(PS) PS OS AMB PS OS AMB PS OS AMB
Lin and Bilmes (2011) 21 79 0 60 30 10 63 29 8
Berg-Kirkpatrick et al. (2011) 19 72 9 32 45 23 31 37 32
Bing et al. (2015) 20 67 13 34 60 6 37 40 23
Christensen et al. (2013) 43 54 3 18 60 12 70 17 13
Wang et al. (2016) 40 52 8 30 61 9 70 27 3
Kappa 73 77 72

Table 2: Human Evaluation: In the Table, PS is Peer System, OS is Our System, Amb is Ambiguous, Coh is
Coherence, Inf is Informativeness and Gram is Grammaticality

4.2 Settings
4.2.1 Salience Functions

• SSal: To compute sentence salience we use
the same linear regression function proposed
by Christensen et al. (2013). For news domain,
we also leverage BertSum (Liu and Lapata,
2019) for computing sentence relevance.

• NSal: To compute syntactic tree node
salience we use the neural model proposed
by Kurisinkel et al. (2019) which leverage
syntactic context information to compute the
salience of a node.

• ESal:We set the weight of syntactic tree edge
e as the freeuency of Dbigram which is the
bigram constituted by the words incident on
e.

4.2.2 Similarity Functions: SSim & ESim

We relay on overlapping words for entity similarity
and the similarity is computed using Jaccards In-
dex(Hamers et al., 1989) entity word sets. For sen-
tence similarity we rely on the method suggested
by (Pawar and Mago, 2018). They compute the
semantic similarity between sentences based on
word similarity, sentence similarity and word order
similarity.

4.2.3 Verb Transition Probability: Prob
We learn the fully connected neural network to
learn verb transition probabilities. To learn the
probabilities, we collect corpus of 16000 and 4500

documents in news and legal domains respectively.
We extract main verbs from each sentence in the
document using Standford Parser5.

5 Evaluation

5.1 Evaluation of Content Coverage
We evaluated content coverage of the summary us-
ing objective metrics such as ROUGE. As show
in the Table 1, results are reported in terms of
ROUGE-1, ROUGE-2 and ROUGE -L. (Lin and
Bilmes, 2011) consistently performed well in terms
of ROUGE score. They incorporate a monotone
sub-modular scoring function which is designed for
quantitatively improving content coverage. Sub-
modular maximization functions cannot be incor-
porated in an ILP setting with provision for im-
proving coherence. Our approach yielded results
that is comparable with (Lin and Bilmes, 2011)
while out performing most of the other systems
considered for evaluation. Other systems which
incorporated coherence (Wang et al., 2016; Chris-
tensen et al., 2013) did not perform well in the
evaluation for content coverage. We observe that
these systems compromised on relevant content
without any means for removing intra- sentencial
noise. However, our approach for coherent sum-
marization incorporates means for intra- sentential
noise pruning performed well in terms of ROUGE
evaluation.

5https://nlp.stanford.edu/software/lex-parser.shtml

251

System Summary

The new bills in question were the Bank Taxation Act, and the Act
to Ensure the Publication of Accurate News and information. Alberta Press Act Reference-LRB- 1938-RRB-,
concerned 4 Alberta statutes, one of which,
the Accurate News and Information Act, would have compelled
each newspaper in the province, to publish the government’s rebuttal of
criticism that had appeared in the newspaper. Coverage by the Edmonton Journal earned the newspaper a special Pulitzer
Prize“ for its editorial leadership in defense of the freedom of the press.

Original Sentences

The new bills in question were the Bank Taxation Act, an Act to Amend the Credit of Alberta Regulation Act and the Act
to Ensure the Publication of Accurate News and information. Alberta Press Act Reference-LRB- 1938-RRB-,
also called Reference Re Alberta Legislation, concerned 4 Alberta statutes, one of which,
the Accurate News and Information Act, would have compelled
each newspaper in the province, when called upon to do so by a government official, to publish the government’s rebuttal of
criticism that had appeared in the newspaper. Coverage by the Edmonton Journal was particularly strong and eventually
earned the newspaper a special Pulitzer Prize“ for its editorial
leadership in defense of the freedom of the press.

Reference Summary

The Accurate News and Information Act was a statute passed by the Legislative Assembly of Alberta, Canada,
in 1937, at the instigation of William Aberhart’s Social Credit government. It would have required newspapers to print
"clarifications" of stories that a committee of Social Credit legislators deemed inaccurate,
and to reveal their sources on demand. The act was a result of the stormy relationship between Aberhart
and the press, which dated to before the 1935 election, in which the Social Credit League
was elected to government.

Table 3: Tree Combination vs Phrase Combination

5.2 Human Evaluation
We conducted human evaluation for evaluating
summaries in other qualitative dimensions such
as coherence, grammaticality and informativeness.
Evaluators are four post graduate students in lin-
guistics. During each evaluation process one
among the peer systems compete with our sys-
tem. 20 summaries generated by each one of the
systems competing systems are chosen for eval-
uation. Summaries are shown to the evaluators
in random order to avoid any kind of bias. For
evaluating coherence and grammaticality, for each
summary pair competing summaries, evaluators
are asked to choose the best one in terms of the
aspect under evaluation. For informativeness, they
are asked to read the reference summary and asked
to choose the most informative one. Results are
shown in the Table 2. Our approach performed con-
sistently better than other systems in the evaluation
for coherence. We used verb transition probabil-
ity in combination with entity similarity for mod-
elling coherence. We observe this as the reason for
our better performance in comparison with (Chris-
tensen et al., 2013) and (Wang et al., 2016). Our
method performed comparably with other systems
in the evaluation for informativeness. Obviously

the methods which don’t modify the original sen-
tences performed better than our method in the
evaluation for grammaticality. However we per-
formed better than (Berg-Kirkpatrick et al., 2011).
This shows that explicit use of neural model for
computing node relevance using syntactic context
and grammatical rules based on syntactic relations
helped in maintaining grammaticality.

6 Discussions

A system summary generated for an input corpus
in Law domain is shown in the Table in the next
page. The table also contains the sequence of orig-
inal sentences in the corpus with intra- sentencial
noisy information and the corresponding reference
summary. Clearly our method were successful in
removing intra- sentencial noise and organizing
summary for a coherent ordering. The neighboring
sentences contained similar entities and the order of
main verbs ((were, compelled, was)) is the most
likely one as per the transition probabilities com-
puted using neural model for verb transition. The
summary is also infomative as per the human writ-
ten abstractive reference summary

252

Acknowledgements

This research was partially supported by the Na-
tional Re- search Foundation, Prime Minister’s Of-
fice, Singapore under its Campus for Research Ex-
cellence and Technological Enterprise (CREATE)
programme. We would also like to thank anony-
mous reviewers for several very insightful feedback
on how to improve the paper.

References
Regina Barzilay and Mirella Lapata. 2008. Modeling

local coherence: An entity-based approach. Compu-
tational Linguistics, 34(1):1–34.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 481–490. Asso-
ciation for Computational Linguistics.

Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo,
and Rebecca J Passonneau. 2015. Abstractive multi-
document summarization via phrase selection and
merging. arXiv preprint arXiv:1506.01597.

Janara Christensen, Stephen Soderland, Oren Etzioni,
et al. 2013. Towards coherent multi-document sum-
marization. In Proceedings of the 2013 conference
of the North American chapter of the association
for computational linguistics: Human language tech-
nologies, pages 1163–1173.

Camille Guinaudeau and Michael Strube. 2013. Graph-
based local coherence modeling. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 93–103.

Lieve Hamers et al. 1989. Similarity measures in scien-
tometric research: The jaccard index versus salton’s
cosine formula. Information Processing and Man-
agement, 25(3):315–18.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization-step one: Sentence compres-
sion. AAAI/IAAI, 2000:703–710.

Litton J Kurisinkel, Yue Zhang, and Vasudeva Varma.
2019. Domain adaptive neural sentence compression
by tree cutting. In European Conference on Informa-
tion Retrieval, pages 475–488. Springer.

Wei Li. 2015. Abstractive multi-document summariza-
tion with semantic information extraction. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1908–
1913.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Hui Lin and Jeff Bilmes. 2011. A class of submodular
functions for document summarization. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 510–520. Association
for Computational Linguistics.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

Annie Louis and Ani Nenkova. 2011. Text specificity
and impact on quality of news summaries. In Pro-
ceedings of the Workshop on Monolingual Text-To-
Text Generation, pages 34–42.

Hajime Morita, Ryohei Sasano, Hiroya Takamura, and
Manabu Okumura. 2013. Subtree extractive summa-
rization via submodular maximization. In ACL (1),
pages 1023–1032. Citeseer.

Atish Pawar and Vijay Mago. 2018. Calculating the
similarity between words and sentences using a lex-
ical database and corpus statistics. arXiv preprint
arXiv:1802.05667.

Hiroya Takamura and Manabu Okumura. 2009. Text
summarization model based on maximum coverage
problem and its variant. In Proceedings of the 12th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 781–789.
Association for Computational Linguistics.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.
Abstractive document summarization with a graph-
based attentional neural model. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1171–1181.

Dingding Wang, Tao Li, Shenghuo Zhu, and Chris Ding.
2008. Multi-document summarization via sentence-
level semantic analysis and symmetric matrix fac-
torization. In Proceedings of the 31st annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 307–314.
ACM.

Xun Wang, Masaaki Nishino, Tsutomu Hirao, Katsuhito
Sudoh, and Masaaki Nagata. 2016. Exploring text
links for coherent multi-document summarization.
pages 213–223.

Markus Zopf, Maxime Peyrard, and Judith Eckle-
Kohler. 2016. The next step for multi-document
summarization: A heterogeneous multi-genre corpus
built with a novel construction approach. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 1535–1545.

253

Proceedings of EMNLP 2022 Industry Track, pages 254–263
December 9–11, 2020. ©2022 Association for Computational Linguistics

Grafting Pre-trained Models for Multimodal Headline Generation

Lingfeng Qiao†, Chen Wu†, Ye Liu†, Haoyuan Peng†, Di Yin†, Bo Ren§

†Tencent Youtu Lab, Shanghai, China
§Tencent Youtu Lab, Hefei, China

{leafqiao,rafelliu,haoyuanpeng,endymecyyin,timren}@tencent.com, overwindows@icloud.com

Abstract
Multimodal headline utilizes both video frames
and transcripts to generate the natural language
title of the videos. Due to a lack of large-scale,
manually annotated data, the task of annotating
grounded headlines for video is labor intensive
and impractical. Previous researches on pre-
trained language models and video-language
models have achieved significant progress in
related downstream tasks. However, none of
them can be directly applied to multimodal
headline architecture where we need both mul-
timodal encoder and sentence decoder. A major
challenge in simply gluing language model and
video-language model is the modality balance,
which is aimed at combining visual-language
complementary abilities. In this paper, we
propose a novel approach to graft the video
encoder from the pre-trained video-language
model on the generative pre-trained language
model. We also present a consensus fusion
mechanism for the integration of different com-
ponents, via inter/intra modality relation. Em-
pirically, experiments show that the grafted
model achieves strong results on a brand-new
dataset collected from real-world applications.

1 Introduction

In the age of information explosion, generating
headlines of videos has been steadily gaining
prominence on the short video platform. As the
headlines can summarize the videos for people
quickly acquiring their essential information. Good
headlines are also beneficial for various scenarios,
such as video retrieval, recommendation, and un-
derstanding (Zhu et al., 2022; Liu et al., 2022). Spe-
cially, video headline generation can be regarded
as a textual generation task with multimodal in-
puts (Li et al., 2021), which is called multimodal
generation as shown in Figure 1. Given a video
with related transcript, algorithm aims to generate
a short, concise and readable textual attraction title.

However, to build an effective model, collect-
ing large-scale training data is the main challenge.

Figure 1: An example of multimodal generation.

Especially, in the multimodal headline generation
task, the form of triplet data (video, source tran-
script, target summary) further increases the diffi-
culty of collecting data, which limits the applica-
tion of video headline generation.

To alleviate the issue in multimodal headline gen-
eration, the natural idea is to leverage pre-trained
model (PTM). With large-scale corpus, such as
GPT (Radford et al., 2018), BART (Lewis et al.,
2019), PALM (Bi et al., 2020), etc., have shown
great ability to generate readable and informative
text. Since the multimodal headline generation
combine both video and textual information, we
propose that the model can be grafted by PTMs
of language generation and video-text matching.
The former provides the ability of headline gen-
eration, and the latter bridges the semantic gap
between the multiple modalities (Radford et al.,
2021). In addition, these two tasks have no concern
of scarce data. For language generation, the exist-
ing pre-training model can be directly adopted. For
video-text matching, the model can be trained with
sufficient data from the Internet without manual
annotations. By this means, multimodal headline
generation model can be constructed by fine-tuning
the grafted model with limited data collection.

In order to take advantage of the existing PTMs
and improve reusability, we propose a grafting
mechanism for obtaining the multimodal summa-
rization pre-training model (GraMMo). First, lan-
guage generation and video-text matching tasks are

254

introduced to pre-train the encoders and decoder, re-
spectively. Then we construct a unified architecture
with a video encoder, a text encoder and a text de-
coder which grafted from different PTMs to initial-
ize the multimodal headline generation model. In
addition, a joint-modality layer acted as a modality-
balance gate is designed to fuse the video and text
features. Unlike previous works which focus on
retaining modality-shared feature (Libovickỳ et al.,
2018; Yu et al., 2021), this layer uses a two-way
attention strategy to capture the commonality and
specialty of the modalities. In detail, the video
modality can highlight the most relevant and im-
portant text tokens by video-text cross attention.
The resulted feature is called video-enhanced text
feature, which reflect the commonality. On the
other hand, since video-enhanced text feature ne-
glects the video specialty which is less related with
text modality, we recombine the video embeddings
according to video-text attention and exploit the
video-specific feature for complementing the fu-
sion representation. Furthermore, dynamic frame
sampling (DFS) and masked word prediction are
designed in the encoder parts to reinforce the mul-
timodal representation. We summarize the main
contributions as follows:

• We propose a grafting video-text pre-training
framework for multimodal headline genera-
tion. By grafting PTMs of language genera-
tion and video-text matching, GraMMo can
be efficiently trained without big data collec-
tion. It is beneficial for fast deployment of
real-world applications.

• A joint-modality layer with multimodal fusion
module is designed to pay balanced attentions
to each modality. It uses a two-way atten-
tion strategy to capture the commonality and
specialty of multiple modalities, which will
reinforce the fusion representation for better
headline generation.

• Extensive experiments on a proposed Chinese
multimodal headline generation dataset, WB-
News, demonstrate that the grafted model can
effectively accelerate the downstream fine-
tuning procedure and improve generation re-
sults. The proposed method has been de-
ployed in an industrial media platform for
Chinese video headline generation.

2 Related Work

2.1 Multimodal Generation
Multimodal generation task aims to generate short,
concise and readable textual title that can cap-
ture the most core information of the input media.
The task is closely relevant to text summarization
(Zhang et al., 2020; Jiang et al., 2022) while it is
much tougher because redundancy and complemen-
tary between multiple modalities should be studied
(Jangra et al., 2021). Many literatures have been
based on pre-extracted unimodal sequential repre-
sentation and cross attention mechanism to obtain
the fused feature (Li et al., 2020d; Khullar and
Arora, 2020; Li et al., 2020b; Fu et al., 2020). Be-
sides, some researchers took efforts to sufficiently
fusing the multimedia inputs by hierarchical fu-
sion (Liu et al., 2020; Yu et al., 2021; Zhang et al.,
2021a). The objective of modality consistency is
another tool to guide the learning of multimodal
fusion (Zhu et al., 2020; Zhang et al., 2021b).

However, few existing methods studied PTM for
multimodal generation (Seo et al., 2022). In this
paper, we propose a grafting video-text generation
model and a novel joint-modality layer which is
designed to capture the commonality and specialty
of multiple modalities.

2.2 Video-Text Pre-training
Video-Text pre-training models adopt the "pre-
training and then fine-tuning" paradigm, which
makes the downstream tasks able to utilize the
abundant knowledge included in pre-training data.

One class of work is task-specific pre-training,
and contrastive learning is used for zero-shot trans-
fer and video-text retrieval tasks, such as CLIP
(Radford et al., 2021) and other related researches
(Miech et al., 2019; Patrick et al., 2020; Huang
et al., 2021; Xu et al., 2021b). Furthermore,
CBT (Sun et al., 2019a), HERO (Li et al., 2020c),
VideoAsMT (Korbar et al., 2020) and UniVL (Luo
et al., 2020) adopt multi-task learning (MTL) for
pre-training on retrieval tasks. The other class of
work concentrates on how to interact the multi-
modal inputs, including VideoBERT (Sun et al.,
2019b), Unicoder-VL (Li et al., 2020a), VL-BERT
(Su et al., 2019), UNITER (Chen et al., 2020),
VLP (Zhou et al., 2018), ActBERT (Zhu and Yang,
2020), VLM (Xu et al., 2021a) and BEiT (Wang
et al., 2022).

Currently, few video-text pre-training models
focus on multimodal headline generation due to the

255

Figure 2: GraMMo framework for multimodal headline generation.

scarce data. GraMMo gives an effective grafting
architecture for this task with ready-made PTMs
of language generation and video-text matching,
which can save a lot of computational costs.

3 Approach

3.1 Grafting Architecture

Given an input video Xv = {v1, v2,⋯, vl} and re-
lated source transcript Xt = {t1, t2,⋯, tm}, the
output is the target textual title Y = {y1, y2,⋯, yn},
where l,m,n are the numbers of the corresponding
tokens. The goal is to generate a predicted title
Y ′ = {y′1, y′2,⋯, y′n} based on Xv and Xt, which
can successfully grasp the main points of the video
and transcript.

The proposed architecture is to provide a PTM
for multimodal headline generation without large-
scale triplet samples {Xv,Xt, Y }. The concept of
grafting architecture GraMMo is illustrated in Fig-
ure 2. As a unified structure for multimodal genera-
tion, GraMMo consists of a video encoder Ev(⋅), a
text encoder Et(⋅), a joint-modality layer F (⋅) and
a text decoder D(⋅). The encoders are designed for
each modality individually and the architecture can
be easily extended to various multimodal tasks with
different kinds of inputs. Then the embeddings of
modalities are fused by joint-modality layer to ob-
tain the multimodal features. The joint-modality
layer can provide video-enhanced text feature and
video-specific feature, which involve the common-

ality and speciality of video and text modalities.
Finally, text decoder is used to generate headline
based on the fused multimodal feature.

To pre-train the video encoder, text encoder and
text decoder, we draw support from two auxil-
iary tasks, i.e. language generation and video-text
matching. As Figure 2 shows, the video encoder
of video-text matching, the text encoder, and the
text decoder of language generation are grafted to
obtain the multimodal headline generation model.

3.2 Pre-train Generative Language Model

The language generation model with encoder-
decoder structure can be adopted to build text en-
coder and decoder. In the work, PALM (Bi et al.,
2020) which is Transformer-based (Vaswani et al.,
2017) architecture is used as the NLG model. The
text encoder and text decoder are pre-trained as
classic abstractive text summarization task with
large-scale unlabeled corpus.

In the pre-training stage, text encoder Et(⋅) en-
codes source transcripts to obtain text embeddings
et = Et(Xt), and then the decoder D(⋅) learns to
generate hypothesis summaries. The generation
loss and masked word prediction loss are used to
guide the learning of text encoder and text decoder.

3.3 Pre-train Video-Text Understanding

We also use Transformer architecture for video
encoder. The video features, extracted by I3D net-

256

work (Carreira and Zisserman, 2017), are first pro-
jected to video tokens before being fed into the
video Transformer. For a video Xv, it has s frames,
which is denoted as Vf = {f1, f2,⋯, fs}. Due to
the concern of model efficiency, the frames should
be sampled and converted to the video tokens with
l length. Most conventional methods used pre-
extracted features based on uniform sampling from
the raw video, e.g. extract one frame every one sec-
ond duration of the video. However, this sampling
method may limit the expression of video. In the
framework, to enhance video embeddings, dynamic
frame sampling (DFS) is designed. It is a projection
layer DFS(⋅) ∶ {1,2,⋯, l} → {1,2,⋯, s}, which
represents the choice from variable frames.

As a result, the video tokens can be obtained by
vi = fDFS(i), where i = 1,2,⋯, l. Then the I3D
features of these tokens are extracted and video em-
beddings ev = Ev(Xv) are acquired by a stacked
Transformer encoder.

To pre-train the video encoder Ev(⋅), video-text
matching task is adopted to bridge the semantic gap
between video and text modalities. Specifically,
we collect large-scale video-text pairs from pub-
lic video platform on the Internet without manual
annotations. Videos and their corresponding de-
scriptions are the natural data for video-text match-
ing. The proposed video encoder and another
Transformer-based text encoder are used to encode
videos and descriptions respectively. Contrastive
loss InfoNCE (Oord et al., 2018) is employed to
calculate the correspondence between embeddings
and guide the pre-training of encoders.

3.4 Joint-Modality Layer

Joint-modality layer will be used in fine-tuning
stage after model grafting. Given text embed-
dings et ∈ Rm×d and video embeddings ev ∈ Rl×d,
where d is the dimension of the embeddings, joint-
modality layer is proposed to fuse them for head-
line generation. First, video embeddings should be
used to highlight the significant elements in text
embeddings and make algorithm pay attention to
them from redundant source transcripts. Second,
video embeddings can supplement key information
that is not included in text embeddings to improve
the informativeness of headline. To realize these
motivations, as Figure 2 shown, the joint-modality
layer uses a two-way attention strategy to capture
the commonality and speciality of multiple modali-
ties. Denote the query Q ∈ Rm×d is projected from

text embeddings et, and the key K ∈ Rl×d and
value V ∈ Rl×d are projected from video embed-
dings ev. With dot-product between Q and K, the
video-text attention matrixMvt ∈ Rm×l is obtained,
which represents the relations between text and
video tokens. On the one hand, the text features
are enhanced by video information based on Mvt.
Multi-head attention is applied and V is added to
the related text tokens to obtain the video-enhanced
text feature g = et +MvtV .

On the other hand, video embeddings ev can be
divided into two aspects, i.e. text-relevant feature
and video-specific feature. Text-relevant feature
is the part of ev with large video-text attention
score and video-specific feature is the opposite
part. The text-relevant feature has already been
considered in MvtV . On the contrary, the video-
specific feature is neglected and should be supple-
mented. We calculate video-text relevant distribu-
tion p ∈ R1×l by summing Mvt along the query
dimension. The lower value in p means that such
a video embedding is less relevant to text, which
should be chosen for video-specific feature. As a
result, the video-specific feature h is obtained by
h = ev ⊙ Norm(1 − p), where Norm(⋅) means
the normalized operator and ⊙ is the element-wise
multiplication.

Finally, the fusion embeddings F (et, ev) is ob-
tained by concatenating video-enhanced text fea-
ture g and video-specific feature h.

3.5 Fine-tune Multimodal Generation Model

As mentioned above, text encoder Et(⋅) and text
decoder D(⋅) are pre-trained by language genera-
tion task. Video encoder Ev(⋅) is pre-trained by
video-text matching task. By grafting these mod-
ules with joint-modality layer, a multi-modality
generation model is established, which can be used
for multimodal headline generation task.

For realistic applications, the specific multi-
modal headline generation triplet data should be
collected to fine-tune the model. With GraMMo,
we only need to prepare a small amount of data,
since most of parameters in model are initialized
by grafting, the model can converge rapidly.

4 Experiments

4.1 Datasets and Implementation

We leverage billions of Chinese corpus and mil-
lions of videos for pre-training language model and
video-text matching models, respectively. For mul-

257

Methods R-1 R-2 R-L B-1 B-2 B-3 B-4 M
Text —> Text
BART (Lewis et al., 2019) 33.14 19.51 29.41 32.54 25.34 19.60 15.39 29.48
PALM (Bi et al., 2020) 36.73 23.10 33.86 34.01 27.47 21.76 17.37 32.10
Video —> Text
VLM (Xu et al., 2021a) 5.10 0.61 4.44 4.31 1.54 0.64 0.29 2.89
GraMMo-Video 7.85 1.73 6.90 7.21 3.31 1.76 1.01 5.06
Video+Text —> Text
VG-GPLM (Yu et al., 2021) 35.35 21.46 32.10 33.81 26.70 20.78 16.38 31.01
MV-GPT (Seo et al., 2022) 37.74 24.04 34.42 36.13 29.27 23.34 18.81 33.73
MMPT (Xu et al., 2021b) 38.21 24.25 35.05 31.65 25.77 20.58 16.65 31.76
GraMMo 38.87 24.85 35.38 37.80 30.65 24.43 19.65 35.30

Table 1: Headline generation results on WB-News dataset.

timodal headline generation fine-tuning and testing,
a new dataset WB-News is built. The details of
datasets and the methodology used to obtain the
corpus can be found in supplementary materials A.
For evaluation on WB-News dataset, three metrics
are employed: ROUGE (R-1,R-2,R-L) (ROUGE,
2004), BLEU (B-1,B-2,B-3,B-4) (Papineni et al.,
2002), METEOR (M) (Banerjee and Lavie, 2005).

4.2 Headline Generation Results
On WB-News dataset, according to different types
of input, we compare generation methods in three
kinds of experimental setups, i.e. Text —> Text,
Video —> Text and Video+Text —> Text. BART
and PALM are used as baselines for classic text-
only generation. Without text modality, GraMMo-
Video is designed by pruning text encoder in
GraMMo, which is compared with the video cap-
tion method VLM. For multimodal generation task,
latest methods VG-GPLM, MV-GPT and MMPT
are compared with the proposed GraMMo. As
Table 1 shows, GraMMo achieves the best results
among related multimodal generation methods and
the SOTA text summarization method, PALM, with
large margin. It illustrates that the video modality
can help text to improve the headline results and
GraMMo can better leverage the multimodal infor-
mation against the related methods.

In the Video —> Text scenario, because the fac-
tual information, such as the name, cannot be ex-
tracted using the video modality, the headline met-
rics are quite low. Nevertheless, GraMMo-Video
achieves a better performance and can generate rea-
sonable summaries if neglecting the factual consis-
tency. It also shows that our method has the ability
to extract the language semantics from video.

Furthermore, GraMMo has been deployed on an
industrial platform for video headline generation,
which is shown in the discussion section.

Pre-trained Models
Text Video R-L B-4 M

26.98 12.18 24.65✓ 27.63 12.30 24.69✓ 34.90 18.63 34.06✓ ✓ 35.38 19.65 35.30

Table 2: The effectiveness of using grafted model.

Figure 3: Different initialization methods.

4.3 Grafting for Headline Generation

In Table 2, the generation results are compared by
eliminating grafted components. We found that
the performance can be significantly improved by
grafting. Figure 3 also shows that the learning
curve of fine-tuning with grafted model decreases
and convergences more rapidly against the case of
train-from-scratch.

4.4 Ablation Study

To verify the contributions of each component of
GraMMo, we design a series of ablation experi-
ments. The results are shown in Table 3. First, all
summary metrics decrease when DFS and video
Transformer are removed from the video encoder.
The probable reasons are that DFS can improve
the generalization of video embedding and video
Transformer can model the sequential character
of video tokens. Second, different fusion strate-

258

Figure 4: Case study of proposed GraMMo, PALM and GraMMo-Video.

Methods R-L B-4 M
GraMMo 35.38 19.65 35.30
Encoder
w/o DFS -0.28 -0.13 -0.53
w/o Video Transformer -0.98 -0.26 -1.03
Fusion
Naive Concat -0.89 -0.96 -1.40
Cross Attention -0.85 -0.66 -1.16

Table 3: Ablation study on model components.

gies are studied by substituting joint-modality layer.
Naive concatenate and cross attention are adopted
and decrease the summarization performance to
great extent. The phenomenon illustrates that the
proposed joint-modality layer is more effective in
utilizing the multimodal information.

5 Discussion

5.1 Video-Text Matching Helps

One key issue of multimodal headline generation
is how to map the video and text into the joint em-
bedding space. Therefore, the alignment of these
two modalities is important, which can be reflected
by video-text retrieval performance.

We selected 1,400 samples of video and its title
pair from WB-News to conduct video-text retrieval
experiments. The video embeddings ev and text
embeddings et extracted from video encoder Ev(⋅)
and text encoder Et(⋅) are computed by dot prod-
uct to measure the relevant scores. Given a query,
the most related items are recalled by sorting the
scores. Recall metrics (R@1, R@5, R@10) are
used to measure the results. As shown in Table 4,
the R@1 achieves about 40% and R@5 about 60%,
which means the video and text are well aligned in
one common space. Moreover, when using grafted
model, the retrieval results are better than the re-
sults of train-from-scratch, reflecting the superior-
ity of the grafted model.

Methods R@1 R@5 R@10
Train from Scratch
text-to-video 34.40 53.19 60.28
video-to-text 35.39 52.70 60.21
Grafted Model
text-to-video 39.65 60.43 67.73
video-to-text 40.35 60.35 67.30

Table 4: Video-Text Retrieval Results

5.2 Complementary Relation
Several examples are provided to intuitively under-
stand the effectiveness of modality balance. As
shown in Figure 4, the generated hypotheses of
GraMMo, PALM and GraMMo-Video are pre-
sented. The key information is emphasised by
green words, while the red words mean the wrong
predictions. Compared with PALM, GraMMo can
extract more key information and produce more
logical expressions. This effect demonstrates the
value of video modality for generating more re-
markable headline.

However, the generated hypotheses of GraMMo-
Video are totally inconsistent with the ground-
truths because the factual information cannot be ex-
tracted solely by video modality. In fact, GraMMo-
Video can generate the words containing similar
topic semantics, which means our method can
establish the connection between video and text
modalities.

5.3 Human Evaluation
We perform human evaluation from the perspec-
tives of readability and informativeness. For all
test samples, the source video, reference headlines,
and generated headline are shown to a group of
people for evaluation. They need to judge the two
aspects of readability and informativeness by giv-
ing an integer score in the range of 1-5, with 5
being perfect. Each sample is assessed by 5 people,
and the average scores are used as the final score.

259

Methods Read. Info.
Ground Truth 4.35 4.05
PALM 3.65 3.08
MMPT 3.70 3.3
GraMMo 3.71 3.54

Table 5: Human evaluation results on readability (Read.)
and informativeness (Info.) of generated headlines.

As shown in Table 5, we find that the GraMMo
performs better readability and informativeness
scores compared with PALM and MMPT, demon-
strating its effectiveness in generating informative
headlines. For readability, all the three headline
generating methods can generate quite readable
language. This is because a large training corpus
can make text decoder generate coherent sentences,
except for the mistakes of repetition phrases and
grammatical errors. For informativeness, the major
problems are the fact inconsistency and incomplete
key information. They will be investigated in future
work to improve the quality of generated headlines.

5.4 Media AI Platform

Our Chinese video headline generation is deployed
in an AI platform for industrial media, which is a
well-designed video understanding platform with
complete video processing services. When generat-
ing headline, GraMMo takes the source video and
its pre-extracted ASR text as the inputs and then
predicts the textual summary as the headline of the
video. We give some headline generation examples
of real Chinese news videos, as shown in Figure 5.

6 Conclusion

In this paper, we propose GraMMo, grafting a pre-
trained sequence-to-sequence language model and
a video-language understanding model for mul-
timodal headline generation. By fine-tuning the
representation components (video-encoder&text-
encoder) and generation component (text-decoder)
of the model, we alleviate the problem of lacking
large-scale dataset in multimodal headline gener-
ation. To capture the commonality and specialty
of the video and text features, we propose an ex-
tra fusion layer to balance modalities and maxi-
mally maintain the original architectures. With
this approach, we can fully take advantage of the
pre-trained models, including well-trained capac-
ity for multimodal understanding and generation.
Experiments results show that our method can sig-
nificantly improve the performance and outperform

Figure 5: The examples of video headline generation
results on news videos in the media AI platform. Red
text boxes illustrate the generated titles based on the
video and ASR text information.

similar works. Furthermore, the proposed method
has also been applied effectively and efficiently in
our online system. We will release the WB-News
dataset, GraMMo code, and the grafted models.

7 Ethics Considerations

The authors declare that the use of data in our re-
search is permitted. First, the Chinese corpus used
in the text summarization auxiliary task is an open-
source dataset. Second, for video-text data used in
our multimodal headline generation, the data are
collected and used in accordance with the privacy
policies of short video platforms.

Ethical concerns include the usage of the pro-
posed model for a purpose directly different from
the previously mentioned headline generation task,
such as hateful memes generation by feeding irrel-
evant video and text inputs, as well as integration
in public opinion manipulation tools.

260

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Bin Bi, Chenliang Li, Chen Wu, Ming Yan, Wei Wang,
Songfang Huang, Fei Huang, and Luo Si. 2020.
Palm: Pre-training an autoencoding&autoregressive
language model for context-conditioned generation.
arXiv preprint arXiv:2004.07159.

Joao Carreira and Andrew Zisserman. 2017. Quo vadis,
action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
6299–6308.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. Uniter: Universal image-text
representation learning. In European conference on
computer vision, pages 104–120. Springer.

Xiyan Fu, Jun Wang, and Zhenglu Yang. 2020. Multi-
modal summarization for video-containing docu-
ments. arXiv preprint arXiv:2009.08018.

Po-Yao Huang, Mandela Patrick, Junjie Hu, Graham
Neubig, Florian Metze, and Alexander Hauptmann.
2021. Multilingual multimodal pre-training for zero-
shot cross-lingual transfer of vision-language models.
arXiv preprint arXiv:2103.08849.

Anubhav Jangra, Adam Jatowt, Sriparna Saha, and
Mohammad Hasanuzzaman. 2021. A survey
on multi-modal summarization. arXiv preprint
arXiv:2109.05199.

Zhuoxuan Jiang, Lingfeng Qiao, Di Yin, Shanshan Feng,
and Bo Ren. 2022. Leveraging key information mod-
eling to improve less-data constrained news headline
generation via duality fine-tuning. arXiv preprint
arXiv:2210.04473.

Aman Khullar and Udit Arora. 2020. Mast: Multimodal
abstractive summarization with trimodal hierarchical
attention. arXiv preprint arXiv:2010.08021.

Bruno Korbar, Fabio Petroni, Rohit Girdhar, and
Lorenzo Torresani. 2020. Video understanding as ma-
chine translation. arXiv preprint arXiv:2006.07203.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and
Daxin Jiang. 2020a. Unicoder-vl: A universal en-
coder for vision and language by cross-modal pre-
training. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 34, pages 11336–
11344.

Haoran Li, Junnan Zhu, Jiajun Zhang, Xiaodong He,
and Chengqing Zong. 2020b. Multimodal sentence
summarization via multimodal selective encoding. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 5655–5667.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong
Wen. 2021. Pretrained language models for text gen-
eration: A survey. arXiv preprint arXiv:2105.10311.

Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng
Yu, and Jingjing Liu. 2020c. Hero: Hierarchical
encoder for video+ language omni-representation pre-
training. arXiv preprint arXiv:2005.00200.

Mingzhe Li, Xiuying Chen, Shen Gao, Zhang-
ming Chan, Dongyan Zhao, and Rui Yan. 2020d.
Vmsmo: Learning to generate multimodal sum-
mary for video-based news articles. arXiv preprint
arXiv:2010.05406.

Jindrich Libovickỳ, Shruti Palaskar, Spandana Gella,
and Florian Metze. 2018. Multimodal abstractive
summarization of open-domain videos. In Proceed-
ings of the Workshop on Visually Grounded Interac-
tion and Language (ViGIL). NIPS.

Nayu Liu, Xian Sun, Hongfeng Yu, Wenkai Zhang, and
Guangluan Xu. 2020. Multistage fusion with forget
gate for multimodal summarization in open-domain
videos. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1834–1845.

Ye Liu, Lingfeng Qiao, Di Yin, Zhuoxuan Jiang,
Xinghua Jiang, Deqiang Jiang, and Bo Ren. 2022.
Os-msl: One stage multimodal sequential link frame-
work for scene segmentation and classification. In
Proceedings of the 30th ACM International Confer-
ence on Multimedia, pages 6269–6277.

Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan
Duan, Tianrui Li, Jason Li, Taroon Bharti, and Ming
Zhou. 2020. Univl: A unified video and language
pre-training model for multimodal understanding and
generation. arXiv preprint arXiv:2002.06353.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
2019. Howto100m: Learning a text-video embed-
ding by watching hundred million narrated video
clips. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2630–2640.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

261

Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian
Metze, Alexander Hauptmann, Joao Henriques, and
Andrea Vedaldi. 2020. Support-set bottlenecks for
video-text representation learning. arXiv preprint
arXiv:2010.02824.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Lin CY ROUGE. 2004. A package for automatic evalu-
ation of summaries. In Proceedings of Workshop on
Text Summarization of ACL, Spain.

Paul Hongsuck Seo, Arsha Nagrani, Anurag Arnab, and
Cordelia Schmid. 2022. End-to-end generative pre-
training for multimodal video captioning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 17959–17968.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2019. Vl-bert: Pre-training
of generic visual-linguistic representations. arXiv
preprint arXiv:1908.08530.

Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia
Schmid. 2019a. Learning video representations using
contrastive bidirectional transformer. arXiv preprint
arXiv:1906.05743.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Mur-
phy, and Cordelia Schmid. 2019b. Videobert: A joint
model for video and language representation learn-
ing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7464–7473.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Wenhui Wang, Hangbo Bao, Li Dong, Johan
Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit
Som, et al. 2022. Image as a foreign language: Beit
pretraining for all vision and vision-language tasks.
arXiv preprint arXiv:2208.10442.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Prahal Arora,
Masoumeh Aminzadeh, Christoph Feichtenhofer,
Florian Metze, and Luke Zettlemoyer. 2021a.
Vlm: Task-agnostic video-language model pre-
training for video understanding. arXiv preprint
arXiv:2105.09996.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko,
Armen Aghajanyan, Florian Metze, Luke Zettle-
moyer, and Christoph Feichtenhofer. 2021b. Video-
clip: Contrastive pre-training for zero-shot video-text
understanding. arXiv preprint arXiv:2109.14084.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. 2020. Clue: A chinese language
understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986.

Tiezheng Yu, Wenliang Dai, Zihan Liu, and Pascale
Fung. 2021. Vision guided generative pre-trained
language models for multimodal abstractive summa-
rization. arXiv preprint arXiv:2109.02401.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Litian Zhang, Xiaoming Zhang, Junshu Pan, and Feiran
Huang. 2021a. Hierarchical cross-modality semantic
correlation learning model for multimodal summa-
rization. arXiv preprint arXiv:2112.12072.

Zhengkun Zhang, Xiaojun Meng, Yasheng Wang, Xin
Jiang, Qun Liu, and Zhenglu Yang. 2021b. Unims:
A unified framework for multimodal summariza-
tion with knowledge distillation. arXiv preprint
arXiv:2109.05812.

Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard
Socher, and Caiming Xiong. 2018. End-to-end dense
video captioning with masked transformer. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8739–8748.

Junnan Zhu, Yu Zhou, Jiajun Zhang, Haoran Li,
Chengqing Zong, and Changliang Li. 2020. Mul-
timodal summarization with guidance of multimodal
reference. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 9749–9756.

Linchao Zhu and Yi Yang. 2020. Actbert: Learning
global-local video-text representations. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8746–8755.

Peng Zhu, Dawei Cheng, Siqiang Luo, Ruyao Xu, Yuqi
Liang, and Yifeng Luo. 2022. Leveraging enterprise
knowledge graph to infer web events’ influences via
self-supervised learning. Journal of Web Semantics,
page 100722.

262

A Experimental details

A.1 Dataset

The datasets for pre-training and fine-tuning are
listed as follows.

A.1.1 Pre-training for NLG
We leverage 14GB high quality Chinese corpus of
CLUE-small1 (Xu et al., 2020). It contains follow-
ing genres:

News This sub-corpus is crawled from the We
Media (self-media) platform, with a total of 3 bil-
lion Chinese words from 2.5 million news articles
from roughly 63K sources.

WebText With 4.1 million questions and an-
swers, the WebText sub-corpus is crawled from
Chinese Reddit-like websites such as Wukong QA,
Zhihu, Sogou Wenwen, etc.

Wikipedia This sub-corpus is gathered from the
Chinese content on Wikipedia (Chinese Wikipedia),
containing around 1.1 GB of raw texts with 0.4
billion Chinese words on a wide range of topics.

Comments These comments are collected from
E-commerce websites including Dianping.com and
Amazon.com by SophonPlus2. This subset has
approximately 2.3 GB of raw texts with 0.8 billion
Chinese words.

A.1.2 Pre-training for Video-Text Matching
We collect 3.2 million videos from the Chinese
video platform. The topics of video cover news,
sports, entertainments, etc. For each video, its head-
line information is edited by uploader so that the
video-text matching task can be conducted without
additional manual annotations.

A.1.3 Multimodal Generation Fine-tuning
We establish the WB-News dataset for multimodal
generation fine-tuning and evaluation. It contains
more than 43,000 samples that are collected from
official Weibo accounts of China’s main media.

When building WB-News, we first filter the
weibo contents which have corresponding videos.
Then, the raw data is manually annotated and
cleaned to produce the triplet form, i.e. video,
source transcript and target summary. The aver-
age video duration of these samples is about one
minute, the average length of transcript is 120.6

1https://www.cluebenchmarks.com/
2https://github.com/SophonPlus/ChineseNlpCorpus/

words and the average length of summary is 21.2
words. For testing, 697 samples are selected, which
can evaluate the performance of Chinese video
headline generation.

A.2 Hyper-parameters
Text Encoder We use PALM as the text pre-
training model, in which 6-layer Transformers are
used for both text encoder and decoder. The text
tokens of samples are padded to 128 lengths.

Video Encoder For the video encoder, DFS ex-
tracts 32 video tokens from each video. Then a
2-layer Transformer encoder with 8 attention heads
is applied to get video embedding.

Joint-modality Layer After obtaining the out-
puts encoded by text and video Transformers, linear
projection layers are used to project them into the
same 512 dimension. As a result, the feature di-
mension of ev ∈ R32×512 and et ∈ R128×512. Then
a video-text attention matrix Mvt with 8 heads is
established to produce the fusion embeddings.

Decoder In the decoding stage, we use beam
search with a beam size of 5. The decoding process
will not stop until an end-of-sequence (EOS) token
is emitted or the length of the generated summary
reaches to 64 tokens.

Training Details GraMMo is realized by fairseq
toolkit3. In training phrase, we use learning rates
3e-4 to pre-train the encoders and decoder, and 1e-
5 to fine-tune the model. Batch size is set to 64
and dropout rate is 0.1. Adam optimizer is adopted
with 0.01 weight-decay and 0.1 clip-norm. The
training procedure runs on 8 NVIDIA V100 GPU
cards and costs about 7 days for NLG pre-training,
5 days for video-text matching pre-training and 1
hour for multimodal generation fine-tuning.

3https://github.com/pytorch/fairseq

263

Proceedings of EMNLP 2022 Industry Track, pages 264–272
December 9–11, 2020. ©2022 Association for Computational Linguistics

Semi-supervised Adversarial Text Generation
based on Seq2Seq models

Hieu Le ∗

Boston University, Boston, USA
hle@bu.edu

Dieu-Thu Le
Amazon Inc., Berlin, Germany

deule@amazon.com

Verena Weber
Amazon Inc., Berlin, Germany

wverena@amazon.com

Chris Church
Amazon Inc., Berlin, Germany

cbchurch@amazon.com

Kay Rottmann
Amazon Inc., Berlin, Germany

krrottm@amazon.com

Melanie Bradford
Amazon Inc., Berlin, Germany

neunerm@amazon.com

Peter Chin
Boston University, Boston, USA

spchin@bu.edu

Abstract

To improve deep learning models’ robustness,
adversarial training has been frequently used in
computer vision with satisfying results. How-
ever, adversarial perturbation on text have
turned out to be more challenging due to the
discrete nature of text. The generated adver-
sarial text might not sound natural or does not
preserve semantics, which is the key for real
world applications where text classification is
based on semantic meaning. In this paper, we
describe a new way for generating adversar-
ial samples by using pseudo-labeled in-domain
text data to train a seq2seq model for adversar-
ial generation and combine it with paraphrase
detection. We showcase the benefit of our ap-
proach for a real-world Natural Language Un-
derstanding (NLU) task, which maps a user’s
request to an intent. Furthermore, we experi-
ment with gradient-based training for the NLU
task and try using token importance scores to
guide the adversarial text generation. We show
that our approach can generate realistic and rel-
evant adversarial samples compared to other
state-of-the-art adversarial training methods.
Applying adversarial training using these gen-
erated samples helps the NLU model to recover
up to 70% of these types of errors and makes
the model more robust, especially in the tail dis-
tribution in a large scale real world application.

∗The work is completed during Hieu Le’s internship at
Amazon Inc.

1 Introduction

Over the past years, neural machine learning mod-
els have become more popular in a wide range of
real world natural language applications. While
these models have become very accurate, they are
susceptible to errors due to small changes in the
input, e.g. adding a stop word. This makes it dif-
ficult for a natural language understanding system
to recognize all utterances correctly since there are
many ways to formulate one request. In fact, while
common user commands can be understood very
well by the system, a system can react differently
due to minor input changes, e.g., article variations,
paraphrasing, or adding functional words.

Natural Language Understanding (NLU) is at the
core of voice assistants and maps a user’s request
(also referred to as utterance later) to a specific
intent within a certain domain, i.e. PlayMusic in-
tent within the Music domain. In this paper, we
identify the weaknesses of an NLU text classifi-
cation model by finding the types of inputs that
have high probability of causing prediction errors
and show how to mitigate them. Inspired by recent
work in adversarial training and adversarial sample
generation (Goodfellow et al., 2015; Morris et al.,
2020a), we describe how we employ adversarial
text perturbation to identify and fix such samples to
ensure a stable behavior of the model and thereby
significantly boost the tail accuracy in a large scale
real world application through adversarial training.

264

We show that while common text perturba-
tion methods relying on character manipula-
tion (Ebrahimi et al., 2018; Li et al., 2019), word
swap (Alzantot et al., 2018; Ren et al., 2019) could
generate adversarial samples on the original text
inputs to trick the model, most of them often gen-
erate many irrelevant samples that either do not
make sense (e.g., grammatically incorrect, unnat-
ural, out of domain) or change the meaning of the
original text utterance. Therefore, applying these
methods in a real world application without any
domain adaptation and additional constraints is not
only unsuitable but could even harm the model. In
this work, we describe how we use pseudo-labeled
in-domain text data for task adaptation and thereby
create adversarial perturbations that are more nat-
ural and relevant to the NLU task. Our approach
uses in-domain data to train a seq2seq model that
generates an adversarial version of the input ut-
terance. We introduce multiple constraints includ-
ing a paraphrase detector model to make sure that
the generated adversarial text samples are of high
quality. Finally, we show that including these gen-
erated adversarial samples during training helps
to improve the model’s robustness. We compare
the results with adversarial training based on the
Fast Gradient Sign Method (FGSM) (Shafahi et al.,
2019) often used in computer vision.

2 Related work

Adversarial sample generation in the text domain
can be categorized by the level of the attemptsto-
wards a target sentence. At the lowest level, hot-
flip (Ebrahimi et al., 2018) and TextBugger (Li
et al., 2019) perform character level perturbation
by character manipulations (swap, insert or delete).
Other methods by Alzantot et al. (2018), Zang et al.
(2020) and Li et al. (2020) create attempts at word
level using synonym swaps or masked language
model. The most broad type of attempt is sen-
tence level attempt where multiple words within
a sentence are changed, such as PAWS (Zhang
et al., 2019), SCPN (Iyyer et al., 2018) and SEARs
(Ribeiro et al., 2018). While these methods can
sometimes produce very high attempt success rates,
they are not straightforward to apply out-of-the-box
to real world applications, especially when the do-
mains are specific and small changes in the original
inputs can lead to a valid change in the labels (i.e.,
invalid attempts). In this work, we mainly deal
with the problem of generating in-domain valid ad-

versarial attempts by using a seq2seq model that
learns from live traffic/un-annotated data in real
world applications.

3 Seq2Seq-based adversarial text
perturbation

Figure 1 describes our semi-supervised seq2seq-
based adversarial text perturbation (SSAT) frame-
work which consists of three components: (1) ad-
versarial candidate extraction from unannotated
data based on pseudo-labels, (2) a paraphrase de-
tector model that keeps only candidates that are
actual paraphrases, and (3) a seq2seq (T5) model
that is trained on the data generated in the first two
steps to generate adversarial samples for a given
input text.

3.1 Pseudo-label based data filtering

In industry applications, it is common that there is
significantly more unlabeled data than high quality
labeled data. Our goal is to leverage the unanno-
tated data to find pairs of utterances that belong to
the same class but are classified differently by the
target model. To that end, we propose a multi-step
funnel. First, we use the target classification model
to pseudo-label the unlabeled data. Then, to obtain
sentence vectors, the utterances are encoded using
S-BERT (Reimers and Gurevych, 2019). We iden-
tify the k nearest neighbors in the embedding space
for each sentence vector to obtain a dictionary with
the top k closest utterances in the embedding space
for every utterance. Using the list of nearest neigh-
bors for each utterance, we create k pairs and only
keep those where the pseudo-label differs.

3.2 Paraphrase detection

We train a paraphrase detection model that deter-
mines if two sentences are paraphrases to further
filter the dataset created in the previous step. We
use a BERT model finetuned on the binary clas-
sification task. The training data for this task is
extracted from labeled data where we used two dif-
ferent types of data. If a dataset contains only labels
(e.g. intent) without specific name entity annota-
tions, we ignore the name entities and define two
sentences as paraphrases when they share the same
label : PARAPHRASE(x, x′) : 1 if y == y′ else 0.
If, however, the dataset contains labels (e.g. do-
main/intent) and slot labels (e.g. Named Entities),
we define two sentences as paraphrases if they
share the same non-absent named entities and in-

265

Vector
utteranc

e

FAISS

Indexing
density
vectors

Similarity
Search

Encoder

BERT

Encoding & Indexing
live traffic data

Adversarial
examples

Paraphrasing
detector

Live
traffic
data

Adversarial
examples

Data filteringCandidates

Turn off the TV (HomeAutomation)
Please turn off the TV now (Wikipedia)

Training transformation model

(1)

(2)

(3)

NLU

Pseudo-labels

T5 Text
transformation model

train/ test
data

adversarial
train /

test data

Figure 1: Components of our semi-supervised seq2seq-based adversarial text perturbation framework (SSAT): (1) a
text filtering that finds texts that are similar by L2 distance, (2) paraphrase detector model that detects and keeps
only pairs that are paraphrases, (3) text perturbation recipe consisting of a seq2seq model trained on data created
from (2).

tent/class. The detailed definition of labeled para-
phrases is shown in Algorithm 1.
The pairs of semantically similar utterances but
with different pseudo-labels from 3.1 are then fed
into the paraphrase detector model. We only keep
the the pairs classified as paraphrases and use them
as training data for the next step.

Input : x = ([w1|NE1, .., wn|NEn], y)
SLOT(x):

s = []
for wi|NEi ∈ x do

if NEi exists then
add wi|NEi to s

end
end
return s

PARAPHRASE(x, x′):
if SLOT(x) == SLOT(x′) and y == y′ then

return True
else

return False
end
Algorithm 1: Definition of Paraphrases

3.3 Text perturbation recipe

From the text filtering and paraphrase detection
steps, we obtain data that satisfy multiple criteria
of adversaries: Semantic similarity: ensured by
knn search in BERT embedding space. Mean-
ing preservation: ensured by a paraphrase detec-
tor model trained on labeled data with a dataset-
specific definition of paraphrases. Intuitively, filter-
ing the data with a paraphrase detector has several

advantages: a high level of fluency as the data come
from real user traffic and a flexible constraint of
semantic similarity that is not enforced through se-
mantic agnostic measurements like edit distance or
word embedding similarity.

Our perturbation recipe contains a text-to-text
transformer model that creates variations of the in-
put text, serving as candidates for testing the model.
We use a pretrained Text-to-Text Transfer Trans-
former model (T5) (Raffel et al., 2020) fine-tuned
on the filtered data for our task. The fine-tuned T5
model is then used to generate multiple adversarial
candidates. Specifically, given an input x, we use
T5 with a large beam to generate a fixed number of
successful perturbation candidates. The heuristic
used for beam search is cosine similarity to encour-
age higher similarity to the input text. From the
set of successful candidates T5(x) = [x1, · · · , xn],
the candidate with the highest cosine similarity is
returned. In terms of perturbation constraints, we
reuse the paraphrase detector and thus, any returned
perturbation candidate that switches class from the
original text and is classified as a paraphrase of the
input text is deemed a successful attempt. Figure
2 shows an example of adversarial text generation
with T5 and beam search. In this example, from
the original SNIPS input of "add this song to blues
roots" (labeled AddToPlaylist), beam search gen-
erates multiple successful candidates [’play music
from the playlist late night blues’, ’add this tune
to my blues playlist’, · · ·]. The candidate ’add this
tune to my blues playlist’, wrongly classified as

266

PlayMusic, is the closest to the original input by
cosine similarity and also satisfies the paraphrase
constraint. Thus it is returned as a successful at-
tempt.

Figure 2: Adversarial text generation process on SNIPS
example using beam search on T5 output. Blue nodes
are text variants still correctly classified, orange nodes
are variants that cause the target model to switch label.

3.4 Adversarial training with text
perturbation

Besides finding adversarial perturbations that ex-
ploit model weaknesses, we also explored the usage
of these generated utterances as additional training
data to make the target model more robust against
these types of adversarial utterances. We applied
the recipe described in 3.3 to our regular training,
evaluation and test data. From the generated utter-
ances we added the successful perturbations, those
identified as not altering meaning but switching the
predicted class, as additional training data into the
regular training process. For the test set we kept the
original test set and the generated adversarial test
set separate to also get insights into the effective-
ness of the text perturbations and the effectiveness
of the adversarial training.

4 Experiments

4.1 Dataset

We experiment with four text data sets, two com-
mercial data sets from a virtual assistant in Ger-
man and French, the SNIPS dataset (Coucke et al.,
2018) and the MASSIVE data set (FitzGerald et al.,
2022). The data consists of unannotated data as
well as annotated training and test data. With the
commercial data set, unannotated data, i.e. live
traffic, is organic audio data coming in from users
and processed through an acoustic speech recog-
nition (ASR) system to convert it to text. In this
commercial dataset, all data has been preprocessed
and anonymized so that no user related information
is identifiable. For SNIPS data set, we split data the
same way as (Goo et al., 2018) for validation and

test set. However, we further split the training data
set of 13, 084 utterances into roughly 20 − 80 of
labeled and ‘live traffic’ (unannotated) utterances:
we remove the label for 11, 000 utterances to simu-
late live traffic and keep 2, 084 utterances annotated
for training. Lastly, for MASSIVE data set, we use
the training portion of the data set as the live-traffic,
unannotated data set and use the validation and test
data set to train the target model. Finally, the live-
traffic portion of all the datasets are pseudo-labeled
by our corresponding target models.

4.2 Implementation
For each dataset, we fine-tuned a pre-trained BERT
architecture for text classification which all achieve
above 90% accuracy. Those models serve as target
models for the generated perturbations, i. e. we
want to fool them through slight changes in the
inputs.

For the paraphrase classifier, we chose a mul-
tilingual T5 (mT5) (Xue et al., 2021) model as it
accommodates the considered datasets in different
languages. The training data for the paraphrase
classifier is processed from the training set by pick-
ing out positive and negative pairs. The positive
pairs of paraphrases are picked based on definition
1. For negative examples, as the NLU dataset con-
tains named entity slots, beside randomly selecting
pairs of sentences with different classes, we also
include cross-class pairs that share at least one slot.
The binary classifier model is trained for 5 epochs
with batch size of 16 and achieves an accuracy
above 90% for both datasets.

We leverage the trained target models and the
trained paraphraser to create a training dataset for
our T5 model. First, we run the target model on
the live traffic to acquire pseudo-labels. Using the
pseudo-labels, utterances are sorted into buckets
for each class. Then, for each utterance, we find
the knn closest utterances in other buckets using
FAISS (Johnson et al., 2021) similarity search. The
detailed algorithm is shown in algorithm 2. By
prefiltering the live traffic in this manner, we gener-
ate pairs of sentences that are close by L2 distance
yet classified differently by the target model. The
candidate pairs are then passed through the trained
paraphrase detector and all the positive pairs are
kept.

4.3 Baselines
We compare our perturbation recipe with four other
text perturbation recipes across different pertur-

267

DeepWordBug BAE TextBugger TextFooler SSAT

German Commercial dataset

Success rate 92.38% 66.93% 64.14% 43.44% 61.93%
Success paraphrase rate 27.59% 14.60% 27.25% 9.88% 46.69%

Perplexity 1704.81 758.85 1239.13 857.00 498.25
Average grammar issues 2.80 2.215 2.88 2.53 2.21

French Commercial dataset

Success rate 94.17% 78.35% 38.45% 70.54% 86.37%
Success paraphrase rate 30.48% 28.23% 21.59% 25.18% 45.12%

Perplexity 7087.31 2743.82 2820.99 4323.48 1712.14
Average grammar issues 2.50 1.75 2.38 2.17 1.65

SNIPS

Success rate 57.98% 51.1% 22.59% 73.94% 90.42%
Success paraphrase rate 49.14% 46.85% 11.14% 65.71% 12%

Perplexity 294.06 82.90 139.42 159.59 6.3
Average grammar issues 3.67 1.84 2.88 2.30 1.57

MASSIVE
Success rate 70.07% 67.32% 48.52% 18.09% 84.73%

Success paraphrase rate 69.48% 66.79% 48.20% 18.03% 84.08%
Perplexity 958.18 794.44 980.37 872.93 677.51

Table 1: All metrics for generated text perturbations across 4 baselines compared with SSAT: Success rate, success
rate under paraphrase constraint, perplexity and average grammatical issues of generated perturbations. The
threshold confidence level for paraphrased positive pairs constraint is set at 95%. Perplexity is calculated with
german-gpt2, gpt2-french-small, gpt2 and mgpt accordingly for the corresponding language. Average number of
issues per perturbation text found by language-tool-python

bation paradigms including character level per-
turbation - DeepWordBug (Gao et al., 2018) and
TextBugger (Li et al., 2019), BERT based word
level perturbation - BAE (Garg and Ramakrishnan,
2020) and synonym swaps - TextFooler (Jin et al.,
2020) 1. Besides measuring the number of success-
ful and failed attempts, we also report the number
of skipped attempts. An attempt is only counted
as successful or failed if the classification of the
original input is the same as the label, i.e f(x) = y.
Thus, when f(x) ̸= y, an attempt is labeled as
skipped. The attempt success rate is then measured
with:

success_rate = success_count
success_count+failure_count

(1)

Furthermore, as discussed in 3.2, we also use the
paraphrase detector as an extra constraint for all
of the successful perturbations. By using the para-
phrase detector constraint, the successful perturba-
tion not only fools the classifier but is also ensured
to be paraphrase in of the original input taking
all domain-specific (device functionalities) into ac-
count. Lastly, we calculate the perplexity as well
as grammatical and semantic issues for perturba-
tion texts from each method to see which method
gives the best semantically sound texts. In terms of
perplexity, we use GPT-2 (Radford et al., 2019) for
the SNIPS dataset, mGPT (Shliazhko et al., 2022)
for MASSIVE dataset, German GPT-2 (Schweter,
2020) and French GPT2 for the German and French
commercial dataset accordingly. All the GPT2
models are available at Huggingface. For gram-
matical issues, we calculate this metric by using

1We take the implementation from TextAttack framework
(Morris et al., 2020b) for our baselines

language-tool-python which is a wrapper of Lan-
guage Tool, a grammar checker that counts the
number of issues for every perturbation text and
then gets the average number of issues. The results
are shown in table 1.

For the effectiveness of the adversarial training
we compare our adversarial data augmentation as
described in 5.2 with a baseline model not trained
on adversarial data and on a model trained using
FGSM based adversarial training as described in
(Shafahi et al., 2019), where we used the gradi-
ents to modify the input on the embedding layer to
overcome the restrictions of the discrete nature of
language input.

5 Results and discussion

In this section, we present our results on adversarial
sample generation and adversarial training on top
of the generated samples for the target models.

5.1 Adversarial sample generation

• Attempt success rates. We compare the four
common text perturbation methods with our semi-
supervised adversarial text perturbation method
(SSAT) using two metrics: general success rate
and success rate under the paraphrase detector con-
straint. The result of the experiment is shown in
table 1. From the experimental results, SSAT’s
success rate is comparable with other approaches
as approximately 50% of the perturbation success-
fully fool the target model. However, when all
perturbation recipes are subject to the paraphrase
constraint, the SSAT method outperforms the rest
of the recipes.
• Attempt sample perplexity and grammar is-

268

sues. For the perplexity metric, SSAT also con-
sistently outperforms other baselines as shown in
table 1, which indicates that the generated sam-
ples are more relevant and natural. In terms of
fluency/grammatical issues of text samples, SSAT
generated samples containing fewer grammatical
issues than all 5 methods in comparison. This can
be explained by our recipe using training data from
the live-unannotated traffic data which is inherently
more organic than using a masked language model
like (Li et al., 2020) or rule based character swaps
like (Li et al., 2019) without any domain adaptation.
Indeed, when calculating the pairwise similarity
between texts from each perturbation method and
the unlabeled corpus dataset using tf-idf, SSAT’s
generated samples are the most similar in cosine
similarity to the unlabeled set of the dataset.

perturbation Method tf-idf cosine similarity
BAE 0.171

DeepWordBug 0.155
TextBugger 0.152
TextFooler 0.057

SSAT 0.523

Table 2: pairwise similarity between all successful at-
tempts from each perturbation method and the unlabeled
set of MASSIVE dataset

To support our numbers with concrete exam-
ples, we picked some successful attempts across
baselines and our method on the SNIPS dataset to
highlight the difference in perturbation fluency. For
example, synonym swaps methods like TextFooler
can successfully perturbate a text by swapping in
synonyms of some particular words. However, in
practice, synonyms have to be taken in the context
of the sentence for the swaps to be fluent and natu-
ral. While (rate - rhythm) and (stars - celebs) are
synonyms, the swaps make the sentence unnatural
and incomprehensible by a human reader as rate in
this text is in the verb form with meaning of evaluat-
ing, not in the noun form as a musical term. On the
other hand, by integrating unlabeled, human gen-
erated data into the adversarial generation process,
SSAT generates a more natural variants like give
this textbook a three given the sentence rate this
textbook a zero. While the candidate does slightly
change the complete meaning of the sentence, to a
human reader, it keeps the overall meaning and the
label classification of the text as both should be la-
beled as rate book. Other successful attempts from
baselines such as DeepWordBug only made small
modifications but the change completely alters the
word’s meaning and make it hard to comprehend

to human readers. All the examples are shown in
table 3.

Method Input text Perturbed text
BAE i rate secret water as a 4 i use tap music as a 4

DeepWordBug rate this current arte this current
novel 1 stars novel 1 stZars

TextBugger rate maps for lost rate maps for lost
lovers 1 of 6 lovers l of 6

TextFooler rate lamy of santa fe rhythm lamy of santa fe
5 of 6 stars 5 of 6 celebs

SSAT rate this textbook a zero give this textbook a three

Table 3: Some examples of successful perturbations
from different baselines and our SSAT method on input
texts from SNIPS dataset

Furthermore, we compare the change in the num-
ber of paraphrased pairs at different confidence
levels of the paraphrase detector output. Figure 3

Figure 3: Number of successful attempt at different para-
phrase detector threshold on the German commercial
dataset. The experiment is run on 10, 000 perturbations.

showed that when gradually increasing the confi-
dence threshold for paraphrase detector to judge
that a pair of input-perturbed text are paraphrases,
the number of successful attempts also gradually
decreases. This is expected behavior as when the
oracle model is more strict, the number of suc-
cessful attempts should be decreasing. Another
observation from the figure is that regardless of the
threshold, UAT consistently performs better than
all other perturbation recipes on the German com-
mercial dataset.
• Gradient-based targeted adversarial genera-
tion. Similar to white-box adversarial perturbation
methods such as HotFlip (Ebrahimi et al., 2018),
we further experimented using token importance
scores based on Integrated Gradients (IG) (Sun-
dararajan et al., 2017) in the decoding step to check
whether this could provide guidance on the gen-
eration step to find samples with higher attempt
success rates. Specifically, we use the token im-
portance score based on IG, which is calculated
with respect to the predicted class of the original
utterance to re-rank the probability of the next gen-
erated token in the beam search of the seq2seq

269

model. The IG value is positive if the token posi-
tively contributed to the predicted class, negative if
the token is not associated with the predicted class
and 0 if it is neutral. The idea is to generate and
favor tokens that are more likely to switch classes
to fool the target model. In our experiments, this
however leads to poorer results, where we obtained
attempt success rate of 51.1%, success paraphrase
rate of 22.8%, perplexity of 618.9, and average
grammatical issues of 2.22 on the German commer-
cial dataset. This somehow shows that the decoding
strategies of the translator model are sensitive to
this reranking method, which leads to more invalid
attempt generation, especially when running on dis-
crete text input data, where a small local change
in embedding gradient cannot account for a word
replacement. We plan to experiment with other
combinations of SSAT and white-box perturbation
methods in the future to further understand this
behavior.

5.2 Adversarial training
After generating adversarial instances, we include
them to a vanilla adversarial training on the pri-
vate dataset as a defense mechanism to improve the
model’s robustness. For the German Commercial
dataset, we ran adversarial perturbation on both the
train and the test set with the target model being
trained on the regular training set. The adversarial
examples from training set are then combined with
the original training set to train the target model.
The so trained model is then tested on the original
test set as well as the adversarial perturbations on
test set and is compared with the original target
model. In addition to the original target model, we
also tested the effectiveness of a model trained with
FGSM based adversarial training (Shafahi et al.,
2019). From results in Table 4, the adversarially
trained model only sacrificed a very small loss in
standard test set performance but achieve a huge
gain in the adversarial test set as the original target
model is easily fooled by our method with perfor-
mance of 15%. In comparison to that, the FGSM
based adversarial training achieved slightly better
performance than the vanilla model on the adver-
sarial testset, however given the local perturbations
used in this approach, this model is still fooled in
75% of the adversarial examples.

6 Conclusions

In this paper, we proposed a framework that uses
pseudo-labeled data for learning and training an

Target Model Class Std test set Adv test set
Music 0% 19%

bert-base-german-cased
Books -1% -3%

FGSM-adv. trained
Calendar -1% 6%

Commercial dataset
Shopping -1% 15%

Notification 7% -1%
Overall -1% 10%
Music -0% 74%

bert-base-german-cased
Books -1.11% 61%

SSAT adversarially trained
Calendar -2.13% 63%

Commercial dataset
Shopping -1.04% 73%

Notification 7.6% 80%
Overall -1.03% 70%

bert-base-multilingual-cased
FGSM-adv. trained

Overall 0% 0%

MASSIVE dataset

bert-base-multilingual-cased
SSAT adversarially trained

Overall -1.01% 25.23%

MASSIVE dataset

Table 4: The relative gain and loss in the accuracy per-
formance of the adversarially trained model compared
to the standard model on the standard test set and adver-
sarial test set. The adversarial trained model sacrifices
little in accuracy compared to standard model on regular
test set and achieves large gain on adversarial tests

adversarial perturbation generator that can produce
more relevant and natural samples. We trained a
paraphraser detector to serve as an additional con-
straint to validate the generated perturbations. We
showed that our perturbation methods outperforms
general adversarial perturbation methods on suc-
cess attempt rates and is able to generate meaning-
ful samples with lower perplexity and less gram-
matical issues. We further demonstrated how ap-
plying adversarial training on the generated sam-
ples can better improve the model’s robustness than
when using traditional gradient adversarial training
such as FGSM.

7 Ethical Considerations

Our work proposes a new way of improving classi-
fication model performance in natural language un-
derstanding tasks. Since our approach is based on
the usage of unlabeled data as it is occurring during
production, there is a certain risk for the models to
overfit on user groups that use the model the most
which might introduce a bias for this group. In
addition to that there is the need to keep the genera-
tion model of the adversarial perturbation generator
current, making sure, that data that was removed by
customers is also not used in any future application
of the model.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
270

2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. CoRR, abs/1805.10190.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31–36,
Melbourne, Australia. Association for Computational
Linguistics.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
Swetha Ranganath, Laurie Crist, Misha Britan,
Wouter Leeuwis, Gokhan Tur, and Prem Natara-
jan. 2022. Massive: A 1m-example multilin-
gual natural language understanding dataset with 51
typologically-diverse languages.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text clas-
sification. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6174–6181, Online. Association for
Computational Linguistics.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo,
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung
Chen. 2018. Slot-gated modeling for joint slot filling
and intent prediction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 753–757, New Orleans, Louisiana. Association
for Computational Linguistics.

Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-
ing Representations.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 1875–1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):8018–8025.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial text
against real-world applications. Proceedings 2019
Network and Distributed System Security Symposium.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

John Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji,
and Yanjun Qi. 2020a. Reevaluating adversarial ex-
amples in natural language. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 3829–3839, Online. Association for Computa-
tional Linguistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020b. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In

271

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1085–
1097, Florence, Italy. Association for Computational
Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Stefan Schweter. 2020. German gpt-2 model.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghi-
asi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein.
2019. Adversarial training for free! Advances in
Neural Information Processing Systems, 32.

Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova,
Vladislav Mikhailov, Anastasia Kozlova, and Tatiana
Shavrina. 2022. mgpt: Few-shot learners go multilin-
gual.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combi-
natorial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066–6080, Online. Association
for Computational Linguistics.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1298–1308,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

A FAISS search application

To apply FAISS search to our pseudo-labeled data,
we first partitioned the pseudo-labeled data by the
labels. Then, for each utterance xi, we run FAISS
knn search in one-vs-rest style where we search
for the most similar utterances among the those

that do not share the same class label as xi. Each
of these similar sentences then got matched with
xi to generate k similar pairs for xi

Input : X = [xi], Y = [f(xi)]
SIMILARITYSEARCH(X):

S = {}
for xi ∈ X do

S[xi] = []
for y ∈ Y, y ̸= f(xi) do

classY= [xj] s.t f(xj) = y
knn =FAISS(xi, classY, k)
add knn to S[xi]

end
end
return S

CANDIDATE_PAIRS(S):
pairs = []
for xi ∈ S do

nearestNeighbors = S[xi] = [xj]
add [xi, xj]∀xj ∈ S[xi] to pairs

end
return pairs

Algorithm 2: Filtering live traffic with FAISS search

B Limitations

The limitation of our approach lies 1) in the post-
filtering approach and 2) in the similarity to actu-
ally seen traffic. It is crucial and at the same time
very hard to filter out those adversarial samples
that are relevant and correct since the T5 model
also produces sentences that do not preserve the
meaning of the input or are grammatically correct.
The second limitation lies in how similar the gener-
ated variations actually are to real variations actual
customers would say. We are planning to investi-
gate this further and test the target model trained
on generated perturbed utterances on general data.

272

Proceedings of EMNLP 2022 Industry Track, pages 273–281
December 9–11, 2020. ©2022 Association for Computational Linguistics

Is It Out Yet? Automatic Future Product Releases Extraction from Web
Data

Gilad Fuchs*
eBay Research / Israel
gfuchs@ebay.com

Ido Ben-Shaul*
eBay Research / Israel
ibenshaul@ebay.com

Matan Mandelbrod
eBay Research / Israel

mmandelbrod@ebay.com

Abstract

Identifying the release of new products and
their predicted demand in advance is highly
valuable for E-Commerce marketplaces and re-
tailers. The information of an upcoming prod-
uct release is used for inventory management,
marketing campaigns and pre-order sugges-
tions. Often, the announcement of an upcoming
product release is widely available in multiple
web pages such as blogs, chats or news arti-
cles. However, to the best of our knowledge,
an automatic system to extract future product
releases from web data has not been presented.
In this work we describe an ML-powered multi-
stage pipeline to automatically identify future
product releases and rank their predicted de-
mand from unstructured pages across the whole
web. Our pipeline includes a novel Longformer-
based model which uses a global attention
mechanism guided by pre-calculated Named
Entity Recognition predictions related to prod-
uct releases. The model training data is based
on a new corpus of 30K web pages manually
annotated to identify future product releases.
We made the dataset openly available at https:
//doi.org/10.5281/zenodo.6894770.

1 Introduction

E-commerce marketplaces and online retailers are
constantly updating their inventory with new prod-
ucts. Given the ever growing number of newly
released products and their variety, it is becoming
increasingly challenging to keep track of upcoming
releases. Further, estimating which products are
likely to become trendy and highly demanded is an
additional task that becomes more difficult with the
growth of online E-commerce. For E-commerce
marketplaces, whose inventories often include an
extremely large variation of products across thou-
sands of different categories, the task of constantly
tracking new product releases becomes presumably
unfeasible without the leverage of automatic and

*These authors contributed equally to this work

scalable solutions. In this paper, we demonstrate
how an automatic ML-powered extracting pipeline
can identify future product releases in billions of
websites consisting of unstructured text and rank
their demand with high accuracy. We define a fu-
ture product release identification as identifying
both the product name and either its exact release
date or a time range.

Our pipeline includes the following main steps.
First, the Common Crawl1 monthly snapshot data
is cleaned to include only text by using the pipeline
describe in (Raffel et al., 2020; Xue et al., 2021)
code2. Specifically, we used the already cleaned
dataset - “Colossal Clean Crawled Corpus” (C4)
(Raffel et al., 2020) and the multilingual variant
of the C4 dataset called mC4 (Xue et al., 2021).
The next step is a simple but effective combina-
tion of data filtering with manually curated release-
related key phrases (e.g. “will be released”). Next,
a Named Entity Extraction (NER) model is used to
detect possible product names and the correspond-
ing releases dates. This step is followed by an addi-
tional filtering of non-product related releases using
a novel Longformer-based model (Beltagy et al.,
2020) (“text2release”) which classifies whether a
web text indeed includes a future product release or
not. We show that using the NER predictions to de-
cide which tokens should have global attention im-
proves the text2release model performance. Next,
a consolidation phase aggregates the evidence col-
lected from multiple websites to rank the most
likely release date. Last, a buzz calculation for
each product is performed based on counting the
times each product appears in different websites.
An overview of the entire pipeline can be seen in
Figure 1. Experimental analysis shows that our
pipeline can identify future product release date,
in the range of 30 days, with an accuracy between

1http://commoncrawl.org/
2https://github.com/google-research/text-to-text-transfer-

transformerdataset-preparation

273

Websites

Collection

cleaning (C4)

Rule Filtering

Non-products
and release
related info

NER

Products names
and release

dates

text2release

ML filtering

Aggregation

Rank
dates

and Buzz

Figure 1: An overview of the product releases identification pipeline.

~70% to ~80%. In addition, our simple buzz calcu-
lation shows very high correlation with the actual
product demand.

2 Related Work

2.1 Event Detection
There have been several works for predicting events
from web data (Zhao, 2020). Some of these focus
on discovering local and personal based events for
individuals (Foley et al., 2015; Konovalov et al.,
2017; Metzler et al., 2012; Li et al., 2017). In (Gra-
vano and Becker, 2011)(Chapter 4), a method for
identification of unknown events in social media
sites based on trending occurrences is shown. This
is done using incremental clustering algorithms,
for finding event neighborhoods. Our proposed
method is similar in theme to the work done in
(Wang et al., 2019), where the aim is to build
a database of global events. Other works have
proposed to predict global events, mainly through
use of data collected from social media platforms
(Sakaki et al., 2010; Watanabe et al., 2011; Kim
et al., 2018; Farzindar and Khreich, 2015).

In the E-commerce domain, (Yuan and Zhang,
2018) introduce a term frequency–inverse docu-
ment frequency weighted word embedding to find
relevant merchandises for seasonal retail events.
However, they rely on a preset marketplace inven-
tory. Finally, (Petrovski et al., 2014) proposes learn-
ing regular expressions for attribute extraction of
E-commerce Microdata.

2.2 Classifying Long Sequences
The use of Transformers (Vaswani et al., 2017) in
NLP applications has become extremely widely
used, and accordingly in sequence classification.
In general, transformer approaches are often lim-
ited to relatively short sequence size. Recently, the
Longformer (Beltagy et al., 2020) was introduced
to allow using the transformer mechanism on large
documents, such as web-pages. Following this

work, the Big Bird (Zaheer et al., 2020) model was
also proposed to handle the self-attention mecha-
nism on long sequences. In both papers, a combina-
tion of the self-attention modifications is shown. In
this paper we propose an additional method based
on the Global Attention, where the tokens that
receive global attention are based on outputs of
an NER model. Other works which aim to deal
with long sequence sizes have also been presented
(Ainslie et al., 2020; Wang et al., 2020; Kitaev et al.,
2020).

3 Future Product Releases Identification

3.1 Datasets

The C4 dataset3 described in (Raffel et al., 2020)
was used for the entire product releases identifi-
cation pipeline development and the ‘text2release’
model training. The C4 dataset is based on Com-
mon Crawl’s web data which was released in April
2019. The multi-lingual mC4 dataset (Xue et al.,
2021) has 101 languages and is generated from
71 Common Crawl dumps. The product releases
identification pipeline was tested over the newest
snapshot from August 2020 and only English pages
were selected (will be referred from now on as
“Aug2020-Eng-mC4”).

3.2 Data Pre-Processing

As each monthly snapshot of the Common Crawl
data may include hundreds of millions of web
pages, we have decided to use a simple heuristics
to select web pages which discuss future product
releases. Our approach is based on manually cu-
rating a relatively broad set of key phrases which
are likely to appear in future product releases web
pages. The phrases chosen were general and poten-
tially identify various types of future releases, not
necessarily of products. Later stages in the pipeline
further enrich the dataset by focusing specifically

3https://www.tensorflow.org/datasets/catalog/c4

274

on product releases. The key phrases and the cor-
responding number of pages including the specific
phrase in the C4 dataset are listed in Appendix A.1,
Table 6.

Although the C4 dataset is based on a snapshot
from April 2019 of the Common Crawl corpus, the
snapshot contains multiple pages from previous
years which include future product releases that
had already taken place. As our end goal is to de-
tect on a monthly basis future product releases from
the latest snapshot released by Common Crawl, we
focused our methodology in identifying only future
product release that occur after each snapshot re-
lease date. Specifically, we added a simple filter, on
top of the previously described key phrases, requir-
ing that the text explicitly includes a year string.
The C4 dataset has been filtered to a subset con-
taining the string “2019”. The Aug2020-Eng-mC4
dataset has been filtered for both the “2020” and
“2021”, to identify products which were expected
to be released at the end of 2020 or the at start of
2021. Although the year filtering may remove po-
tentially relevant web pages that do not explicitly
mention the year of release, it makes the dataset
more relevant for the specific use-case aimed to
be addressed by the pipeline. Following the key
phrases and year filtering, the C4 and the Aug2020-
Eng-mC4 datasets consist of ~292K and ~305K
web pages, respectively.

Next, a subset of web pages were excluded
based on a manually curated list of exclusion
phrases which were identified to be dominant
within releases-related texts and do not have ap-
plicable usage for our use case (e.g. mobile appli-
cations are usually not sold in E-commerce mar-
ketplaces). The main themes of the exclusion list
phrases are related to mobile applications, music,
TV, films and cars. Last, as manual probing of
very long web pages revealed that those web pages
rarely discuss future product release, and to ease
the pipeline downstream processes, only web pages
with text size shorter than 5000 characters were
kept, which resulted in keeping ~75% of the web
pages. Overall, following the pre-processing steps
~74K and ~78K web pages were selected from the
C4 and Aug2020-Eng-mC4 datasets, respectively.

3.3 Entity Recognition of Products and Dates

In order to identify future product release it is es-
sential to detect both the product name and its re-
lease date. While for some of the products the new

release might consist of only a new model of an
existing product, often new releases are for entirely
new products. For identifying a release of a new
model for an existing product some heuristics can
be used (e.g. looking for a pattern of a known prod-
uct name + variation of a model number). For a
previously unseen product such methods are not
relevant. Hence, an NER model, capable of iden-
tifying product names based on the text context,
was used. More specifically, we used the document
level NER model FLERT (Schweter and Akbik,
2020), available as part of the Flair package (Akbik
et al., 2019). FLERT was trained on the OntoNotes
dataset (Weischedel et al., 2013), which includes
18 entity classes, and leverages document-level
features by passing a sentence with its surround-
ing context. In our work we used the PRODUCT,
WORK OF ART and DATE entities, as they were
identified to be potentially relevant for our use case.
Notably, the WORK OF ART entity was found to
excel in identifying new books and video games
specifically. The entity DATE was used to iden-
tify the different variations of dates described in
web pages as free text. Only web pages where the
FLERT model predicted the existence of either a
PRODUCT or WORK OF ART were selected for
the next step in the future product release identifi-
cation pipeline. This additional filtering results in
exclusion of approximately 50% and 43% of web
pages in the C4 and Aug2020-Eng-mC4 datasets,
respectively.

3.4 Future Product Releases Classifier

While the FLERT NER model predictions capture
which pages include product entities, it can not
assure that indeed the web page contains a descrip-
tion of a future product release. In addition, there
are multiple cases where tokens are mistakenly
predicted to be a PRODUCT or WORK OF ART
entities. To further improve the identification of the
web pages specifically describing future product
releases, we created a new annotated dataset which
includes approximately 30K web pages tagged by
crowd-sourced labelers 4. The 30K web pages were
randomly sampled from the releases-enriched C4
dataset (following the steps described at Sections
3.2 and 3.3). Each page was labeled by 4 to 6 an-
notators, and the labelers were asked to select “text
includes future product release” (~63% of pages)
or “text doesn’t include a future product release”

4https://doi.org/10.5281/zenodo.6894770

275

(~37% of pages). Detaied description of the prod-
uct releases dataset can be found in Appendix A.2.

In order to improve the identification of future
product releases the annotated dataset was lever-
aged to train a classifier which detects texts men-
tioning a future product release (‘text2release’). As
common modern text classification models (e.g.
BERT (Devlin et al., 2018)) are limited to 512
sub tokens, and web pages are often significantly
longer, we leveraged the pre-trained Longformer
model which is capable of handling up to 4096 sub
tokens. The tagged data was used to fine-tune the
Longformer model, where only web pages having
labeling confidence above 0.7 were used (~19,000
web pages). For validation and model testing, only
pages with labeling confidence of 1 (i.e. all anno-
tators agreed on the label) were used (~4,700 web
pages).

While the original Longformer model uses for
classification tasks a global attention in the first
token only (specifically, the special ‘CLS’ token),
we examined an alternative architecture which we
coin “LongforNER” where global attention is as-
signed based on NER predicted entities. For this
dataset, we chose WORK OF ART and PRODUCT
entities from the FLERT model predictions. The
assumption is that greater attention should be given
to the product related text in order to better classify
if a web page is about a future product release. In
Table 1 we compare the test performance of the
proposed model (LongforNER) with the results of
the vanilla Longformer where global attention are
assigned to the CLS token. The NER guided atten-
tion resulted in improved performance. It has been
shown (Zaheer et al., 2020) that adding random
global attention may assist during training to clas-
sify long texts. We therefore examined the impact
of assigning randomly global attention to a subset
of the tokens instead at the specific NER entities
(see ‘Random’ in Table 1), to control the possi-
bility that the improvement of the LongforNER
performance is merely due to greater percentage
of tokens with a global attention. We confirmed
that the percentage of tokens which were assigned
randomly with global attention was approximately
the same as in the LongforNER version. The Long-
forNER version also showed better performance
comparing to randomly assigned global attention.
All models were trained for 30 epochs, with a batch
size of 4 and a learning rate of 1 · e−6, with cosine
LR schedule and a minimum value of 5 · e−8. An

Table 1: Comparing predicting future product releases
performance metrics while assigning global attention
in CLS (‘Longformer’), randomly (‘Random’) or based
on NER predictions (‘LongforNER’). Each result is an
average of 5 different random seed initialization. For
the metrics that are based on a given threshold, we use
the Youden Index (Youden, 1950). PR-AUC stands for
Precision-Recall Area Under the Curve.

Metric Longformer Random LongforNER

PR-AUC 0.8852 0.8834 0.8901
F1 0.7926 0.8059 0.8151

Accuracy 0.7284 0.7405 0.7481

AdamW (Loshchilov and Hutter, 2019) optimizer
was used in all experiments. The text2release clas-
sifier predictions were used to further select web
pages of higher probability to include future prod-
uct release.

3.4.1 LongforNER Sequence Classification

To further test the advantage of the LongforNER
architecture, we test it on the Hyperpartisan news
detection dataset (Kiesel et al., 2019). Similar to
(Beltagy et al., 2020), we focused on the ‘byarticle’
dataset, as it’s labels are of higher quality. The Hy-
perpartisan classification task is to decide whether a
news article follows a hyperpartisan argumentation,
i.e., whether it exhibits blind, prejudiced, or unrea-
soning allegiance to one party, cause, or person.
The Hyperpartisan dataset was previously used to
evaluate long texts classifiers (Beltagy et al., 2020;
Zaheer et al., 2020). Intuitively, this dataset should
benefit from global attention at named entities such
as person or organization, as often news, and the
hyperpartisan argumentation specifically, involves
such entities (e.g. “President Trump and Republi-
cans in Congress must act now to stop new Oba-
macare taxes...”). Hence, we use the flair5 4 classes
NER model which identifies the following entities:
PER (person), LOC (location), ORG (organization),
and MISC (other). In Table 2, we show the results
of the LongforNER vs. the vanilla Longformer
model, using the train/val/test given in (Beltagy
et al., 2020). We found the split used in this work
to be of particularly high performance. The authors
show results on a single split using five different
initializations, using the same train/val/test split.
Hence, we also measured the performance follow-
ing splitting the dataset with 5 random splits, using
5 different seed initializations for each. As done in

5https://huggingface.co/flair/ner-english-large

276

Table 2: Average Test F1 on 80/10/10 train/val/test split
of the the HyperPartisan dataset using 5 different seed
initialization. The split was done either as given in
(Beltagy et al., 2020) (‘hyper-orig-split’) or 5 times
randomly (‘hyper-new-split’).

Dataset Longformer Random LongforNER

Hyper-orig-split 0.9350 0.9243 0.9390
Hyper-new-split 0.7638 0.7445 0.7822

Section 3.4, the LongforNER performance was also
compared to a version where the global attention
was assigned randomly. Overall, the LongforNER
version shows better performance compared to the
CLS-based global attention (Vanilla) and randomly
assigned global attention (Random) for both types
of the splits. All models were trained for 15 epochs,
with a batch size of 4 and a learning rate of 2.5·e−5,
with linear LR schedule. An AdamW (Loshchilov
and Hutter, 2019) optimizer was used in all experi-
ments.

3.5 Pipeline Consolidation

As one of the final goals of the pipeline is to iden-
tify the future product release date or a time range,
it is necessary to convert the free text describing the
date (identified by the NER model) to a structured
date format. Specifically, we converted a single
date point to a ‘DD/MM/YYYY’ format and a date
range was converted to a tuple of (MIN(DATE),
MAX(DATE)). A default of day=15 was used in
cases where the release date includes only month
and year without a specified day. While the sim-
ple patterns of free text dates were found to be
parsed successfully with the open source package
dateparser6, for more complicated patterns, which
were found to be common in future releases texts,
a custom parser was developed. The identified pat-
terns used by the custom parser are summarized in
Appendix A.3, Table 8.

As each web page might include several product
names and dates, it is essential to link each product
name to the corresponding release date. We employ
a simple heuristic where we collect all pairs of iden-
tified PRODUCT or WORK OF ART with every
DATE entity which appear in the same sentence.
While this approach does not guarantee that the
identified date is indeed the correct release, manual
evaluation of sample candidates showed that this
is often the case. Moreover, as pairs are collected

6https://github.com/scrapinghub/dateparser

Table 3: Example of 10 identified products (’Product
Name’), the suggested release date (’Suggested Date’),
and the number of supporting data points for the sug-
gested date (’Date Count’).

Product Name Suggested Date Date count

assassins creed valhalla 17/11/2020 164
far cry 6 18/02/2021 101
flight simulator 18/08/2020 81
cyberpunk 2077 19/11/2020 70
xbox series x 15/11/2020 66
wwe 2k battlegrounds 18/09/2020 66
kingdoms of amalur 08/09/2020 60
fifa 21 09/10/2020 58
nba 2k21 04/09/2020 51
watch dogs legion 29/10/2020 50

from multiple websites, aggregating the different
dates per product reduces the noise by selecting the
most frequent date per product. Any PRODUCT
and WORK OF ART entities which did not have a
DATE entity in the same sentence were filtered out.

Intuitively, the number of different websites dis-
cussing an upcoming product release should be
at least partly correlated with the product demand
upon its release. In order to count the number of
web pages mentioning each product it is possible to
count the mentioning of the specific identified prod-
uct names across all the web pages of a Common
Crawl snapshot. However, such a naive approach
would yield a large number of false positives, as
some product names are not specific enough. For
example, searching for the video game “Control”
in a full snapshot results in millions of websites.
Therefore, we count only web pages where the
NER model identified the text as a product name.
We refer the number of web pages mentioning the
product name as a ‘buzz’ calculation.

4 Experiments and Results

In order to test the product releases identification
pipeline we used the Aug2020-Eng-mC4 dataset
for evaluation, described in Section 3.1. Of note,
the Aug2020-Eng-mC4 dataset was not used dur-
ing any stage of the pipeline development, and
mimics a case of fetching a new monthly snapshot
from Common Crawl to identify future product re-
leases. Running the product releases identification
pipeline, as described in Section 1, on the Aug2020-
Eng-mC4 dataset resulted in 243 overall products
for which the release date was identified. Example
of 10 identified products, can be seen in Table 3.
Interestingly, 9 out of the top 10 identified prod-

277

Figure 2: Search query logs per day for the video game
‘watch dogs legion’ during the 30 days following the
game launch.

ucts are video games. We next manually annotated
the categories of the 243 products. The number of
identified products from each category are listed
in Appendix A.3, Table 9. Overall, the pipeline
results in enrichment of video games.

Next, the accuracy of the suggested release dates
was evaluated. The true release date was manually
labeled per product. Since most of the products
were categorized as ‘Video Games’, ‘Smartphones’,
‘Electronics’ and ‘Books’, the manual labeling of
the true release date was done only for the prod-
ucts belonging to these categories. We measure
the percentage of products for which the suggested
release date was identical to the true release date
(‘P0’) and within the range of 10 or 30 days (‘P10’,
‘P30’). Of note, as in some cases only the expected
month and year of the future product release date
are mentioned in the text (e.g. “will be released
in March, 2021”), this results in lower P0 and P10
compared to P30. Table 4 shows the accuracy of the
suggested release dates for all products belonging
to the top 4 categories (All) and for the largest cate-
gory ‘Video Games’ specifically. The results show
that an automatic ML-powered pipeline can iden-
tify the release date of more than 200 previously
unknown products from a single month web-data
snapshot with a error range of 30 days in approxi-
mately 70% accuracy. For the largest category of
‘Video Games’, which on average includes more
supportive web pages per product release date com-
pared to the rest of the categories (~10 vs ~4), the
P30 accuracy is 78%.

Next, we examine if our buzz calculation can be
used to predict at least partly future demand. In or-
der to estimate the product demand we used eBay’s

Table 4: The % of products which their true release date
was exactly as the identified release date (P0), within
the range of 10 days (P10) or within the range of 30
days (P30) of the true release date.

P0 P10 P30 N

All 52.7 63.2 69.5 220
Video Games 62.7 71.8 78.2 142

Table 5: Pearson and Spearman’s correlation between
each product buzz calculation and the total number of
search queries in 30 days since the product launch.

Pearson Spearman N

All 0.873 0.647 83
Video games 0.923 0.788 56

search query logs. For each product, that had an
actual release date during 2020 (but not before the
Common Crawl snapshot release date of 16-Aug,
2020), the demand was estimated by the number
of relevant queries found within 30 days since the
release date. It is worth noting that not all products
were found to be sold on eBay specifically. For
simplicity, only products with a dominant single
relevant query were examined. Figure 2 shows ex-
ample of a release date correctly identified by the
proposed method, and the query logs in the days
after the release. Next, the correlation between the
buzz calculation and the demand was calculated.
As can be seen in Table 5, a high correlation was
found between the buzz calculation and the actual
demand, and even higher for products of the largest
category of ‘Video Games’.

5 Conclusions

In this work we demonstrate the capability of au-
tomatically identifying future product releases and
their ranked demand, from the free monthly snap-
shot of the Common Crawl data. The ability to
identify product releases in advance is a powerful
tool which can be leveraged for multiple down-
stream applications such as better management of
inventory or price updates of outdated models. We
also suggest a new NER-guided global attention
mechanism to improve long text classification tasks.
Last, we release a new dataset consisting of web
pages labeled as whether the text includes future
product releases or not.

278

References
Joshua Ainslie, Santiago Ontañón, Chris Alberti, Va-

clav Cvicek, Zachary Kenneth Fisher, Philip Pham,
Anirudh Ravula, Sumit K. Sanghai, Qifan Wang, and
Li Yang. 2020. Etc: Encoding long and structured
inputs in transformers. In EMNLP.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In NAACL 2019, 2019 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Atefeh Farzindar and Wael Khreich. 2015. A survey of
techniques for event detection in twitter. Computa-
tional Intelligence, 31:132 – 164.

John Foley, Michael Bendersky, and Vanja Josifovski.
2015. Learning to extract local events from the web.
Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval.

Luis Gravano and Hila Becker. 2011. Identification and
characterization of events in social media.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, D. Corney, Benno
Stein, and Martin Potthast. 2019. Semeval-2019 task
4: Hyperpartisan news detection. In *SEMEVAL.

Donghyeon Kim, Jinhyuk Lee, Donghee Choi, Jaehoon
Choi, and Jaewoo Kang. 2018. Learning user prefer-
ences and understanding calendar contexts for event
scheduling. Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge
Management.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. ArXiv,
abs/2001.04451.

Alexander Konovalov, Benjamin Strauss, Alan Ritter,
and Brendan T. O’Connor. 2017. Learning to extract
events from knowledge base revisions. Proceedings
of the 26th International Conference on World Wide
Web.

Cheng Li, Michael Bendersky, Vijay Garg, and Sujith
Ravi. 2017. Related event discovery. Proceedings
of the Tenth ACM International Conference on Web
Search and Data Mining.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Donald Metzler, Congxing Cai, and Eduard H. Hovy.
2012. Structured event retrieval over microblog
archives. In NAACL.

Petar Petrovski, Volha Bryl, and Christian Bizer. 2014.
Learning regular expressions for the extraction of
product attributes from e-commerce microdata. In
LD4IE@ISWC.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: real-time
event detection by social sensors. In WWW ’10.

Stefan Schweter and Alan Akbik. 2020. Flert:
Document-level features for named entity recogni-
tion.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Qifan Wang, Bhargav Kanagal, Vijay Garg, and
D. Sivakumar. 2019. Constructing a comprehensive
events database from the web. Proceedings of the
28th ACM International Conference on Information
and Knowledge Management.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. ArXiv, abs/2006.04768.

Kazufumi Watanabe, Masanao Ochi, Makoto Okabe,
and Rikio Onai. 2011. Jasmine: a real-time local-
event detection system based on geolocation informa-
tion propagated to microblogs. In CIKM ’11.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. OntoNotes Release 5.0.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

W. J. Youden. 1950. Index for rating diagnostic tests.
Cancer, 3.

Ted Tao Yuan and Zezhong Zhang. 2018. Merchandise
recommendation for retail events with word embed-
ding weighted tf-idf and dynamic query expansion.
The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval.

279

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan
Wang, Li Yang, and Amr Ahmed. 2020. Big
bird: Transformers for longer sequences. ArXiv,
abs/2007.14062.

Liang Zhao. 2020. Event prediction in big data era: A
systematic survey. ArXiv, abs/2007.09815.

A Appendix

A.1 Data Pre-Processing

Table 6: Key phrases used to enrich releases-related web
pages and the number of web pages consisting each key
phrase.

Phrase Number of web pages

"will be released" 556,702
"release date" 537,591
"to be released" 510,501
"will release" 321,214
"product launch" 199,099
"scheduled for release" 45,022
"will launch in" 36,411
"expected to launch" 33,985
"to come out in" 32,793
"release scheduled for" 1,795

Total 2,275,113

A.2 Product Releases Dataset
The product releases dataset is a new annotated
dataset which includes approximatly 30,000 web
pages tagged by crowd-sourced labelers and openly
available at https://doi.org/10.5281/zenodo.
6894770. The dataset includes sampled web pages
from the C4 dataset which were filtered as de-
scribed in Sections 3.2 and 3.3. In this dataset
however, only web pages with text size shorter than
3000 characters were kept (as opposed to 5000).
The average number of characters per web page in
the dataset is 1469 with a standard deviation of 721
and a median of 1412. The average number of to-
kens per web page is 244 with a standard deviation
of 199 and a median of 236. The web page with
the max number of tokens has 646 tokens. The
average number of sub-tokens per web-page, using
bert-base-uncased WordPiece tokenizer 7, resulted
in average of 324 sub-tokens with a standard devia-
tion of 158 and a median of 312 sub-tokens. The
web page with the max number of sub-tokens has
1869 sub-tokens. Of note, while the text2release
model was trained on the product releases labeled
dataset described in Section 3.4, it was also used

7https://huggingface.co/bert-base-uncased

to generate predictions on longer web pages (up to
5000 characters, as described in Section 3.2). Each
page was labeled by 4 to 6 annotators with an av-
erage number of annotators of 4.7. The number of
annotators per web page can be found in the column
“judgments”. The annotators were asked to tag each
web page with “text includes future product release”
or “text doesn’t include a future product release”.
Approximately ~63% of the web pages were found
to include a future product release. The annotators
were guided to ignore releases that happened in the
past, and future releases of non products entities
of mobile applications, software, movies and TV
shows.

Each web page is associated with a labeling con-
fidence score. The confidence score was calculated
by the Appen platform based on the level of agree-
ment between multiple contributors (weighted by
the contributors’ trust scores). More details can
be found in Appen website 8. The average confi-
dence score is 0.73 with a standard deviation of
0.146. The median confidence score is 0.743 and
the number of web pages with confidence score of
1 is 4,688. Of note, as the annotators were required
to label a relatively long and often complicated
text, it is expected that not all annotators will agree
on each of the label. Examples of positive and
negative web pages can be seen in Table 7.

Table 7: Example of web pages labeled as "text includes
future product release" (Positive) and "text doesn’t in-
clude a future product release" (Negative).

Label Text

Positive "gladwell’s previous five books (the tipping
point, blink, outliers, what the dog saw, and
david and goliath) have all been international
bestsellers. in his ground-breaking blink, he
explored the role of first impressions in our
lives. now he goes deeper, zeroing in on how
we make sense of the unfamiliar. talking to
strangers will be published september 2019."

Negative "get involved this spinal health week (20-26
may) to help raise awareness of the importance
of being ready for life, so more australians can
continue to do the things they love for longer.
aca will release weekly blogs in the lead up to
spinal health week ... tell us in 50 words or
less how chiropractic helps you get ready for
life, for your chance to win over $700 worth of
prices including a garmin fitness tracker, bose
wireless earbuds and a sunbeam stickmaster."

8https://success.appen.com/hc/en-us/articles/201855939-
How-to-Calculate-a-Confidence-Score

280

A.3 Pipeline Experiments and Results
The patterns used by the custom date parser can be
seen in Table 8. The number of identified products
per category can be seen in Table 9.

Table 8: Patterns used to parse date ranges within
free text.

Pattern Example

the [first/second] half of YEAR the first half of 2021
the [first/last] month of YEAR the last month of 2019
the [beginning/end] of YEAR the end of 2020
[early/late] YEAR early 2021
the [first/.../last] quarter of YEAR the forth quarter of 2020
[q1/q2/q3/q4] YEAR q1 2021
MONTH [next/this] year December this year
the [beginning/end] of MONTH the end of August
[this/next] SEASON this summer
the SEASON of [this/next] year the winter of next year
the SEASON of YEAR the fall of 2021

Table 9: The number of identified products per
category.

Category Number of Products

Video Games 142
Smartphones 29
Electronics 26
Books 23
Other 23

281

Proceedings of EMNLP 2022 Industry Track, pages 282–294
December 9–11, 2020. ©2022 Association for Computational Linguistics

Automatic Scene-based Topic Channel Construction System for
E-Commerce

Peng Lin∗, Yanyan Zou∗, Lingfei Wu, Mian Ma, Zhuoye Ding, Bo Long
JD.com, Beijing, China

{linpeng47,zouyanyan6,lingfei.wu,mamian,dingzhuoye,bo.long}@jd.com

Abstract
Scene marketing that well demonstrates user
interests within a certain scenario has proved
effective for offline shopping. To conduct scene
marketing for e-commerce platforms, this work
presents a novel product form, scene-based
topic channel which typically consists of a list
of diverse products belonging to the same us-
age scenario and a topic title that describes the
scenario with marketing words. As manual con-
struction of channels is time-consuming due to
billions of products as well as dynamic and
diverse customers’ interests, it is necessary to
leverage AI techniques to automatically con-
struct channels for certain usage scenarios and
even discover novel topics. To be specific, we
first frame the channel construction task as a
two-step problem, i.e., scene-based topic gen-
eration and product clustering, and propose an
E-commerce Scene-based Topic Channel con-
struction system (i.e., ESTC) to achieve auto-
mated production, consisting of scene-based
topic generation model for the e-commerce do-
main, product clustering on the basis of topic
similarity, as well as quality control based on
automatic model filtering and human screening.
Extensive offline experiments and online A/B
test validates the effectiveness of such a novel
product form as well as the proposed system.
In addition, we also introduce the experience of
deploying the proposed system on a real-world
e-commerce recommendation platform.

1 Introduction

Recently, e-commerce platforms have become an
indispensable part of people’s daily life. Differ-
ent from brick-and-mortar stores where salesper-
sons can hold face-to-face conversations to pro-
mote products and even recommend more prod-
ucts related to customers’ interests, most recom-
mendation systems of e-commerce platforms, such
as Taobao1, mainly display individual products in

∗The first two authors made equal contributions. Corre-
spond to Yanyan Zou.

1https://www.taobao.com/

which users might be interested (Zhou et al., 2018,
2019), as listed in Figure 1 (indicated as Recom-
mendation Flow Page). Recently, scene marketing
has become a new marketing mode for product pro-
motion where particular application scenarios (i.e.,
scene) are created to demonstrate product func-
tions and highlight features correspondingly (Zhao,
2020), which is also paramount for e-commerce
platforms to improve user experience during online
shopping (Kang et al., 2019; Fu et al., 2019). A
practical usage scenario of products can help users
better understand product functions and features,
and also allow the platform to exhibit more prod-
ucts that hit customer’s specific interests, so that the
user experience and click rate might be improved.
However, scenes do not always help. For exam-
ple, displaying all related products belonging to
the same scene in the recommendation flow page
might harm the user experience, since they tend to
be homogeneous.

To achieve scene marketing in e-commerce plat-
forms, this work presents a novel product form,
scene-based topic channel, which consists of a list
of diverse products belonging to the same scenario,
together with two short phrases (or sentences) as
the topic title summarizing the scene. Exemplified
by Figure 1, one primary product of a channel and
the associated scene topic title (highlighted with
red box) are displayed in the recommendation flow
page. If a user is interested in the primary prod-
uct and clicks on it, the user is then redirected to
the topic channel page where diverse products be-
longing to the same usage scenario are displayed.
Existing ways to constructing scene-based topic
channel mainly rely on expert knowledge and past
experience of business operators in grouping prod-
ucts into different functional categories with certain
scene topics (Mansell, 2002; Cooke and Leydes-
dorff, 2006; Fernandez-Lopez and Corcho, 2010).
However, such methods are highly expensive with
low efficiency and even impractical since there

282

Recommendation Flow Page Scene-base Topic Channel Translation

Top Left Product: Beijing Hot
Wilderness Forest Holiday

Camp

Top Right Product: Titanium
BBQ Tongs Tweezer for

Barbecue

Bottom Left Product: Folding
Collaspsible Wagon Utility

Outdoor Camping Cart

Bottom Right Product: Full-
Automatic 3-4 Person

Outdoor Camping Tent

Topic Title: Road Trip
Solve Troubles In Trip

Figure 1: A screenshot of a scene-based topic channel on an e-commerce platform, with only four products due to
limited space. Text with underline in the right-side Translation column are used to connect the translated words with
associated parts in the topic channel.

are billions of products in the e-commerce plat-
forms. Therefore, in this work, we propose an
E-commerce Scene-based Topic Channel construc-
tion system (i.e., ESTC) to automatically construct
such scene-based topic channels, where the task
is framed as a two-step problem, i.e., scene-based
topic generation and product clustering. One intu-
itive solution to obtaining scene topics is to make
use of topic models (Blei et al., 2003; Roberts et al.,
2013; Grootendorst, 2022) or techniques from ex-
tractive summarization (Basave et al., 2014; Wan
and Wang, 2016), which are, however, restricted
to assigning topics within a predefined limited can-
didate set, while there are often emerging scenes
in the e-commerce fields. Thus, like Alokaili et al.
(2020), we propose to generate scene-based topic
titles for products, which allows to create novel
topics not featured in the training set.

Nevertheless, in practice, the limitation of la-
beled data for training (around 5000 instances) hin-
ders the generation quality of the model. On the
other hand, we observe that generated topic titles,
describing the same scenario, might be slightly dif-
ferent in formulation. Simply grouping products
based on exact string match of generated topic titles
results in channels with rare products. To address
above issues, we first develop a pre-trained model
in the e-commerce field to improve generation qual-
ity. Then, a semantic similarity based clustering
method is designed to conduct product clustering
to form the channel. Finally, to ensure the user

experience online, we further design a quality con-
trol module to strictly filter out undesired channels,
such as inconsistent topic titles, or channels with
irrelevant topic-product pairs. Our contributions
are summarized as follows:

• A topic generation model in e-commerce field
is proposed to generate scene-based topic ti-
tles for products, which is flexible to produce
topics for emerging products and allows the
system to discover novel scene topics.

• A semantic similarity based clustering method
is designed to aggregate products with similar
topic titles and form scene-based channels,
which is able to improve the product diversity.

• A quality control module is designed to en-
sure the quality of the artificially constructed
channels before they are released online.

• We introduce the overall architecture of de-
ployed system where the ESTC has been suc-
cessfully implemented into a real-world e-
commerce platform.

• To the best of our knowledge, this is the
first work on automatically constructing scene-
based topic channel for scene marketing in
e-commerce platforms.

2 Proposed Method

The development of the proposed ESTC system
consists of three main parts, including scene-based
topic generation for each products, scene-based

283

product clustering to aggregate products with simi-
lar topic titles, as well as the quality control module
to ensure the quality of AI-generated channels. We
also include a simple data augmentation module
to discover weakly supervised data in order to im-
prove the diversity of generated topic titles.

2.1 Scene-based Topic Generation
In this work, we propose to generate the scene-
based topic titles for each product. To be specific,
given input information X = (x1, x2, . . . , x|X|) of
a product P , including product’s title T , a set of at-
tributesA and side informationO obtained through
optical character recognition techniques, paired
with scene-based topic title Y = (y1, y2, . . . , y|Y |),
we aim to learn model parameters θ and estimate
the conditional probability:

P (Y |X; θ) =

|Y |∏

t=1

p(yt|y<t;X; θ)

where y<t stands for all tokens in a scene title be-
fore position t (i.e., y<t = (y1, y2, . . . , yt−1)).

Pretraining with E-commerce Corpus Pre-
trained models (Radford et al., 2019; Devlin et al.,
2019; Lewis et al., 2020; Raffel et al., 2020; Zou
et al., 2020; Xue et al., 2021) have proved effective
in many downstream tasks, however, most of which
are developed on English corpora from general do-
mains, such as news articles, books, stories and
web text. In our scenario, we aim to produce topic
titles in Chinese that summarize certain usage sce-
narios of products. Therefore, a model is required
to understand the products through its associated in-
formation (such as title, semi-structured attributes)
and generate scene-based topic titles, where we
argue that the model should learn knowledge from
e-commerce fields and thus propose to further pre-
train models in domain (Gururangan et al., 2020).
Specifically, besides the product title, attribute set
as well as side information, we also collect the
corresponding advertising copywriting of products
from e-commerce platforms for the second phase
of pre-training. We adopt the UniLM (Dong et al.,
2019) with BERT initialization as backbone struc-
ture.

Recall that the product attributes A is a set with-
out fixed order. We observe that input containing
same attributes yet in different orders might results
in different outputs. On the other hand, UniLM is
an encoder-decoder shared architecture. To rein-
force both the understanding and generation ability

of no-order input information, in addition to the
original pre-training objectives of UniLM, we also
propose two objectives to adapt the target domain:

• Consistency Classification: Given a product
title-attributes pair, this task aims to classify
if the two refer to the same product. For the
positive example, the attributes and the title
describe the same product and attributes are
randomly concatenated as a sequence to in-
troduce disorder noises. For the negative ex-
ample, we randomly select attributes from a
different product.

• Sentence Reordering: We split the product
copywriting into pieces according to marks
(such as comma and period). Such pieces
are then shuffled and concatenated as a new
text sequence. The model takes the shuffled
sequence as input and learns to generate the
original copywriting.

After the second phase of pre-training in the target
e-commerce domain, we fine-tune the pre-trained
model on the scene-based topic generation dataset.

2.2 Scene-based Product Clustering

One intuitive solution to constructing a scene-based
topic channel is to group products with exactly
the same generated topic titles. However, we ob-
serve there exists channels with similar topic titles,
each of which merely contains several products,
while we expect one channel has diverse products
to ensure user experience. Therefore, we design a
clustering module to aggregate products with se-
mantically similar topic titles.

Topic Encoding To better learn scene-based
topic representations and distinguish different topic
titles, we take all topic titles from training set as in-
put and employ the SimCSE (Gao et al., 2021)
to further fine-tune the e-commerce pre-trained
UniLM model in an unsupervised fashion. The
embeddings of the last layer are used as the initial-
ization for product clustering.

Product Clustering This module aims to group
products with semantically similar topic titles into
a cluster, in other words, a product list for a channel.
Since we do not have prior knowledge of how many
topic clusters the topic generation model would
produce, we adopt the hierarchical clustering (Sa-
hoo et al., 2006) where the number of kernels is

284

Bidirectional Mask

S1 S2

S1

S2

SOS S1 EOS S2 EOS

Segment Embedding

Position Embedding

Token Embedding

Multi-Head Attention

Feed Forward

Add & Layer Norm

12 ×

Feed Forward

h0 h1 h2 h3 h4

Softmax

AGE SEASON GENDER

Feature Embedding

Fusion

DropoutDropout

+

Figure 2: Correlation scoring model structure.

not required. To be specific, we adopt the bottom-
up version, namely Agglomerative Nesting, which
treats each sample as a leaf node and uses an itera-
tive method for aggregation. In each iteration, two
nodes with the highest similarity score are merged
to form a new parent node. The iterative process
stops when the shortest distance among all nodes
is greater than a preset threshold. It is worthy not-
ing each cluster might align with multiple topic
titles and a list of products. The display order of
products within a channel is decided by recommen-
dation strategies, which is not focus of this work.

2.3 Quality Control

Although our method can generate good-quality
channels most of the time, there is still possibility
that the generated channels might not be accurate:
1) the generated topic title is semantically incoher-
ent; 2) the topic title and associated products are not
related according to the product usage scenarios.
Thus, in order to alleviate above issues and ensure
a reasonably good experience online, we design
two modules, sentence coherence and correlation
scoring models, to remove unexpected samples.

Topic Coherence Model We empirically observe
that the generated topic titles might suffer coherent
issues, like repetition and incompletion. Thus, we
design a topic coherence model to classify if a
generated topic title is coherent. To be specific,
the model is the e-commerce UniLM model with
a softmax layer for classification. During training,
we treat the online published topic titles as positive
examples. The negative ones are synthesized:

• Samples with repetition: For a positive exam-
ple of topic title, each unigram and bigram

Topic Generation Model

Online Channels

Product
Information

BERT Classifier
Positive

Negative
Train

Inference

Data Augmented
Product-Topic Pair

Topic Channel Data

Topic Encoding
Train

Topic Generation ModelProduct
Information Topic Encoding

Product ClusteringTopic
Coherence

Correlation
Scoring

AI Constructed
Channels

Screening

Product ClusteringQuality Control

(a) ESTC training with weekly update

(b) ESTC weekly production

Update

Figure 3: ESTC deployment on e-commerce platform.

is selected and repeated for one or two times
with equal probability.

• Incomplete samples: We randomly remove
the last two bigram or unigram tokens of a
positive topic title.

We randomly select above synthesized samples to
make the number of negative examples equal to
the size of positive examples. Recall that a cluster
might have multiple topic title candidates, the one
with highest coherence score by the topic coher-
ence model is used as final topic title. If all title
candidates are classified as incoherent, then we
simply remove such a cluster. After this module,
each cluster is a scene-based topic channel with a
list of products belonging to the same scene as well
as a topic title summarizing the scene.

Correlation Scoring Model We design another
binary classification model, i.e., correlation scoring
model, to identify if the topic title and products are
scene-based related. As illustrated in Figure 2, the
e-commerce UniLM model takes as input the prod-
uct information of a single product X as well as
the generated topic title Y and determine whether
they are related by the relevant scene. For better
learning the product usage scenario, we also take
into account the product profile information, such
as age, season, and gender profiles, and employ a
feed-forward layer to encode such features.

Likewise, product-topic title pairs from online
published topic channels are considered as positive
examples. The negative samples are obtained by
randomly selecting mismatched product-topic title
pairs. As a result, the number of negative examples
is the same as the positive ones.

For each constructed channel, we use this model
to check each product-topic title pair and remove

285

Model SacreBLEU ROUGE-1 ROUGE-2 ROUGE-L BLEU METEOR DR(%)

BART 1.92 7.50 1.02 7.01 3.20 8.63 1.09
UniLM-BERT 2.05 7.87 1.11 7.42 3.45 8.70 0.87
E-commerce UniLM 2.08 8.01 1.12 7.56 3.47 8.78 0.88
E-commerce UniLM + DA 2.17 7.68 1.21 7.36 3.68 8.70 12.07

Table 1: The results of different topic generation model.

products that are unrelated to the topic.

2.4 Data Augmentation
Initially, the online existing (i.e., human-created)
topic channels are quite limited which might hin-
der the model performance. Moreover, we would
like to construct novel channels. Thus, we pro-
pose a UniLM-based binary classification model
to discover more and diverse product-topic title
candidate pairs. To be specific, the existing online
product-topic title pairs are considered as positive
examples. Similar to Zhang et al. (2022), a product
with its the side information O from product detail
images are considered as negative examples. Af-
ter the classification model is trained, we use such
a model to further extract more data for training.
Negative examples with high probability scores are
augmented into the training set.

3 Deployment

We have successfully deployed the proposed ESTC
system on a real-world e-commerce platform. Fig-
ure 3 demonstrates the workflow of the deployed
system with weekly update. Firstly, the data aug-
mentation module is utilized to augment existing
online channels. The augmented data is then used
to train the topic generation and encoding models.
Since there are thousands of millions products on-
line, we weekly update the model and re-construct
the channels to discover novel scene-based topic
channels. To ensure a proper user experience, hu-
man screening is necessary before publishing chan-
nels online.

4 Experiment

4.1 Topic Generation Results
Data Collection The data for developing scene-
based topic generation model consists of two
sources: existing online channels (including
human-created) and augmented samples, collected
from a publicly available online e-commerce plat-
form, JD.com2. For the scene-based topic chan-
nels, we collected online channels from the product

2https://www.jd.com/

Dataset #PT #T IL OL

Human 177,412 5,186 69.34 13.44
Mined 111,572 82,834 74.21 12.54

Table 2: The statistics of topic generation dataset. #PT
denotes the number of product-topic pairs, #T denotes
the number of topic titles, IL denotes the average length
of input product information sequence and OL denotes
the average length of topic titles.

form “Goods List” from the platform, which were
reviewed by human.

We also leveraged the optical character recogni-
tion (OCR) and classification techniques to extract
key information about the product from product
detail images. Firstly, texts are extracted from the
images. Then, the extracted texts are ranked in
descending order of their importance and relevance
using the classification model. Finally, highly
ranked texts are selected and merged as the final
OCR input of products for topic generation.

In the end, we have 5,186 topic titles created by
human and 82,834 topic title candidates from prod-
uct side information. We further split the whole
dataset into training, validation and test set with a
ratio of 80%:10%:10%. The online channels are
considered as ground-truth. Details are listed in
Table 2. Moreover, we constructed product-OCR
text (i.e., side information) pairs for the data aug-
mentation module.

Comparison We use SacreBLEU (Post, 2018),
ROUGE (Lin, 2004), BLEU (Papineni et al., 2002),
and METEOR (Lavie et al., 2004) to measure qual-
ity of outputs by different generation models. We
also design a new metric, difference rate (i.e., DR),
to measure the novelty of generated topics, which
is the ratio of the number of novel topics (i.e., not
appearing in the training set) and the total number
of generated ones. We consider publicly available
models pre-trained on Chinese corpus as baselines,
including BART (Shao et al., 2021) and UniLM
with BERT initialization. As listed in Table 1,
our E-commerce UniLM model achieves best per-
formance for most evaluation metrics. With aug-
mented data (denoted as +DA), the performance

286

Model Silhouette Recall Precision F1

B.O.W 0.264 90.8 88.7 88.0
Word2Vec 0.220 88.3 86.5 85.3
BERT 0.200 75.7 74.9 73.7

+SimCSE 0.283 88.9 89.0 88.1
E-commerce UniLM 0.248 72.3 68.7 68.0

+SimCSE 0.283 96.4 96.0 95.7

Table 3: The performance of different topic encoding
models for clustering.

of our model is further improved with more novel
topic titles produced, which shows the effectiveness
of the data augmentation module.

4.2 Product Clustering Results

Dataset The clustering module works in an unsu-
pervised fashion, while labeled data is still required
for model evaluation. We manually create a data set
for clustering evaluation, containing 65 different
topic title samples, belonging to 18 groups.

Metrics We adopt the distance-based Silhouette
Coefficient (Rousseeuw, 1987) to evaluate the per-
formance of topic clustering. To investigate how
well a clustering matches reference partitions of
the test data, we further design two metrics.

For each topic sample i from cluster j, the preci-
sion score is calculated as:

Pi,j =
TPi,j

Nj
(1)

where TPi,j denotes the number of correctly
grouped topic i in cluster j, Nj is the number of
samples in cluster j. Similarly, the recall score is
calculated as:

Ri,j =
TPi,j

Ti
(2)

where Ti is the total number of topic i found across
all clusters.

The F1-measure score is computed as the har-
monic mean of precision and recall.

Comparison We compare different sentence
embedding-based clustering methods, including
bag of words (i.e., B.O.W), Word2Vec (Mikolov
et al., 2013), BERT as well as our E-commerce
UniLM model. As listed in Table 3, models with
SimCSE achieve better clustering performance. It
is worthy noting that, the Silhouette score is not
consistent with our designed metric scores. We
practically observed that higher F1 scores indicate
better clustering results for topics.

4.3 Quality Control Results

We also conducted human evaluation to investi-
gate the effectiveness of each module for quality
control, where for each setting, 1000 constructed
channels are presented for human screening and
report overall acceptance rate that is the ratio of the
validated channels and the all candidates. As listed
in Table 5, considering both topic coherence and
correlation scoring modules results in the highest
acceptance rate, demonstrating strengths of quality
control module.

4.4 Experiments of Different Clustering
Methods

As listed in Table 4, we compare two cluster-
ing method, K-means and hierarchical clustering
methods, where the initial embedding are taken
from different models. The hierarchical cluster-
ing with SimCSE enhanced e-commerce UniLM
model achieves best performance.

4.5 Online A/B Test

To demonstrate the payoff generated by ESTC sys-
tem, a standard A/B testing is conducted to evaluate
the benefit of deploying scene-based topic channels
on an e-commerce mobile app. After launching
such a new product form, the Click-Through Rate
(CTR) is improved by 3.20%, compared to the one
without scene-based topic channels, which shows
the values of AI-generated scene-based topic chan-
nels. We note that the comparison between human-
created and AI-generated channels is difficult to
fairly determine, since there are many factors mat-
tering the online performance, such as recommen-
dation strategies of products within channels.

More details about generated samples are in-
cluded in Appendix.

5 Lessons Learned During Deployment

Several lessons we have learned during model de-
ployment could be beneficial for other like-minded
practitioners who wish to deploy cutting-edge AI
technologies into real-world applications, such as
the importance of real-world data quality and busi-
ness understandings.

• Data quality matters model performance. Be-
sides the model capacity, the quality of train-
ing data is of paramount importance. The
cleaning procedures of raw data (e.g., remov-
ing poor samples from training set and speci-

287

Model Kmeans HC
Silhouette Recall Precision F1 Silhouette Recall Precision F1

B.O.W 0.221 81.9 74.3 72.4 0.264 90.8 88.7 88.0
Word2Vec 0.191 82.3 80.3 78.7 0.220 88.3 86.5 85.3
BERT 0.150 68.3 64.8 62.7 0.200 75.7 74.9 73.7

+SimCSE 0.262 90.0 86.2 86.6 0.283 88.9 89.0 88.1
E-commerce UniLM 0.210 73.5 69.0 68.4 0.248 72.3 68.7 68.0

+SimCSE 0.248 84.5 83.1 81.9 0.283 96.4 96.0 95.7

Table 4: The performance of different topic encoding models and different clustering models.

fying important attributes) plays a critical role
in model development.

• Business understandings and logics advance
AI model launching. The AI constructed
scene-based topic channels are not fool proof.
Thus, in order to ensure a reasonably good
user experience, post-processing, based on in-
sightful business understandings and logics,
of AI constructed channels in the production
platform is necessary to filter out any incon-
sistent or low-quality contents.

6 Related Work

Previous studies (Lau et al., 2011; Bhatia et al.,
2016; Mei et al., 2007) on topic mining mainly first
retrieve candidate topic labels from reference cor-
pora and then conduct topic ranking to select the
best topic label. Lau et al. (2010) simply take a
word from a top-N terms as the topic label. Knowl-
edge bases are also adopted to retrieve topic labels
by matching candidate topic words to knowledge
concepts (Magatti et al., 2009; Hulpus et al., 2013).
Techniques from extractive summarization have
also been used for topic extraction (Basave et al.,
2014; Wan and Wang, 2016), which typically ex-
tract summary sentences from the input text re-
lated to topics. Recent years have witnessed neural
networks are successfully leveraged to improve
performance of topic modeling techniques, such
as incorporating neural embeddings into existing
LDA-like models (Bianchi et al., 2021; Thompson
and Mimno, 2020), as well as the clustering embed-
ding based approaches (Sia et al., 2020; Angelov,
2020; Grootendorst, 2022). A potential limitation
of such methods is that the topic labels are within
a predefined limited candidate set, while there are
often emerging scenes in the e-commerce fields.
Therefore, similar to Alokaili et al. (2020), we de-
sign a pre-trained model in e-commerce domain to
generate scene-based topic titles, which allows to
generate novel topics not featured in training set.

Architecture Acceptance Rate (%)

ESTC w/o Quality Control 51.6
+ Topic Coherence 65.6
+ Correlation Scoring 60.6
+ Both 75.0

Table 5: Human evaluation for quality control.

Natural language processing techniques have
been widely used in e-commerce fields to im-
prove user experience, including automatic product
copywriting generation (Zhang et al., 2022; Wang
et al., 2022), online product review generation (Fan
et al., 2019; Liu et al., 2021) and question gener-
ation (Gao et al., 2020; Deng et al., 2020). Dif-
ferently, we propose to leverage natural language
generation and clustering techniques to automati-
cally construct scene-based topic channels, which,
to the best of our knowledge, is novel.

7 Conclusion

This work aims to automatically construct scene-
based topic channels. According to the understand-
ing of business requirements, we propose to first
generate topic titles for each product following by
conducting product clustering to form a channel
and design a novel framework, consisting of topic
generation, product clustering and post-processing
modules. The extensive offline experiments and
online A/B test have demonstrated the effective-
ness of the proposed approach. Incorporating user
behaviors (e.g., click preference) into channel con-
struction processes is worthy investigating in future.
For example, the generated title and the clustered
product are personalized.

8 Ethical Considerations

The data used in this work are collected from a pub-
licly available online e-commerce platform, where
the collection process is consistent with the terms
of use, intellectual property and privacy rights of
the platform. The annotated data for clustering
evaluation are constructed by authors, where the

288

process is fair for all models. Please note that no
private user data was used during data collection
process.

The proposed ESTC system can be deployed
on various e-commerce platforms where the scene
marketing is required. On the other hand, the dis-
play style (or the product form) can be changed
according to the practical needs, where the pro-
posed system can provide products that belong to
same usage scenarios.

Moreover, the AI constructed channels are not
fool proof. Thus, as we discussed in the paper, in or-
der to ensure the users can have a reasonably good
experience, quality control and human screening
of AI generated channels in the production plat-
form is necessary to filter out any inconsistent or
low-quality content.

9 Acknowledgements

We thank all the anonymous reviewers for their
constructive comments.

References
Areej Alokaili, Nikolaos Aletras, and Mark Stevenson.

2020. Automatic generation of topic labels. In Pro-
ceedings of the 43rd International ACM SIGIR con-
ference on research and development in Information
Retrieval, SIGIR 2020, Virtual Event, China, July
25-30, 2020, pages 1965–1968. ACM.

Dimo Angelov. 2020. Top2vec: Distributed representa-
tions of topics. arXiv preprint arXiv:2008.09470.

Amparo Elizabeth Cano Basave, Yulan He, and Ruifeng
Xu. 2014. Automatic labelling of topic models
learned from twitter by summarisation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 618–624.

Shraey Bhatia, Jey Han Lau, and Timothy Baldwin.
2016. Automatic labelling of topics with neural em-
beddings. In International Conference on Compu-
tational Linguistics. Association for Computational
Linguistics, ACL Anthology.

Federico Bianchi, Silvia Terragni, Dirk Hovy, Debora
Nozza, and Elisabetta Fersini. 2021. Cross-lingual
contextualized topic models with zero-shot learning.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1676–1683.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Philip Cooke and Loet Leydesdorff. 2006. Regional
development in the knowledge-based economy: The
construction of advantage. The Journal of Technol-
ogy Transfer, 31:5–15.

Yang Deng, Wenxuan Zhang, and Wai Lam. 2020.
Opinion-aware answer generation for review-driven
question answering in e-commerce. In Proceedings
of the 29th ACM International Conference on Infor-
mation & Knowledge Management, pages 255–264.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In Proceedings of the 33rd International
Conference on Neural Information Processing Sys-
tems, pages 13063–13075.

Miao Fan, Chao Feng, Lin Guo, Mingming Sun, and
Ping Li. 2019. Product-aware helpfulness prediction
of online reviews. In 2019 World Wide Web Confer-
ence, WWW 2019, pages 2715–2721. Association for
Computing Machinery, Inc.

Mariano Fernandez-Lopez and Oscar Corcho. 2010. On-
tological Engineering: with examples from the areas
of Knowledge Management, e-Commerce and the
Semantic Web. Springer Publishing Company, Incor-
porated.

Min Fu, Qiang Chen, Wei Lin, Pei Wang, and Wei
Zhang. 2019. Constructing a scene-based knowledge
system for e-commerce industries: Business analysis
and challenges. Data Intelligence, 1(3):224–237.

Shen Gao, Xiuying Chen, Chang Liu, Li Liu, Dongyan
Zhao, and Rui Yan. 2020. Learning to respond with
stickers: A framework of unifying multi-modality in
multi-turn dialog. In Proceedings of the Web Confer-
ence 2020, pages 1138–1148.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 6894–
6910. Association for Computational Linguistics.

Maarten Grootendorst. 2022. Bertopic: Neural topic
modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794.

289

Suchin Gururangan, Ana Marasovic, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 8342–8360.
Association for Computational Linguistics.

Ioana Hulpus, Conor Hayes, Marcel Karnstedt, and
Derek Greene. 2013. Unsupervised graph-based
topic labelling using dbpedia. In Proceedings of the
sixth ACM international conference on Web search
and data mining, pages 465–474.

Wang-Cheng Kang, Eric Kim, Jure Leskovec, Charles
Rosenberg, and Julian McAuley. 2019. Complete the
look: Scene-based complementary product recom-
mendation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Jey Han Lau, Karl Grieser, David Newman, and Tim-
othy Baldwin. 2011. Automatic labelling of topic
models. In Proceedings of the 49th annual meet-
ing of the association for computational linguistics:
human language technologies, pages 1536–1545.

Jey Han Lau, David Newman, Sarvnaz Karimi, and
Timothy Baldwin. 2010. Best topic word selection
for topic labelling. In Coling 2010: Posters, pages
605–613.

Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman.
2004. The significance of recall in automatic metrics
for mt evaluation. In AMTA, pages 134–143.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Junhao Liu, Zhen Hai, Min Yang, and Lidong Bing.
2021. Multi-perspective coherent reasoning for help-
fulness prediction of multimodal reviews. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5927–
5936.

Davide Magatti, Silvia Calegari, Davide Ciucci, and
Fabio Stella. 2009. Automatic labeling of topics. In
Proceedings of the 2009 Ninth International Confer-
ence on Intelligent Systems Design and Applications,
pages 1227–1232.

Robin Mansell. 2002. Constructing the knowledge
base for knowledge-driven development. Journal
of Knowledge Management, 6(4):317–329.

Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai.
2007. Automatic labeling of multinomial topic mod-
els. In Proceedings of the 13th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 490–499.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In ACL, pages 311–318.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Margaret Roberts, Brandon Stewart, Dustin Tingley, and
Edoardo Airoldi. 2013. The structural topic model
and applied social science. Neural Information Pro-
cessing Society.

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.

Nachiketa Sahoo, Jamie Callan, Ramayya Krishnan,
George Duncan, and Rema Padman. 2006. Incre-
mental hierarchical clustering of text documents. In
Proceedings of the 15th ACM international confer-
ence on Information and knowledge management,
pages 357–366.

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai,
Fei Yang, Li Zhe, Hujun Bao, and Xipeng Qiu.
2021. Cpt: A pre-trained unbalanced transformer
for both chinese language understanding and genera-
tion. arXiv preprint arXiv:2109.05729.

Suzanna Sia, Ayush Dalmia, and Sabrina J Mielke. 2020.
Tired of topic models? clusters of pretrained word
embeddings make for fast and good topics too! In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1728–1736.

Laure Thompson and David Mimno. 2020. Topic mod-
eling with contextualized word representation clus-
ters. arXiv preprint arXiv:2010.12626.

290

Xiaojun Wan and Tianming Wang. 2016. Automatic
labeling of topic models using text summaries. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2297–2305.

Zeming Wang, Yanyan Zou, Yuejian Fang, Hong-
shen Chen, Mian Ma, Zhuoye Ding, and BO Long.
2022. Interactive latent knowledge selection for e-
commerce product copywriting generation. In Pro-
ceedings of The Fifth Workshop on e-Commerce and
NLP (ECNLP 5), pages 8–19.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Xueying Zhang, Yanyan Zou, Hainan Zhang, Jing Zhou,
Shiliang Diao, Jiajia Chen, Zhuoye Ding, Zhen He,
Xueqi He, Yun Xiao, et al. 2022. Automatic product
copywriting for e-commerce. In Proceedings of the
AAAI Conference on Artificial Intelligence.

Mingxiao Zhao. 2020. Data-driven scene marketing
based on consumer insight. In 2020 International
Conference on Big Data Economy and Information
Management (BDEIM), pages 61–65. IEEE.

Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian,
Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019.
Deep interest evolution network for click-through
rate prediction. In Proceedings of the AAAI confer-
ence on artificial intelligence.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li,
and Kun Gai. 2018. Deep interest network for click-
through rate prediction. In Proceedings of the 24th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 1059–1068.

Yanyan Zou, Xingxing Zhang, Wei Lu, Furu Wei, and
Ming Zhou. 2020. Pre-training for abstractive doc-
ument summarization by reinstating source text. In
Proceedings of the Empirical Methods in Natural
Language Processing.

A Experiment Settings

A.1 The Hyper-parameters of Scene-based
Topic Generation Model

In this section, we introduce the detailed setting
of proposed Scene-based Topic Generation. To
generate the scene-based topic titles for each prod-
uct, we design a topic generation model based on
UniLM, the input sequence and output sequence
are encoded by the same attention module with
different attention masks. The model is a 12-layer

transformer with multi-head attentions. During
training, the learning rate is 0.00007, the warmup
proportion is set to 0.2 and the batch size is 1024.
The detailed hyper-parameters are listed in Table 6.
The rest of the parameters are set by default.

hyper-parameters value

learning_rate 0.00007
warmup_proportion 0.2
batch_size 1024
max_input_length 120
max_output_length 20
beam_size 4
embedding_size 768
hidden_dropout_prob 0.1
hidden_size 768
layer_norm_eps 1e-12
max_position_embeddings 250
num_attention_heads 3
num_hidden_layers 12
activation "gelu"
vocab_size 21128

Table 6: The detailed hyper-paramters of architecture of
E-commerce UniLM.

A.2 The Hyper-parameters of Topic
Enocoding Model

The topic encoding model encodes topic texts into
vector features of specified dimensions, which facil-
itates clustering by common numerical clustering
models. In this section, we introduce the detailed
setting of proposed theme encoding model. We
first obtain 700k topic data by the inference results
of the E-commerce UniLM model. Then we em-
ploy SimCSE3 to fine-tune the second pre-trained
UniLM model in the e-commerce domain. The
backbone model is a 12-layer transformer. The
learning rate is 0.00003 and the batch size is 64.
The rest of the parameters are set by default.

hyper-parameters value

num_train_epochs 4
max_len 32
train_batch_size 64
learning_rate 3e-5
max_seq_length 32
evaluation_strategy steps
pooler_type cls
temp 0.05

Table 7: The detailed hyper-paramters of architecture of
topic encoding.

3https://github.com/princeton-nlp/SimCSE

291

A.3 The Hyper-parameters of Topic
Coherence Model

Topic Coherence Model is 12-layer transformer
with a feed-forword network and a softmax layer
to distinguish whether the input topic is coherent.
The learning rate is 0.00005 and the batch size is
2048. The rest of the parameters are set by default.

hyper-parameters value

learning_rate 0.00005
warmup_proportion 0.1
batch_size 2048
max_len 32
embedding_size 768
hidden_dropout_prob 0.1
hidden_size 768
layer_norm_eps 1e-12
max_position_embeddings 250
num_attention_heads 3
num_hidden_layers 12
activation "gelu"
vocab_size 21128

Table 8: The detailed hyper-paramters of architecture of
topic coherence model.

A.4 The Hyper-parameters of Correlation
Scoring Model

To filter out bad cases where topic title is not suit-
able for product usage scenarios, we design another
binary classification model, i.e., correlation scoring
model, to identify if the topic title and products are
scene-based related. We concanuate the product
descreption infomation X and topic title Y as the
input of UniLM For better learning the product us-
age scenario, we also take into account the product
profile information, such as age, season, and gender
profiles, and employ a embedding layer and a feed-
forward layer to encode such features. The detailed
hyper-parameters of correlation scoring model are
listed in Table 9. The rest of the parameters are set
by default.

B The Generated Scene-based Topic

In this subsection, we show some example topics
generated by topic generation models, as well as
examples of topics generated by the entire system,
as shown in Table 10 and Table 11, respectively.

C Examples of Scene Marketing

In recent years, many companies have begun to use
scene marketing to promote products, as shown in

hyper-parameters value

learning_rate 0.00005
warmup_proportion 0.1
batch_size 2048
max_len 158
feature_embedding_size 300
feature_fusion_size 300
feature_vocab_size 13
embedding_size 768
hidden_dropout_prob 0.1
hidden_size 768
layer_norm_eps 1e-12
max_position_embeddings 250
num_attention_heads 3
num_hidden_layers 12
activation "gelu"
vocab_size 21128

Table 9: The detailed hyper-paramters of architecture of
correlation scoring model.

Figure 4, which are scene marketing for IKEA4 and
Amazon5. IKEA combines different types of furni-
ture in a scene room to highlight key attributes of
furniture, such as storage and simple shape. Ama-
zon also exhibits the functional scenarios for prod-
ucts, like babysitting and party games. Such scene
marketing can help consumers understand the func-
tions and features of products, which may improve
user experience and product conversion rates.

4https://www.ikea.com/
5https://www.amazon.com/

292

Input Generated Topic

创意烟灰缸生日送礼送男朋友 送男友好物@为爱精挑细选
Creative ashtray birthday gift for boyfriend Gifts For Boyfriends @ Carefully Selected For Love

夏季宽松休闲翻领男上衣 精选t恤@夏日清凉出行
Summer Loose Casual Lapel Men’s Top Selection Of T-shirts @ Summer Cool Outting

网红款渔夫帽 防晒合集@清凉防晒一夏
Web celebrity’s fisherman hat Sun Protection Collection @ All Summer Cool Sun Protection

龙井2022新茶绿茶茶礼盒装 女婿必买@教你一招搞定老丈人
Longjing 2022 new tea green tea gift box Son-in-law Must Buy @ Teach You A Trick To Get Father-in-law

Table 10: The generated scene-based topic titles by the topic generation model. We use @ to separate two phrases
of the topic title.

Generated Topic Product List

初生好礼@虎娃新生儿礼物
Newborn Gift @ Tiger Baby Newborn Gift

尿裤尿不湿学步裤吸湿透气
Moisture absorbent breathable diaper toddler pants

初生宝宝幼儿浴巾被子防惊跳睡袋
Newborn baby bath towel quilt anti-startle sleeping bag

婴儿记忆棉乳胶枕头枕芯
Baby memory foam latex pillow
婴儿配方奶粉2段850克

Infant formula milk powder 2 stage 850g

快乐露营@露营运动欢乐时光
Happy Camping @ Camping Sports Happy Hour

露营灯强光手电筒帐篷灯
Camping lights glare flashlight tent lights
户外折叠桌椅便携式野外可折叠野餐桌子

Portable outdoor folding picnic table
登山露营保暖加宽双人户外棉睡袋

Mountaineering camping warm widening double outdoor cotton sleeping bag
大空间防风3-4人三秒速开全自动速搭帐篷

Large space windproof 3-4 people three seconds to open fully automatic tent

尽情挥洒汗水@是兄弟一起上球场
Sports Sweat @ On The Court With Your Brother

高帮板鞋男子经典运动休闲鞋篮球文化鞋
High-top sneakers men’s classic sneaker, basketball culture shoes

男装梭织运动长裤运动服男
Men’s woven sports trousers sportswear

简约经典训练系列男子圆领套头休闲百搭卫衣
Simple and classic training series casual all-match sweatshirt

针织五分裤男透气舒适夏季短裤男运动裤子
Knitted 1/2 pants men’s breathable and comfortable summer running workout joggers

Table 11: The generated scene-based topic channel of ESTC system. We use @ to separate two phrases of the topic
title.

293

Examples of Scene Marketing for Different Companies

Figure 4: Examples of scene marketing for different companies.

294

Proceedings of EMNLP 2022 Industry Track, pages 295–303
December 9–11, 2020. ©2022 Association for Computational Linguistics

SpeechNet: Weakly Supervised, End-to-End Speech
Recognition at Industrial Scale

Raphael Tang,1 Karun Kumar,1 Gefei Yang,1 Akshat Pandey,1 Yajie Mao,1
Vladislav Belyaev,1 Madhuri Emmadi,1 Craig Murray,1 Ferhan Ture,1 Jimmy Lin2

1Comcast Applied AI 2University of Waterloo
1firstname_lastname@comcast.com 2jimmylin@uwaterloo.ca

Abstract

End-to-end automatic speech recognition sys-
tems represent the state of the art, but they rely
on thousands of hours of manually annotated
speech for training, as well as heavyweight
computation for inference. Of course, this im-
pedes commercialization since most companies
lack vast human and computational resources.
In this paper, we explore training and deploying
an ASR system in the label-scarce, compute-
limited setting. To reduce human labor, we
use a third-party ASR system as a weak su-
pervision source, supplemented with labeling
functions derived from implicit user feedback.
To accelerate inference, we propose to route
production-time queries across a pool of CUDA
graphs of varying input lengths, the distribution
of which best matches the traffic’s. Compared
to our third-party ASR, we achieve a relative
improvement in word-error rate of 8% and a
speedup of 600%. Our system, called Speech-
Net, currently serves 12 million queries per day
on our voice-enabled smart television. To our
knowledge, this is the first time a large-scale,
Wav2vec-based deployment has been described
in the academic literature.

1 Introduction

Training an end-to-end automatic speech recogni-
tion (ASR) model requires hundreds, if not thou-
sands, of hours of hand-labeled speech. With
the rise of silicon-hungry pretrained transformers,
these models additionally need increasing amounts
of computational power just to perform inference.
Together, these two hurdles impede effective model
deployment at all but the largest technology com-
panies and specialized speech processing startups.
The hurdles certainly apply to us at Comcast, the
main stage of this work. Our industrial challenge is
to fine-tune and deploy a large, pretrained speech
recognition model, without an army of annotators
(as in Amazon) or mammoth GPU farms (e.g.,
Google). Our end application is the Xfinity X1,

a voice-enabled smart television serving millions
of active devices in the United States.

Evidently, cloud ASR services are cheaply avail-
able.1 Google Cloud, for example, charges $1.44
USD per hour of transcribed speech. In contrast,
manual annotation services like Rev cost $90 per
hour, and our in-house annotators, whom Comcast
must use to protect user privacy, cost even more.
Thus, cloud ASR’s comparatively low pricing, com-
bined with its decent quality, suggests its utility as
an annotation source in the absence of substantial
human-labeled data.

Nevertheless, cloud ASR still falls short of hu-
man parity and hence demands label denoising. To
do this, we propose to use implicit user feedback
to remove incorrectly labeled examples, bootstrap-
ping an existing cloud ASR service. We derive
these labeling functions using signals from query
repetition, session length, and ASR confidence
scores. We model them in Snorkel (Ratner et al.,
2017), a popular data programming framework,
producing a 1400-hour weakly labeled dataset.
Trained on this, our models improve over those
using unfiltered data by an average 0.97 points in
word-error rate (WER), as presented in Section 4.

As for the second hurdle of resource efficiency,
many model acceleration methods exist. However,
few meet our productionization criteria: we seek
to preserve the quality, ruling out structured prun-
ing (Li et al., 2020); we wish to preserve the pre-
trained architectural structure, eliminating knowl-
edge distillation (Tang et al., 2019a); and we re-
quire stable software–GPU support, disqualifying
low bit-width quantization (Shen et al., 2020) and
other CPU-oriented approaches.

All things considered, the prime candidates are
medium bit-width quantization, decoder optimiza-
tions (Abdou and Scordilis, 2004), and CUDA com-
putation graphs (Gray, 2019). The first two follow

1But not cheaper or better than using our own in-house
ASR system; otherwise, there would be no need for this work!

295

the literature, but the third is more open ended. In
spite of their record-breaking performance, CUDA
graphs work only with fixed-length input, not vari-
able length. Toward this, we propose to allocate
a pool of CUDA graphs of varying lengths, alto-
gether matching the production-time traffic length
distribution. During inference, we route each query
to the graph with the least upper-bound in length.
As we show in Section 4, this yields a 3–5× in-
crease in throughput.

We claim the following contributions: first, we
derive novel labeling functions for constructing
weakly labeled speech datasets from in-production
ASR systems, improving our best model by a rela-
tive 8% in word-error rate. Second, we propose to
accelerate model inference using a pool of CUDA
graphs, attaining a 7–9× inference speed increase
at no quality loss. The resulting system, Speech-
Net, currently serves more than 20 million queries
per day on our smart television. To our knowledge,
we are the first to describe a large-scale, Wav2vec-
based deployment in the academic literature.

2 Our SpeechNet Approach

Our task is to train and deploy a state-of-the-art,
end-to-end ASR system, without using human-
annotated data. The context of this deployment is a
smart TV, which users interact with using a speech-
driven remote control. To issue a voice query, users
hold a button, speak their command, and release the
button. We initially serve them with a third-party
cloud ASR service, bootstrapping it for the devel-
opment of SpeechNet. Data-wise, we store thou-
sands of hours of utterances per day, complete with
session IDs, transcripts, and device IDs. Resource-
wise, we have 30 deployment nodes, each hosting
an Nvidia Tesla T4 GPU and receiving 120 queries
per second (QPS) at peak time; thus, our model’s
real-time factor must exceed 120.

2.1 End-to-End ASR Modeling

In end-to-end ASR systems, we transcribe speech
waveform directly to orthography, consolidating
the traditional acoustic–pronunciation–language
modeling approach. Similar to natural language
processing, the dominant paradigm in speech is to
pretrain transformers (Vaswani et al., 2017) on unla-
beled speech using an unsupervised contrastive ob-
jective, then fine-tune on labeled datasets (Baevski
et al., 2020). We practitioners further fine-tune
these released models on our in-domain datasets.

Snorkel
LF 1

LF 2

LF 3

“Net�ix”Session Info

Abstain

Correct

Incorrect

Denoise Incorrect

Figure 1: An example weak labeling. In this case, we
would discard the incorrect transcript, “Netflix.”

Concretely, we feed an audio amplitude se-
quence (xt)

ℓ
t=1 ∈ [−1, 1] into a pretrained model

consisting of one-dimensional convolutional fea-
ture extractors and transformer layers, getting
frame-level context vectors (ht)

N
t=1 ∈ Rk. On each

of these vectors, we perform a softmax transforma-
tion across the vocabulary V , for a final probability
distribution sequence of (yt)

N
t=1 ∈ R|V |. For fine-

tuning, we use a training set composed of audio–
transcript pairs and optimize with the standard con-
nectionist temporal classification objective (CTC;
Graves, 2012) for speech recognition. We uncase
the transcripts and encode them with a character-
based tokenizer, as is standard. At inference time,
we decode the CTC outputs with beam search and
a four-gram language model.

2.2 Data Curation
To build a weakly labeled dataset, we turn to
Snorkel (Ratner et al., 2017), a popular data pro-
gramming framework for aggregating and denois-
ing weak labelers. In Snorkel, domain experts first
create handwritten weak labelers, which the au-
thors call labeling functions (LFs). Each of these
LFs takes as input an unlabeled example, as well
as any auxiliary data, and either outputs a label or
abstains. Next, Snorkel applies these LFs to each
example in a dataset, producing a matrix of noisy
labels. It learns from this noisy observation matrix
a generative model with the true labels as latent
variables, which it supplies to downstream tasks.

Our task is to remove incorrect transcripts from
a weakly constructed dataset. Our LF inputs are
audio clips and transcripts, along with session data,
and our outputs are one of correct, incorrect, or
abstain. After Snorkel denoises the LF outputs and
labels each dataset example, we discard abstained
or incorrect ones, as visualized in Figure 1. We
derive and use the three following novel LFs:

Session position. We group queries in the same
session if each occurs within 60 seconds of at least
one other and is issued by the same user. Previ-
ously, we found a negative correlation between the
intrasession position of a query and the word-error

296

Launch Kernel

Launch Kernel

Launch Kernel

Launch Kernel

Figure 2: Typical way for the CPU to launch a sequence
of small GPU kernels, with time flowing from left to
right. Red area denotes launch latency.

Launch Graph Kernel Kernel Kernel Kernel

Figure 3: Launching a CUDA graph. Difference in right
margin relative to Figure 2 portrays time savings.

rate (Tang et al., 2019b), where the last query con-
sistently has a low word-error rate (WER), and long
sessions have high intermediate query WERs. With
this finding, we write the session position LF, given
query q, as

LFSP(q) :=





CORRECT if q is last in its session
INCORRECT if sess. length ≥ 3, q not last
ABSTAIN otherwise.

ASR confidence. For each transcribed utterance,
ASR systems output a confidence score, which
correlates with the WER. In most systems, this
score results from an addition between the acoustic
model score and the language model score. The
first is a function of speech, while the second of
text. Since our third-party ASR service is opaque,
we have access only to the final score. This compli-
cates its direct use because thresholding it would
skew the balance toward frequent words, as influ-
enced by the language model.

To bypass this issue, we collect sample statistics
of the final score grouped by transcript text, then
design an LF with transcript-specific thresholds.
This way, we remove the language model score as
a confounder. Define

LFAC(q) :=





CORRECT if s(q) ≥ p80(q)
INCORRECT if s(q) ≤ p20(q)
ABSTAIN if p20(q) or p80(q) undefined

or otherwise,

where s(q) is the confidence score for query q from
the third-party ASR, and p20(q) and p80(q) return
the 20th and 80th percentile ASR score for the tran-
script of q, respectively.
Rapid repetition. Users often rapidly repeat their
voice queries upon ASR mistranscription (Li and
Ture, 2020). Given this, we can discard queries
that closely precede others from the same user:

CUDA Graph Pool

q2q1 q3

Queries

Figure 4: Three queries routed across a graph pool.

LFRR(q) :=




INCORRECT if the user’s next query

occurs ≤ 13 seconds of q
ABSTAIN otherwise.

On our platform, we’ve determined 13 seconds to
be the optimal duration in terms of specificity and
sensitivity (Li and Ture, 2020).

2.3 Model Inference Acceleration

In production, we use a batch size of one for in-
ference. This largely decreases efficiency because
GPU kernel launches now dominate the processing
time, as portrayed in Figure 2. In our case, we can’t
just pad to a large fixed size, since computation in-
creases quadratically with length for transformers.
It’s also infeasible to use batching (e.g., batch to-
gether sequential queries) because only 4–6 queries
arrive in a 50-millisecond window per server, and
we can’t afford to sacrifice that much speed.

To improve inference efficiency, CUDA graphs
allow a sequence of GPU kernels to be captured
and run as a single computation graph, thus incur-
ring one CPU launch operation instead of many—
see Figure 3. However, these graphs are input
shape and control flow static, so they must be pre-
constructed. This clearly poses a barrier to using
variable-length audio as input.

To address this issue, we propose to allocate a
pool of differently sized CUDA graphs, then route
each query to the nearest upper-bound graph. For
higher efficiency, we match the length distribution
of the pool with that of the computation time on pro-
duction traffic. Formally, let X be the random vari-
able (r.v.) denoting the arrival distribution of the
lengths of production-time queries. Let Z := f(X)
be the time it takes for a CUDA graph to perform
inference for length X . Then, our CUDA graph
pool comprises G := (gz1 , . . . , gzn), where gzi de-
notes a CUDA graph of length zi and z1, . . . , zn
are realizations of Z. To serve a query of length l,
we pick the graph gz∗ , where

z∗ := min{zi | gzi ∈ G, zi ≥ l}. (1)
297

Dataset Train/Dev/Test Hrs. # Speakers # Unique

CC-20 22/2.2/2.2 40K/4K/4K 20
CC-LG 1400/1.0/2.5 325K/2K/4K 88K

Table 1: Dataset statistics. Further query distribution
details are in the appendix.

Our upstream system sends no more than ten sec-
onds of audio by design, bounding this set. We
illustrate this process in Figure 4.

3 Experimental Setup

Our key experiments are to validate the model
effectiveness of our labeling functions (Section
2.2) and the computational savings of our CUDA
graph pool (Section 2.3). We trained every run on
one p3.2xlarge Amazon Web Services (AWS)
instance, which has an Nvidia V100 GPU and
eight virtual CPU cores. We implemented our
models in PyTorch using the HuggingFace Trans-
formers library (Wolf et al., 2019) and Nvidia’s
NeMo (Kuchaiev et al., 2019); see the appendix for
more details.

3.1 Dataset Curation

We curated two datasets: one critical dataset, called
CC-20, comprising the twenty most frequent com-
mands, and another large-scale dataset, named CC-
LG, consisting of audio examples sampled uni-
formly at random from user traffic. We split our
datasets into one or more training sets, a develop-
ment (dev) set, and a test set, all drawn from sepa-
rate days and speakers—see Table 1 for statistics.
On CC-20, native English speakers annotated the
training set to establish an “upper bound” in qual-
ity, relative to using the weakly labeled datasets.
On CC-LG, the 1400-hour set was too large to an-
notate, so we skipped that. On both datasets, we
manually annotated the dev and test sets to serve
as gold evaluation sets.

For the weakly labeled training sets, we con-
structed one set with raw transcripts from the third-
party ASR system and another set with transcripts
from Snorkel, filtered using the labeling functions
in Section 2.2. We name the former set “raw” and
the latter “weak.” To remove dataset size as a con-
founder, we use the same size for all training sets.

3.2 Baselines and Models

For our first baseline, we picked Google Cloud’s
public ASR offering (Beaufays, 2022), primarily

Model Training CC-20 CC-LG
Dev/Test Dev/Test

Google Cloud – 24.7/24.7 26.5/25.5
Our Third Party – 7.56/7.60 10.8/9.66

Our Trained Models

SEWtiny
Raw 6.72/6.82 17.4/16.3

41M parameters
Weak 5.17/4.80 15.9/14.5
Human 4.79/4.66 –

Wav2vec2.0base
Raw 2.81/3.17 10.2/9.11

94M parameters
Weak 1.62/1.77 9.14/8.82
Human 1.54/1.75 –

Conformerlarge
Raw 3.52/3.68 12.6/10.6

120M parameters
Weak 3.63/4.08 12.0/9.78
Human 2.60/2.72 –

Table 2: Dev and test WERs of models trained on sets
without LFs (raw), with LFs (weak), and with human
annotations (human). Best results bolded.

SEW Wav2Vec2.0Conformer
Model

15

24

38

60

95

150

239

378

600

La
te

nc
y

(m
s)

Model Latency
No Graphs
CUDA Graphs (Uniform)
CUDA Graphs (Log-Normal)

SEW Wv2V2.0 Conformer
Model

20

27

36

47

63

84

112

150

200

Qu
er

ie
s p

er
 S

ec
on

d
(Q

PS
)

Model Throughput

Figure 5: Throughput in queries per second and la-
tency in milliseconds of all three models, under different
CUDA graph pool settings. The red line on the left is
our third-party ASR model latency and the blue line on
the right our required throughput in production.

to sanity check our third-party ASR service. We
used their standard model offering, touted as state
of the art, costing us $0.006 USD per 15 seconds
of speech. For our second baseline, we selected
our third-party ASR service that we licensed from
a major American technology company.

Models. We chose three different state-of-the-art,
pretrained transformer models from the literature,
each representing a separate computational oper-
ating point: the Squeezed and Efficient Wav2vec
model, tiny variant (SEW-tiny; Wu et al., 2022),
at 41 million parameters; the standard Wav2vec
2.0 base model (Wav2vec 2.0-base; Baevski et al.,
2020), at 94 million parameters; and the large
Conformer model (Conformer-large; Gulati et al.,

298

Training Set CC-20 CC-LG
Dev/Test Dev/Test

Raw (no LFs) 2.81/3.17 14.9/13.6
+ LFSP 2.32/2.64 13.3/12.1
+ LFAC 2.16/1.93 13.3/11.9
+ LFRR 1.62/1.77 13.1/11.8

Human 1.52/1.75 –

Table 3: Quality of Wav2vec 2.0-base under differently
constructed but equally sized training sets.

2020), at 120 million. We initialized them with
LibriSpeech-fine-tuned weights and trained them
using standard gradient-based optimization—we
put details in the appendix.

4 Results and Discussion

We present our model quality results in Table 2.
Unsurprisingly, Google Cloud does worse than our
third-party service, which has been specifically tai-
lored to our in-domain vocabulary. On average,
sets curated with Snorkel (denoted as “weak”) im-
proves the WER by 0.97 points (95% CI, 0.09 to
1.85) relative to those without (“raw”). Wav2vec
2.0-base, our best model, outperforms the third
party by a relative 70% and 8% on CC-20 and CC-
LG, respectively. Except for Conformer-large, all
models trained on Snorkel-labeled sets achieve near
parity with those on human-annotated training sets,
with Wav2vec 2.0-base in particular reaching a test
WER on CC-20 worse by only 0.02 points (1.77 vs.
1.75). We speculate that conformers perform worse
than Wav2vec 2.0-base does due to using log-Mel
spectrograms instead of raw audio waveform: our
voice queries greatly differ in loudness, resulting
in exponential fluctuations after applying the log
transform (as the input approaches 0).

We chart our model acceleration results in Fig-
ure 5. We gather these statistics from replaying
production-time traffic as fast as possible to satu-
rate the model. Overall, CUDA graph pools accel-
erate our models by 7–9× (left subfigure; compare
blue and green bars) and increase throughput by
3–5× (right subplot). Initializing the graph lengths
to be log-normal distributed ekes out a few percent-
age points (compare orange and green) in perfor-
mance, since that better matches our production
traffic. Most stark is the contrast between vanilla,
graphless conformer throughput (22 QPS) and its
accelerated counterpart (117 QPS), representing a

0 10 20 30
Number of Graphs

20

40

60

80

100

La
te

nc
y

(m
s)

Latency

40

60

80

100

120

140

QPS

Number of Graphs vs. Performance
QPS

1 3 5 7 9 11
Number of Threads

20

40

60

80

100

La
te

nc
y

(m
s)

Latency

100

120

140

160
QPS

Number of Threads vs. Performance
QPS

Figure 6: Twin plots of the system latency and through-
put plotted against the number of CUDA graphs and
inference threads, with the left y-axis tracking latency
and the right axis throughput.

five-fold improvement. This likely arises from the
vanilla conformer incurring much kernel launch
overhead, on account of its more nested architec-
ture, precisely which CUDA graphs address.

4.1 Ablation Studies

Data curation. We measure the quality contribu-
tion of each LF, as described in Section 2.2. We
curate datasets using one additional LF at a time,
starting with no LFs, then the session position LF,
followed by the ASR confidence LF, and, finally,
the rapid repetition LF. This process results in four
datasets for the nested configurations. To remove
transcript diversity and dataset size as confounders,
we fix the number of training hours to 200 hours
and match the transcript distributions. We target
Wav2vec 2.0-base since it’s our deployment model.

We present the ablation results in Table 3. Each
added LF improves the quality, with the first LF
having the most impact (1.5 average points for the
first vs. 0.1–0.7 for the rest), likely due to diminish-
ing returns. We note that the ASR confidence score
affects CC-20 more than it does CC-LG, possibly
because of shorter sessions.

Model inference acceleration. We study how the
number of CUDA graphs and inference threads
(i.e., threads for launching graphs) affects the la-
tency and the throughput, all else being equal. First,
we sweep the number of CUDA graphs and hold
the thread count at 3, the optimal value from our
experiments. Next, we vary the thread count and
fix the number of graphs at 36, also the best value.
In both settings, we sample 10k queries uniformly
at random from production and queue them up in
our inference server, which comprises an Nvidia
T4 GPU and an eight-core CPU.

We plot our results in Figure 6. For CUDA
graphs, we observe rapidly diminishing returns

299

in both latency and throughput after 5–8 graphs,
although they continue to improve until the final
value of 36 graphs, the most we can fit in the GPU
memory. For inference threads, we see initially
rapid gains in throughput (though not latency) un-
til 4 threads, whereupon throughput tapers slightly
and latency grows linearly. We conjecture that this
arises from GPU saturation causing thread con-
tention; while we can certainly push more queries
at a time (there being 36 graphs), the GPU can
process only 138 queries worth per second. This
results in a backlog of queries when we exceed
3–4 threads, causing linear growth in latency if
throughput remains stable.

4.2 Industrial Considerations

We deploy SpeechNet as load-balanced Docker
Swarm replicas, each exposing a WebSocket API
for real-time transcription. We write the model
server in Python and the inference decoder in C++;
in particular, we free in the decoder Python’s global
interpreter lock, a substantial bottleneck in our ap-
plication. Our decoder runs faster than all tested
open-source CTC decoders do, such as Parlance’s
ctcdecode, pyctcdecode, and Flashlight. We exe-
cute all graphs in half-precision on separate CUDA
streams, further increasing parallelism.

To monitor the reliability of our production sys-
tem, we measure and expose four key service-
level indicators (SLIs): query traffic, server errors,
response latency, and system saturation. Taken
together, these represent the so-called “Google
Golden signals,” a battery of metrics espoused by
its namesake. As is standard in industry, we ex-
port real-time metrics to Prometheus, a monitoring
system for time series, and then aggregate them in
Grafana, a full-stack visualizer.

During the initial release of SpeechNet, these
metrics enabled us to detect and mitigate critical
imperfections. In one such case, we observed a
large spike in traffic preceding increases in time-
out errors and latency. The spike occurred at the top
of the hour, when, due to the nature of television
programming, many users issue queries to change
shows. From this evidence, we traced the culprit to
our suboptimal decoder implementation, which we
promptly fixed.

5 Related Work

Pretrained ASR models. Much like natural lan-
guage processing, the dominant paradigm in the

end-to-end speech recognition literature is to pre-
train transformers on vast quantities of unlabeled
speech and then fine-tune on the labeled datasets.
In their seminal work, Schneider et al. (2019) pio-
neer this approach with a contrastive learning ob-
jective, calling it Wav2vec. They further refine it
in Baevski et al. (2020) by introducing discretized
representations, naming their model the present
Wav2vec 2.0. Other variants of this model include
the Squeezed and Efficient Wav2vec model (Wu
et al., 2022), which introduces architectural modifi-
cations for computational efficiency, and the con-
former (Gulati et al., 2020), which adds convo-
lutions in the transformer blocks for better local
context modeling.

Weakly supervised ASR. Several papers explore
constructing a weakly labeled dataset and train-
ing an ASR system with little to no human an-
notation. VideoASR (Cheng et al., 2021) and
GigaSpeech (Chen et al., 2021) construct speech
datasets from videos and subtitles, but this fails in
our domain since our users’ voice queries differ
greatly from those of public sources in both acous-
tics and text. For example, our queries contain rare
entities (e.g., “Xfinity Home”), rarely last more
than 4–5 seconds, and come from a low-fidelity
microphone in frequently noisy households. Along
a separate line, Dufraux et al. (2019) proposes a
label noise-aware objective for ASR; however, this
method increases training time by 15–30×, which
is too burdensome for us.

Model acceleration. A plethora of model acceler-
ation methods exist for transformers. In structured
pruning, entire blocks of weights are removed, like
attention heads (Michel et al., 2019) and weight
submatrices (Li et al., 2020), resulting in a more
lightweight model. This comes at the cost of qual-
ity, which we can’t sacrifice given our thin margin
over our third party. Hinton et al. (2015) proposes
knowledge distillation, where the outputs of a small
model are fine-tuned against those of a large model,
but we wish to use the original, pretrained model
architecture at runtime for robustness. Still others
propose low bit-width (2–8 bit) quantization (Shen
et al., 2020), which, while quality preserving, has
poor conventional GPU software support. Note
that, in this paper, we restricted our experiments to
CUDA graph pools because their application does
not exclude others. In fact, when multiple accelera-
tion methods can be applied, Xin et al. (2022) find
that the savings are largely cumulative.

300

6 Conclusions and Future Work

In this paper, we explore commercializing a
transformer-based, end-to-end speech recognition
system without human annotation and with less
computational power. We design three novel la-
beling functions, derived from implicit user feed-
back, for Snorkel to construct weakly labeled, in-
domain speech datasets from production traffic. We
also propose CUDA graph pools, a novel model
acceleration method especially suited for single-
example inference, as frequently encountered in
production. Our system, SpeechNet, improves the
word-error rate by a relative 8% and the inference
speed by 600%, compared to our third-party ASR
service. One promising research direction is to ex-
tend SpeechNet to the recently released OpenAI
Whisper (Radford et al., 2022), an ultra large-scale
ASR model trained on 680,000 hours of speech,
representing the longest corpus to date.

Limitations

Our methods primarily apply to companies seeking
to build out in-house ASR systems given at least
a few thousand customers. We target business-
to-consumer products, not business to business,
where clients have wildly different needs without
any guarantee on the userbase size (or even exis-
tence). Due to the setting of our work at a for-profit
organization, we’re also barred from releasing user
data and source code out of concerns for privacy
and intellectual property.

References
Sherif Abdou and Michael S. Scordilis. 2004. Beam

search pruning in speech recognition using a poste-
rior probability-based confidence measure. Speech
Communication.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in Neural Information Processing Systems.

Françoise Beaufays. 2022. Google Cloud launches
new models for more accurate speech AI.
https://cloud.google.com/blog/products/ai-machine-
learning/google-cloud-updates-speech-api-models-
for-improved-accuracy.

Guoguo Chen, Shuzhou Chai, Guanbo Wang, Ji-
ayu Du, Wei-Qiang Zhang, Chao Weng, Dan Su,
Daniel Povey, Jan Trmal, Junbo Zhang, et al.
2021. GigaSpeech: An evolving, multi-domain
ASR corpus with 10,000 hours of transcribed audio.
arXiv:2106.06909.

Mengli Cheng, Chengyu Wang, Jun Huang, and Xi-
aobo Wang. 2021. Weakly supervised construction
of ASR systems from massive video data. In Proc.
Interspeech 2021.

Adrien Dufraux, Emmanuel Vincent, Awni Han-
nun, Armelle Brun, and Matthijs Douze. 2019.
Lead2Gold: Towards exploiting the full potential
of noisy transcriptions for speech recognition. In
2019 IEEE Automatic Speech Recognition and Un-
derstanding Workshop (ASRU).

Alex Graves. 2012. Connectionist temporal classifica-
tion. In Supervised Sequence Labelling with Recur-
rent Neural Networks. Springer.

Alan Gray. 2019. Getting started with CUDA graphs.
https://developer.nvidia.com/blog/cuda-graphs/.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. 2020.
Conformer: Convolution-augmented transformer for
speech recognition. Proc. Interspeech 2020.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al.
2015. Distilling the knowledge in a neural network.
arXiv:1503.02531.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii
Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kri-
man, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook,
et al. 2019. NeMo: a toolkit for building ai applica-
tions using neural modules. arXiv:1909.09577.

Bingbing Li, Zhenglun Kong, Tianyun Zhang, Ji Li,
Zhengang Li, Hang Liu, and Caiwen Ding. 2020.
Efficient transformer-based large scale language rep-
resentations using hardware-friendly block structured
pruning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020.

Wenyan Li and Ferhan Ture. 2020. Auto-annotation for
voice-enabled entertainment systems. In Proceedings
of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in Neural Information Processing Systems.

Alec Radford, Jong W. Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. 2022. Ro-
bust speech recognition via large-scale weak supervi-
sion. OpenAI Blog.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the International Con-
ference on Very Large Data Bases.

301

Steffen Schneider, Alexei Baevski, Ronan Collobert,
and Michael Auli. 2019. wav2vec: Unsupervised pre-
training for speech recognition. Proc. Interspeech
2019.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian based ultra low
precision quantization of BERT. In Proceedings of
the AAAI Conference on Artificial Intelligence.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019a. Distilling task-
specific knowledge from BERT into simple neural
networks. arXiv:1903.12136.

Raphael Tang, Ferhan Ture, and Jimmy Lin. 2019b.
Yelling at your TV: An analysis of speech recognition
errors and subsequent user behavior on entertainment
systems. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. HuggingFace’s Transform-
ers: State-of-the-art natural language processing.
arXiv:1910.03771.

Felix Wu, Kwangyoun Kim, Jing Pan, Kyu J. Han,
Kilian Q. Weinberger, and Yoav Artzi. 2022.
Performance-efficiency trade-offs in unsupervised
pre-training for speech recognition. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP).

Ji Xin, Raphael Tang, Zhiying Jiang, Yaoliang Yu, and
Jimmy Lin. 2022. Building an efficiency pipeline:
Commutativity and cumulativeness of efficiency op-
erators for transformers. arXiv:2208.00483.

A Computational Environment

We train all models on Amazon p3.2xlarge in-
stances running HuggingFace Transformers 4.15.0,
from which we borrow the SEW and Wav2vec im-
plementations; PyTorch 1.11.0 (CUDA 10.2), a
popular deep learning framework; Nvidia’s NeMo
library, which we depend on for the Conformer
implementation; and SentencePiece 0.1.94, which
we use for the character-based tokenizer. We im-
plement our CTC decoder in C++14, interfacing
with Python using pybind11 and the development li-
braries for SentencePiece and PyTorch (LibTorch).
We serve users on geographically dispersed data

centers on the American east and west coasts, run-
ning Nginx-load-balanced boxes with Nvidia T4s.

B Dataset and Production Statistics

We curated CC-20 sampled across weeks of traffic,
with training, dev, and test coming from separate
speakers. We constructed CC-LG’s training set
sampled from 2 days of traffic between July 3 and
July 5, 2022 and the development/test sets from
separate users sampled a day after the training set.

101 103 105

Query Rank
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
x

Query Rank Traffic ECDF

0 20 40 60
Characters

0.0

0.2

0.4

0.6

0.8

1.0
Final Transcript Length ECDF

0 10 20 30
Transcripts

0.0

0.2

0.4

0.6

0.8

1.0
ASR Outputs Length ECDF

0 1 2 3 4
Seconds

0.0

0.2

0.4

0.6

0.8

1.0
ASR Activity Duration ECDF

Figure 7: Distribution statistics of our in-production
queries.

We present detailed production statistics of our
queries in Figure 7. The query distributions have
large right skew, with the top 1000 queries mak-
ing up nearly 70% of the traffic, as the first sub-
plot shows. Our queries are lexically simple, e.g.,
“Hulu,” “Free movies for me,” etc., as the second
subgraph shows. The third and fourth subgraphs de-
note the activity of the ASR system—most queries
are less than 1–2 seconds in speech (not necessarily
total audio length).

C Training Details

For all models, on CC-LG, we first resize and re-
initialize the final linear layer to match our vocabu-
lary size, then fine-tune just the output linear layer
(as recommended in the original Wav2vec paper)
for 30k steps. Next, we ran 750k optimization
steps on the “raw” training set. Then, we train
for an additional 100k steps on the “weak” subset,
if applicable. If it’s the raw training run, we still
train for an additional 100k steps, but on the “raw”
training set as usual. That is, all configurations on
CC-20 use 850k optimization steps. On CC-20, we
use 10k steps for the initial output layer fine-tuning
and then ran 50k optimization steps for all models.
We use the AdamW (Loshchilov and Hutter, 2018)
optimizer with a batch size of 8 for all runs. We
decode all model outputs using a beam size of 15
and a beam cutoff of 30. All model weights are
initialized from the respective model cards on Hug-
gingFace’s model zoo. We describe model-specific
hyperparameters:

302

SEW. We optimize our models using a learning
rate of 3× 10−6, determined from preliminary ex-
periments across several choices spanning different
orders of magnitude. SEW operates on the raw
audio waveform.

Wav2vec 2.0. We use a learning rate of 2× 10−6,
determined similarly. Wav2vec 2.0 operates on the
raw audio waveform as well.

Conformer. As is standard, we transform all audio
amplitudes to 80-dimensional Mel spectrograms
before being input to the Conformer encoder. We
pick a learning rate of 5 × 10−6 using the same
procedure as the other models do.

303

Proceedings of EMNLP 2022 Industry Track, pages 304–315
December 9–11, 2020. ©2022 Association for Computational Linguistics

Controlled Language Generation for Language Learning Items

Kevin Stowe∗, Debanjan Ghosh*, Mengxuan Zhao
Educational Testing Service

{kstowe, dghosh}@ets.org, mzhao@etscanada.ca

Abstract

This work aims to employ natural language
generation (NLG) to rapidly generate items for
English language learning applications: this
requires both language models capable of gen-
erating fluent, high-quality English, and to con-
trol the output of the generation to match the
requirements of the relevant items. We experi-
ment with deep pretrained models for this task,
developing novel methods for controlling items
for factors relevant in language learning: di-
verse sentences for different proficiency levels
and argument structure to test grammar. Hu-
man evaluation demonstrates high grammati-
cally scores for all models (3.4 and above out
of 4), and higher length (24%) and complexity
(9%) over the baseline for the advanced profi-
ciency model. Our results show that we can
achieve strong performance while adding addi-
tional control to ensure diverse, tailored content
for individual users.1

1 Introduction

Recent advancement of transformer (Vaswani et al.,
2017) based pre-trained language models (LM)
(Lewis et al., 2020; Brown et al., 2020; Raffel et al.,
2020) have resulted in unprecedented success in
generating large amounts of fluent English text.
One possible area where text generation can be
applied is item generation for English language
learning applications (LLAs). LLAs are popular
apps used by millions of people all over the world.2

These apps often include multiple choice items for
vocabulary tests, flashcards, grammar lessons, and
more. Typically, such items are created manually
(Service, 2010) or curated from crowd-sourced sen-
tence database, e.g., Tatoeba (Settles et al., 2020).3

∗Equal Contribution.
1Code and datasets made available at https:

//github.com/EducationalTestingService/
concept-control-gen

2https://www.businessofapps.com/data/
language-learning-app-market/

3https://tatoeba.org/en/

{dog-ARG0, chase-V,
cat-ARG1}

{dog-ARG1, chase-V,
cat-ARG0}

+SRL
The dog chases the cat.

The cat chases the dog.

+CEFR
A dog is chasing a cat.

{dog, chase, cat, C2}

{dog, chase, cat, A1}

A black and white cat
chases a brown and white

dog in the woods.

{dog, chase, cat} BASE The dog chases the cat.

Figure 1: Controlling the concept2seq generation pro-
cess, using semantic role labels and CEFR levels.

On the contrary, our goal is to make this process
scalable by employing LMs, enabling developers
of LLAs to be able to implement a much broader
array of learning items quickly and efficiently.

This is accomplished by using a concept2seq
framework: a sequence-to-sequence architecture
in which, given a set of relevant concepts, we aim
to generate sentences that minimally contain those
concepts.4 There is a wide body of work relat-
ing to this framework (Lin et al., 2020; Carlsson
et al., 2022) to generate sentences: we experiment
with a number of adaptations that are applicable to
LLAs. First, the importance of providing diverse
content based on student/user needs and different
skill sets is well established in learning sciences
(Morgan, 2014; Clarke and Miles, 2003). We gen-
erate sentences according to different skill sets by
conditioning on the Common European Framework
of Reference for Languages (CEFR) levels in En-
glish.5 We use a document level CEFR predictor
(Montgomorie, 2022) to predict the CEFR levels
in the training data and in turn use the level in a
controlled generation framework based on BART
(Lewis et al., 2020) to generate different CEFR
level-specific sentence (Section 3.1). Second, to

4Concepts are lemmatized tokens in text extracted by using
the ConceptNet knowledge base (Speer et al., 2017).

5CEFR is an international standard for measuring user’
ability within a language.

304

test the grammatical proficiency of the users we at-
tach syntactic and semantic information in the form
of semantic role labels (SRL) to the concept inputs
for controlled generation where we can specify the
semantic roles (e.g., ARG0) in the generation (Sec-
tion 3.2). Such generations can be used in LLAs
to ask grammar questions and further expand the
diversity of items.

Consider the examples in Figure 1. The BASE

model generates a sentence using the concepts
“dog”, “chase”, and “cat”. The CEFR model demon-
strates two different generations for two skill levels:
a simple short sentence (e.g. “a cat is chasing a
dog”) for the A1 beginner level and a long complex
sentence (e.g., “a black and white . . . in the woods)
for the C2 proficiency level (Section 3.1). Like-
wise, the SRL model presents examples where we
conditioned the generations on specific semantic
roles (Section 3.2).

We evaluate our models using automatic metrics
relevant to our goals (perplexity, concept coverage
in the generated sentences, length, and lexical di-
versity), as well as utilizing Amazon Mechanical
Turk (MTurk) to get human judgments of impor-
tant factors: grammaticality, complexity, and se-
mantic plausibility. The CEFR model generates
less complex, shorter sentences than the baseline
when targeting the A1 level (complexity score of
2.45, average length of 11.6) compared to the C2
level (complexity score of 2.73, average length of
15.3 words). The SRL model generates the tar-
geted words in the correct argument slot signifi-
cantly more than the baseline (improving from 6%
to 32% based on the targeted role). All models are
within 3% of the baseline in terms of grammatical-
ity and semantic plausibility, indicating that we can
effectively generate sentences from concepts while
adding additional control.

2 Data

We employ two datasets for concept2seq genera-
tion. Each instance in the datasets is a set of con-
cepts paired with a sentence that contains those con-
cepts. First, we use the COMMONGEN data which is
based on existing caption corpora (Lin et al., 2020).
From this dataset we use 71,408 concept/sentence
pairs. Although COMMONGEN is used in related
concept2seq generation (Lin et al., 2020), since
it is based on image captions, many samples are
phrases (not sentences) and less diverse. Thus, we
also collect another dataset based on fourteen rel-

evant vocabulary items for language learning that
belong to different CEFR levels.6 Sentences are
collected from diverse sources such as the ROCSto-
ries (Mostafazadeh et al., 2016), Tatoeba sentence
database, and the Google book corpus.7 We first
retrieved sentences containing the vocabulary items
from these different sources and then extracted the
concepts using the ConceptNet knowledge-base by
employing Becker et al. (2021). We extract noun,
verbs, and adjective tokens as concepts and keep
only those sentences containing 2-5 concepts to
keep consistency with COMMONGEN. This dataset
is denoted as the VOCABULARY dataset and con-
sists of an additional 218,997 concept/sentence
pairs. In total, the COMMONGEN and VOCABU-
LARY gives us a dataset of 290,399 pairs of con-
cepts and sentences.

To evaluate our generation models, we create
two test sets to evaluate two different scenarios.
Our goal is to evaluate concept sets that occur fre-
quently in the training data, as well those that occur
rarely. In order to build these two types of test sets,
we first generate the frequency counts of each con-
cept over the entire dataset. We then calculate the
frequency of a given concept set as the sum of the
frequency counts of each concept within that set.
We then sample 500 instances from both the COM-
MONGEN and VOCABULARY datasets from the top
10% highest frequency concept sets and 500 each
from the bottom 10% frequency sets. We split the
test data this way to evaluate two likely use cases.
The lowest 10% aligns with the case where we have
unseen concepts and want to generate something
novel; the most frequent 10% matches the every-
day use case where we generate from things we’ve
seen before. This gives us a test set of 2000 total
sample, half from COMMONGEN and half from VO-
CABULARY, additionally split into high frequency
and low frequency concepts. From the remaining
dataset we randomly use 90% as training and 10%
as validation.

3 Methods

Here, we present our computational approaches for
sentence generation using the concept2seq frame-
work. At its base form, our task is to gener-
ate a sentence s that consists of sequence of to-
kens, s = {s1, ..., sm} using a list of concepts

6This vocabulary list and their word derivatives was rec-
ommended by the learning scientists of the LLA.

7https://www.english-corpora.org/
googlebooks/

305

c = {c1, ..., cn}. Using the standard autoregressive
sequence-to-sequence architecture (Sutskever et al.,
2014) we model Pθ(s | c) as follows:

Pθ(s | c) =
∏

i

Pθ(si | s1, . . . , si−1, c) (1)

Note, the resulting sentence s should contain rele-
vant vocabulary from the concept set c, but is oth-
erwise unconstrained. We use a pretrained BART
model (Lewis et al., 2020) composed of a bidi-
rectional encoder and an autoregressive decoder.
In our simplest setup (called BASE), the input for
BART is a set of concepts c and the output text s
is a sentence that contains those concepts. For the
BASE model, we fine-tune the bart-base model
on our training data described above, and then gen-
erate sentences based on the test concepts. Note,
this is equivalent to the BART based experiment
reported in Lin et al. (2020).8

3.1 CEFR-controlled generation

Research in language learning has shown that
students’ retention of words and texts increases
when they encounter increasing diversity in con-
tent (Adelman et al., 2006; Frances et al., 2020).
Since language learning is affected by many vari-
ables (Oxford and Nyikos, 1989), we focus on a
specific variable - the CEFR levels - which are an
international standard that measures text complex-
ity and has strong correlations with learners’ skill
sets and language learning ability (Papageorgiou
et al., 2015). To this end, we generate sentences
guided towards different skill sets of users by con-
ditioning on the CEFR levels. These labels are, in
increasing order of proficiency: A1, A2, B1, B2,
C1, and C2, where A1 denotes a beginner level
and C2 denotes high proficiency. Our goal is to be
able to start with a list of concepts and generate a
sentence at the appropriate proficiency level. We
first use a document level CEFR predictor (Mont-
gomorie, 2022) to predict the CEFR levels for each
sentence in the training data. This tagger, which
functions by combining lexical, syntactic, and other
attested proficiency features, provides a tag from
A1 to C2 for each sentence in the training dataset.
In turn, we use this predicted CEFR level as control
codes to guide sentence generation.

8Although Lin et al. (2020) also reported experimental
results using other transformer-based LMs such as GPT-2
(Radford et al., 2019) and T5 (Raffel et al., 2020), we notice
BART performs better on several metrics, so we continue to
use BART.

Input Concepts Input Sentence

{person, throw, frisbee} The person threw the
frisbee.

CEFR Predictor

A1

{wind, strip, magnetic,
atmosphere}

Scientists believe magnetic fields
can protect a planet, fending off

the atmosphere-stripping blasts of
the solar wind.

C2

Training Pairs

{person, throw, frisbee, A1} → The person threw the frisbee.

{wind, strip, magnetic, atmosphere, C2} → Scientists believe
magnetic fields can protect a planet, fending off the

atmosphere-stripping blasts of the solar wind.

Figure 2: Method for applying CEFR labels to input
concepts using the CEFR scorer.

Controlled generation models (Kikuchi et al.,
2016; Hu et al., 2017; Ficler and Goldberg, 2017;
Tsai et al., 2021) condition on a control code f in
addition to the input c to model the distribution of
Pθ(s | c, f). Similar to Eq. (1), we can write,

Pθ(s | c, f) =
∏

i

Pθ(si | s1, . . . , si−1, c, f) (2)

Text generation conditioned on such control codes,
such as sentiment control of movie reviews, style
for chatbots, diverse story continuations, question
generation etc., have been used effectively in recent
research (Tu et al., 2019; Krause et al., 2021; Roller
et al., 2021; Gao et al., 2022). We use the same
idea for sentence generation by conditioning on the
CEFR levels. Figure 2 shows the overview of the
process.

3.2 Argument Structure-controlled
generation

As the second task, we use the argument structure
of the generated sentences as the control code. We
determine for any given concept in the input what
semantic role that concept should play in the output
text. This gives two key advantages: we can ensure
the semantic viability of generations in which the
concepts make more sense in particular roles, and
we can extend the variety of sentences generated
by varying the semantic roles of the arguments.
Consider the following generation:

{dog, chase, cat} → (a) the dog chased the cat
(b) the cat chased the dog

As the concepts are unordered, the model can
generate both sentences where (a) the dog is chas-
ing the cat and where (b) the cat is chasing the dog.
Stereotypically, we would expect (a), but (b) is a
viable reading. By enforcing the semantic roles
of the concepts, either with the dog or the cat as
the agent, our aim is to be able to more concretely

306

{dog, chase, cat} → The dog chased the cat

SRL Model

Alignment

{dog-ARG0, chase-V, cat-ARG1} → The dog chased the cat

Figure 3: Method for applying SRL parse to the original
concepts during training.

choose which output we’d like to see. This in turn
can be utilized to check grammar skills of the users
by follow-up questions in an LLA (e.g., which is
the agent in the sentence?).

To identify the semantic roles, we tag the train-
ing dataset with an automatic semantic role labeling
system (Stanovsky et al., 2018).9 For each verb in
the input, the system tags each word in the sentence
with the argument it takes in that verb’s scope. In
order to convert these tags to control codes, we
first extract each word in the sentence that matches
a lemmatized version of the one of the input con-
cepts. For each of these words, we identify all of
the possible roles it can play in a sentence (note that
words can take multiple roles, when they are argu-
ments of separate verbs). We then iterate through
these options, aligning the possible semantic role
labels that word can take to the concepts in the
input. This yields a new batch of concepts labeled
with semantic role information that serve as the
inputs for the given sentence. An overview of this
process is shown in Figure 3.

Inference For CEFR-controlled generation, we
have trained a single model on the full scope of
CEFR tagged data: in order to generate sentences
at a particularly level, we need to provide that level
to the model at inference time. For this, we exper-
iment with the simplest level (A1) and the most
advanced level (C2). We add these labels to the
concept inputs to generate sentences that should
match those levels: these setups are dubbed CEFR-
A1 and CEFR-C2. provided different CEFR lev-
els to generate different sentences. For argument
structure-controlled generation, we run our SRL
tagger on the test data and then apply these to the
input sources to generate a SRL-controlled output,
as was done in training (Figure 3). We generate

9https://github.com/allenai/allennlp.

using top-K sampling (k = 50) with a maximum
length of 64 and a length penalty of 1.0.

3.3 Additional pretraining
The above BART model is originally trained with
text as both the input and output. Our task is
somewhat different, as the input consists of con-
cepts. While these concepts are superficially a set
of keywords, this still differs from what the original
BART encoders have seen during training. In order
to encourage the model to better handle this con-
cept2seq data formulation, we leverage the power
of additional pretraining, which has been shown to
further improve model performance on new tasks
(Gururangan et al., 2020).

We perform additional pretraining using
wikipedia. Starting with a dump of wikipedia
data,10 we first extract sentences which are then run
through our concept extraction pipeline (Section 2).
We filter down to 10M random concept-sentence
pairs with 2-5 concepts/sentence. These 10M pairs
are then used to continue training on top of the
pretrained BASE model (the WIKI model).11

4 Results

Evaluating natural language generation tasks can
be difficult, and some automatic metrics can be
problematic (Reiter, 2018). To overcome these dif-
ficulties, we use metrics specifically tailored to our
task, as well as performing manual evaluation to get
a concrete understanding of model performance.

4.1 Automatic Evaluation
Standard metrics, e.g., BLEU (Papineni et al.,
2002) or ROUGE-L (Lin, 2004) that are often used
to evaluate NLG outputs require true reference sen-
tences for evaluation purpose. These methods are
insufficient for our approach – our goal here is to
generate sentences containing particular concepts
conditioned on specific controls (e.g. CEFR) – and
the resulting outputs do not need to match any par-
ticular gold standard. For that reason, we employ
the following reference-free metrics for evaluation.

First, perplexity under a language model can
indicate the fluency of the text. We report av-
erage perplexity per word using the GPT-2-base
LM (Radford et al., 2019) in the generated sen-
tences. Coverage indicates whether the generated

10https://dumps.wikimedia.org/enwiki/
latest/

11Full details of the training procedures are in Appendix
A.3.

307

Model Perplexity Coverage (All) Coverage (Any) Length Diversity
BASE 4.51 50.55 93.34 12.13 43.34
SRL 4.53 51.40 94.10 11.98 43.51
CEFR (A1) 4.52 49.16 92.70 11.58 43.95

(C2) 4.41 39.70 74.61 15.26 37.31
WIKI 4.58 51.51 94.10 12.28 42.88

Table 1: Automatic evaluation of generation models. Lower scores indicate better Perplexity and Diversity.

Model V ARG0 ARG1 ARGM
BASE 88.18 70.48 73.34 58.67
SRL 94.06 88.93 88.01 77.60

Table 2: Automatic evaluation of SRL coverage. Scores
refer to percentage of times the label occurred with a
given concept in the output over the input.

sentences contains the input concepts. We evaluate
the percentage of generations that contain lemmas
matching the input concepts in two ways: first,
the percentage of outputs containing any lemmas
matching the input as well as the percentage of
those where all of the concepts are found in the
output. We also measure average length of the gen-
erated sentences (in number of words). Finally, we
measure lexical diversity: for this, we use the aver-
age tf-idf score of all non-stopwords in the sentence
(learned from a recent Wikipedia dump): higher
scores indicate more common words, while lower
scores indicate more lexical diversity. Relevant
results are shown in Table 1.

We note a number of observations from auto-
matic metrics: perplexity remains relatively stable
across models, indicating they all can produce flu-
ent sentences. CEFR C2 has the lowest perplexity,
indicating that BART can produce complex but still
fluent sentences. Coverage, length, and diversity
remain relatively stable across models as well. One
exception is the CEFR C2 model, which has lower
coverage (39.70) and higher length (15.26 words
per sequence). Since C2 sentences in the training
dataset are longer (averaging 25.1 words per sen-
tence, compared to the overall average of 17.0), it is
expected that CEFR C2 model produce longer sen-
tences when higher proficiency is required. Like-
wise, the CEFR A1 model tends towards shorter
sentences (11.58 words per sequence). Finally, the
low diversity score of the CEFR C2 model indicate
the complex sentences generated by the model have
higher lexical diversity.

SRL Overlap Evaluation: Note that for the
SRL model, we evaluate the test data with a single

set of SRL labels generated from the original SRL
model. There are many ways to apply SRL labels
to a given set of concepts, and we only evaluate
against a single reference.

We use an automatic parser to capture whether
the SRL-based inputs are accurately represented in
the outputs. For the four most frequent argument
types (ARG0, ARG1, ARGM, and V), we evaluate
accuracy by comparing its presence in the gener-
ated output to its presence in the control codes.
We measure the percentage of times the argument
type is correctly represented by a concept in the
generated sentence over the number of times the
instructions indicate it should be. We compare the
SRL to the BASE model in Table 2.

We might expect a large, pretrained model like
BART to automatically generate the concepts into
their expected roles, but we can see that the BASE

model actually fluctuates greatly: for non-verbal
arguments, it generates them in the semantic role
of the reference sentence less than 75% of the time.
This isn’t necessarily a problem, as the system still
is generating sentences with the appropriate con-
cepts, but it highlights the usefulness of argument
control: using the SRL model, we can generate
concepts into specific semantic roles much more
consistently, with scores ranging from 77% to 94%,
thus, improving by a large margin over the BASE

model.

4.2 Human Evaluation

For human evaluation, we aim to capture three
essential criteria that are important for test item
generation. These are:

1. Grammaticality: The generated sen-
tences/phrases should be grammatical, and
should follow normal English syntax.

2. Complexity: The complexity of a given sen-
tence as it relates to end users.

3. Plausibility: The generated items should de-
scribe semantically plausible scenarios, or they

308

Grammatical Complex Plausible
Model Common Rare Common Rare Common Rare
BASE 3.50 3.40 2.41 2.58 3.60 3.61
SRL 3.48 3.46 2.25 2.45 3.58 3.61
CEFR (A1) 3.50 3.44 2.40 2.50 3.63 3.61

(C2) 3.31 3.41 2.67 2.78 3.57 3.61
WIKI 3.44 3.42 2.46 2.60 3.56 3.59

Table 3: MTurk evaluation for each generation model, evaluated for grammaticality, complexity, and plausibility.
Italic scores are significantly below the baseline; bold are significantly above (two-tailed t-test, p < .01).

Input Concepts Model Sentence Gram Comp Plaus

{competition,
agree, strange,
participate}

BASE I agree with you that it’s strange to participate in a competition with your
dog.

4 3 4

SRL They agreed to participate in the strange competition. 4 2 4
CEFR (A1) I agreed to participate in the strange competition. 4 2.67 3.67
CEFR (C2) In some cases, it might be safer to think of different words to use if you

don’t want to participate in a strange competition.
4 3 3.67

WIKI In a strange twist of luck, i’d like to participate in a competition. I don’t
agree with you.

2 3.33 2.33

{girl, clothes}

BASE A girl in black clothes is standing on a ladder and drawing on a wall. 4 2.33 4
SRL A girl in black clothes is playing soccer. 4 2.33 4

CEFR (A1) A girl in black clothes is playing with a toy lawn mower. 4 1.67 4
CEFR (C2) Young people sit in plastic chairs arranged around a set of stairs in a

covered concrete area, wearing swim clothes, resting, and waiting.
4 3 4

WIKI A girl in black clothes playing soccer. 3.33 2 4

Table 4: Examples of generated sentences via different models with their annotated scores.

risk confusing or even misinforming the user.

We evaluated the generated outputs across these
three criteria using Amazon Mechanical Turk
(MTurk). We evaluated 800 sentences generated
from each model. Three crowd-annotators were
employed for each task and were asked to evaluate
each sentence on a four-point scale for each crite-
ria. We included many examples in the instructions.
Each Human Intelligence Task (HIT) contained ten
sentences to judge and we paid $2 per HIT. We
obtain three scores for each of the above criteria
for each generated sentence, and take their mean
as the final score (Table 3).

We observe a number of key take-aways from
the human evaluations. First, the rare concept sets
are more likely to yield more complex generations,
but otherwise they are fairly similar to the com-
mon sets: they exhibit similar grammaticality and
plausibility scores. All models score strongly for
grammaticality: the CEFR C2 model is lowest, as it
is attempting to generate more complex sentences
and likely to make more mistakes, but all models
average about 3.4. Second, with regard to com-
plexity, the CEFR A1 model scores lower than the
BASE while the CEFR C2 model scores higher: this

is our expected result, as the lower A1 level in-
struction yields simpler sentences, while the higher
level C2 yields more complex sentences. Third,
all models perform similarly with regard to plau-
sibility, with every model being within .04 of the
baseline. Finally, we see that additional pretraining
doesn’t improve performance significantly over the
baseline: the BART-base model seems perfectly
capable of adapting to concept2seq instructions
without additional pretraining.

Table 4 presents two examples from our mod-
els along with average human ratings for all three
aspects. In general, CEFR C2 has produced long
sentences with high complexity for all examples.
Likewise, grammaticality and plausibility scores
are almost perfect except one example from WIKI.

In general, the methods we implemented to allow
for additional control (CEFR and SRL) function as
expected: we can manipulate the proficiency and
argument structure of the generated sentences to a
significant degree, allowing us to develop diverse
content for users at different levels for LLAs.

309

4.3 Performance Time
The model was trained on a single nVidia K80 GPU
for approximately 158 minutes, at approximately
81 training samples processed per second. We are
then able to generate approximately 54 sentences
per second at inference time. While this makes the
system capable in some regards of generating live
learning items, this is not desirable nor is it our
use case. There are substantial risks involved in
generating items live and presenting them to users,
including possible grammatical and semantic dis-
fluencies, unsuitable content, and biases inherent
in generation from language models (Sheng et al.,
2021). Rather, this system is designed to be run of-
fline, generating a batch of possible learning items
that can then be curated by experts.

5 Related Work

The concept2seq generation problem has been in-
vestigated in several recent studies. Lin et al. (2020)
released the COMMONGEN dataset and generated
sentences using various transformer models, (Carls-
son et al., 2022) have proposed prompting for gen-
eration, and (Zhou et al., 2020) have conducted
instruction tuning for generation using concepts.
Our work is related to the above and our novelty
is that we utilize this framework to generate LLA
items. Although we did not experiment with the
ordering of concepts similar to (Zhao et al., 2022),
our SRL based generation in fact implicitly con-
trol the order of the concepts by offering specific
grammar roles.

In prior work on controllable generation, em-
bedding vectors of the control variables were fed
into the model to control the output (Kikuchi et al.,
2016; Fan et al., 2018), whereas our approach re-
sembles recent efforts where the control variable
is concatenated to the main input (Keskar et al.,
2019) to control particular style, such as sentiment,
style for chatbots, diverse story continuations and
argument generation (Tu et al., 2019; Schiller et al.,
2021; Krause et al., 2021; Roller et al., 2021).

6 Conclusion and Future Work

We proposed a type-controlled sentence generation
framework for LLAs. We generate sentences (a)
conditioned on the CEFR levels to provide content
for users/students who belong to different skill sets
(e.g., beginner or proficient in English), and (b)
conditioned with specific argument structures for
grammar. In automatic evaluation, the SRL model

shows better coverage of input concepts than BASE,
whereas human evaluation demonstrates high gram-
matically scores (3.4 and above) for all the models
as well as high complexity for the CEFR C2 model
that was designed to generate complex sentences
for proficient users. In future, we want to continue
a couple of error analyses on the input as well as
on the generated sentences. Having taken into ac-
count that input data is pre-processed in several
ways (e.g., concept extraction (Becker et al., 2021)
and analysis of semantic roles (Stanovsky et al.,
2018)), we want to select a small subset of data to
determine whether such extraction has any error.
Likewise, we also want to employ expert content
developers to analyze the results of the CEFR pre-
dictor. Finally, we plan to employ additional con-
trols such as word senses to guide context specific
generations.

Acknowledgments

Thanks to Casey Medlock Paul and Kristen Herrick
for suggesting reference materials on learning sci-
ence, as well as Swapna Somasundaran for helpful
comments.

7 Ethical Considerations

We leverage the freely available COMMONGEN

dataset for model training. Though we have not
exhaustively checked the dataset, given COMMON-
GEN is based on a variety of caption datasets, we
consider them relatively safe and do not find any
objectionable content. Likewise, we create another
dataset, VOCABULARY, which is based on standard
narratives and sentence databases that are used in
many recent work. Training is done using large
pretrained models that have been shown to have
bias. Although the generated content do not appear
biased, they may hallucinate content, which is a
common problem for neural generation models. In
future work, we plan to analyze and identify hallu-
cinations from the generations, and assess possible
bias issues within these generations.

Finally, we obtained institutional review board
permission to conduct MTurk based evaluations to
collect judgments from crowd workers regarding
the quality of the sentences.

References
James S Adelman, Gordon DA Brown, and José F Que-

sada. 2006. Contextual diversity, not word frequency,
310

determines word-naming and lexical decision times.
Psychological science, 17(9):814–823.

Maria Becker, Katharina Korfhage, and Anette Frank.
2021. COCO-EX: A tool for linking concepts from
texts to ConceptNet. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: System Demonstra-
tions, pages 119–126, Online. Association for Com-
putational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Fredrik Carlsson, Joey Öhman, Fangyu Liu, Severine
Verlinden, Joakim Nivre, and Magnus Sahlgren. 2022.
Fine-grained controllable text generation using non-
residual prompting. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6837–
6857, Dublin, Ireland. Association for Computational
Linguistics.

John Clarke and Sherri Miles. 2003. Changing systems
to personalize learning: Introduction to the personal-
ization workshops. Technical report, The Education
Alliance at Brown University.

Angela Fan, David Grangier, and Michael Auli. 2018.
Controllable abstractive summarization. In Proceed-
ings of the 2nd Workshop on Neural Machine Transla-
tion and Generation, pages 45–54, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
In Proceedings of the Workshop on Stylistic Variation,
pages 94–104, Copenhagen, Denmark. Association
for Computational Linguistics.

Candice Frances, Clara D Martin, and Jon Andoni
Duñabeitia. 2020. The effects of contextual diversity
on incidental vocabulary learning in the native and a
foreign language. Scientific reports, 10(1):1–11.

Lingyu Gao, Debanjan Ghosh, and Kevin Gimpel. 2022.
“what makes a question inquisitive?” a study on type-
controlled inquisitive question generation. In Pro-
ceedings of the 11th Joint Conference on Lexical and
Computational Semantics, pages 240–257, Seattle,
Washington. Association for Computational Linguis-
tics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learn-
ing Research, pages 1587–1596. PMLR.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL: A
conditional transformer language model for control-
lable generation. https://arxiv.org/abs/
1909.05858. ArXiv:1909.05858.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Controlling
output length in neural encoder-decoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1328–
1338, Austin, Texas. Association for Computational
Linguistics.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. GeDi: Gener-
ative discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929–4952, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823–1840,
Online. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Adam Montgomorie. 2022. CEFR english level predic-
tor. https://github.com/AMontgomerie/
CEFR-English-Level-Predictor.

Hani Morgan. 2014. Maximizing student success with
differentiated learning. The Clearing House: A
Journal of Educational Strategies, Issues and Ideas,
87(1):34–38.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,

311

Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849.

Rebecca Oxford and Martha Nyikos. 1989. Variables
affecting choice of language learning strategies by
university students. The modern language journal,
73(3):291–300.

Spiros Papageorgiou, Richard J Tannenbaum, Brent
Bridgeman, and Yeonsuk Cho. 2015. The associ-
ation between toefl ibt® test scores and the common
european framework of reference (cefr) levels. Re-
search Memorandum No. RM-15-06). Princeton, NJ:
Educational Testing Service.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Ehud Reiter. 2018. A structured review of the validity
of bleu. Computational Linguistics, 44(3):393–401.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Main Volume, EACL 2021,
Online, April 19 - 23, 2021, pages 300–325. Associa-
tion for Computational Linguistics.

Benjamin Schiller, Johannes Daxenberger, and Iryna
Gurevych. 2021. Aspect-controlled neural argument
generation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 380–396, Online. Association
for Computational Linguistics.

Educational Testing Service. 2010. Toefl ibt® test
framework and test development. TOEFL iBT Re-
search Insight, 1.

Burr Settles, Geoffrey T LaFlair, and Masato Hagiwara.
2020. Machine learning–driven language assessment.
Transactions of the Association for computational
Linguistics, 8:247–263.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and
Nanyun Peng. 2021. Societal biases in language
generation: Progress and challenges. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4275–4293, Online.
Association for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-first AAAI conference on
artificial intelligence, pages 4444–4451.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 885–895,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 3104–3112.

Alicia Y. Tsai, Shereen Oraby, Vittorio Perera,
Jiun-Yu Kao, Yuheng Du, Anjali Narayan-Chen,
Tagyoung Chung, and Dilek Hakkani-Tür. 2021.
Style control for schema-guided natural language
generation. https://arxiv.org/abs/2109.
12211. ArXiv:2109.12211.

Lifu Tu, Xiaoan Ding, Dong Yu, and Kevin Gimpel.
2019. Generating diverse story continuations with
controllable semantics. In Proceedings of the 3rd
Workshop on Neural Generation and Translation,
pages 44–58, Hong Kong. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In

312

Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Chao Zhao, Faeze Brahman, Tenghao Huang, and
Snigdha Chaturvedi. 2022. Revisiting generative
commonsense reasoning: A pre-ordering approach.
In Findings of the Association for Computational
Linguistics: NAACL 2022, pages 1709–1718, Seattle,
United States. Association for Computational Lin-
guistics.

Wangchunshu Zhou, Dong-Ho Lee, Ravi Kiran Selvam,
Seyeon Lee, Bill Yuchen Lin, and Xiang Ren. 2020.
Pre-training text-to-text transformers for concept-
centric common sense. https://arxiv.org/
abs/2011.07956. ArXiv:2011.07956.

A Appendix

A.1 Vocabulary items

The following fourteen words in Table 5 (see their
associated CEFR levels) were suggested by the
learning scientists/content developers of the LLA
we are involved with.

Word CEFR
Clothes A1
Famous A1
Electric A2
Return A2
Lose B1

Delicious B1
Entertainment B1

Literature B1
Atmosphere B2
Participate B2
Awkward B2

Solar B2
Devote B2
Caution C1

Table 5: Words that are used to generate the VOCABU-
LARY dataset (with their CEFR levels).

A.2 Concept Extraction

We extracted concepts using the concept extractor
tool CoCo-Ex (Becker et al., 2021). The tool first
parse sentences using standard parsers and then
match tokens as found in ConceptNet knowledge
base. The resulted concepts are categorized to their
parts-of-speech. For our work we use nouns, verbs,
and adjective tokens.

A.3 Model Training
We train our models using the HuggingFace plat-
form (Wolf et al., 2020). We use the bart-base
model as the initial checkpoint from the Hugging-
Face repository (Wolf et al., 2020). Each model is
trained for 5 epochs with a batch size of 32 and a
learning rate is 5e-5, as these parameters yielded
the best performance on the validation set. For the
CEFR generation, the label is added as an addi-
tional concept. For the SRL-based generation, the
labels are concatenated to individual concepts. For
the additional pretraining with the Wikipedia data,
we ran pretraining for 3 epochs. All experiments
were conducted using NVIDIA K-80 GPUs.

A.4 MTurk Experiments
In order to collect human evaluation for generated
sentences, we deployed our data collection pipeline
using AWS infrastructures. After reading and con-
firming the consent page, Turkers are directed to
the survey interface where detailed instructions and
survey questions are presented (shown in Figure 4).
Turkers must complete all questions to be able to
submit. We initially began evaluation using 5 sam-
ples per HIT, but extended this to 10 as the time
necessary for annotators to complete a HIT was
extremely short. A “survey code” is returned to the
Turker as the submission is successful, and with the
code the Turker can submit the HIT and to be qual-
ified for payment. All evaluation results are saved
into a DynamoDB table through API Gateway and
Lambda.

To ensure the quality of evaluation, we recruited
Turkers with more than 10,000 approved HITs and
the approval rate or 97% and above. One task is
required to be completed within 60 minutes, and
most Turkers were able to submit within 10 to 15
minutes.

A.5 Human Evaluation
Table 6 presents more examples of MTurk annota-
tions.

313

Figure 4: The survey interface where Turkers can read detailed instructions and complete the evaluation of ten
sentences.

314

Input Concepts Model Sentence Gram Comp Plaus

{pace, author,
contemporary,
literature}

BASE I’m not interested in literature 4 1.33 4
SRL I’m not interested in literature. 4 1.33 4

CEFR (A1) I’m not very interested in literature. 4 1.67 4
CEFR (C2) Although many european researchers have studied ancient persian litera-

ture in the nineteenth century, the new world is not paying attention to
our contemporary literature.

3 3.33 2.67

WIKI He is very interested in literature. 4 2.33 4

{competition,
agree, strange,
participate}

BASE I agree with you that it’s strange to participate in a competition with your
dog.

4 3 4

SRL They agreed to participate in the strange competition. 4 2 4
CEFR (A1) I agreed to participate in the strange competition. 4 2.67 3.67
CEFR (C2) In some cases, it might be safer to think of different words to use if you

don’t want to participate in a strange competition.
4 3 3.67

WIKI In a strange twist of luck, i’d like to participate in a competition. I don’t
agree with you.

2 3.33 2.33

{girl, clothes}

BASE A girl in black clothes is standing on a ladder and drawing on a wall. 4 2.33 4
SRL A girl in black clothes is playing soccer. 4 2.33 4

CEFR (A1) A girl in black clothes is playing with a toy lawn mower. 4 1.67 4
CEFR (C2) Young people sit in plastic chairs arranged around a set of stairs in a

covered concrete area, wearing swim clothes, resting, and waiting.
4 3 4

WIKI A girl in black clothes playing soccer. 3.33 2 4

{intersection,
people,
clothing}

BASE A group of people in dark clothing are crossing an intersection in a city. 4 2 4
SRL A group of people in dark clothing are corssing an intersection in a city. 4 2 4

CEFR (A1) A group of people in heavy clothing congregate near an intersection. 3.667 2 4
CEFR (C2) A motorcycle is standing near a decaying building wall, window, and

close-line with several clothing items hanging.
3.667 3.333 3.667

WIKI A group of people in reflective clothing is crossing an intersection to-
gether.

3.667 3 3.667

{stand, rock,
water, body}

BASE The man stands on the rocks near the body of water. 3.333 2.667 4
SRL A man stands on a rock near a body of water. 4 2.333 4

CEFR (A1) A body of water standing on rocks. 3.333 2 2
CEFR (C2) Young man standing on rocks near body of water in the mountains. 3.333 2.667 4

WIKI A man stands on a rock near a body of water. 4 2.333 4

{sand, beach,
group, sit, large,
clothing}

BASE A man in black clothing and a black hat is walking in front of a yellow
wall.

4 2.667 4

SRL A man in black clothing walking down a sidewalk. 3 2 4
CEFR (A1) A man in very torn, dirty clothing is walking down a city street in front

of a well dressed woman.
4 3.333 4

CEFR (C2) A young man in colorful clothing and a helmet is walking down the
street in front of a well dressed woman and young girl.

4 2.667 4

WIKI A woman wearing heavy makeup and a pink jacket is walking past a
clothing shop at night.

4 3 4

{kosovo, game,
participate

BASE In kosovo, they participate in a game of hopscotch. 3 2.333 4
SRL Kosovo will participate in the olympic games. 3.667 1.667 3.667

CEFR (A1) In 2006, the olympic games were cancelled after kosovo decided to
participate in the oclolympic game.

3.667 2.667 1

CEFR (C2) The olympic athlete participates in his first match as a professional
athlete in the olympics.

3.333 2 4

WIKI I will participate in the kosovo olympic games. 3.667 1.667 3.667

Table 6: Examples of generated sentences via different models with their annotated scores.

315

Proceedings of EMNLP 2022 Industry Track, pages 316–322
December 9–11, 2020. ©2022 Association for Computational Linguistics

Improving Text-to-SQL Semantic Parsing with Fine-grained Query
Understanding

Jun Wang, Patrick Ng, Alexander Hanbo Li, Jiarong Jiang,
Zhiguo Wang, Ramesh Nallapati, Bing Xiang, Sudipta Sengupta

Amazon AWS AI Labs
{juwanga, patricng, hanboli, jiarongj, zhiguow, rnallapa, bxiang, sudipta}@amazon.com

Abstract

Most recent research on Text-to-SQL semantic
parsing relies on either parser itself or simple
heuristic based approach to understand natural
language query (NLQ). When synthesizing a
SQL query, there is no explicit semantic infor-
mation of NLQ available to the parser which
leads to undesirable generalization perfor-
mance. In addition, without lexical-level fine-
grained query understanding, linking between
query and database can only rely on fuzzy
string match which leads to suboptimal perfor-
mance in real applications. In view of this, in
this paper we present a general-purpose, mod-
ular neural semantic parsing framework that
is based on token-level fine-grained query un-
derstanding. Our framework consists of three
modules: named entity recognizer (NER), neu-
ral entity linker (NEL) and neural semantic
parser (NSP). By jointly modeling query and
database, NER model analyzes user intents
and identifies entities in the query. NEL model
links typed entities to schema and cell values
in database. Parser model leverages available
semantic information and linking results and
synthesizes tree-structured SQL queries based
on dynamically generated grammar. Experi-
ments on SQUALL, a newly released seman-
tic parsing dataset, show that we can achieve
56.8% execution accuracy on WikiTableQues-
tions (WTQ) test set, which outperforms the
state-of-the-art model by 2.7%.

1 Introduction

As a natural language interface to database, Text-
to-SQL semantic parsing has made great progress
in recent years with availability of large amount
of annotated data and advances of neural models
(Guo et al., 2019; Ma et al., 2020; Rubin and Be-
rant, 2020; Wang et al., 2020; Zeng et al., 2020).
These models typically employ a standard encoder-
decoder modeling paradigm where model first en-
codes query and schema, then autoregressively de-
codes an executable program which could be a se-

quence of logical form tokens for flat decoding (Shi
et al., 2020) or an abstract syntax tree (AST) for
structured decoding (Lin et al., 2019; Wang et al.,
2020). Either way, columns and tables are copied
from input schema and literal values are copied
from input query using pointer network in output
program (Shi et al., 2020; Wang et al., 2020).

Despite the success of these models, there are
several issues that are left unaddressed for real ap-
plications. First, without fine-grained query under-
standing, autoregressive top-down decoding suffers
from generalizing to unseen query patterns at in-
ference time (Herzig and Berant, 2020; Oren et al.,
2020; Scholak et al., 2021), a problem commonly
known as compositional generalization. Specifi-
cally, model may fail to synthesize correct SQL
for compound input queries like “where is the cy-
clist who has the most points from” given training
queries such as “where is the runner from”, “which
cyclist gets the most medals”. Second, in previous
works literal values in output logical forms are ei-
ther omitted (Wang et al., 2020) or directly copied
from input utterances (Brunner and Stockinger,
2020; Shi et al., 2020). The former will gener-
ate non-executable queries. The latter is problem-
atic because mentions in query are often different
from their canonical forms in database. For in-
stance, assuming a query like “how many points
does LBJ get in last game”, directly copying word

“LBJ” into SQL query won’t match the name “Le-
Bron James” in the database. Third, as is shown
in Guo et al. (2019); Lin et al. (2019), structured
decoding is effective in semantic parsing tasks as
it’s more likely to generate coherent, executable
SQL queries. In structured decoding, a sequence
of production rules is generated from context free
grammars along with schema and literal values.
However, among existing solutions, some parsers
require manually designed grammars (Lin et al.,
2019). Others like RAT-SQL in Wang et al. (2020)
use grammar generated from compiler tool which is

ar
X

iv
:2

20
9.

14
41

5v
1

 [
cs

.C
L

]
 2

8
Se

p
20

22

316

often redundant, opaque to understand and offering
no flexibility in model design.

To address these challenges, we propose a ro-
bust, unified framework to solve Text-to-SQL prob-
lem. Inspired by a recent work (Herzig and Berant,
2020), the foundation of our parser is based on
fine-grained query understanding. We leverage a
span based named entity recognition (NER) model
to chunk input query and extract SQL-typed enti-
ties. Based on the type information we link enti-
ties to database using neural entity linker (NEL)
model. NEL provides linked literal values to the
parser, thus the generated SQL is executable. The
final module of our framework is a grammar-based
seq2seq parser which synthesizes executable log-
ical forms from natural language query (NLQ),
schema, linking results and grammar. In our parser,
we dynamically build logical form grammars from
training data. This approach frees us from manu-
ally constructing grammars and streamlines devel-
opment of parser model. At the same time, as gram-
mar creation is agnostic to database, our framework
is more general-purpose comparing with previous
works. In addition to NLQ and schema, linking
information from NEL is also fed to the parser
to ensure global reasoning in the decoding. Con-
cretely this linking feature will help guide model
to select proper actions in decoding. A recent work
(Ma et al., 2020) takes a similar approach as our
framework — they have an extractor model to ex-
tract entities and then link mentions to database.
However, they use entity label relations to con-
struct logic forms which greatly limits complexity
of generated program. By decoupling query un-
derstanding, linking and parsing, our framework
offers better explainability and flexibility in model
design and optimization.

A major challenge to build such pipeline sys-
tem is fine-grained annotations which are needed
to train entity recognition model and entity link-
ing model. To tackle this issue, we leverage the
newly released SQUALL dataset which provides
alignment annotations between NLQ tokens and
logical forms (Shi et al., 2020). Instead of using
alignment signal as attention supervision as in Oren
et al. (2020) and Shi et al. (2020), we programmat-
ically convert the alignment annotations to entity
annotations and linking annotations, and use these
supervision signals to train NER and NEL models.
A training example is shown in Figure 1 that illus-
trates how the aforementioned conversion works.

Figure 1: Fine-grained annotation from SQUALL
dataset: based on target logical forms, alignment and
database contents we can derive SQL-semantic annota-
tion types for spans in query. Contents behind vertical
bar in annotation are corresponding linking results.

We evaluate our framework on SQUALL dataset
which has fine-grained alignment annotations. On
the dev set, our framework obtains 49.36% logical
form exact match (EM) accuracy and 69.14% exe-
cution accuracy, which is 2.2% and 2.6% improve-
ment comparing with the best model in SQUALL
paper, respectively.

2 Approach

In this section, we describe our pipeline framework
and its application to chunking, linking and parsing
tasks.

2.1 Problem Definition

The input to Text-to-SQL semantic parsing prob-
lem is a sequence of natural language query
tokens Q = {q1, q2, ..., q|Q|} and a rela-
tional database containing multiple tables D =
{t1, t2, ..., t|T |}. Each table is represented as T =
{h1, h2, ...h|H|, c1, c2, ...c|C|} where hi and ci are
column headers and cell values in a table, respec-
tively. The goal of the task is to generate an output
program Y consisting of a sequence of production
rules from grammar, schema and literal values. In
terms of structured decoding, an abstract syntax
tree is generated and the best tree ŷ is computed
by:

ŷ = argmax
y

P (y|q, t, h, c)

given query tokens q and database contents includ-
ing, table names t, column headers h and cell val-
ues c. Different from previous work (Guo et al.,
2019), we are targeting at generating full-fledged
SQL query which is directly executable.

2.2 Schema and Cell Value Aware NER
Model

The first stage of our framework is an NER model
which serves to understand user intents in the query.

317

Considering the fact that there could be nested enti-
ties, a span based NER model is used to chunk and
identify entities in query (Eberts and Ulges, 2019;
Zhong and Chen, 2020). We extract aggregation
functions, column mentions and literal values from
query. In addition, for columns we add SQL seman-
tics to the NER tags. Specifically, as tags shown
in Figure 1, we have fine-grained tags such as
“WHERE_COLUMN", “GROUPBY_COLUMN"
etc. A pretrained BERT base model is used as its
core (Devlin et al., 2019), as illustrated in Figure 2.

Unlike regular NER tasks, entities in this use
case highly depend on underlying database con-
tents. To this end, we design a schema and cell
value aware NER model to take database informa-
tion into account. As is shown in Figure 2, we
append schema and cell values to query tokens as
input to the BERT encoder and separate them using
“[SEP]” token. Let S = {s1, s2, ..., sn} denote all
spans built from NLQ tokens. A span is represented
as:

es = [ectx; estart; eend; elength]

which is concatenation of representations of con-
text ectx, start of span token estart, end of span
token eend and learned span length embedding
elength. The span vector then goes through a mul-
tilayer perceptron to predict whether the span is
an entity and determine the corresponding entity
types. We minimize the negative log-likelihood for
all spans during training.

p(ys|q, t, h, c) = softmax (Wes + b)

LNER(θ) = −
∑

log p(ys|q, t, h, c; θ)
Here q, t, h, c have the same definition as Sec-
tion 2.1 which represent query tokens, table names,
table headers and cell values. θ are learnable pa-
rameters in NER model. As in Zhong and Chen
(2020), a None token is added into vocabulary of
entity types. At inference time, spans which are
classified as None will be discarded.

As the first stage of our pipeline, recall of NER
model has great impact on the system performance.
To improve recall performance, we introduce an
additional post-processing step where we collect all
schema and cell values and use them as gazetteer
list. When there are exactly matched spans in
NLQ, we force model to generate a valid entity
type for such spans. At the same time, if a span
overlaps with a gazetteer matched span, we choose
to keep gazetteer matched span as it is more likely
to be a valid span.

To further leverage matching information, we
add constrained decoding after filtering (Lester
et al., 2020). Concretely in decoding process we
force model to predict labels based on gazetteer
matching category. For instance, when chunking
query “how many points does LeBron James get
in last game”, if there is an exact match of span

“LeBron James” with an entry in cell value gazetteer
list, the decoding logic will force the model to give
a prediction tag which is compatible with cell value
type.

2.3 Neural Entity Linking (NEL) Model
The sketch of generated SQL logical forms consists
of rules from grammar. To populate the sketch we
use a pointer network in parser to copy table names,
column names and cell values from input schema
and query. However, directly copying these entities
will lead to non-executable SQL as columns and
literal values in NLQ can be different from their
canonical form in the database. Our entity linking
model bridges the gap between entity mentions in
query and entity values in SQL. Even though fuzzy
string match is widely used for linking task in liter-
ature (Wang et al., 2020; Shi et al., 2020), in real
application purely relying on fuzzy match could
lead to suboptimal performance. For instance, in
SQUALL dataset, there are less than 50% of enti-
ties that have exact matches in database. In light
of this, we use a neural ranking model for entity
linking task. Specifically, given a mention in NLQ
and a list of candidates in database, NEL model
selects the best matched candidate for each entity
(Ledell Wu, 2020).

For column and literal value entities from output
of NER model, we construct an input to the NEL
model using NLQ tokens, mention and candidates.
For example, input to NEL model can take the
following format:

NLQ [SEP] Mention [SEP] Candidate

As we know the mention type from NER model,
we could narrow down candidates to a specific type.
For instance, if a mention is literal value type, then
candidates are only limited to cell values. It is
worth to note that without fine-grained query un-
derstanding, for each mention in NLQ, linking can-
didates have to be all contents in database. Thus
it is challenging for end-to-end model to deal with
cases where there are overlapping column names
and cell values. In addition, we could append ad-
ditional meta features to the input of NEL model.

318

Figure 2: Span based schema and cell value aware NER model architecture. Input tokens are tokenized by BERT
tokenizer.

When a mention is column type, we could construct
the following input:

NLQ [SEP] Mention [SEP] Candidate [SEP] value [SEP]
column type

where value is the cell value in current candidate
column which has the highest fuzzy matching score
with NLQ. Column type could be meta information
such as data type integer, string etc.

In our experiments, we use BERT base model
for linking model. After BERT encoding, a linear
layer is applied on the classification token “[CLS]”
to produce a logit score for each candidate. During
training, cross-entropy loss is calculated over all the
linking candidates. During inference, each linking
candidate is fed to the BERT model independently
and is scored by BERT model. Then best candidate
is selected based on ranking scores.

2.4 Neural Semantic Parsing (NSP) Model

Neural semantic parser model takes as input NLQ,
a database and outputs a sequence of production
rules which can be used to deterministically build
up an output program. The backbone of our neural
semantic parser is a BART Large model which
is pretrained with large amount of parallel text
data for both its encoder and decoder (Lewis et al.,
2020).

Encoder Encoder encodes NLQ tokens and
schema information. Specifically, NLQ tokens,
table names and column names are concatenated
together with a “[SEP]” token used as separator.
As we have already got literal value spans from

NER stage, at the output of BART encoder, we col-
lect representations for all of these literal spans by
pooling average token representations in the span.

From query understanding, we have SQL-
semantic tags for each column mentions. For ex-
ample, in Figure 1 we know that “album” is a “SE-
LECT_COLUMN”. At the same time, in NEL re-
sults we know “album” is linked to column “C2”.
Consequently, we know that “C2” is used in the log-
ical forms as a selection column. In order to utilize
this information in parser, we have a column type
embedding layer in the encoder. When constructing
column representations, we concatenate column
type embeddings to the original column represen-
tations. To alleviate upstream errors, during parser
model training, we randomly drop column type
feature for 20% of time so that when NER model
gives incorrect predictions, parser model learns to
handle these cases. In our experiments, we will
show that this feature can give big boost to parser
performance.

Decoder The generated program at the output of
a semantic parser can be a sequence of logical form
tokens or an AST tree. The former decoding is
generally referred to as flat decoding and the latter
one is called structured decoding. To synthesize
syntactically correct SQL program, in our frame-
work a grammar based autoregressive top-down
decoder is utilized to generate AST. Contrary to im-
plementation in Yin and Neubig (2017) where AST
grammar is collected through compiler’s tool, we
dynamically generate context free grammar from
training data. Concretely, during training stage, we

319

collect ground truth SQL queries and parse them
into SQL trees. Then we collect all the rules as
our grammar using breadth-first search algorithm.
The distinguishing feature of our grammar gen-
eration comparing with the one discussed in Lin
et al. (2019) is that we don’t need so-called "linked
rules" because we get linked entity from NEL re-
sults. This method saves us from manually writing
rules for each dataset. At the same time, it decou-
ples SQL grammar from domain knowledge which
makes our framework more general-purpose than
previous works.

At each decoding step, decoder takes as input
previous decoding result and iteratively apply pro-
duction rules to non-terminal nodes. Owing to our
query understanding based framework, we are able
to employ soft copy mechanism (See et al., 2017)
to directly copy tables, columns and values from
output representations of encoder. Finally, beam
search is used during inference time.

3 Experiment

3.1 Data

SQUALL (Shi et al., 2020) is collected based on
WikiTableQuestions which is a question-answering
dataset over structured tables. In SQUALL, each
query only relies on one table to get the answer.

To obtain supervision labels for NER and NEL
model, we first parse ground truth SQL queries
into trees. Then based on alignment information
provided by the dataset, we programmatically de-
rive entity labels and linking labels for each entity
span in the query. In total, there are 11276 training
instances and 4344 testing instances in the dataset.
Train, dev, test set partition is based on the pre-
defined setting in the released dataset. We use
logical form exact match accuracy and execution
accuracy as our evaluation metric.

3.2 Model Analysis

We first explore the best setup for our framework.
In these experiments, we always use structured de-
coding in the parser. Based on how to utilize query
understanding results, there are three different con-
figurations of our parser model: (1) In our baseline
model setup, we only utilize NER and NEL results
for entity linking purpose and copy linked results
into the generated AST. (2) Instead of using all
schema in parser’s encoder, we only input linked
columns to the parser (3) We inject fine-grained
query understanding results in the parser, i.e. add

Model
Dev

ACCLF ACCEXE

(1) Baseline 42.56 60.57
(2) Linked columns only 38.69 56.83
(3) Columns type feature 49.38 69.14
(4) Oracle column type feature 68.21 85.16

Table 1: System performance with different approaches
to utilize query understanding results in semantic
parser. ACCLF, ACCEXE are logical form accuracy
and execution accuracy, respectively.

linked column type information as meta features to
the encoder of NSP.

In Table 1, we summarize performance of our
system on dev set under different parser config-
urations. Comparing “(2) Linked columns only”
model with baseline model (1), we can see that
system performance suffers because when we only
use linked columns in the parser, NER model er-
rors will propagate to the downstream. With adding
column type feature based approach (row 3 in Ta-
ble 1), we find that it can greatly boost model
performance as it guides parser to choose correct
columns. We also have an oracle experiment where
we use ground truth column type feature. As is
shown in last row in Table 1, it’s around 19% better
than our best configuration (row 3 in Table 1) which
means there is still room to improve our system.

In Table 2, we compare our model performance
with the best model (ALIGN) in SQUALL paper.
Their end-to-end model leverages BERT as the en-
coder and LSTM as decoder using flat decoding
strategy. They’re using supervised attention to help
model learn alignment information. In order to
have a fair comparison with SQUALL paper, we
add two more baselines in our experiments: in
the first experiment we augment ALIGN model by
replacing BERT encoder and LSTM decoder with
BART model; in the second experiment, we replace
structured decoding with flat decoding in our sys-
tem. In a nutshell, we compared performances of
four models: (1) original ALIGN model from Shi
et al. (2020), (2) our augmented implementation of
ALIGN, (3) our framework with flat decoding, (4)
our best configuration (row 3 in Table 1). As can
be seen from the table, our best model outperforms
ALIGN model and augmented ALIGN model in
both logical form accuracy and execution accuracy.
On test set we achieve 56.8% execution accuracy
which is 2.7% higher than the ALIGN model. If

320

Model
Dev Test

ACCLF ACCEXE ACCEXE

(1) ALIGN(SQUALL) 47.2 66.5 54.1
(2) ALIGN(SQUALL) + BART 47.7 67.1 54.6
(3) Ours + Flat decoding 49.1 68.8 56.2
(4) Ours 49.4 69.1 56.8

Table 2: Performance comparison of our model with
ALIGN model in SQUALL paper. ALIGN + BART
model is our implementation of ALIGN model where
we replace BERT encoder and LSTM decoder with
BART encoder and decoder.

Model ACCLF

ALIGN(SQUALL) 30.29
ALIGN(SQUALL) + BART 30.94
Ours 34.78

Table 3: Model’s performance on nested queries. We
retrained ALIGN model for this experiment.

we compare two ALIGN models and two of our
systems with different decoding strategy, it’s easy
to tell BART model and structured decoding con-
tribute limited benefits in our framework which in
turn suggests that major improvement in our sys-
tem is from fine-grained query understanding part.

We also evaluate the generalizability of our
model. Our assumption is that span based NER
model can chunk query based on how meaning is
composed. As we add NER label information into
parser, we hypothesize that the parser can learn to
generate program based on semantic type of query
tokens rather than just using lexical meaning of
tokens. Thus, we would see better performance
on compositional generalization. Particularly, we
want to see how model works on nested queries
since it is an ideal set to evaluate model’s ability on
generalization. To this end, we collect all nested
queries in dev set and evaluate our system on this
nested query set. The performance is shown in
Table 3. Our model shows 4.5% improvement com-
paring with original ALIGN model and around 3%
improvement comparing with augmented ALIGN
model. The results demonstrates that our frame-
work is better at compositional queries.

3.3 Ablation Study

As the first module of our framework, NER model
plays a critical role in our pipeline system. To qual-
itatively study the impact of NER model, we did ab-
lation experiments to study how each component in

Model
Dev Set

NER F1 System ACCLF

Our best model 85.14 49.38
-cell 84.23 47.51
-schema 83.70 47.66
-gazetteer 84.15 45.89
-gazetteer-cell-schema 82.98 43.66

Table 4: NER performance ablation study. Baseline
model here is span-based schema and cell value aware
NER model. We gradually remove each component to
see its impact on the system performance.

NER model affects the system performance. Con-
cretely, we use our schema aware and cell value
aware NER model as the baseline and gradually
remove each component to see how system perfor-
mance fluctuates. Table 4 summarizes our findings.
As is shown in the table, when we remove cell val-
ues, schema and gazetteer filtering, NER F1 score
goes down and system performance degrades ac-
cordingly. We can also see that among these three
components, system performance drops the most
(from 49.38 to 45.89) when we remove gazetteer
filtering. Gazetteer filtering in NER serves the role
to combine string match and model prediction. It
forces NER model to output predictions for exactly
matched spans at output which increases recall of
NER model. From system perspective, downstream
parser is more sensitive to missing entities. Thus,
improving NER recall can greatly boost system
performance.

4 Conclusion

In this work, we proposed a novel, general-purpose
Text-to-SQL semantic parsing framework which is
based on fine-grained query understanding. The
framework tackles several pain points in the Text-
to-SQL problem and offers a new robust approach
for real-life applications. Our framework outper-
forms previous state-of-the-art result by 2.7% on
SQUALL test set. In the future, we plan to explore
using fine-grained query understanding results to
constrain decoding search space in parser to further
improve system performance.

5 Limitations

While this work aims to improve Text-to-SQL se-
mantic parsing with fine-grained annotations, we
don’t have enough time and resources to collect
a dataset for such purpose. Due to this issue, our

321

experiments are limited to SQUALL dataset. In the
future, we plan to build a comprehensive dataset to
facilitate research in the area.

References

Ursin Brunner and Kurt Stockinger. 2020. Valuenet: A
neural text-to-sql architecture incorporating values.
ArXiv, abs/2006.00888.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Markus Eberts and Adrian Ulges. 2019. Span-based
joint entity and relation extraction with transformer
pre-training.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. arXiv
preprint arXiv:1905.08205.

Jonathan Herzig and Jonathan Berant. 2020. Span-
based semantic parsing for compositional general-
ization. arXiv preprint arXiv:2009.06040.

Martin Josifoski Sebastian Riedel Luke Zettlemoyer
Ledell Wu, Fabio Petroni. 2020. Zero-shot entity
linking with dense entity retrieval. In EMNLP.

Brian Lester, Daniel Pressel, Amy Hemmeter, Sag-
nik Ray Choudhury, and Srinivas Bangalore. 2020.
Constrained decoding for computationally efficient
named entity recognition taggers. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1841–1848, Online. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Kevin Lin, Ben Bogin, Mark Neumann, Jonathan Be-
rant, and Matt Gardner. 2019. Grammar-based neu-
ral text-to-sql generation. ArXiv, abs/1905.13326.

Jianqiang Ma, Zeyu Yan, Shuai Pang, Yang Zhang, and
Jianping Shen. 2020. Mention extraction and link-
ing for SQL query generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6936–6942,
Online. Association for Computational Linguistics.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. arXiv
preprint arXiv:2010.05647.

Ohad Rubin and Jonathan Berant. 2020. Smbop: Semi-
autoregressive bottom-up semantic parsing. ArXiv,
abs/2010.12412.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard - parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

A. See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the potential
of lexico-logical alignments for semantic parsing to
SQL queries. In Findings of EMNLP.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi,
Richard Socher, Caiming Xiong, Michael Lyu, and
Irwin King. 2020. Photon: A robust cross-domain
text-to-SQL system. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 204–
214, Online. Association for Computational Linguis-
tics.

Zexuan Zhong and Danqi Chen. 2020. A frustratingly
easy approach for joint entity and relation extraction.
arXiv preprint arXiv:2010.12812.

322

Proceedings of EMNLP 2022 Industry Track, pages 323–331
December 9–11, 2020. ©2022 Association for Computational Linguistics

Unsupervised Dense Retrieval for Scientific Articles

Dan Li and Vikrant Yadav and Zubair Afzal and Georgios Tsatsaronis
Elsevier

{d.li, v.yadav, zubair.afzal, g.tsatsaronis}@elsevier.com

Abstract
In this work, we build a dense retrieval based se-
mantic search engine on scientific articles from
Elsevier. The major challenge is that there is no
labeled data for training and testing. We apply
a state-of-the-art unsupervised dense retrieval
model called Generative Pseudo Labeling that
generates high-quality pseudo training labels.
Furthermore, since the articles are unbalanced
across different domains, we select passages
from multiple domains to form balanced train-
ing data. For the evaluation, we create two test
sets: one manually annotated and one automat-
ically created from the meta-information of our
data. We compare the semantic search engine
with the currently deployed lexical search en-
gine on the two test sets. The results of the
experiment show that the semantic search en-
gine trained with pseudo training labels can
significantly improve search performance.

1 Introduction

Search engines are deeply integrated into Elsevier’s
information services of its scientific literature data.
An example is the one provided by ScienceDi-
rect1, providing researchers with search services
on more than 19M full text articles. These search
engines are currently based on lexical search mod-
els such as BM25. The deployment of such models
is effortlessly simplified by using popular industry-
standard libraries such as Elasticsearch2. However,
lexical search suffers from the lexical gap problem
such as misspellings, synonyms, abbreviations, am-
biguous words, and ignoring of word order (Formal
et al., 2021).

Recently, dense retrieval (DR) models have
proven to be highly effective in solving the lex-
ical gap problem while still remain fast search
speed (Karpukhin et al., 2020; Xiong et al., 2020).
DR models map queries and passages to a com-
mon vector space and retrieve relevant passages

1https://www.sciencedirect.com
2https://www.elastic.co

18/10/2022, 18:04 Search engine

10.68.12.79/?query=what+is+machine+learning 1/2

Total 100 results (0.08265471458435059 seconds)

Concept: Learning Technique Domain: Engineering

Did you find this relevant?

Concept: Machine Learning Domain: Physics and Astronomy

Did you find this relevant?

Concept: Labeled Example Domain: Computer Science

Did you find this relevant?

Concept: Inductive Reasoning Domain: Computer Science

Did you find this relevant?

Concept: Process Classification Domain: Computer Science

Did you find this relevant?

Concept: Repeated Trial Domain: Computer Science

Did you find this relevant?

Concept: Linear Separability Domain: Computer Science

Did you find this relevant?

Concept: Nonparametric Model Domain: Mathematics

Did you find this relevant?

Internet of Things in Biomedical Engineering (https://www.sciencedirect.c…
https://www.sciencedirect.com//topics/engineering/learning-technique
Machine learning can be defined as the field of study of algorithms that make machines capable of
decision making and actuation without being explicitly designed to do so.

Advances in Geophysics (https://www.sciencedirect.com//topics/physics-…
https://www.sciencedirect.com//topics/physics-and-astronomy/machine-learning
Machine learning (ML) is deeply rooted in applied statistics, building computational models that use
inference and pattern recognition instead of explicit sets of rules. Machine learning is generally regarded
as a subfield of artificial intelligence (AI), with the notion of AI first being introduced by Turing (1950).
Samuel (1959)

Data Mining (Third Edition) (https://www.sciencedirect.com//topics/comp…
https://www.sciencedirect.com//topics/computer-science/labeled-example
Machine learning investigates how computers can learn (or improve their performance) based on data.
A main research area is for computer programs to automatically learn to recognize complex patterns
and make intelligent decisions based on data. For example, a typical machine learning problem is to
program a computer so

Thinking Machines (https://www.sciencedirect.com//topics/computer-scie…
https://www.sciencedirect.com//topics/computer-science/inductive-reasoning
Machine learning is an inductive reasoning approach in contrast to a traditional deductive reasoning
approach based on a mathematical observation. Learning or training is applied to update the
parameters representing a feature aiming to achieve a zero loss function. The learning process uses
back propagation, in which the error

Machine Learning and Data Mining (https://www.sciencedirect.com//topic…
https://www.sciencedirect.com//topics/computer-science/process-classification
As described in Chapter 1, learning is any modification of the system that improves its performance in
some problem solving task. The result of learning is knowledge which the system can use for solving
new problems. Knowledge can be represented in many different ways: it can be a set

Machine Learning and Data Mining (https://www.sciencedirect.com//topic…
https://www.sciencedirect.com//topics/computer-science/repeated-trial
Intellect separates, locates and compares details by searching mutual contrasts; Wisdom unites and
joins apparent opposites into one uniform harmony.— Sri Aurobindo•Practising, imitating the teacher,
and repeated trial and error is called learning. The process of transformation due to learning is called
knowledge acquisition. Learning by a living system

Machine Learning (https://www.sciencedirect.com//topics/computer-scien…
https://www.sciencedirect.com//topics/computer-science/linear-separability
So far learning as been regarded as an optimization problem. Now we explore a different corner of
learning, which is perhaps more intuitive, since it is somehow related to the carrot and stick principle.
One can regard learning as a process driven by the combination of rewards and punishment

Quantum Machine Learning (https://www.sciencedirect.com//topics/math…
https://www.sciencedirect.com//topics/mathematics/nonparametric-model
Machine learning is an interdisciplinary field: it draws on traditional artificial intelligence and statistics.
Yet, it is distinct from both of them.

Results

what is machine learning

Figure 1: Interface of our semantic search engine.

by searching for (approximate) nearest neighbors.
DR has been well studied on laboratory data but
still in the early stage for industry-level applica-
tions (Hofstätter et al., 2022; Kim, 2022). DR is
mainly applied in multi-modal search in industry
where traditional lexical search is not possible, like
text-image search (Radford et al., 2021) or music
search (Castellon et al., 2021).

It is of great interest to use state-of-the-art DR
models to build semantic search engines for in-
dustry. Such search engines can enable efficient
access and search to scientific literature of Else-
vier and help researchers in their journey (Elsevier,
2022). Our goal in this work is to develop a seman-
tic search engine that needs no relevance-labeled
data to train the DR model, thus allowing easy
adaptation to new domains and easy deployment in
industry.

There are several challenges to be tackled. First,
training a DR model requires sufficient labeled
data such as MS-MARCO (Nguyen et al., 2016),
whereas there is often no such data for specific
domains or startups. In our case, we have a large
collection of passages from scientific articles but no
relevance label. Furthermore, it is shown that DR

323

models trained on one domain do not generalize to
another (Thakur et al., 2021). The passages in our
corpus have a different word distribution compared
to that in MS-MARCO. Besides, the passages are
also unbalanced regarding their domains (see Sec-
tion 4.3). Therefore, using the models trained on
MS-MARCO will not yield high retrieval perfor-
mance. It is interesting to tackle the domain dif-
ference problem. Finally, there is no test set to
evaluate search performance and creating a good-
quality test set is time-consuming and expensive.
All these challenges hinder the application of DR
models in industry setting.

In this work, we trained a DR model using a
state-of-the-art unsupervised dense retrieval model
called GPL (Wang et al., 2021). It uses a pre-
trained query generator to generate queries from
passages. The passage is considered as positive
for the generated queries. Negative passages for
generated queries are retrieved using existing dense
retrieval models trained on MS-MARCO. An exist-
ing cross-encoder model trained on MS-MARCO
produces relevance scores of query-passage pairs
as supervision signals to train the DR model.

Finally, we constructed two test sets by either
manual annotation or automatic extraction of exist-
ing relevance information from the meta field of the
corpus. The experimental results show that our best
model can significantly improve the retrieval per-
formance compared to lexical and semantic search
baselines.

The semantic search engine we have created for
our product is shown in Figure 1. It is currently
deployed and running in a beta test mode.

2 Related Work

2.1 Dense retrieval

The very first work on dense retrieval (DR) was pro-
posed by Karpukhin et al. (2020). DR uses text en-
coders to represent queries and documents as dense
vectors and retrieve documents by similarity scores
between query vectors and document vectors. It
has shown to achieve competitive performance in
first-stage retrieval compared with traditional lexi-
cal retrieval method.

Researchers have been working towards improv-
ing the effectiveness of DR models through neg-
ative sampling (Xiong et al., 2020; Zhan et al.,
2021; Lin et al., 2021), pre-trained language mod-
els (Gao and Callan, 2021), and pseudo relevance
labels (Prakash et al., 2021; Yu et al., 2021), as well

as improving the efficiency of DR models with
sparse representation (Zhan et al., 2022; Thakur
et al., 2022).

2.2 Unsupervised dense retrieval

Unsupervised dense retrieval (UDR) aims to train
dense retrieval models without manually labeled
data. It generates high-quality pseudo labeled data
and designs proper loss functions to train DR mod-
els.

The first step is to generate positive examples,
which is done by extraction or generation. For
example, Izacard et al. (2021) extracted a pair of
relevant texts form the same document using the
inverse cloze task and independent cropping. Wang
et al. (2021) generated queries from documents us-
ing existing encoder-decoder as positive examples.

The second step is to generate negative examples.
Izacard et al. (2021) used contrastive loss to create
negative batches within a batch and across batches.
Wang et al. (2021) used existing weak retrievers to
retrieve top-k documents as negatives.

The third step is to design training loss. Due
to the noisy fact of pseudo examples, traditional
pairwise ranking loss (Burges, 2010) is not a good
choice because the training are easily affected by
noisy labels. Instead, contrastive loss is widely
used (Izacard et al., 2021; Xu et al., 2022). On the
other hand, relevance scores from existing general-
izable cross-encoder have been used as supervision
signal (Wang et al., 2021).

3 Methodology

3.1 GPL Model Training

Since there are no relevance labels for the pas-
sages in our corpus, we apply a recent unsupervised
dense retrieval model GPL (Wang et al., 2021) to
train our dense retrieval model. We generate 3
queries from each passage using a pre-trained query
generator (Nogueira et al., 2019). The passage-
query pairs will be the pseudo positive examples.
For each generated query, we retrieve similar pas-
sages using two existing DR models trained on
the MS-MARCO dataset (Reimers and Gurevych,
2019), and take the first 50 of each model as pseudo
negatives. Finally, we use a student-teacher train-
ing method. The teacher model is a cross-encoder
trained on MS-MARCO which shows good perfor-
mance in zero-shot retrieval tasks (Hofstätter et al.,
2020). The student model is the bi-encoder DR
model to be learned.

324

The student-teacher training is used because the
pseudo labels are noisy and can not be directly used
in the traditional pairwise ranking loss (Burges,
2010) or contrastive loss (Wu et al., 2018). Instead,
using a cross-encoder has been demonstrated to
generalize well on different datasets (Hofstätter
et al., 2020) and thus can be used as a teacher
model through knowledge distillation.

For the knowledge distillation we have used
MarginMSE loss (Hofstätter et al., 2020). It is
defined as:

LMarginMSE = − 1

M

M−1∑

i=0

|δ̂i − δi|2 (1)

δ̂i = fbe(qi)
T fbe(p

+
i)− fbe(qi)T fbe(p−i)

δi = fce(qi, p
+
i)− fce(qi, p−i) ,

where fbe is the bi-encoder, which maps the text
of query or passage to a vector, fce is the cross-
encoder, which maps the text of query and passage
to a score, qi is the query, p+i is the positive passage,
and p−i is the negative passage.

By minimizing LMarginMSE , the MarginMSE
loss avoids the hard treatment of the positives
and negatives as in pairwise ranking loss (Burges,
2010) and contrastive loss (Wu et al., 2018). For
example, for (false positive, negative) pairs or
(positive, false negative) pair, we do not expect
the bi-encoder to put them far away in the embed-
ding space or have small similarity scores. The
cross-encoder will assign a small δ value and the
MarginMSE loss will teach the bi-encoder to pro-
duce small δ̂ value as well.

Implementation. We use all-t5-base-v1 as the
query generator because it is designed to gen-
erate key-word queries, which is similar with
the terms or topics people search in our product.
We use msmarco-distilbert-base-v3 and msmarco-
MiniLM-L-6-v3 as the negative retrievers, and
ms-marco-MiniLM-L-6-v2 as the teacher cross-
encoder as suggested in GPL. We use sebastian-
hofstaetter/distilbert-dot-tas_b-b256-msmarco as
the starting checkpoint of the student bi-encoder
because this is the best bi-encoder on MS-MARCO.
The teacher model and the student model contain
22M and 66M parameters, respectively. All the
models aforementioned can be downloaded from
Huggingface3. We set batch size 16. We set maxi-
mum sequence length 512. Note that the passages
are snippet from the articles and have on average

3https://huggingface.co/models

474 English words or 723 WordPiece (Wu et al.,
2016) tokens. Cutting off of the passages loses
information. It is worthy split the passages into
shorter ones and we leave the work for future study.

3.2 Test Set Construction

Corpus The corpus we are working on supports
a web service providing concept definitions and
subject overviews for researchers who want to ex-
pand their knowledge about scholarly and technical
terms.4 For example, for the term “water purifica-
tion”, a web page is created that contains its defi-
nition, several scientific article snippets containing
other definitions of the term, and several relevant
terms as well. The corpus contains about 2M pas-
sages extracted from scientific articles. The arti-
cles are from 20 different domains and not evenly
distributed across domains. Figure 3 shows the
domain distribution.

Manual test set. We aim to develop a semantic
search engine on top of this corpus, so that when
a user searches a term, the semantic search engine
returns passages containing the definition of the
term. Therefore, the ideal queries are questions
about scientific terms, and the ideal relevant pas-
sages are those talks about (part of) the definitions
the terms.

As the data contains scientific terms from 20
domains, we sample one term from each. We only
sample those having Wikipedia pages to increase
the chance that there exists relevant passages for a
query.

We use the widely-used pooling method in in-
formation retrieval (Ferro and Peters, 2019) to se-
lect passages for annotation. We include 3 dif-
ferent retrieval systems in the pool including the
BM25 model (Pérez-Iglesias et al., 2009), the TAS
model (Hofstätter et al., 2021), and the GPL model
trained by us, in order to ensure the passages in the
test set are diverse and not biased towards either
lexical retrieval or semantic retrieval methods. We
randomly sample from the top-10 passages in the
ranking lists.

We had 3 workers annotating the selected query-
passage pairs. Conflicts of annotation were dis-
cussed until an agreement was reached. Finally, 20
queries and 539 query-passage pairs are selected
and annotated.

Auto test set. Although the manual test set has
high quality, it is too small and thus sensitive for

4https://www.sciencedirect.com/topics/index

325

evaluation. We use the noisy meta information
in our corpus and construct a larger test set. The
passages in the corpus is organised by terms. Each
term has several passages associated with it that are
considered relevant and containing the definition
of the term. The extraction of the definition and
relevant passages are done by production system
based on lexical methods. Thus the passages can
be roughly taken as relevant to that term. To bal-
ance terms from different domains, we sample 10
terms from each domain and take all the passages
associated with it as relevant. Finally, we have 200
queries and 3,562 relevant labels.

3.3 System Architecture
Figure 2 shows the architecture of the semantic
search engine. The system is divided into two parts,
offline and online. In the offline part, we download
the corpus from Amazon S3 buckets, then on Ama-
zon Sagemaker we preprocess the corpus, train the
the bi-encoder model and convert the passages into
768-dimensional vectors using the trained model.
The HNSW5 algorithm is used to index the pas-
sages.

The online part is divided into two parts. One
of the parts is an API-based service running on
Amazon Sagemaker. The task of this service is to
convert the user query into a vector and find the
passages closest to the query vector using the in-
dex we created in offline mode. The other part is
a UI based interface running on an Amazon EC2
instance. This part processes the user query and dis-
plays the passage associated with the query through
a UI interface.

The EC2 instance and API run on an Intel Xeon-
based processor and the cost of running them is 1
dollar per hour. For training the model, we use the
AWS p3.8x.large EC2 instance type. This instance
is installed with NVIDIA Tesla V100 GPUs. The
cost of training the model was approximately 200
dollars. During inference time, the system is run-
ning on a CPU instance and it is able to process up
to 70 requests/second. The average time needed to
get the search result for a query is 0.03 second.

4 Experimental Setup

4.1 Research Questions
(RQ1) How does the model perform compared with

the current production model and other base-
lines?

5https://github.com/nmslib/hnswlib

Search
Engine

UI

Flask
API

Query

Document

DR Model Query
embedding Dense

Index

Preprocessed
corpus

DR Model Passage
embeddings

Dense
Index

Hosted on EC2 Hosted on Sagemaker

Hosted on S3 bucket Hosted on SagemakerOffline

Online

copy

GPL
training

copy

Figure 2: Architecture of the semantic search engine.

(RQ2) Is it necessary to use the whole corpus to train
the model?

(RQ3) Whether balancing passages from different
domains in training batches improves model
performance?

4.2 Baselines
BM25. This baseline is the current search engine
in production. It uses lexical retrieval model BM25
implemented in Elasticsearch.
TAS (Hofstätter et al., 2021). The sebastian-
hofstaetter/distilbert-dot-tas_b-b256-msmarco
model is a zero-shot baseline. It was the best
bi-encoder on MSMARCO when this paper was
submitted. We also use this model as the starting
checkpoint to train the GPL model.
BM25+CE. This is a two-stage baseline imple-
mented by us. It consists of lexical retrieval and
re-ranking. We first use BM25 to produce a ranked
list of passages, then use a cross-encoder ms-marco-
MiniLM-L-6-v2 trained on MSMARCO to rerank
the top-1000 passages. We use this model as the
teacher model when training GPL.

4.3 Dataset
We use two test sets including the Manual and the
Auto. Table 2 shows the statistics. The Manual
has 20 queries and the Auto has 200 queries. Auto
also has more labels for query-passage pairs. Note
there is 0 non-relevant labels for Auto, however
this does not affect the evaluation as all the rest
passages without a relevant label will be counted as
non-relevant. To speed up evaluation, we randomly
sample a subset of passages for the models to re-
trieve from, combined with the passages in each of
the two test sets. This results in two test corpora
consisting of 100,513 and 102,506 passages for the
Manual and the Auto. The test corpora have the
same domain distribution with the full corpus.

326

Model Manual test set Auto test set

NDCG@10 MAP@10 MRR@10 R@100 NDCG@10 MAP@10 MRR@10 R@100

BM251 61.86 42.59 77.38 87.05 53.08 24.17 68.81 70.81
TAS 47.78 25.98 74.17 67.64 28.20 9.97 46.81 40.16
GPL 71.29 42.42 85.70 91.71 49.78 22.44 74.21 59.41
GPL_BLC 74.42 44.96 87.62 91.77 50.16 22.47 75.49 59.69

BM25+CE2 84.90 54.96 95.00 90.99 68.33 36.87 86.68 78.56

1 Production model of our product.
2 Upper bound of our model.

Table 1: Retrieval performance (%). The best values for each metric and the upper bound method is in bold.

Manual Auto
Test set
query 20 200
passage 539 2614
relevant 289 3562
non-relevant 251 0
Test corpus
passage 100513 102506

Table 2: Statistics of test sets.

0 50000 100000 150000 200000 250000 300000 350000
Count

Do
m

ai
n

Engineering
Agricultural and Biological Sciences
Medicine and Dentistry
Pharmacology, Toxicology and Pharmaceutical Science
Immunology and Microbiology
Computer Science
Chemistry
Earth and Planetary Sciences
Social Sciences
Nursing and Health Professions
Biochemistry, Genetics and Molecular Biology
Physics and Astronomy
Mathematics
Neuroscience
Psychology
Veterinary Science and Veterinary Medicine
Materials Science
Economics, Econometrics and Finance
Chemical Engineering
Food Science

Passage domain distribution.

Figure 3: Passage domain distribution. The top 5 do-
mains cover about 58.1% of the passages and the bottom
5 domains only contains about 3.97% of the passages.

5 Results

5.1 Retrieval performance

In this section, we aim to answer RQ 1. We use
a subset of 83K passages from our corpus and
generate 3 queries for each passages and gener-
ate 100 negative passages for each query. Finally,
we sample 4M training examples in the format
of (qi, p+i , p−i , δi). It is suggested that such a
volume is enough to train a GPL model for a
new domain (Wang et al., 2021). We also empiri-
cally demonstrate the impact of training example
size in Section 5.2. We train two GPL models:
GPL is trained on 83K passages randomly sam-

pled. GPL_BLC is trained on 83K passages which
are balanced sampled from the 20 domains. Since
we aim to build a one-stage retrieval model, we
compare our model with a lexical retrieval model
– BM25 and a zero-shot dense retrieval model –
TAS. We also compare with a two-stage method –
BM25+CE.

Table 1 shows the retrieval performance. First,
BM25 performs robustly well on the two test sets,
while zero-shot TAS performs poorly. It indicates
that dense retrieval models do not generalize well
on new domain. This finding is consistent with
the work of Thakur et al. (2021). The difference
of metrics between BM25 and TAS is larger on
Auto, because we have annotated both lexical and
semantic relevant passages in the Manual test set
while most relevant passages in the Auto test set
are obtained by lexical methods only. The dense re-
trieval model TAS is thus down-estimated on Auto.
Second, BM25+CE performs the best. It improves
NDCG@10, MAP@10, and MRR@10 to a large
margin compared to BM25. The cross-encoder
model (ms-marco-MiniLM-L-6-v2) is trained on
MS-MARCO. Thus, the result indicates the good
generalization capability of cross-encoder ranking
models. Third, GPL or GPL_BLC perform better
than BM25 on most the metrics and better than
TAS on all the metrics. For example, an MRR@10
of 87.62 means that GPL_BLC can rank relevant
passages on the first or second position on averaged
queries, an R@100 of 91.77 means that GPL_BLC
can retrieve 91.77% of the relevance passages in
top 100. Note that the performance difference be-
tween GPL and GPL_BLC is big on Manual but
small on Auto. The possible reason is that on Auto
most semantically relevant passages are not labeled
in the test set.

327

0.0 0.5 1.0 1.5 2.0 2.5
Training example size 1e6

0.66

0.68

0.70

0.72

0.74

0.76

ND
CG

@
10

Corpus
unbalanced (original)
balanced

(a) NDCG@10 averaged over queries against training example
size.

Ch
em

ica
l

Ch
em

ist
ry

Ea
rth

M
at

er
ia

ls

Co
m

pu
te

r

En
gi

ne
er

in
g

M
at

he
m

at
ics

Ph
ys

ics

Ec
on

om
ics

Ps
yc

ho
lo

gy

Ag
ric

ul
tu

ra
l

So
cia

l

Nu
rs

in
g

M
ed

ici
ne

Ph
ar

m
ac

ol
og

y

Ve
te

rin
ar

y

Ne
ur

os
cie

nc
e

Bi
oc

he
m

ist
ry

Im
m

un
ol

og
y

Fo
od

Domain

0.0

0.2

0.4

0.6

0.8

1.0

ND
CG

@
10

unbalanced (original)
balanced

(b) Query-wise NDCG@10 of model trained with all the 4M
training examples.

Figure 4: NDCG@10 of the Unbalanced and Balanced
corpus.

5.2 The impact of training example size

In this section, we aim to answer RQ 2. We use
all the 2M passages in the corpus and generate
32M training examples to train the model. We save
the checkpoint every 160K examples. We eval-
uate model performance on the Manual test set.
Figure 5 shows the NDCG@10 score against the
training example size. We observe that more train-
ing examples do help to improve the performance
of the model. The performance increases fast at
the beginning and achieves an NDCG@10 of 0.74
with about 1M training examples, it then increases
slowly towards an NDCG@10 of 0.80.

To sum up, it is not necessary to train the GPL
model with all passages in our corpus; a volume of
1M training examples should be sufficient for the
model.

0.1 0.4 0.8 1.6 3.2
Training example size 1e7

0.70

0.72

0.74

0.76

0.78

0.80

ND
CG

@
10

Train GPL on the whole corpus.

Figure 5: NDCG@10 of GPL model trained with differ-
ent number of examples. The x-axis is from 0.1× 107

to 3.2× 107.

5.3 The impact of domain distribution

In this section, we aim to answer RQ 3. Since
there is meta information about what domain the
passages belong to in our corpus, we compare the
model trained on the random 83K passages (Unbal-
anced) and the model trained on the 83K evenly
distributed in the 20 domains (Balanced). Figure 4
shows the NDCG@10 of corpus 83K and 83K-
balance. We use the Manual set as the test set. We
observe that (1) there is a large improvement on
83K-balanced compared to 83K-unbalanced; (2)
the NDCG@10 increase for most queries, and the
improvement is especially large for those with low
NDCG@10.

5.4 Case study

In this section, we show one query and the top 3
ranked passages selected from the Manual test set
to analyze the retrieval effectiveness. We showcase
three models including BM25, TAS, and GPL. The
case study helps us to know how the retrieved pas-
sages are different for the DR model trained on the
target domain, the zero-shot DR model and the lex-
ical retrieval model. BM25, as expected, retrieves
passages containing exact match of words in the
query. As it is a bag-of-word model, we observe
that the word “water” and “purification” do not
always appear together in the passages. TAS can
retrieve semantically similar passages, but they are
sometimes off the topic. For example, the 1st pas-
sage retrieved by TAS is about “fuel purification”,
it even contains the definition. However, it is not
about “water purification”. TAS_GPL can retrieve
relevant passages which even contain the definition.

328

Model BM25 TAS GPL

Query What is Water Purification

1st passage ...Importance of purification.
Physicochemical properties of
our model system. Adsorption
layer of a nonionic surfactant.
Ionic surfactant at the air water
interface...

...The purification process is
shown schematically in Figure
7-38. Fuel purification is a
one-stage extraction procedure
which employs centrifuges to
treat distillates...

...Water purification for human
consumption purposes consists
in the removal of different con-
taminants as chemicals (i.e., pol-
lutants, toxic metals), biological
contaminants...

Relevance 0 0 2

2nd passage ... Such basic issues have to be
addressed ahead of any assess-
ment of water purification tech-
nologies, since such purification
may not even be necessary...

...Purification is practical with
distillate fuel and light crude
oils having a minimum 0.5% wa-
ter in the fuel, with a...

...Fuel purification is a one-
stage extraction procedure
which employs centrifuges to
treat distillates and light crude
oils without adding water...

Relevance 1 0 0
3rd passage ...Preparation of clarified growth

media from an overnight culture
of bacterial cells is the first and
perhaps most important step in
purifying OMVs. Before pro-
ceeding to purification...

...Disinfection, the desired result
of field water treatment, means
the removal or destruction
of harmful microorganisms.
Technically, it refers to chemi-
cal means such as...

The terms “water treatment”
and “water purification” are ex-
tensively used for any unit oper-
ations and processes that involve
methods and processing steps ...

Relevance 0 2 2

Table 3: Case study.

For example, the 1st passage is a good definition
of “water purification”. The case clearly shows
that lexical retrieval and dense retrieval find very
different passages. This is because their ways of
representing texts are completely different. Further-
more, training DR models on the target domain can
improve retrieval performance to a large margin
even though the training labels are noisy.

6 Conclusions & Future Work

In this work, we build a semantic search engine
on scientific articles. To tackle the challenge of no
labeled data for both training and test, we apply a
state-of-the-art unsupervised dense retrieval model
named GPL. As the articles are unbalanced across
different domains, we sample passages from mul-
tiple domains to form balanced training batches.
We also created two test sets for the evaluation:
one manually annotated and one automatically con-
structed from the meta information of our corpus.

We compare the semantic search engine with the
currently deployed lexical search engine on the test
sets. Both the qualitative and quantitative experi-
ment results show that the semantic search engine
can significantly improve the search performance.
This results suggest that GPL is a robust and effec-
tive model for unsupervised dense retrieval.

For the future work, we will train the query gen-
erator and the negative retriever on our data to gen-
erate a better quality of both positive and negative

training example to improve the retrieval perfor-
mance.

7 Limitations

Currently, we see 3 limitations in our work. First,
the query generator is trained on a different domain,
which results in skipping important keywords or
phrases around which the query should be gen-
erated. Second, the negative retrievers are not
adapted to the domain. The results obtained by
these retrievers are negative but not “hard nega-
tive”. This leads to limitations in learning of the
student model. Third, the semantic search engine
we build has not been evaluated on production pop-
ulation. We plan to conduct online evaluation in
the future.

329

References

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11(23-581):81.

Rodrigo Castellon, Chris Donahue, and Percy Liang.
2021. Codified audio language modeling learns use-
ful representations for music information retrieval.
arXiv preprint arXiv:2107.05677.

Elsevier. 2022. All elsevier digital solutions.

Nicola Ferro and Carol Peters. 2019. Informa-
tion Retrieval Evaluation in a Changing World:
Lessons Learned from 20 Years of CLEF, volume 41.
Springer.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. Splade: Sparse lexical and expan-
sion model for first stage ranking. In Proceedings
of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2288–2292.

Luyu Gao and Jamie Callan. 2021. Condenser: a
pre-training architecture for dense retrieval. arXiv
preprint arXiv:2104.08253.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury. 2020.
Improving efficient neural ranking models with cross-
architecture knowledge distillation. arXiv preprint
arXiv:2010.02666.

Sebastian Hofstätter, Nick Craswell, Bhaskar Mitra,
Hamed Zamani, and Allan Hanbury. 2022. Are we
there yet? a decision framework for replacing term
based retrieval with dense retrieval systems. arXiv
preprint arXiv:2206.12993.

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Effi-
ciently Teaching an Effective Dense Retriever with
Balanced Topic Aware Sampling. In Proc. of SIGIR.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Towards unsupervised
dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Yubin Kim. 2022. Applications and future of dense
retrieval in industry. In Proceedings of the 45th In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 3373–
3374.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2021. In-batch negatives for knowledge distillation
with tightly-coupled teachers for dense retrieval. In
Proceedings of the 6th Workshop on Representation
Learning for NLP (RepL4NLP-2021), pages 163–
173.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPs.

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019.
From doc2query to doctttttquery. Online preprint, 6.

Joaquín Pérez-Iglesias, José R Pérez-Agüera, Víctor
Fresno, and Yuval Z Feinstein. 2009. Integrating the
probabilistic models bm25/bm25f into lucene. arXiv
preprint arXiv:0911.5046.

Prafull Prakash, Julian Killingback, and Hamed Zamani.
2021. Learning robust dense retrieval models from
incomplete relevance labels. In Proceedings of the
44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 1728–1732.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Nandan Thakur, Nils Reimers, and Jimmy Lin. 2022.
Domain adaptation for memory-efficient dense re-
trieval. arXiv preprint arXiv:2205.11498.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evalua-
tion of information retrieval models. arXiv preprint
arXiv:2104.08663.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna
Gurevych. 2021. Gpl: Generative pseudo labeling for
unsupervised domain adaptation of dense retrieval.
arXiv preprint arXiv:2112.07577.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings

330

of the IEEE conference on computer vision and pat-
tern recognition, pages 3733–3742.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2022. Laprador: Unsupervised pretrained dense re-
triever for zero-shot text retrieval. arXiv preprint
arXiv:2203.06169.

HongChien Yu, Chenyan Xiong, and Jamie Callan. 2021.
Improving query representations for dense retrieval
with pseudo relevance feedback. arXiv preprint
arXiv:2108.13454.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021. Optimizing dense
retrieval model training with hard negatives. In Pro-
ceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 1503–1512.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2022. Learning discrete
representations via constrained clustering for effec-
tive and efficient dense retrieval. In Proceedings of
the Fifteenth ACM International Conference on Web
Search and Data Mining, pages 1328–1336.

331

Proceedings of EMNLP 2022 Industry Track, pages 332–341
December 9–11, 2020. ©2022 Association for Computational Linguistics

Learning Geolocations for Cold-Start and Hard-to-Resolve Addresses via
Deep Metric Learning

Govind
Amazon

gvindmg@amazon.com

Saurabh Sohoney
Amazon

sohoneys@amazon.com

Abstract
With evergrowing digital adoption in the soci-
ety and increasing demand for businesses to
deliver to customers doorstep, the last mile
hop of transportation planning poses unique
challenges in emerging geographies with un-
structured addresses. One of the crucial inputs
to facilitate effective planning is the task of
geolocating customer addresses. Existing sys-
tems operate by aggregating historical delivery
locations or by resolving/matching addresses
to known buildings and campuses to vend a
high-precision geolocation. However, by de-
sign they fail to cater to a significant fraction
of addresses which are new in the system and
have inaccurate or missing building level infor-
mation. We propose a framework to resolve
these addresses (referred to as hard-to-resolve
henceforth) to a shallower granularity termed
as neighbourhood. Specifically, we propose a
weakly supervised deep metric learning model
to encode the geospatial semantics in address
embeddings. We present empirical evaluation
on India (IN) and the United Arab Emirates
(UAE) hard-to-resolve addresses to show sig-
nificant improvements in learning geolocations
i.e., 22% (IN) & 55% (UAE) reduction in deliv-
ery defects (where learnt geocode is >Y meters1

away from actual location), and 43% (IN) &
90% (UAE) reduction in 50th percentile (p50)
distance between learnt and actual delivery lo-
cations over the existing production system.

1 Introduction and Motivation

Last Mile delivery planning systems aim to opti-
mize the delivery experience for both customers
and delivery associates when packages travel from
the final delivery stations to customer doorsteps.
One crucial input to this planning is the delivery
location of customers. Customers provide infor-
mation regarding their whereabouts through ad-
dress text, the only mandatory input they need

1In this paper, the exact values at few places are not re-
vealed due to the business confidentiality reasons and finer
address details are masked (X) to preserve customers’ privacy.

Figure 1: Address geocoding via nearest neighbours

to provide while placing their order. The task
of learning geolocation of addresses is commonly
known as geocoding and it is challenging in emerg-
ing geographies because of two primary reasons
– 1) Lack of standardisation in the address text in
form of spelling variations, missing components
and use of vernacular content, synonyms and ab-
breviations, 2) Large proportion of cold-start ad-
dresses to which too few or no deliveries have been
made in the past. For instance, the address Bank
Colony Sheriguda, Ibrahimpatnam, Gandi Statue,
501510, Hyderabad, IN does not contain any fine-
grained details other than mentions of locality and
landmark. Apart from the unstructured nature, ad-
dresses in emerging geographies tend to have inac-
curate components such as XX1 Marina Bay One,
Rawdat Al Reef, Abu Dhabi, UAE contains wrong
customer chosen district information (correct: Al
Reem Island). It should be noted that the geocod-
ing problem becomes trivial and simply reduces to
aggregation of past delivery scans once there are
successful deliveries to the address, irrespective of
the address quality. The central theme of this work
is to deal with customer addresses which have little
or no delivery history along with missing or inaccu-
rate components, also referred to as hard-to-resolve
addresses here.

In general, the address geocoding task is largely
approached as entity matching or record linkage
in natural language processing (NLP) where the
idea is to match a query address to a reference set
of addresses with known geocodes (Comber and
Arribas-Bel, 2019; Lin et al., 2020; Li et al., 2022).

332

These models target for a fine-grained (i.e. building,
campus level) or exact matching of addresses and
thus do not serve to a large fraction of addresses
in emerging geographies which have missing or
inaccurate building/campus information. Figure
1 illustrates a conceptual view of our geocoding
pipeline. Rather than matching a query address to
an individual address in reference set, we aim to
retrieve its nearest neighbours. Using neighbour-
hood based approach we attempt to treat addresses
not in isolation but in the view of their multiple
neighbours, making it more robust to inconsisten-
cies in hard-to-resolve addresses. The matched set
of addresses can be used to vend a geocode and/or
to jointly form a neighbourhood for the query ad-
dress which can be vended as a approximate area
to guide a delivery agent. In this paper, we focus
on the experimental evaluation of geocoding task,
and keep the neighbourhood polygons study as a
work in the future.

We propose a novel deep metric learning based
model to encode the geospatial distance semantics
in address embeddings, in turn facilitating the re-
trieval of neighbours solely based on the address
text. We pre-train the transformer based RoBERTa
(Liu et al., 2019) model on address data and further
employ a triplet network to learn quality address
embeddings. A major proportion of hard-to-resolve
addresses that this work targets, do not have any
delivery history. Thus, our models draw supervi-
sion from past delivery scans while training only,
and solely use address text (cold start) at the time
of inference. In summary, our contributions are:

• We propose a deep metric learning based model
to facilitate the encoding of geospatial distance
semantics into address embeddings.

• We introduce a novel training data generation
strategy to learn from geospatially rich addresses
via weak supervision and transfer the knowledge
to operate on cold-start addresses.

• To demonstrate the real-world impact of our
model, we perform experiments on multiple
emerging geographies (IN & the UAE).

This paper focuses on the downstream geocoding
task, but learnt address embeddings can cater to
other applications in the delivery planning space
such as address correction, parsing, and learning
neighbourhoods for package sorting.

2 Related Work

Short Text Geolocation Learning Geocoding
short text (especially Tweets) has been an active
area of research (Zheng et al., 2018). In (Hulden
et al., 2015), authors propose a Naive Bayes classi-
fier with kernel to learn the geospatial distribution
of words and predict geolocation for tweets. (Paule
et al., 2019) propose a weighted voting based near-
est neighbours model to predict the location of
traffic events. (Kulkarni et al., 2020) propose a
neural network model with multi-level S2 (geospa-
tial data structure) grids loss to learn tweets ge-
olocation. Further (Qian et al., 2020) experiment
with a seq2seq geocoding model to directly predict
geohash string for Chinese addresses. (Li et al.,
2019a) introduce GeoAttn model, which focuses
on geolocation signals in the text and attends to the
relevant Point-of-Interests (POIs) for location pre-
diction. Although, most of these studies operate on
a coarser level of geolocation (such as large geospa-
tial grids, city) in contrast to the address geocoding
task in e-commerce domain, which requires pre-
dicting within few meters of the customer doorstep
to optimize delivery operations.

Entity Matching and Addresses In NLP, entity
matching (or record linkage/deduplication) refers
to the task of matching a query data instance to
instances in a reference set (Hu et al., 2019). (Guo
et al., 2016) propose a deep relevance matching
model and more recently, the large language mod-
els for entity matching are explored by Ditto (Li
et al., 2020) and dual objective fine-tuning of BERT
(Peeters and Bizer, 2021).

Address geocoding has also been largely ap-
proached as entity matching task. (Comber and
Arribas-Bel, 2019) propose to first parse the ad-
dress text into address fields (unit, building, etc.),
and then apply a pairwise matcher model to find
a matching address in reference set and make a
geocode prediction. (Lee et al., 2020) also imple-
ment a similar process where a rule-based parser
and an SVM based matcher with building num-
ber interpolation are used for geocoding. Further,
(Lin et al., 2020) and (Li et al., 2022) utilize deep
learning based model for semantic matching of ad-
dresses. (Chen et al., 2021) propose a contrastive
learning based address matcher for Chinese ad-
dresses while synthetically manipulating address
texts to generate matching pairs. (Yang et al., 2019)
propose to learn embedding for places and then uti-

333

lize them to train a supervised places deduplication
model. In (Ganesan et al., 2021), authors propose a
clustering based unsupervised model to learn POIs
from the address data.
Deep Metric Learning Deep metric learning
is being widely used on similarity retrieval tasks
in both computer vision (CV) and NLP domains
(Kaya and Bilge, 2019). (Hermans et al., 2017)
apply triplet loss for person re-identification task
and (Chen et al., 2020) introduce the contrastive
learning of visual representations (SimCLR) for ob-
ject detection. Sentence embeddings using siamese
BERT networks are proposed to learn better down-
stream task specific embeddings (Reimers and
Gurevych, 2019). SimCSE (Gao et al., 2021) and
DeCLUTR (Gao et al., 2021) exploit contrastive
learning to learn sentence representation in an un-
supervised setting. In geospatial domain, Tile2Vec
(Jean et al., 2019) and Hex2Vec (Woźniak and Szy-
mański, 2021) explore embeddings learning of map
tiles, whereas (Samano et al., 2020) explore the mo-
bility data to learn regions representation.

To the best of our knowledge, none of the afore-
mentioned studies target geocoding of hard-to-
resolve addresses in emerging geographies. Fur-
ther, a systematic way to impart geospatial distance
semantics in address embeddings remains unex-
plored. Unstructured geographies pose a variety of
challenges as discussed in the Section 1, making
our contribution non-trivial and impactful.

3 Proposed Model

We adapt the K-Nearest Neighbours (K-NN) model
(Altman, 1992) for the address geocoding task by
using Kernel Density Estimation (KDE) (Parzen,
1962; Forman, 2021). Our workflow for geocode
learning is illustrated in Figure 1. In essence, the
K-NN model first retrieves the neighbourhood set
N for an address a and then predicts its geocode
by picking the geocode of the neighbour x with
highest kernel density value. Equation 1 formulates
the kernel density estimator P over the retrieved
neighbours N where K(x; h) is a Gaussian kernel
with haversine metric. The bandwidth h works as
a smoothing parameter, we chose h as 200 meters
after manual validation over 25m to 400m.

Ph(x) =
1

|N|h
X

n2N
K(x� n; h) (1)

The absolute nearest neighbours search becomes
very computationally expensive in higher dimen-

sional input space. Thus, we employ approximate
nearest neighbours search (Li et al., 2019b) and
build an Annoy (Erik et al., 2018) index over the
address embedding vectors to fetch neighbouring
addresses from the reference set. One key differ-
ence here from the other address or entity matching
systems (Lin et al., 2020; Li et al., 2022, 2020) is
the flexibility as we are not restricting the match
to a given building or campus, rather allowing a
shallow matching on the full address text to ar-
rive at a neighbourhood that can be of any size,
shape and granularity. To this end, once the near-
est neighbours are retrieved, we normalize their
scores w.r.t. the maximum score and prune out the
neighbours with low normalized score (below 0.25).
This has an adaptive thresholding effect as all neigh-
bours will be preserved if having more or less equal
scores, and if there are disparity in scores then the
low scored neighbours will get pruned. Also, we
perform basic outlier removal of potentially incor-
rect neighbours via mean±2⇤sd over latitude and
longitude values to compute a neighbourhood poly-
gon via convex hull. The geocode of the query ad-
dress is computed using the described KDE model
as a representative geocode of the neighbourhood.
In this setting, quality representation of addresses
are of utmost importance for retrieval of quality
nearest neighbours. Thus, we propose a deep met-
ric learning driven address representation learning
approach in the following.

3.1 Deep Metric Learning

Deep distance metric learning (or simply, deep met-
ric learning) aims to automatically construct task-
specific distance metric from (weakly) supervised
data by employing deep neural networks (Kaya and
Bilge, 2019). The learned distance metric/pseudo-
metric can then be used to perform various down-
stream tasks (e.g., information retrieval, clustering).
In the context of addresses geocoding, the ideal-
istic goal for the aforementioned neighbourhood
retrieval problem is to fetch the true neighbours
(i.e. to mimic geospatial distance semantics) for an
address by using its text information only. Thus,
we aim at learning an embedding transformation
function f✓(x) : RI ! RO which maps geospa-
tially closer addresses from the input data manifold
in RI onto metrically close points in the output
embedding space RO (✓ denotes parameter set).
Similarly, f✓ should map geospatially far addresses
in RI onto metrically distant points in RO.

334

Figure 2: Deep metric learning on addresses to capture geospatial distance semantics

In the address domain, a key challenge with both
the context-insensitive embeddings (e.g. FastText
(Bojanowski et al., 2017)) or the contextualized
embeddings (e.g. RoBERTa (Liu et al., 2019)) is
the lack of understanding for geospatial distance
semantics (cf. Section 4.2) as addresses do not fol-
low a document or a paragraph like organization.
Figure 2 depicts our adaptation of the deep metric
learning workflow to learn quality address embed-
dings. As illustrated, we propose to systematically
exploit geocodes of known addresses while train-
ing to give rise to geospatial distance semantics via
weak supervision. To learn the transformation func-
tion f✓, we choose RoBERTa as our base model
as it has shown strong performance widely across
multiple downstream NLP tasks (Liu et al., 2019).

Encoding Geospatial Semantics We employ
contrastive learning approaches, specifically train-
ing via triplet loss. The triplet loss operates on
triplets (x, x+, x�) of an anchor, a positive, and a
negative instances. Equation 2 formulates the loss
function with margin ↵ and distance metric d. The
objective here is to move the negative instance by
distance margin ↵ away from the anchor instance
w.r.t. the positive instance. In our experiments, we
chose margin 5 and Euclidean distance for triplet
loss based on manual finetuning and practices in
literature (Reimers and Gurevych, 2019).

L(x, x+, x�) = max(0, d(f✓(x), f✓(x
+))

� d(f✓(x), f✓(x
�)) + ↵) (2)

3.2 Training Data Generation

In classification, supervised metric learning algo-
rithms use instance class labels (e.g. object, face
identity) to generate the training data. However,
manually labeling the matching/non-matching ad-
dress pairs is very expensive and unscalable task.
We employ historical delivery scans data to auto-
matically generate the weakly labeled training pairs

or the triplets. The address metric learning prob-
lem is now formulated as an optimization problem
where we seek to find the parameters ✓ of function
f✓ that optimize a objective function (i.e. triplet
loss) measuring the agreement with training data.

Ideally, positive addresses for an address should
be sampled from the absolute geospatial neigh-
bours within some small �+ distance and negatives
should be sampled from the addresses which are
relatively far �� away. Here, the limitation is costly
computation of haversine distance of each address
to every other address, further even using some spa-
tial data structure such as Ball Tree (Omohundro,
1989) involves significant computation overhead.
To overcome this, we propose to use H3 geospa-
tial indexing2 system as an approximate solution to
retrieve positive and negative addresses in a more
intelligent manner. H3 is a hierarchical spatial data
structure which subdivides the space into buckets
of hexagonal grid shape. Every hexagonal grid has
seven child grids below it in the hierarchy, thus, a
hexagon of resolution L have 7 child hexagons of
resolution L + 1 and so on (cf. Appendix C). For
instance, L = 10 hexagon has edges of length 66m,
and the children (L = 11) have 25m edges.

For an address, T positive addresses are sampled
from its H3 grid of level L. T negative addresses
are sampled from the ring of parent’s (i.e. level
L� 1) 1-skip neighbouring grids as shown in Fig-
ure 2b. To this end, we generate triplets by varying
the resolution (L 2 [11, 10, 9]) for positive samples
(and consequently for negatives). The motivation
behind including triplets with varying resolution
is to compile a more diverse training data where
triplets can encode very a fine-grained as well as
a coarse grained comparison of addresses. As ad-
dresses in close vicinity tend to differ only in the
header part, we generate another T triplets where
negatives are sampled from the city level to enforce
sufficient focus on the tail address components.

2H3 geospatial index https://github.com/uber/h3

335

4 Experimental Evaluation

We evaluate the learnt embeddings intrinsically and
on the downstream geocoding task.

4.1 Experimental Setup

We experiment with IN and the UAE addresses.
For each of the dataset we use large unlabelled
address text to pre-train the RoBERTa model and
use historical delivery scans data to generate weak
supervision for metric learning. We operate on the
last few years of data which are worth hundreds
of millions of shipments and tens of millions of
unique addresses. We do minimal preprocessing
of the address text by replacing repeated space and
punctuations to single character. For evaluation, a
few weeks of out-of-time network wide shipments
are considered where learnt geolocations are com-
pared against the observed delivery scans (marked
by delivery associates). As our solution is targeted
towards hard-to-resolve cases (i.e., production base-
lines couldn’t vend any confident geocode and fall
back to postal code/locality centroids), we only run
our pipeline for this particular subset. Note that
due to confidentiality reasons, we cannot reveal the
actual proportion of hard-to-resolve addresses how-
ever, they are considerably high for the emerging
geographies such as IN & the UAE, which is why
improvements on this subset result in large amount
of savings network-wide.

Deep Metric Learning Data Set For metric
learning experiments, we only consider the ad-
dresses with at least H historical scans1 to be more
confident on the actual location. We take a stratified
sample w.r.t. grids to have better representation of
addresses across a geography and to not skew the
learning disproportionately towards high density
metropolitan areas. We generate 2*T triplets1 for
an anchor address as explained in Section 3.2. To
this end, we get a total of 37M triplets for IN and
7M triplets for the UAE.

Model Configurations and Baselines We per-
form extensive experiments on the task of geolo-
cating hard-to-resolve addresses across various un-
derlying models. We set up the current produc-
tion geocoding system on the considered hard-to-
resolve test set and report relative improvements
over it. Due to the complex nature of these ad-
dresses, the baseline reduces to simply the cen-
troid at postal code or locality level. For a better
comparative analysis, we also consider a context-

insensitive model based on FastText, which is a
skip-gram model trained with character n-grams
of size 3-5 and window size of 8 for 10 epochs
on address data. Among the transformer mod-
els, we have two groups – 1) The first group in-
cludes RoBERTa-General which is the general pur-
pose English RoBERTa-base model, and RoBERTa-
Address (6 layers) is trained from scratch on ad-
dress data; 2) The second group is based on metric
learning framework. RoBERTa-Triplet is trained
on triplets generated by sampling positives at single
fixed H3 resolution (L = 11) only and negatives
are sampled only from the city level. In contrast,
RoBERTa-Triplet-H3 is trained using the proposed
training data generation strategy, which operates
at multiple H3 resolutions to generate better qual-
ity triplets (cf. Section 3.2). These two models
are fine-tuned over RoBERTa-Address. The final
address embedding vector is computed via mean
pooling over token embeddings of the final layer.

Pre-training Address Language Model As ad-
dresses have quite different vocabulary and domain
than general English text, we train from scratch
the geography specific RoBERTa models (6 layers)
with masked language modeling (MLM) objective
on addresses data (tens of millions). We train Byte-
Pair Encoding tokenizers with vocabulary size of
52K. The model training with sequence length of
100 and batch size of 64 for 10 epochs takes around
49 hours on 4 Tesla V100 GPUs.

4.2 Assessing Embeddings Quality

To intrinsically measure the geospatial distance se-
mantics captured in address embeddings, we com-
pute cosine similarity co-relation on address pairs.
A test set of 0.5M pairs is compiled by sampling
positive pairs (score 1) from the same H3 grid of
resolution 9 and negatives (score 0) are sampled
from city level (equal + & - pairs). Further, to eval-
uate more complex relationship among addresses,
we generate a set of 0.5M triplets constrained by

Pearson Triplet Acc
Model IN UAE IN UAE
FastText 0.56 0.66 84.23 86.91
RoBERTa-General 0.35 0.45 70.42 75.76
RoBERTa-Address 0.63 0.68 85.78 87.02
RoBERTa-Triplet 0.76 0.75 91.33 91.79
RoBERTa-Triplet-H3 0.81 0.84 93.92 95.54

Table 1: Address pairs cosine similarity co-relation (cf.
Appendix A for density plots) and Triplet accuracy

336

Figure 3: Clustering the addresses using different embeddings and visualizing via their geocodes (Note: background
maps are modified and blurred to preserve customers’ privacy)

>Y DPMO (# %) p25 (# %) p50(# %) p95(# %)
Geocoding Model IN UAE IN UAE IN UAE IN UAE
FastText 19.3% 48.9% 84.0% 94.3% 35.2% 82.4% 34.6% 61.6%
RoBERTa-General 9.8% 34.3% 52.1% 88.9% 9.1% 60.1% -44.2% 31.8%
RoBERTa-Address 20.9% 47.4% 86.2% 94.0% 43.6% 80.2% 33.2% 60.5%
RoBERTa-Triplet 21.0% 52.1% 85.7% 95.5% 41.1% 86.7% 31.5% 60.1%
RoBERTa-Triplet-H3 22.0% 54.6% 88.6% 96.4% 42.8% 90.3% 32.2% 53.1%

Table 2: Geocoding metrics relative to the production baseline on shipments against hard-to-resolve addresses

the only condition that anchor will be geospatially
closer to the positive than the negative. Then the
triplet accuracy is computed to evaluate if embed-
dings pass the same criterion using cosine distance.
Table 1 reports Pearson co-relation and the triplet
accuracy metrics and we observe that the metric
learning based models outperform others by a large
margin (cf. Appendix A for density plots).

We also do a qualitative analysis by clustering (K-
means with K=20) the addresses using their embed-
dings and visualizing them via their geocodes (cf.
Figure 3 for 50K addresses in an IN postal code).
The motivation is that embeddings which capture
quality geospatial distance semantics will result
in smoother clusters by facilitating the grouping
of geospatially closer addresses. We observe that
FastText based embeddings produce clusters with
very high overlaps. In contrast, RoBERTa-Triplet-
H3 embeddings facilitate smoother boundary clus-
ters because of better geospatial distance semantic
understanding. RoBERTa-Triplet-H3 embeddings
clusters’ quality can also be seen slightly improv-
ing over the RoBERTa-Address. This is also visible
in Silhouette scores which are 0.02, 0.08, and 0.13
for FastText, RoBERTa-Address, and RoBERTa-
Triplet-H3 respectively. The observed geospatial
distance semantics are beneficial for multiple down-
stream tasks such as address correction, package
sortation, and address geocoding.

4.3 Geolocating Hard-to-Resolve Addresses

We compute neighbourhood level geocodes via
KDE over the retrieved neighbours as illustrated in
Figure 1 and serve to guide the drivers to a closer
proximity in the absence of any better geocode.
Table 2 presents experimental results via vari-
ous geocoding metrics relative to the production
baseline on shipments for the chosen test period.
DPMO (Defects Per Million Opportunities) mea-
sures the number of prediction falling beyond Y1

meters normalized to a million. The percentile
metrics (p25, p50, p95) capture the distribution of
error distances (actual vs predicted geocode) on
the test set. A superior model shall lead to higher
reductions in these metrics.

It can be observed from Table 2 that the proposed
model based on deep metric learning outperforms
the production baseline by a substantial margin as
well as stands superior in comparison to other base-
lines i.e. FastText and basic Transformer models.
The poor performance of RoBERTa-General model
is due to its training on general purpose English text
only. It can also be seen that RoBERTa-Triplet-H3
improves over RoBERTa-Triplet by a large margin,
which can be directly attributed to the importance
of our proposed training data generation strategy.
Overall, we observe an improvement of 22% in
DPMO for IN and 54% for the UAE (cf. Appendix
B for geocoding anecdotes). This reduction in num-

337

ber of defects is directly translatable to the saved
operational cost arising from delivery defects. It
should be noted that addresses in IN & the UAE
are quite different in nature, thus, improved metrics
confirm the wide applicability of our framework.
Further, IN has much bigger scale and more diverse
addresses than the UAE, which manifests in our re-
sults with larger improvements in the UAE. We per-
formed a ablation study by experimenting without
adaptive thesholding (cf. Section 3) and observed
degraded performance across models (IN DPMO
became 13% for FastText and 16% for RoBERTa-
Triplet-H3). It is also worth pointing out that the
proposed model is trained with weak supervision
and does not have a dependency on any manually
curated ground truth or the address parsing models.

5 Conclusion and Future Work

In this work, we presented an efficient nearest
neighbours & deep metric learning based approach
to perform the address geocoding and facilitate the
capturing of geospatial distance semantics in ad-
dress embeddings. We intrinsically observe quan-
tifiable improvements in address embeddings qual-
ity. Encouraging results from offline experiments
suggest an immediate improvement in serving hard-
to-resolve addresses. Our model operates solely us-
ing address text at the inference time, and is trained
without any manually curated labels making it scal-
able across emerging geographies such as IN, the
UAE, Mexico, and Saudi Arabia.

We plan to perform online experiments and ex-
tend our models to multi-lingual addresses in order
to deal with prevalent issues like code switching
in emerging geographies. We also would like to
enhance our negative mining strategies and explore
a pairwise cross encoder model to filter out the
poorly retrieved neighbours. Retrieval of addresses
from the neighbourhood can power many other
downstream applications such as address compo-
nent correction, address auto-complete suggestions,
and optimizing delivery station assignment. We
plan to explore geospatial constraints aware neigh-
bourhood learning (e.g., to ensure neighbourhoods
do not cross natural obstacles such as water bodies
and highways).

References
Naomi S Altman. 1992. An introduction to kernel

and nearest-neighbor nonparametric regression. The
American Statistician, 46(3):175–185.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jian Chen, Jianpeng Chen, Xiangrong She, Jian Mao,
and Gang Chen. 2021. Deep contrast learning ap-
proach for address semantic matching. Applied Sci-
ences, 11(16):7608.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020. A simple framework for
contrastive learning of visual representations. CoRR,
abs/2002.05709.

Sam Comber and Daniel Arribas-Bel. 2019. Machine
learning innovations in address matching: A practical
comparison of word2vec and crfs. Transactions in
GIS, 23(2):334–348.

Bernhardsson Erik et al. 2018. Annoy (approx-
imate nearest neighbors oh yeah): Approxi-
mate nearest neighbors in c++/python optimized
for memory usage and loading/saving to disk.
https://github.com/spotify/annoy.

George Forman. 2021. Getting your package to the right
place: Supervised machine learning for geolocation.
In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 403–
419. Springer.

Abhinav Ganesan, Anubhav Gupta, and Jose Mathew.
2021. Mining points of interest via address embed-
dings: An unsupervised approach. In Proceedings of
the 5th ACM SIGSPATIAL International Workshop on
Location-Based Recommendations, Geosocial Net-
works and Geoadvertising, LocalRec ’21, New York,
NY, USA. Association for Computing Machinery.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model for
ad-hoc retrieval. In Proceedings of the 25th ACM in-
ternational on conference on information and knowl-
edge management, pages 55–64.

Alexander Hermans, Lucas Beyer, and Bastian Leibe.
2017. In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737.

Weiwei Hu, Anhong Dang, and Ying Tan. 2019. A sur-
vey of state-of-the-art short text matching algorithms.
In Data Mining and Big Data, pages 211–219, Sin-
gapore. Springer Singapore.

Mans Hulden, Miikka Silfverberg, and Jerid Francom.
2015. Kernel density estimation for text-based ge-
olocation. In Proceedings of the AAAI conference on
artificial intelligence, volume 29.

338

Neal Jean, Sherrie Wang, Anshul Samar, George Azzari,
David Lobell, and Stefano Ermon. 2019. Tile2vec:
Unsupervised representation learning for spatially
distributed data. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
3967–3974.

Mahmut Kaya and Hasan Şakir Bilge. 2019. Deep
metric learning: A survey. Symmetry, 11(9):1066.

Sayali Kulkarni, Shailee Jain, Mohammad Javad Hos-
seini, Jason Baldridge, Eugene Ie, and Li Zhang.
2020. Spatial language representation with multi-
level geocoding. arXiv preprint arXiv:2008.09236.

Kangjae Lee, Alexis Richard C Claridades, and Jiyeong
Lee. 2020. Improving a street-based geocoding al-
gorithm using machine learning techniques. Applied
Sciences, 10(16):5628.

Fangfang Li, Yiheng Lu, Xingliang Mao, Junwen Duan,
and Xiyao Liu. 2022. Multi-task deep learning model
based on hierarchical relations of address elements
for semantic address matching. Neural Comput.
Appl., 34(11):8919–8931.

Sha Li, Chao Zhang, Dongming Lei, Ji Li, and Jiawei
Han. 2019a. GeoAttn: Localization of Social Media
Messages via Attentional Memory Network, pages
64–72. Proceedings of the 2019 SIAM International
Conference on Data Mining (SDM).

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie
Li, Wenjie Zhang, and Xuemin Lin. 2019b. Ap-
proximate nearest neighbor search on high dimen-
sional data—experiments, analyses, and improve-
ment. IEEE Transactions on Knowledge and Data
Engineering, 32(8):1475–1488.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan,
and Wang-Chiew Tan. 2020. Deep entity matching
with pre-trained language models. Proc. VLDB En-
dow., 14(1):50–60.

Yue Lin, Mengjun Kang, Yuyang Wu, Qingyun Du,
and Tao Liu. 2020. A deep learning architecture for
semantic address matching. International Journal of
Geographical Information Science, 34(3):559–576.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Stephen M. Omohundro. 1989. Five balltree construc-
tion algorithms. Technical report.

Emanuel Parzen. 1962. On estimation of a probability
density function and mode. The Annals of Mathemat-
ical Statistics, 33(3):1065–1076.

Jorge David Gonzalez Paule, Yeran Sun, and Yashar
Moshfeghi. 2019. On fine-grained geolocalisation
of tweets and real-time traffic incident detection. In-
formation Processing & Management, 56(3):1119–
1132.

Ralph Peeters and Christian Bizer. 2021. Dual-objective
fine-tuning of bert for entity matching. Proceedings
of the VLDB Endowment, 14(10):1913–1921.

Chunyao Qian, Chao Yi, Chengqi Cheng, Guoliang Pu,
and Jiashu Liu. 2020. A coarse-to-fine model for
geolocating chinese addresses. ISPRS International
Journal of Geo-Information, 9(12):698.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Noe Samano, Mengjie Zhou, and Andrew Calway. 2020.
You are here: Geolocation by embedding maps and
images. In Computer Vision – ECCV 2020, pages
502–518, Cham. Springer International Publishing.

Szymon Woźniak and Piotr Szymański. 2021. Hex2vec:
Context-Aware Embedding H3 Hexagons with Open-
StreetMap Tags, page 61–71. Association for Com-
puting Machinery, New York, NY, USA.

Carl Yang, Do Huy Hoang, Tomas Mikolov, and Jiawei
Han. 2019. Place deduplication with embeddings. In
The World Wide Web Conference, pages 3420–3426.

Xin Zheng, Jialong Han, and Aixin Sun. 2018. A survey
of location prediction on twitter. IEEE Transactions
on Knowledge and Data Engineering, 30(9):1652–
1671.

339

A Cosine Similarity Density Plots

Figure 4 depicts the cosine similarity density plots
for positive (label 1) and negative (label 0) address
pairs in the test set (cf. Section 4.2). The x-axis
represents cosine similarity values and it can be
seen in Figure 4 that RoBERTa-Triplet-H3 model
segregates well positives from negatives with least
overlap between the two density curves (cf. Fig.
4c) in comparison to others (cf. Fig. 4a,b).

(a) FastText

(b) RoBERTa-Address

(c) RoBERTa-Triplet-H3

Figure 4: Density curves of positive (label=1) and nega-
tive (label=0) address pairs

B Anecdotes on Geocoding

Figure 5 depicts geocodes of the retrieved neigh-
bours (along with neighbourhood polygons/circles)
and the predicted geocode by various models for a
hard-to-resolve address X-X-X , Shivalayam Nagar
, 500070 , Hyderabad , Telangana. The masked in-
formation (X-X-X) here is the house number, which
carry some relevance for geocoding but usually
noisy and do not follow a standard pattern. It

is a hard address as it is relatively sparse with
no landmark information and the locality name is
misspelled (Shivalayam instead of Sachivalayam).
Shivalayam means Temple whereas Sachivalayam
means Government Admin Office. There exist no
Shivalayam Nagar in 500070 , Hyderabad. We
observe that the FastText model struggles to re-
trieve good quality neighbour addresses. RoBERTa-
Address model utilizes the context and retrieves
few good addresses but at the same time many poor
matches too. The RoBERTa-Triplet-H3 model uti-
lizes the contextual information best along with
house number in address header to be resilient to-
wards wrong locality name. It produces a quality
set of neighbouring addresses to bring the predicted
geocode as close as 39m to the actual location.

(a) FastText (prediction within 1482m)

(b) RoBERTa-Address (prediction within 792m)

(c) RoBERTa-Triplet-H3 (prediction within 39m)

Figure 5: Retrieved nearest neighbour addresses by var-
ious models for an example address: X-X-X Shivalayam
Nagar , 500070 , Hyderabad , Telangana. The current
production baseline vends a geocode 986m away and
we vend within 39m. (Note: background maps are mod-
ified and blurred to preserve customers’ privacy)

340

C H3 Hexagonal Grids

Table 3 reports size of hexagon grids with respect
to various H3 index resolution levels, and Figure 6
illustrates the hierarchical relation between grids.
The geographical containment of children by a par-
ent is approximate while the logical containment in
the index is exact. We choose H3 over other geospa-
tial indices such as Geohash because of the benefits
observed via the symmetry of hexagonal shape in
contrast to squares/triangles which have neighbors
at varying distances in different directions.

Figure 6: H3 parent and child hexagonal grids hierarchy

H3 Resolution Edge (meters) Diagonal (meters)
0 11,07,712.6 22,15,425.2
1 4,18,676.0 8,37,352.0
2 1,58,244.7 3,16,489.3
3 59,810.9 1,19,621.7
4 22,606.4 45,212.8
5 8,544.4 17,088.8
6 3,229.5 6,459.0
7 1,220.6 2,441.3
8 461.4 922.7
9 174.4 348.8

10 65.9 131.8
11 24.9 49.8
12 9.4 18.8
13 3.6 7.1
14 1.3 2.7
15 0.5 1.0

Table 3: H3 hexagonal grid edge and diameter sizes
w.r.t. the resolution levels

341

Proceedings of EMNLP 2022 Industry Track, pages 342–357
December 9–11, 2020. ©2022 Association for Computational Linguistics

Meta-learning Pathologies from Radiology Reports using Variance Aware
Prototypical Networks

Arijit Sehanobish Kawshik Kannan∗ Nabila Abraham Anasuya Das Benjamin Odry
Covera Health

New York City, NY
{arijit.sehanobish, kawshik.kannan, nabila.abraham,

anasuya.das, benjamin.odry}@coverahealth.com

Abstract

Large pretrained Transformer-based language
models like BERT and GPT have changed
the landscape of Natural Language Processing
(NLP). However, fine tuning such models still
requires a large number of training examples
for each target task, thus annotating multiple
datasets and training these models on various
downstream tasks becomes time consuming
and expensive. In this work, we propose a sim-
ple extension of the Prototypical Networks for
few-shot text classification. Our main idea is to
replace the class prototypes by Gaussians and
introduce a regularization term that encourages
the examples to be clustered near the appropri-
ate class centroids. Experimental results show
that our method outperforms various strong
baselines on 13 public and 4 internal datasets.
Furthermore, we use the class distributions as a
tool for detecting potential out-of-distribution
(OOD) data points during deployment.

1 Introduction

Pretrained Transformer-based language models
(PLMs) have achieved great success on many NLP
tasks (Devlin et al., 2019; Brown et al., 2020), but
still need a large number of in-domain labeled
examples for finetuning (Yogatama et al., 2019).
Learning to learn (Lake et al., 2015a; Schmidhu-
ber, 1987; Bengio et al., 1997) from limited super-
vision is an important problem with widespread
application in areas where obtaining labeled data
can be difficult or expensive. To that end, meta-
learning methods have been proposed as effective
solutions for few-shot learning (Hospedales et al.,
2020). Current applications of such meta-learning
methods have shown improved performance in few-
shot learning for vision tasks such as learning to
classify new image classes within a similar dataset.
Namely, on classical few-shot image classification
benchmarks, the training tasks are sampled from

∗Equal Contribution

a “single” larger dataset (for ex: Omniglot (Lake
et al., 2015b) and miniImageNet (Vinyals et al.,
2016)), and the label space contains the same task
structure for all tasks. There has been a simi-
lar trend of such classical methods in NLP as
well (Geng et al., 2019). In contrast, in text clas-
sification tasks, the set of source tasks available
during training and target tasks during evaluation
can range from sentiment analysis to grammatical
acceptability judgment (Bansal et al., 2020a,b). In
recent works (Wang et al., 2021), the authors use a
range of different source tasks (different not only
in terms of input domain, but also their task struc-
ture i.e. label semantics, and number of labels) for
meta-training and show successful performance on
a wide range of downstream tasks. In spite of this
success, meta-training on various source tasks is
quite challenging as it requires resistance to over-
fitting to certain source tasks due to its few-shot
nature and more task-specific adaptation due to the
distinct nature among tasks (Roelofs et al., 2019).

However, in medical NLP, collecting large num-
ber of diverse labeled datasets is difficult. In our in-
stitution, we collect high quality labeled radiology
reports (which are always used as held out test data)
and use it to train our internal annotators who then
annotate our unlabeled data. This training process
is expensive and time consuming. Our annotation
process is described in section A. Thus a natural
question is: if we have a large labeled dataset con-
sisting of a lot of classes, can we use it to meta-train
a model that can be used on a large number of down-
stream datasets where we have little to no training
examples? This is a challenging problem as the
reports can be structured differently based on the
report type and there can be a substantial variation
in writing style across radiologists from different
institutions. Our main goal is to build out a set
of extensible pipelines that can generalize to new
pathologies typically in new sub-specialties while
also generalizing across different health systems.

342

In addition, the exact definition of the pathologies
and their severity change can change depending on
the clinical use case. This makes fully supervised
approaches that rely on large labeled datasets ex-
pensive. Having few-shot capabilities allows us to
annotate a handful of cases and rapidly expand the
list of pathologies we can detect and classify. In ad-
dition, we can use our approach to generate pseudo
labels for rare pathologies and enrich our validation
and test sets for annotation by an in-house clinical
team. Lastly our approach can be extended to sup-
port patient search and define custom cohorts of
patients.

Our contributions in this work are the following:
(1) We develop a novel loss function that extends
the vanilla prototypical networks and introduce a
regularization term that encourages tight cluster-
ing of examples near the class prototypes. (2) We
meta-train our models on a large labeled dataset
on shoulder MRI reports (single domain) and show
good performance on 4 diverse downstream classi-
fication tasks on radiology reports on knee, cervical
spine and chest. In addition to our internal datasets,
we show superior performance of our method on
13 public benchmarks over well-known methods
like Leopard. Our model is very simple to train,
easy to deploy unlike gradient based methods and
just requires a few additional lines of codes to a
vanilla prototypical network trainer. (3) We deploy
our system and use the dataset statistics to inform
out-of-distribution (OOD) cases.

2 Related Work

There are three common approaches to meta-
learning: metric-based, model-based, and
optimization-based. Model agnostic meta-learning
(MAML) (Finn et al., 2017) is an optimization-
based approach to meta-learning which is agnostic
to the model architecture and task specification.
Over the years, several variants of the method have
shown that it is an ideal candidate for learning
to learn from diverse tasks (Nichol et al., 2018;
Raghu et al., 2019; Bansal et al., 2020b). However,
to solve a new task, MAML type methods would
require training a new classification layer for the
task. In contrast, metric-based approaches, such
as prototypical networks (Vinyals et al., 2016;
Snell et al., 2017), being non-parametric in nature
can handle varied number of classes and thus
can be easily deployed. Given the simple nature
of prototypical networks, a lot of work has been

done to improve them (Allen et al., 2019; Zhang
et al., 2019; Ding et al., 2022; Wang et al., 2021).
Prototypical networks usually construct a class
prototype (mean) using the support vectors to
describe the class and, given a query example,
assigns the class whose class prototype is closest to
the query vector. In (Allen et al., 2019), the authors
use a mixture of Gaussians to describe the class
conditional distribution and in (Zhang et al., 2019);
the authors try to model an unknown general class
distribution. In (Ding et al., 2022), the authors
use spherical Gaussians and a KL-divergence type
function between the Gaussians to compute the
function d in equation 2. However, the function
used by the above authors is not a true metric, i.e.
does not satisfy the triangle inequality. Triangle
inequality is implicitly important since we use this
metric as a form of distance which we optimize, so
it makes sense to use a true metric. In this work
we replace it by the Wasserstein distance which is
a true metric and add in a regularization term that
encourages the L2 norm of the covariance matrices
to be small, encouraging the class examples to be
clustered close to the centroid. One of our main
reasons to work with Gaussians is due to the closed
form formula of the Wasserstein distance.

Few shot learning (FSL) in the medical domain
has been mostly focused in computer vision (Singh
et al., 2021). There are only a few works that have
applied FSL in medical NLP (Ge et al., 2022) but
most of those works have only focused on different
tasks on MIMIC-III (Johnson et al., 2016) which
is a single domain dataset (patients from ICU and
one hospital system). To the best of our knowledge,
ours is the first study to successfully apply FSL on
a diverse set of medical datasets (diverse in terms
of tasks and patient populations).

3 Datasets

All our internal datasets are MRI radiology re-
ports detailing various pathologies in different body
parts. Our models are meta-trained on a dataset of
shoulder pathologies which is collected from 74
unique and de-identified institutions in the United
States. 60 labels are chosen for training and 20
novel labels are chosen for validation. The number
of training labels is similar to some well-known
image datasets (Lake et al., 2015b; Vinyals et al.,
2016; Wah et al., 2011). This diverse dataset has
a rich label space detailing multiple structures in
shoulder, granular pathologies and their severity

343

levels in each structure. The relationship between
the granularity/severity of these pathologies at dif-
ferent structures can be leveraged for other patholo-
gies in different body parts and may lead to suc-
cessful transfer to various downstream tasks. The
labels are split such that all pathologies in a given
structure appear at either training or validation but
not both. More details about the label space can
be found in section B. The figure 1 and the table 1
shows the distribution of labels and an example
of this dataset can be found in figure 4. Our met-

Figure 1: Histogram showing the label distribution in
(left) train and (right) validation dataset.

alearner is applied to 4 downstream binary clas-
sification tasks spanning different sub-specialities
(cancer screening, musculoskeletal radiology, and
neuro-radiology) that are both common as well as
clinically important. The statistics for each task are
given in table 2 : (1) High risk cancer screening
for lung nodules (according to Fleischner guide-
lines (Nair et al., 2018) which bucket patients at
high-risk of lung cancer and requiring follow up
imaging immediately or within 3 months as belong-
ing to Category High Risk ; we consider patients
not at high-risk as Low Risk), (2) Complete An-
terior Cruciate Ligament (ACL) tear (Grade 3) vs
not Complete ACL tear, (3) Acute ACL tears (MRI
examination was performed within 6 weeks of in-
jury) and typified by the presence of diffuse or
focal increased signal within the ligament vs not
Acute ACL tear (Dimond et al., 1998), (4) Severe
vs not severe neural foraminal stenosis in the cervi-
cal spine as severe foraminal stenosis may indicate
nerve impingement, which is clinically significant.
Acute tear in ACL refers to the age of the tear/injury
whereas the complete tear refers to the integrity
of the ligament. Our testing datasets are diverse
and sampled from different institutions: the knee
data, lung dataset and cervical dataset is sampled

Split Number of examples Min Max Average

Train 34595 79 6379 567
Validation 5754 44 1138 303

Table 1: Statistics of our meta-training and meta-
validation dataset, where the min/max/average refer to
min/max/average examples per label.

from 50, 4 and 65 institutions respectively and our
annotation process is described in Appendix A. Ex-
amples of these datasets can be found in figure 10
(knee), figure 6 (lung), and figure 8 (cervical).

Task Validation Distribution Test Distribution

Lung Nodule
Low Risk : 233
High Risk : 30

Low Risk : 347
High Risk : 46

Knee ACL
Acute Tear

Normal: 258
Acute Tear: 48

Normal : 439
Acute Tear: 93

Knee ACL
Complete Tear

Normal : 263
Complete Tear : 44

Normal : 429
Complete Tear :103

Neural Foraminal
Stenosis

Normal : 215
Abnormal : 43

Normal : 789
Abnormal : 91

Table 2: Statistics of our downstream testing datasets

4 Workflow

Our workflow consists of the following parts: A

Figure 2: Overview of our workflow. A report is passed
through a report segmenter which splits it into sentences
and extracts the relevant portion of the text for down-
stream classification. The relevant text is passed through
our model and we use the pre-computed prototypes and
class variances to assign a label to the query point.

report is first de-identified according to HIPAA reg-
ulations and passed through a sentence parser (ex.
Spacy (Honnibal et al., 2020)) that splits the re-
port into sentences. In the shoulder dataset, each
of these sentences is labeled with the appropri-
ate structure and severity label and we filter out
sentences that do not have such a label. We first
train a meta-learner in an episodic fashion on this
dataset and choose the best model based on meta-
validation accuracy.

For our downstream tasks, we use a body-part
specific custom data processor to collect sentences
related to a given structure (ACL in knee, different
vertebrae in the cervical spine, the entire impres-
sion section for lung reports) and concatenate them

344

together to create a paragraph describing all the
pathologies in the structure of interest. Detailed de-
scription of preprocessing for different body parts,
is presented in Appendix C. The concatenated text
from the validation sets of each task is passed to our
trained meta-learner to generate the relevant class
statistics (mean and variance). We then perform
pathology classification on the test set by using our
trained meta-learner and the saved class statistics.
The downstream tasks are similar to the shoulder
task in the sense that the pathology classification
is performed on a sequence of sentences that all
pertain to the same anatomical structure. Thus our
approach needs to learn the language that describes
the severity of the pathology for a specific anatomi-
cal structure.

We would like to shed some light on the com-
plexity of the language we encounter. Since our
dataset is sourced from multiple health systems,
and not all reports follow a standard structure, there
is a large amount of variation in the language de-
scribing the same diagnosis. For example: a severe
tear can be referred to as a rupture, or only the
size of the nodule is mentioned without specifying
that it is low risk (see Appendix C for more exam-
ples). Furthermore, most of our pipelines attempt
to classify the different severities for a given pathol-
ogy and the language describing severity can vary.
While it might be possible to construct a rule based
system to extract the diagnoses and severities we
are interested in, it will be difficult to generalize
as we expand to more diagnoses as well as to new
health systems.

5 Prototypical Networks

Prototypical Networks or ProtoNets (Snell et al.,
2017) use an embedding function fθ to encode
each input into a M -dimensional feature vector. A
prototype is defined for every class c ∈ L, as the
mean of the set of embedded support data samples
(Sc) for the given class, i.e.

vc =
1

|Sc|
∑

(xi,yi)∈Sc

fθ(xi). (1)

The distribution over classes for a given test input x
is a softmax over the inverse of distances between
the test data embedding and prototype vectors.

P (y = c|x) = softmax(−d(fθ(x), vc))

=
exp(−d(fθ(x), vc))∑

c′∈L exp(−d(fθ(x), vc′))
(2)

where d can be any (differentiable) distance func-
tion. The loss function is negative log-likelihood:

L(θ) = −logPθ(y = c|x).

ProtoNets are simple and easy to train and deploy.
The mean is used to capture the entire conditional
distribution P (y = c|x), thus losing a lot of infor-
mation about the underlying distribution. A lot of
work (Ding et al., 2022; Allen et al., 2019; Zhang
et al., 2019) has focused on improving ProtoNets by
taking into account the above observation. We ex-
tend ProtoNets by incorporating the variance (2nd
moment) of the distribution and use distributional
distance, i.e. 2-Wasserstein metric, directly gener-
alizing the vanilla ProtoNets.

5.1 Variance Aware ProtoNets

In this work, we model each conditional distribu-
tion as a Gaussian. Now the main question is: how
do we match a query example with a distribution?
The simplest thing here is to treat the query exam-
ple as a Dirac distribution. With that formulation
in mind, recall: the Wasserstein-Bures metric be-
tween Gaussians (mi,Σi) is given by:

d2 = ||m1−m2||2+Tr(Σ1+Σ2−2(Σ
1
2
1Σ2Σ

1
2
1)

1
2)

Given (xi, yi) ∈ Sc, where Sc is the support set
of examples belonging to class c, we compute the
mean mc and covariance matrix Σc; the computa-
tion of Wasserstein distance between a Gaussian
and a query vector q (i.e. a Dirac) boils down to

d2 = ||mc − q||2 + Tr(Σc) (3)

The above formula shows that we can simplify our
conditional distribution to be a Gaussian with a
diagonal covariance matrix. This brings down our
space complexity to store this covariance matrix
from O(n2) to O(n). Note, this is a direct general-
ization of the vanilla prototypical networks as the
vanilla prototypical networks can be interpreted as
computing the Wasserstein distance (aka simple L2

distance) between two Dirac distributions (mean
of the conditional distribution and the query sam-
ple). We also propose another variant of the above
called Isotropic Gaussian variant where we average
over the diagonal entries of Σc, i.e. α = 1

n(Σc)ii
and redefine Σc = αI , where I is the identity ma-
trix, allowing us to just store the scalar α, further
reducing the space complexity. Furthermore, we

345

Backbone Methods Foraminal
Knee
(Acute Tear vs Not)

Knee
(Complete tear vs Not)

Lung

Baseline 0.38 0.44 0.49 0.36
Multi-Task 0.41 0.47 0.52 0.39

Vanilla ProtoNet 0.79 0.73 0.60 0.68
Big ProtoNet 0.58 0.59 0.51 0.64

Leopard 0.84 0.78 0.80 0.74
PubMedBERT ProtoNet w/ Isotropic Gaussian 0.81 0.74 0.76 0.69

ProtoNet w/ Isotropic Gaussian + reg 0.83 0.76 0.77 0.73
Variance Aware ProtoNet (ours) 0.84 0.78 0.79 0.76

Variance Aware ProtoNet + reg (ours) 0.86 0.81 0.84 0.80

Baseline 0.42 0.47 0.51 0.41
Multi-Task 0.44 0.49 0.53 0.43

Vanilla ProtoNet 0.78 0.71 0.69 0.66
Big ProtoNet 0.59 0.57 0.54 0.67

PubMedBERT w/ Adapters ProtoNet w/ Isotropic Gaussian 0.83 0.75 0.78 0.72
ProtoNet w/ Isotropic Gaussian + reg 0.89 0.80 0.86 0.77

Variance Aware ProtoNet (ours) 0.87 0.77 0.81 0.74
Variance Aware ProtoNet + reg (ours) 0.91 0.82 0.89 0.78

Table 3: Table showing F1 scores of Few Shot Models in downstream classification tasks.

regularize the negative log likelihood loss to pre-
vent the variance term from blowing up. Our new
loss function reads:

L(θ) = L(θ) +
λ

ways
||Σc||F (4)

where ways are the number of classes in the mini-
batch and || · ||F is the Frobenius norm and we
average the norm of the variance matrix over all
the classes in a given meta-batch. The extra reg-
ularization term is designed to encourage the ex-
amples to be close to the appropriate cluster cen-
troid. This term can also be seen as an entropic
regularization term, i.e. up to a factor as the expo-
nential of KL(p||q), where p = N(mc,Σc) and
q = N(mc, I). This type of entropy regularized
Wasserstein distances is widely studied (Cuturi and
Doucet, 2014; Altschuler et al., 2021).

A PyTorch style pseudocode is described in Al-
gorithm 1, where the teal color refers to the changes
to a vanilla prototypical networks trainer. We pro-
vide detailed motivation for using Wasserstein dis-
tance instead of KL divergence in section E.2. This
also explains why we compute the Wasserstein dis-
tance between the query and the estimated class
distribution instead of a simple likelihood.

6 Experiments

All our experiments are run on 4 V100 16 GB GPU
using PyTorch (Paszke et al., 2019) and Hugging-
Face libraries (Wolf et al., 2020). Bert-base (De-
vlin et al., 2019), Clinical BERT (Alsentzer et al.,
2019) and PubMedBERT (Gu et al., 2021) are used
as our backbone models. Adapters (Pfeiffer et al.,
2020) are applied to each of these backbone models.

While training adapter based models, the BERT
weights are frozen and only the adapter weights are
updated, thus requiring less resources to train. This
idea is similar to (Raghu et al., 2019) in the sense
that we are reusing the features from these deep pre-
trained models. We compare our methods to Leop-
ard (Bansal et al., 2020a), vanilla ProtoNets and big
ProtoNets (Ding et al., 2022). Additional results
with BERT-base and Clinical BERT backbones can
be found in table 6 and table 7. Meta-training is
done in an episodic manner using 4-way 8-shot and
16-examples as support. For meta-training on the
shoulder dataset, we set the variance regularizer
hyperparameter to be .1. It is an important hyper-
parameter and detailed ablation study is conducted
in section E.1. Other hyperparameters and design
choices are described in section E.

To prevent overfitting on the test set, we choose
the best model from each of these experiments
based on the meta-validation accuracy and apply
it to our downstream classification tasks. We note
that these downstream tasks are significantly dif-
ferent from the few shot regime these models are
trained in. Moreover for these downstream tasks,
we train BERT models on each task and a multi-
tasking model to provide additional baselines.

In all our experiments, PubMedBERT consis-
tently outperforms BERT-base and Clinical BERT
by an average of 5 points and 3 points respectively.
We believe the reason behind the improved per-
formance is the domain specific vocabulary. Even
though Clinical BERT is pre-trained on MIMIC-
III (Johnson et al., 2016), it still shares the same
vocabulary as BERT-base.

ProtoNet-BERT shows better performance and
346

faster convergence rates during training and valida-
tion (Table 4), but it is outperformed by ProtoNet-
AdapterBERT which has fewer orders of magni-
tude of parameters to learn (Table 3). Like (Wang
et al., 2021) we believe that ProtoNet-BERT is
more vulnerable to overfitting on the meta-training
tasks than the ProtoNet-AdapterBERT. Finally, we
note that even though Big ProtoNets work well on
meta-validation, they fail on our downstream tasks.
We hypothesize that it is due to the fact that big
protonets are encouraged to have large radii which
has the potential to become a bottleneck where the
data distribution is highly imbalanced causing the
spherical Gaussians to overlap. In fact, we have
found that doing the exact opposite (i.e. constrict-
ing the norms of the covariance matrix), tends to
produce better results. Finally instead of using

Backbone Methods Accuracy

Vanilla ProtoNet 89.1± 1.1
Big ProtoNet 90.8± 1.2

Leopard 85.1± 9.2
PubMedBERT ProtoNet w/ Isotropic Gaussian 90.2± 1.4

ProtoNet w/ Isotropic Gaussian + reg 92.1± .8
Variance Aware ProtoNet (ours) 91.5± 1.3

Variance Aware ProtoNet + reg (ours) 92.9± .9

Vanilla ProtoNet 88.3± 1.4
Big ProtoNets 89.4± 1.2

PubMedBERT
w/Adapters ProtoNet w/ Isotropic Gaussian 89.8± 1.4

ProtoNet w/ Isotropic Gaussian + reg 90.9± .7
Variance Aware ProtoNet (ours) 90.5± 1.3

Variance Aware ProtoNet + reg (ours) 91.2± .8

Table 4: Results showing accuracy percentages on the
meta-validation dataset. We sampled 1000 tasks with
4-way 8-shot and 16-support classification. We replicate
each experiment over 10 random seeds.

the entire validation set to compute the class dis-
tribution, we also experiment with choosing a k
shots from the validation set to compute the class
distribution (figure 12 in section G).

Our regularized Variance Aware ProtoNets with
BERT-base + Adapter is also validated on 13 pub-
lic datasets. For the models and datasets marked
with ∗ in table 5, we use the results reported
in (Bansal et al., 2020a) and for those datasets, we
use the code from (Wang et al., 2021) to generate
the results for ProtoNet with Bottleneck Adapters
while the rest of the results are taken from (Wang
et al., 2021). The variance regularization hyper-
parameter is set to .01 for these experiments. Our
method beats Leopard by 5, 3 and 2 points on 4, 8
and 16 shots, respectively. The training details for
these experiments can be found in section F.

7 Deployment

Based on the results described in table 3,
we choose to deploy our regularized Variance
Aware ProtoNet with Adapter-PubMedBERT. Our
pipeline is deployed on AWS using a single p3.2x
instance housed with one NVIDIA V100 GPU. The
main pipeline components include (1) body-part
specific report segmenter, (2) PubMedBERT back-
bone with adapters and (3) a dictionary of class
prototypes and class variances, for all classes in
the datasets. On inference, requests sent to the
pipeline include a body part which the pipeline
utilizes to load up the relevant report segmenter,
class prototypes and variances. A report is then
ingested by the pipeline, parsed by a sentencizer,
grouped into segments according to its body part
specific segmentation, and then passed to the model.
Class probabilities and labels are inferred after com-
puting the Wasserstein distance between the text
embedding and the appropriate class distributions.
These outputs and pipeline metadata are written
out to an AWS Redshift database cluster. The en-
tire pipeline is orchestrated in batch mode with a
large enough batch size to maximize GPU capacity
resulting in an average latency of 68ms/report.

Figure 3: Variance along different directions for the
Lung validation set

7.1 Monitoring

It is well-known that the BERT embeddings are
highly anisotropic (Ethayarajh, 2019). We observe
the same phenomenon in our meta-learned models
as well (figure 3) which we use to our advantage to
monitor OOD cases. For each class in a dataset, we
pick top k-dimensions (a hyperparameter) of max-
imum variance. We then take the union of these
indices that we call the set of dataset indices i.e. the
indices that explain the variance among all classes

347

Shots Dataset BERT* MT-BERT* Leopard ProtoNet ProtoNet+Adapter
Variance Aware ProtoNet

(Ours)

airline 42.76± 13.50 46.29± 12.26 54.95± 11.81 65.39± 12.73 65.33± 7.95 62.67± 11.18
disaster 55.73± 10.29 50.61± 8.33 51.45± 4.25 54.01± 2.9 53.48± 4.76 53.89± 3.79
emotion 9.20± 3.22 9.84± 2.14 11.71± 2.16 11.69± 1.87 12.52± 1.32 15.15± 4.19

political_audience 51.89± 1.72 51.53± 1.80 52.60± 3.51 52.77± 5.86 51.88± 6.37 52.5± 6.45
sentiment_kitchen* 56.93± 7.10 60.53± 9.25 78.35± 18.36 62.71± 9.53 83.13± 0.96 84.16± 1.37

political_bias 54.57± 5.02 54.66± 3.74 60.49± 6.66 58.26± 10.42 61.72± 5.65 59.39± 6.18
4 rating_electronics* 39.27± 10.15 41.20± 10.69 51.71± 7.20 37.40± 3.72 53.81± 6.01 55.49± 5.42

political_message 15.64± 2.73 14.49± 1.75 15.69± 1.57 17.82± 1.33 20.98± 1.69 19.28± .91
sentiment_books* 54.81± 3.75 64.93± 8.65 82.54± 1.33 73.15± 5.85 83.88± 0.55 84.95± 1.72

rating_books* 39.42± 07.22 38.97± 13.27 48.44± 7.43 54.92± 6.18 59.20± 7.26 66.18± 7.89
rating_dvd* 32.22± 08.72 41.23± 10.98 49.76± 9.80 47.73± 6.20 50.20± 10.26 52.59± 14.09

rating_kitchen 34.76± 11.2 36.77± 10.62 50.21± 9.63 58.47± 11.12 55.99± 9.85 59.39± 8.79
scitail* 58.53± 09.74 63.97± 14.36 69.50± 9.56 76.27± 4.26 77.84± 2.61 79.16± 2.54
Average 41.98 44.23 52.11 51.58 56.15 57.29

airline 38.00± 17.06 49.81± 10.86 61.44± 3.90 69.14± 4.84 69.37± 2.46 69.31± 2.43
disaster 56.31± 9.57 54.93± 7.88 55.96± 3.58 54.48± 3.17 53.85± 3.03 55.19± 2.77
emotion 8.21± 2.12 11.21± 2.11 12.90± 1.63 13.10± 2.64 13.87± 1.82 15.1± 3.58

political_audience 52.80± 2.72 54.34± 2.88 54.31± 3.95 55.17± 4.28 53.08± 6.08 53.82± 4.13
sentiment_kitchen* 57.13± 6.60 69.66± 8.05 84.88± 1.12 70.19± 6.42 83.48± 0.44 84.69± .8

political_bias 56.15± 3.75 54.79± 4.19 61.74± 6.73 63.22± 1.96 65.36± 2.03 64.09± .58
8 rating_electronics* 28.74± 08.22 45.41± 09.49 54.78± 6.48 43.64± 7.31 56.97± 3.19 60.24± 2.62

political_message 13.38± 1.74 15.24± 2.81 18.02± 2.32 20.40± 1.12 21.64± 1.72 20.44± 1.17
sentiment_books* 53.54± 5.17 67.38± 9.78 83.03± 1.28 75.46± 6.87 83.9± 0.39 84.68± .85

rating_books* 39.55± 10.01 46.77± 14.12 59.16± 4.13 52.13± 4.79 61.74± 6.83 65.54± 6.78
rating_dvd* 36.35± 12.50 45.24± 9.76 53.28± 4.66 47.11± 4.00 53.25± 7.47 53.83± 10.46

rating_kitchen 34.49± 8.72 47.98± 9.73 53.72± 10.31 57.08± 11.54 56.27± 10.70 56.68± 11.21
scitail* 57.93± 10.70 68.24± 10.33 75.00± 2.42 78.27± 0.98 80.41± 1.05 80.57± .48
Average 40.97 48.54 56.02 53.8 57.94 58.78

airline 58.01± 8.23 57.25± 9.90 62.15± 5.56 71.06± 1.60 69.83± 1.80 69.9± 1.06
disaster 64.52± 8.93 60.70± 6.05 61.32± 2.83 55.30± 2.68 57.38± 5.25 60.14± 5.36
emotion 13.43± 2.51 12.75± 2.04 13.38± 2.20 12.81± 1.21 14.11± 1.12 13.55± 3.51

political_audience 58.45± 4.98 55.14± 4.57 57.71± 3.52 56.16± 2.81 57.23± 2.77 56.36± 2.29
sentiment_kitchen* 68.88± 3.39 77.37± 6.74 85.27± 01.31 71.83± 5.94 83.72± 0.30 84.93± .49

political_bias 60.96± 4.25 60.30± 3.26 65.08± 2.14 61.98± 6.89 65.38± 1.71 63.97± 2.49
16 rating_electronics* 45.48± 06.13 47.29± 10.55 58.69± 2.41 44.83± 5.96 56.62± 5.62 61.01± 1.54

political_message 20.67± 3.89 19.20± 2.20 18.07± 2.41 21.36± 0.86 24.00± 1.39 22.49± 1.31
sentiment_books* 65.56± 4.12 69.65± 8.94 83.33± 0.79 77.26± 3.27 83.92± 0.41 84.91± 0.66

rating_books* 43.08± 11.78 51.68± 11.27 61.02± 4.19 57.28± 4.57 64.75± 4.27 67.34± 7.52
rating_dvd* 42.79± 10.18 45.19± 11.56 53.52± 4.77 48.39± 3.74 55.08± 4.92 56.63± 6.11

rating_kitchen 47.94± 8.28 53.79± 9.47 57.00± 8.69 61.00± 9.17 59.45± 8.33 58.34± 11.72
scitail* 65.66± 06.82 75.35± 04.80 77.03± 1.82 78.59± 0.48 80.27± .75 80.89± .23
Average 50.42 52.74 57.97 55.22 59.36 60.04

Table 5: Results on some benchmark text datasets on a wide range of tasks from NLI, sentiment analysis and text
classification. For the Variance Aware ProtoNet, we use BERT-base with bottleneck Adapters. For meta-training,
WNLI (m/mm), SST-2, QQP, RTE, MRPC, QNLI, and SNLI datasets are used.

in the dataset. For any given query example, we
compute the absolute difference (d⃗j) between its
embedding vector (q⃗) and class centroids (v⃗j), i.e.
the i-th coordinate d⃗j : d⃗j i = |q⃗i − v⃗j i|. We then
select top k dimensions of the each of these dj . We
propose an OOD metric called Average Variance
Indices (AVI_k) by the overlap between the top-
k difference vector indices and the top-k dataset

indices, i.e. AV I_k :=
|∪c

j=1top-k(d⃗j)|
dataset indices , where c

is the number of classes. For ex: in case of the
lung dataset: The text "The heart is normal in size.
There is no pericardial effusion. The pulmonary
artery is enlarged." shows an AVI_10 score .79,
whereas "L1L2: There is no disc herniation in lum-
bar spine." gives a score of .31. As part of our mon-
itoring, we threshold reports with an AVI_10 < .5
to further investigate if the report is OOD.

8 Conclusion

We extend Prototypical Networks by using Wasser-
stein distances instead of Euclidean distances and
introduce a regularization term to encourage the
class examples to be clustered close to the class
prototype. By training our models on a label rich
dataset (shoulder MRI reports), we show success-
ful performance on a variety of tasks. Since the
model weights are reused for all tasks, a single
model is deployed enabling us to cut inference
costs. Moreover, adapters are used allowing us to
tune smaller number of parameters (∼ 10 million)
resulting in huge training cost savings. Our model
is also benchmarked on 13 public datasets and out-
performs strong baselines like Leopard. Current
work is underway to make our training dataset more
diverse so that our models are more generalizable.

348

Ethical Considerations

Due to various legal and institutional concerns aris-
ing from the sensitivity of clinical data, it is difficult
for researchers to gain access to relevant data ex-
cept for MIMIC (Johnson et al., 2016). Despite its
large size (covering over 58k hospital admissions),
it is only representative of patients from a specific
clinical domain (the intensive care unit) and geo-
graphic location (a single hospital in the United
States). We can not expect such a sample to be rep-
resentative of either the larger population of patient
admissions or other geographical regions/hospital
systems. We have tried to address this partially
by collecting radiology data for various body parts
across multiple practices in the US. However we
are always mindful that our work may not gener-
alize to new body parts/pathologies and radiology
practices (see Section H). Even though we intro-
duce a simple OOD metric, we realize it is far
from perfect. We understand the need to minimize
ethical risks of AI implementation like threats to
privacy and confidentiality, informed consent, and
patient autonomy. And thus we strongly believe
that stakeholders should be flexible in incorporat-
ing AI technology as a complementary tool and not
a replacement for a physician. Thus, we develop
our workflows, annotation guidelines and generate
actionable insights by working in conjunction with
a varied group of radiologists and medical profes-
sionals to minimize these above risks. Finally our
pipeline as deployed is meant as a pseudo-labeling
tool which we expect would cut down on expensive
annotation costs but can potentially introduce some
bias in our pseudo-labels.

References
Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua

Tenenbaum. 2019. Infinite mixture prototypes for
few-shot learning. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
232–241. PMLR.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clin-
ical BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Associ-
ation for Computational Linguistics.

Jason Altschuler, Sinho Chewi, Patrik Robert Gerber,
and Austin J Stromme. 2021. Averaging on the bures-
wasserstein manifold: dimension-free convergence of

gradient descent. In Advances in Neural Information
Processing Systems.

Trapit Bansal, Rishikesh Jha, and Andrew McCallum.
2020a. Learning to few-shot learn across diverse nat-
ural language classification tasks. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5108–5123, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,
and Andrew McCallum. 2020b. Self-supervised
meta-learning for few-shot natural language classifi-
cation tasks. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 522–534.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and
Jan Gecsei. 1997. On the optimization of a synaptic
learning rule.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Marco Cuturi and Arnaud Doucet. 2014. Fast compu-
tation of wasserstein barycenters. In Proceedings of
the 31st International Conference on Machine Learn-
ing, volume 32 of Proceedings of Machine Learning
Research, pages 685–693, Bejing, China. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

P Dimond, Paul Fadale, Michael Hulstyn, Glenn Tung,
and J Greisberg. 1998. A comparison of mri findings
in patients with acute and chronic acl tears. The
American journal of knee surgery, 11:153–9.

349

Ning Ding, Yulin Chen, Xiaobin Wang, Hai-Tao Zheng,
Zhiyuan Liu, and Pengjun Xie. 2022. Few-shot learn-
ing with big prototypes.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
1126–1135. PMLR.

Yao Ge, Yuting Guo, Yuan-Chi Yang, Mohammed Ali
Al-Garadi, and Abeed Sarker. 2022. Few-shot learn-
ing for medical text: A systematic review.

Ruiying Geng, Binhua Li, Yongbin Li, Xiaodan Zhu,
Ping Jian, and Jian Sun. 2019. Induction networks
for few-shot text classification.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Trans. Comput. Healthcare,
3(1).

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos Storkey. 2020. Meta-learning in neural
networks: A survey.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-
wei H. Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G. Mark. 2016. Mimic-iii,
a freely accessible critical care database. Scientific
Data, 3(1):160035.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Annual Meeting of the
Association for Computational Linguistics.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B.
Tenenbaum. 2015a. Human-level concept learning
through probabilistic program induction. Science,
350(6266):1332–1338.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B.
Tenenbaum. 2015b. Human-level concept learning
through probabilistic program induction. Science,
350(6266):1332–1338.

Arjun Nair, Anand Devaraj, Matthew E J Callister, and
David R Baldwin. 2018. The fleischner society 2017
and british thoracic society 2015 guidelines for man-
aging pulmonary nodules: keep calm and carry on.
Thorax, 73(9):806–812.

Alex Nichol, Joshua Achiam, and John Schulman. 2018.
On first-order meta-learning algorithms.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. AdapterHub: A
framework for adapting transformers. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 46–54, Online. Association for Computational
Linguistics.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and
Oriol Vinyals. 2019. Rapid learning or feature reuse?
towards understanding the effectiveness of maml.

Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht,
Sara Fridovich-Keil, Moritz Hardt, John Miller, and
Ludwig Schmidt. 2019. A meta-analysis of over-
fitting in machine learning. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Jurgen Schmidhuber. 1987. Evolutionary principles in
self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Diploma thesis, Tech-
nische Universitat Munchen, Germany, 14 May.

Arijit Sehanobish, McCullen Sandora, Nabila Abraham,
Jayashri Pawar, Danielle Torres, Anasuya Das, Mur-
ray Becker, Richard Herzog, Benjamin Odry, and
Ron Vianu. 2022. Explaining the effectiveness of
multi-task learning for efficient knowledge extrac-
tion from spine MRI reports. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies: Industry Track, pages
130–140, Hybrid: Seattle, Washington + Online. As-
sociation for Computational Linguistics.

350

Rishav Singh, Vandana Bharti, Vishal Purohit, Abhinav
Kumar, Amit Kumar Singh, and Sanjay Kumar Singh.
2021. Metamed: Few-shot medical image classifi-
cation using gradient-based meta-learning. Pattern
Recognition, 120:108111.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
4080–4090, Red Hook, NY, USA. Curran Associates
Inc.

Erik E. Swartz, R. T. Floyd, and Mike Cendoma. 2005.
Cervical Spine Functional Anatomy and the Biome-
chanics of Injury due to Compressive Loading. Jour-
nal of athletic training, 40(3):155–161.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, ko-
ray kavukcuoglu, and Daan Wierstra. 2016. Match-
ing networks for one shot learning. In Advances in
Neural Information Processing Systems, volume 29.
Curran Associates, Inc.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie. 2011. Caltech-ucsd birds-200-2011. Techni-
cal Report CNS-TR-2011-001, California Institute of
Technology.

Jixuan Wang, Kuan-Chieh Wang, Frank Rudzicz, and
Michael Brudno. 2021. Grad2task: Improved few-
shot text classification using gradients for task rep-
resentation. In Advances in Neural Information Pro-
cessing Systems.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu,
Chris Dyer, and Phil Blunsom. 2019. Learning and
evaluating general linguistic intelligence.

Jian Zhang, Chenglong Zhao, Bingbing Ni, Minghao
Xu, and Xiaokang Yang. 2019. Variational few-shot
learning. In 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 1685–1694.

A Annotation

First we collect data from various sources and
a part of the data are annotated by our team of
in-house expert annotators with deep clinical exper-
tise, which we use as test and development sets for

our model training. We then use this annotated data
to train a larger pool of other annotators who are
generally medical students. They are provided clear
guidelines on the task and performance is measured
periodically on a benchmark set and feedback is
provided. As of the writing of the manuscript, the
validation and the test sets as described in section 3
are being used to train the annotators. After the
completion of their training, the annotators will
annotate the remaining unlabeled data that will be
used as a training data for our models. The entire
process is slow but is designed to generate high
quality annotated data. We believe that our few
shot models can be used as a source of pseudo-
labels and will greatly simplify and quicken our
annotation process.

B Shoulder Dataset

In this section we will briefly describe our label
rich shoulder dataset that is used as meta-training
and meta-validation sets. There are 80 labels for the
shoulder dataset. They range from Clinical history,
metadata, Impressions, Finding to various granu-
lar pathologies at different structures in the shoul-
der like AC joint, Rotator Cuff, Muscles, Bursal
Fluid, Supraspinatus, Infraspinatus, Subscapularis,
Labrum, Glenohumeral Joint, Humeral Head, Acro-
mial Morphology, Impingement: AC Joint. The
labels are split such that all pathologies in a given
structure appear at either training or validation but
not both. We believe that such a split would help
a model to learn the key words that may describe
the granularity of a pathology in a given structure
of interest. The dataset level statistics can be found
in figure 1 and table 1. An example of the shoulder
data is shown in figure 4.

Text Labels

The AC joint and anterior acromion show evidence of prior subacromial
decompression and there may have been a distal clavicle excision as well with
widening of the AC fluid in the joint glenohumeral joint/ labrum.

AC Joint: Mild Arthritis with Edema

Type Il acromion with hypertrophic changes causing impingement and partial rotator
cuff tear of the infraspinatus and supraspinatus myotendinous junction.

Impingement: Acromion

Mild subacromial-subdeltoid bursitis. Findings are age-indeterminate unless
otherwise specified.

Bursal Fluid: Small

Acromioclavicular joint: Anatomic alignment. No substantial degenerative change.

 AC Joint: Normal

There is fraying of the anterior labrum above the level of the equator.

Labrum: Normal or mild
degeneration

Figure 4: Figure showing an example of our shoulder
dataset which is used for meta-training. Note that the
labels attached to the text have information about the
location and severity of a given pathology.

351

C Detailed Workflow

We now present a detailed description of various
body part specific workflows. All reports, irrespec-
tive of body part, are first de-identified according
to HIPAA regulations. We then pass the report
through a sentence parser to parse the report in
sentences.

C.1 Lung Dataset
For the lung dataset, we use a report segmenter
which is a rule-based regex to extract the “Impres-
sion" section from the entire report. This section
can be thought as the summary of the report and
contains all the critical information like number
of lung nodules and their sizes and potential for
malignancy. This section text is used for final clas-
sification task as shown in figure 5. Figure 6 shows
examples of the labels in the dataset.

EXAM DESCRIPTION: CT CHEST W /O CONTRAST
CLINICAL HISTORY: R91.8: Other nonspecific abnormal finding of lung field.
History of pulmonary nodule . History of leiomyosarcoma.
 TECHNIQUE:
 Axial 3 mm images of the chest were obtained without IV contrast. Dosimetry: Total
DLP 492 mGy*cm. This exam was performed according to our departmental
dose-optimization program, which includes automated exposure control, adjustment
of the mA and/or kV according to patient size and/or use of iterative reconstruction
technique.
 FINDINGS:
 Several pulmonary nodules are present bilaterally with the largest in the left upper
lobe medially measuring 1.9 x 1 .7 cm (image 17 series 6). A nodule more superiorly
in the medial left upper lobe measures 1.4 x 1 .2 cm (image 38). A right middle lobe
nodule measures 1.2 x 1.0 cm. The remaining nodules measure less than 1 cm. A
tiny calcified granuloma is visible in the right upper lobe. No acute infiltrate is
identified. The central airways are patent. No pleural or pericardial effusion is
present. The heart is normal in size. Thoracic aorta is normal in caliber. No
mediastinal mass or adenopathy is evident on this unenhanced exam. Included
images of the upper abdomen show no mass or acute abnormality. No aggressive
osseous lesions are evident. There is disc degeneration in the thoracic spine. A
subcentimeter sclerotic focus in the T3 vertebral body is compatible with a bone
island.
 IMPRESSION:
 Several pulmonary nodules bilaterally measuring up to 1.9 cm, suspicious for
metastatic disease.
 WARNING : this patient with history of malignancy.

Report Segmenter

 IMPRESSION:
 Several pulmonary nodules bilaterally measuring up to 1.9 cm,
suspicious for metastatic disease.
 WARNING : this patient with history of malignancy.

Figure 5: Figure showing the preprocessing of the lung
dataset. Our report segmenter extracts the relevant para-
graph which is used for downstream classification.

Text Labels

Dominant 6.7 cm right upper lobe mass, with contiguous extension into the right hilar region, probable
adjacent interstitial spread, bilateral pulmonary metastatic nodules, mediastinal lymphadenopathy. 3 cm left
adrenal gland lesion suspicious for metastasis.

High Risk

Mild interstitial and ground glass density in the right upper lobe near the apex and probably representing
sequelae of radiation treatment. A tiny benign-appearing pulmonary nodule in the right middle lobe is
unchanged compared to 2016. No findings suspicious for metastatic disease in the chest. Hepatic steatosis.

Low Risk

Figure 6: Figure showing the labels in the Lung dataset

C.2 Cervical Dataset
Our task in the cervical dataset is to predict the
severity of a neural foraminal stenosis for each
motion segment - the smallest physiological mo-
tion unit of the spinal cord (Swartz et al., 2005).
Breaking information down at the motion segment
level in this way enables pathological findings to
be correlated with clinical exam findings, and can
inform future treatment interventions. A BERT
based NER model is used to identify the motion
segment(s) referenced in each sentence, and all the
sentences containing a particular motion segment

are concatenated together. We also use additional
rule-based logic to assign motion segments to rel-
evant sentences that may not mention a motion
segment in it. We then predict the disease severity
using this concatenated text at each motion seg-
ment. This data pre-processing mostly follows the
ideas and the steps outlined in (Sehanobish et al.,
2022). Figure 7 shows our preprocessing steps and
figure 8 shows examples in the datasets.

Figure 7: Figure showing the preprocessing of the cervi-
cal dataset. Our report segmenter extracts all the motion
segments mentioned in the report and groups all sen-
tences belonging to the relevant motion segment. The
paragraph belonging to a given motion segment is used
for downstream classification.

Text Label

C3-4: Desiccation mild disc space loss. There is mild disc osteophyte bulge. Uncovertebral hypertrophy left greater
than right. Mild facet hypertrophy. In conjunction with short pedicles mild central canal narrowing. There is mild to
moderate left and mild right foraminal stenosis.

0

At C3-C4, there is a degenerated bulging disc with osteophytic ridging, facet and uncovertebral hypertrophy and
short pedicles combining to cause mild to moderate central stenosis and severe bilateral foraminal stenosis
unchanged. There is mild motion artifact on some of the images. There is reversal of the cervical alignment with
grade 1 anterolisthesis at C3-4 and C5-6.

1

Figure 8: Figure showing the labels in the Cervical
dataset. 0 means absence of severe neural foraminal
stenosis and 1 indicates presence of severe neural foram-
inal stenosis.

C.3 Knee Dataset
The data processing steps for the knee dataset is
similar to the cervical dataset. A BERT based
NER model is used to tag sentences that men-
tion the structure of importance, i.e. the anterior
cruciate ligament (ACL). We group all the sen-
tences together that mention ACL and we use these
grouped sentences to predict our pathology severity
as shown in the workflow (figure 9). An example
of the labels in the knee dataset can be found in
figure 10.

D Additional Experiments

We also experiment with BERT-base and Clinical
BERT as additional backbones. We add adapters

352

Figure 9: Figure showing the preprocessing of the knee
dataset. Our report segmenter selects all the relevant
sentences pertaining to the structure of interest, i.e. ACL.
We then predict various pathology severities using this
paragraph of text.

Text Acute
Tear

Complete Tear

The anterior cruciate ligament is intact and there is a partial tear of the posterior cruciate
ligament with a thin residual component of the distal half of the PCL still intact.

0 0

While there is some edema in the ACL, there appear to be intact fibers. This may indicate
ACL sprain or partial tear. A complete tear is not identified. Secondary signs of ACL
insufficiency are not identified. While there is likely an ACL sprain or mild partial tear, there
are intact ACL fibers.The pattern of bone bruises raises some concern for an ACL tear, but
the femoral bone bruises slightly more lateral than commonly seen.

1 0

Proximal ACL tear and PCL intact. Left knee MRI demonstrates: Complete ACL tear with
bone bruises in the medial tibial plateau, medial femoral condyle and lateral femoral
condyle.

1 1

There is no normal anterior cruciate ligament identified. There is diffuse intermediate
signal within the posterior cruciate ligament on the proton density images and to a lesser
extent on the T2-weighted images compatible with chronic PCL degeneration.
While this could be the sequela of old surgery, degenerative tearing of the meniscus
including involvement of the root attachment cannot be excluded. Nonvisualization of the
ACL compatible with an old ACL tear.

0 1

Figure 10: Figure showing the labels in the Knee dataset.
0 means absence of a given pathology and 1 indicates
presence of such.

to these backbones as well. Finally, we choose the
best model based on meta-validation accuracy and
use it for our downstream tasks. In all our experi-
ments, PubMedBERT-based backbones outperform
the BERT-base and the Clinical BERT backbones.

E Hyperparameters and Additional
Experimental Details

In this section, we will describe the hyperparam-
eters used for experiments on our internal and
public datasets and explain some of the design
choices. Table 8 shows the best hyperparame-
ters used for our experiments. For our internal
dataset, we use the Pfeiffer configuration in the
adapter implementation from (Pfeiffer et al., 2020),
whereas for the public datasets we use the ex-
act implementation and configuration as in (Wang
et al., 2021) for a fair comparison to the results
reported there. For all vanilla ProtoNet experi-
ments, we use the Euclidean distance as it out-
performs the cosine distance. All BERT models
without adapters are trained with 8 shots and 8 sup-
port due to memory considerations. We choose
learning rate and the variance regularizer for each
model from {1e − 5, 2e − 5, 5e − 5, 1e − 4} and
{1e− 4, 1e− 3, .01, .1, .5} based on the validation
performance. For all the experiments, a dropout

Backbone Methods Accuracy

Vanilla ProtoNet 86.3± 1.2
Big ProtoNet 87.8± .9

Leopard 81.4± 9.7
BERT-base ProtoNet w/ Isotropic Gaussian 88.7± 1.4

ProtoNet w/ Isotropic Gaussian + reg 89.5± .8
Variance Aware ProtoNet (ours) 88.9± 1.5

Variance Aware ProtoNet + reg (ours) 90.1± .9

Vanilla ProtoNet 85.6± 1.3
Big ProtoNet 87.1± 1.1

BERT-base
w/Adapters ProtoNet w/ Isotropic Gaussian 87.8± .8

ProtoNet w/ Isotropic Gaussian + reg 88.6± .7
Variance Aware ProtoNet (ours) 88.1± 1.2

Variance Aware ProtoNet + reg (ours) 89.7± .8

Vanilla ProtoNet 87.4± 1.3
Big ProtoNet 88.5± 1.1

Leopard 82.2± 9.8
Clinical BERT ProtoNet w/ Isotropic Gaussian 89.6± 1.2

ProtoNet w/ Isotropic Gaussian + reg 90.1± .8
Variance Aware ProtoNet (ours) 89.9± 1.1

Variance Aware ProtoNet + reg (ours) 90.9± .8

Vanilla ProtoNet 86.8± .9
Big ProtoNet 87.9± 1.1

Clinical BERT
w/Adapters ProtoNet w/ Isotropic Gaussian 88.4± 1.3

ProtoNet w/ Isotropic Gaussian + reg 89.1± .9
Variance Aware ProtoNet (ours) 88.7± 1.1

Variance Aware ProtoNet + reg (ours) 89.5± .9

Table 6: Results showing accuracy percentages on the
meta-validation dataset. We sample 1000 tasks with 4-
way 8-shot and 16-support classification. We replicate
each experiment over 10 random seeds.

layer is added after the final BERT layer.
For our internal dataset, we also experiment

with {2, 3, 4} ways and {4, 6, 8} shots and
{4, 6, 8, 12, 16} support. The experiments with 2-
way and 3-way produce poor results on our down-
stream tasks irrespective of the number of shots
and support. During training with 4-way, the meta-
validation results for lower support show worse
performance than the numbers reported in table 4.
We believe that it is caused by the high variability
between the various groups of samples of a given
class. Finally our downstream performance is best
for models that are trained on higher number of
shots.

In case of ProtoNets, there is no adaptation dur-
ing testing. The validation set is used to compute
prototypes to query the test set. However, in case
of Leopard, there is an additional few shot adap-
tation step that occurs as outlined in (Wang et al.,
2021). In this case, the validation set is used for the
adaptation and also as the support set for querying
the test set.

E.1 Effect of Regularization on means and
variances

Table 9 illustrates the benefits of adding the regu-
larization term. The regularization term not only
aids in lowering the variances but also manages

353

Backbone Methods Foraminal
Knee
(Acute Tear vs Not)

Knee
(Complete tear vs Not)

Lung

Baseline .24 .29 .32 .19
Multi-Task .29 .34 .41 .27

Vanilla ProtoNet .75 .71 .66 .65
Big ProtoNet .57 .58 .53 .6

Leopard .63 .72 .61 .41
BERT-base ProtoNet w/ Isotropic Gaussian .77 .72 .69 .68

ProtoNet w/ Isotropic Gaussian + reg .78 .76 .71 .70
Variance Aware ProtoNet (ours) .79 .78 .73 .72

Variance Aware ProtoNet + reg (ours) .81 .80 .76 .75

Baseline .28 .32 .40 .25
Multi-Task .32 .35 .44 .29

Vanilla ProtoNet .74 .73 .65 .67
Big ProtoNet .58 .59 .55 .61

BERT-base w/ Adapters ProtoNet w/ Isotropic Gaussian .78 .71 .67 .69
ProtoNet w/ Isotropic Gaussian + reg .80 .74 .72 .74

Variance Aware ProtoNet (ours) .80 .74 .72 .74
Variance Aware ProtoNet + reg (ours) .82 .77 .77 .78

Baseline .31 .37 .42 .28
Multi-Task .34 .45 .47 .38

Vanilla ProtoNet .77 .72 .68 .66
Big ProtoNet .57 .59 .53 .61

Leopard .74 .78 .77 .62
Clinical BERT ProtoNet w/ Isotropic Gaussian .78 .74 .71 .68

ProtoNet w/ Isotropic Gaussian + reg .80 .76 .74 .71
Variance Aware ProtoNet (ours) .82 .79 .76 .74

Variance Aware ProtoNet + reg (ours) .84 .81 .79 .76

Baseline .35 .42 .45 .33
Multi-Task .37 .45 .49 .37

Vanilla ProtoNet .76 .74 .70 .67
Big ProtoNet .58 .60 .57 .62

Clinical BERT w/ Adapters ProtoNet w/ Isotropic Gaussian .79 .76 .72 .70
ProtoNet w/ Isotropic Gaussian + reg .81 .77 .73 .72

Variance Aware ProtoNet (ours) .83 .81 .76 .73
Variance Aware ProtoNet + reg (ours) .85 .82 .81 .77

Table 7: Table showing F1 scores of few shot models with BERT-base and Clinical BERT backbones in downstream
classification tasks.

to push the centroids away further which we be-
lieve sheds some light on our method’s success in
downstream classification tasks. We also carry out
various ablation studies by changing the regulariza-
tion hyperparameter.

E.2 Metric and other modeling choices
In (Snell et al., 2017), only the sample means (i.e.

means of the support vectors) are used to estimate
the true population mean. In fact, by the Central
limit theorem, we can use the sample variance (af-
ter normalization) to get an unbiased estimate of the
population variance. Unlike the original work, we
sought to use this extra information to better under-
stand the class distribution. The Gaussian assump-
tion is strong but it is motivated by the fact that
it allows us to compute Wasserstein distances in a
computationally tractable manner. Finally to mo-
tivate the choice of using the Wasserstein distance
instead of a Bergman divergence like KL diver-

gence, consider the following motivating example,
N1(µ1,Σ1), N2(µ2,Σ2) be 2 Gaussians and for
simplicity assume: Σ1 = Σ2 = wI and µ1 ̸= µ2.
With these assumptions, W 2 = ||µ1 − µ2||2 And
DKL = 1

2w ||µ1 − µ2||2. Note that Wasserstein
distance does not change if the variance changes
(w can be arbitrarily large) whereas the KL diver-
gence does. In fact, this is pointed out in (Ding
et al., 2022) where their goal is to create spherical
Gaussians with large radii. However, we found that
having large variance produces worse results in
our downstream tasks. Finally similar dependence
on variance is in play if one computes a simple
likelihood of the sample in the class distributions.

F Public Benchmarks

In this section, we describe the training proce-
dure for the public benchmark datasets. The base-
line results are taken from (Wang et al., 2021;

354

Algorithm 1: PyTorch style Pseudocode for Variance Aware ProtoNets
/* f: Encoder Network */

/* N: dimension of the representation */

/* c: Number of classes or ways */

/* k: Shots or number of examples per class in the query set */

/* m: Supports per class in the support set */

/* dist: Pairwise squared Euclidean distance function */

/* loss_fn: Cross-Entropy Loss function */

/* λ: regularizer */

Input: Sample a set L of labels, mini-batch of Support set SL, Query set QL

/* Compute statistics for each class in the Support set */

sorted_labels = torch.sort(support_labels) // sort the labels in the support set

c = len(s.values.unique()) // Number of ways

support_sorted = support[sort.indices]
labels_sorted = labels[sort.indices]
embeddings_support = f (support_sorted) // m ∗ c×N

m = embeddings_support.shape[0]//c // support per class

embeddings_support = embeddings_support.reshape(c,m,−1) // c×m×N

support_mean = embeddings_support.mean(dim=1) // c×N

support_var = torch.var(embeddings_support, dim=1)**2 // c×N

/* Get embeddings for the query set and compute distances from the support */

query = f(QL) // k ×N

logits = dist(query, support_mean) + torch.sum(support_var,dim=1)) // k × c, adding trace to the

distance matrix

loss = loss_fn(-logits, query_labels) + λ * (torch.norm(support_var, dim=1))/c // Regularizer term

Figure 11: Figure showing the effect of changing the
regularization hyperparameter. Top: Figure showing
the F1 score averaged over our 4 internal datasets. Bot-
tom: Figure showing 16-shot accuracy averaged over 13
public datasets. We see a similar trend for 4 and 8-shot
accuracies for these public datasets as well.

Hyperparameter Type Internal Dataset Public Datasets

Epochs 30 40
Sequence Length 128 128
Optimizer AdamW AdamW
Learning Rate 3e− 5 2e− 5
Weight Decay 1e− 4 1e− 4
Gradient Clip 3 2
Early Stopping Yes Yes
Learning Rate Scheduler Linear Linear
Dropout .1 .1
Shots 8 8
Number of supports 16 16
Variance Regularizer .1 .01

Table 8: Hyperparameters used for all our Variance
Aware ProtoNet experiments with BERT+Adapter back-
bones

Bansal et al., 2020a). We have followed the same
meta-training procedure as described in (Wang
et al., 2021). Specifically, for meta-training, WNLI
(m/mm), SST-2, QQP, RTE, MRPC, QNLI, and the
SNLI datasets (Bowman et al., 2015) are used. The
validation set of each dataset is used for hyperpa-
rameter searching and model selection. The models
are trained by sampling episodes from the meta-
training tasks. The sampling process first selects a

355

Experiment type Without regularization With regularization

Task Names
Distance

between centroids
Norm of

class 0 variance
Norm of

class 1 variance
Distance

between centroids
Norm of

class 0 variance
Norm of

class 1 variance
Lung 2.97 1.12 1.31 3.96 1.15 1.08
Foraminal 3.65 1.71 1.59 4.17 1.62 1.38
Knee (ACL complete tear) 4.12 1.97 2.10 5.01 1.87 1.85
Knee (ACL acute tear) 3.95 1.53 1.49 4.32 1.27 1.35

Table 9: Table showing the showing the class statistics with and without regularization. Higher Distance and Lower
variance is better.

dataset and then randomly selects m examples for
each class as the support set and another k-shots
as the query set and the probability of a selected
task is proportional to the square root of its dataset
size (Bansal et al., 2020b). For meta-testing, we
use 13 datasets ranging from NLI, text classifica-
tion and sentiment analysis. For the models and
datasets marked with ∗, we use the results reported
in (Bansal et al., 2020a) and for those datasets, we
use the code from (Wang et al., 2021) to generate
the results for ProtoNet with Bottleneck Adapters
while the rest of the results are taken from (Wang
et al., 2021). We reuse their implementation and
configuration of their adapters but modify the loss
function with the Wasserstein distance along with
our variance regularization term. Table 5 shows the
superior performance of our method beating all the
baselines. For detailed hyperparameters, please see
section E. Our method without the variance regu-
larization term shows similar performance to that
of the Leopard baselines. For the isotropic variant
method, it shows similar performance to Leopard
with the variance regularization term and worse
without.

G Stability of the Prototypes

For simplicity, we use our entire validation sets to
compute prototypes. In this section we show how
our results vary if we choose a subset of our vali-
dation set to create the prototypes. The figure 12
shows the F1 scores when a subset of the data is
used to compute the prototypes and the variances
for a given class.

H Failure Cases

We also test our models on few additional tasks like
(i) predicting the severity of disc herniation in our
cervical dataset and (ii) predict the presence of cord
compression at various motion segments in our
internal dataset on the lumbar spine. Our models
achieve an F1 score of .51 and .39 respectively.
The figure 13 shows how the classes are distributed.

Figure 12: Figure showing stability of the prototypes.
We sample k examples 50 times to construct the proto-
types and the standard deviations.

We attribute the failures to the poor separability
between classes and the high variance in the data
distribution.

It is an ongoing project to understand what
makes our model work for these downstream tasks
and why our model works on some tasks and not
others. We hope that by simply increasing the diver-
sity of our training data or applying newer adapter
architectures like Mix-and-Match Adapter (He
et al., 2022) and Compacter (Karimi Mahabadi
et al., 2021), our current methods will work on a
wide range of downstream pathologies.

356

Figure 13: T-Sne projections of our Cord and Disc Data.
The prototypes for cord classes are very close while
the prototypes for disc are well separated. However
the large variance in the disc classes causes bad perfor-
mance.

357

Proceedings of EMNLP 2022 Industry Track, pages 358–366
December 9–11, 2020. ©2022 Association for Computational Linguistics

Named Entity Recognition in Industrial Tables using
Tabular Language Models

Aneta Koleva1,2*, Martin Ringsquandl1*, Mark Buckley1, Rakebul Hasan 1 and Volker Tresp1,2

1Siemens AG, 2Ludwig-Maximilians University
first_name.last_name@siemens.com

Abstract

Specialized transformer-based models for en-
coding tabular data have gained interest in
academia. Although tabular data is om-
nipresent in industry, applications of table trans-
formers are still missing. In this paper, we study
how these models can be applied to an indus-
trial Named Entity Recognition (NER) prob-
lem where the entities are mentioned in tabular-
structured spreadsheets. The highly technical
nature of spreadsheets as well as the lack of
labeled data present major challenges for fine-
tuning transformer-based models. Therefore,
we develop a dedicated table data augmentation
strategy based on available domain-specific
knowledge graphs.

We show that this boosts performance in our
low-resource scenario considerably. Further,
we investigate the benefits of tabular structure
as inductive bias compared to tables as lin-
earized sequences. Our experiments confirm
that a table transformer outperforms other base-
lines and that its tabular inductive bias is vital
for convergence of transformer-based models.

1 Introduction

There has been growing interest in developing spe-
cial model designs intended to capture tabular struc-
ture (Deng et al., 2020; Yin et al., 2020; Herzig
et al., 2020; Wang et al., 2021). A recent sur-
vey named these models tabular language models
(TaLMs) and provided an overview of the differ-
ent architectures and pretraining objectives (Dong
et al., 2022). One of the downstream tasks where
TaLMs are applicable is table interpretation (TI)
with its sub-tasks: entity linking, column type an-
notation and relation extraction (Deng et al., 2020).
Most TaLMs for TI use BERT as the backbone
language model (LM) for encoding the content of
table cells and aggregate their representations on

∗ Equal Contribution.

different levels (cell, row or column) depending on
the task.

Although tabular data is omnipresent in industry,
TaLMs such as table transformers, have not found
their way into industrial applications yet. One rea-
son being the nature of data stored in industrial
tables which is different and more dynamic than
data in academic datasets where the schema of the
table is consistent and each cell contains a single
entity of one type (Cutrona et al., 2020). As shown
in Figure 1, industrial tables contain multiple sub-
cell entities from different types, hence the TaLMs
which provide cell-level aggregation are not suffi-
cient. In this direction, we formulate the problem
of sub-cell named entity recognition (NER) in ta-
bles using TaLMs.

Another challenge is that tabular data in industry
is often lacking labels, especially labels reflecting
the high variance across examples. Due to the
very technical and domain-specific nature only ex-
perts can effectively provide such labels, which
is – for most tasks – too expensive. These low-
resource scenarios are challenging for statistical
NLP models and usually prohibit fine-tuning of
large-scale transformer-based models. A popular
strategy to remedy low-resource scenarios is data
augmentation (DA) (Simard et al., 1996), which
allows to increase data diversity without having to
collect new examples. Common DA techniques in
NLP range from using external knowledge such as
WordNet (Zhang et al., 2015), machine-translation
models for back-translation (Yaseen and Langer,
2021) or mixing of examples inspired from com-
puter vision (Yun et al., 2019). An empirical study
by (Longpre et al., 2020) showed that applying
off-the-shelf DA techniques (Sennrich et al., 2016;
Wei and Zou, 2019) for fine-tuning of LM like
BERT or RoBERTa bring little to no improve-
ment and become even less beneficial in cross-
domain settings (Herzig et al., 2020; Zhong et al.,
2020). These studies emphasize the challenge of

358

Figure 1: Example table from an industrial plant equipment spreadsheet. Boxes represent NER annotations.

developing domain-specific DA techniques which
would help improve the existing pretrained trans-
former models.

Although, there are no domain-specific DA tech-
niques applicable to a tabular dataset, in many
industrial domains there exist external resources
which can be exploited for creating augmented ta-
bles. In this paper we study a DA technique for
industrial spreadsheet tables leveraging publicly
available resource based on an industrial standard.
Specifically, the contributions of this paper are the
following:

• We introduce a table transformer model for
sub-cell NER, TABNER, and provide an in-
dustrial use case as a motivation for this. To
the best of our knowledge, this is the first at-
tempt to solve NER in tables with TaLMs.

• We develop a novel DA technique for semanti-
cally consistent augmentation of tables based
on domain-specific knowledge graphs.

• We empirically show that the inductive bias
of TaLMs is valuable and combined with our
DA technique boosts the performance by 9%
compared to a sequential model.

2 Industry NER Use Case

As motivation for tabular NER in an industrial con-
text, we describe a real-world dataset from which
information about industrial plant equipment, such
as actuators, sensors, vessels, etc. and their physi-
cal quantities should be extracted. This information
is typically collected and maintained by engineers
in spreadsheets. The spreadsheets are roughly orga-
nized in a tabular format, as can be seen from the ex-
ample table in Figure 1. In these spreadsheets, each
row typically represents information about one or
multiple equipment instances. Some columns rep-
resent relevant physical properties of these equip-
ments, while others are non-informative. However,

Dataset µtok σtok Ktok µcol σcol

SemTab 2 2.5 132.2 4.5 1.9
Plant 2.6 3.7 585.3 16.3 21.6

Table 1: Dataset statistics: academic vs. industry.

the engineers do neither comply to a fixed schema
nor to unified spelling of equipment or properties.
The goal is to automatically extract relevant enti-
ties for creating a structured specifications of the
plant equipment. We phrase this problem as NER
task with the following types of entities. The type
TAG refers to a systematic identifier of an equip-
ment. There are some conventions for generating
equipment tags (e.g. NORSOK, KKS standards),
but most plant operators customize them and some
sheets do not contain identifiers at all. Type EQ is
for surface names of equipment types. The type
QUANT refers to the physical properties/quantities
describing the functional specifications of equip-
ment and the type UoM stands for unit of measure-
ment.

Table Statistics It is not obvious why performing
NER in tables would benefit from sophisticated lan-
guage models. In fact, looking at common tabular
benchmark datasets, such as the ones used in the
SemTab challenge (Cutrona et al., 2020), detecting
entities is usually very straightforward. Since all
tokens in a cell are assumed to represent a single
entity, sub-cell NER is an unnecessary step and we
only need to perform entity/cell linking. Looking
at the example table in Figure 1, however, gives the
impression that these industrial spreadsheets are
very differently structured from common bench-
marks. There can be quite some text and even
multiple sub-cell entities in a single cell. Table 1
supports this impression with statistical evidence.
The average number of tokens per cell, µtok, is
30% higher in our industrial dataset compared to a
dataset from SemTab. Further, its standard devia-

359

… … …

… ……

Table Self-A�en�on

Tok
Emb

Tok
Emb

Tok
Emb

Tok
Emb

Tok
Emb…

Embedding + Cell Type + Posi�on

Token Classifier

id rating
Service

type

1 Wtr tank23 kW

Eid Erating Eservice Etype E1 E23 Ekw Ewtr Etank

EHead EHead EHead EHead EBody EBody EBody EBody EBody

E0 E0 E0 E1 E0 E0 E1 E0 E1

Table
Input

Token
Embeddings

Segment
Embeddings

Position
Embeddings

+ +

Tok
Emb

Tok
Emb

Tok
Emb

Tok
Emb

Tok
Emb…

+ + + + + + +

+ + + + + + + + +

Figure 2: Input modifications to vanilla transformer to encode tokens with tabular structure.

tion σtok and the Kurtosis Ktok, show that there is
more variance due to the much longer tail of the
distribution of number of tokens in the plant tables.
Even more obvious is the difference at the column
level where the tables in the SemTab challenge
contain on average 4 times less columns (µcol)
than the tables describing plant equipment speci-
fication with much lower variance as well. This
suggests that every token in our NER task has a
much broader intra- and inter-cell context.

3 Related Work

There has been some research focused on extract-
ing entities and their quantities from web tables.
Ibrahim et al. (Ibrahim et al., 2016) phrased
this problem as entity linking using a table-biased
Markov random field and distant supervision.

Wu et al. (Wu et al., 2018) employed BiLSTM
models to encode rich-format documents (unstruc-
tured text, headings, tables) that mention electronic
components, quantities and units of measure. They
used hand-crafted labeling functions for collecting
(weakly) labeled entities and relations which can
be used as weak supervision.

A recent work on table classification (Koleva
et al., 2021) compared TaLMs like TaBERT (Yin
et al., 2020) versus non-contextual word embed-
ding methods for generating table vector represen-
tations. TURL (Deng et al., 2020) uses a Trans-
former (Vaswani et al., 2017) with table-specific
attention mechanism which has been pre-trainined
and fine-tuned towards solving the tasks of table in-
terpretation: column type annotation, entity linking
and relation extraction. However, this methods gen-

erates representations on a cell level and therefore
can not be applied for solving our NER problem.

We are not aware of any work that uses TaLMs
for sub-cell table NER in an industrial setting.

Data Augmentation Recently, many different
DA techniques have been proposed with the pur-
pose to solve low-resource issues in NLP by gener-
ating new examples from existing datasets. For a
comprehensive overview on the different DA tech-
niques, we refer the readers to the recent survey by
Feng et al. (Feng et al., 2021).

Several simple and effective DA techniques for
NER are presented by (Dai and Adel, 2020). How-
ever, these techniques are not directly applicable
to the industrial tabular data since they rely on
domain-agnostic linguistic resources like WordNet.
Similarly, methods for sequence labeling, such as
backtranslation (Yaseen and Langer, 2021) can not
be applied to tabular data because the content of
the tables are mostly facts and not full sentences.

4 Method

We now define the table NER problem and outline
how we encode tokens in tables using TaLMs.

We define a table as a tuple T = (C,H), where
C = {c1,1, c1,2, . . . ci,j , . . . , cn,m} is the set of ta-
ble body cells for n rows and m columns. Ev-
ery cell ci,j =

(
wci,j ,1, wci,j ,2, . . . , wci,j ,t

)
is

a sequence of tokens of length t. The table
header H = {h1, h2, . . . , hm} is the set of
corresponding m column header cells, where
hj =

(
whj ,1, whj ,2, . . . , whj ,q

)
is a sequence of

header tokens with length q. We use T[i,:] to re-
fer to the i-th row (H = T[0,:]) and T[:,j] =

360

{hj , c1,j , . . . , cn,j} to refer to the j-th column of T .
Each labeled cell has an NER-tag sequence:

(y1, y2, . . . , y|cell|), where each yi ∈ Y . We use
IO tags, thus Y is {O} ∪ {I-ENT}, where
ENT ∈ {TAG,EQ,QUANT,UoM}.

4.1 TABNER Model
Compared to the existing TaLMs such as TaBERT
(Yin et al., 2020), TURL or TAPAS (Herzig et al.,
2020) which generate cell-level representations, we
propose a simple modification to the vanilla trans-
former (Vaswani et al., 2017) which allows us to
use almost any pre-trained transformer1 to obtain a
(sub-cell) token-level representations for a table.

Our TABNER model consists of a token encoder
layer ENC and a classification layer. A conceptual
architecture of the table token input encoding is
shown in Figure 2, where token vector represen-
tations for each token in the linearized table are
generated by aggregating the token embeddings,
the segment embeddings, and position embeddings.
The segment indicates if a token is part of the head
or the body (instead of the 1st / 2nd sentence se-
mantics) and the position encoding is done on a
cell-level, so it restarts from 0 for every cell in
body C and header H:

pos(T) = (pos(hi), . . . , pos(ci,j))

pos(cell) = (0, . . . , t)

Similarly as in TURL, we use a table attention
mask (visibility matrix) αi,j , but on token-level
instead of cell-level. This mask allows every token
to attend exclusively to tokens which are either
in the same row or in the same column. αi,j is a
symmetric binary matrix defined as:

αi,j =

{
1 if col(i) = col(j) ∨ row(i) = row(j),
0 otherwise,

where row (col) are functions that map linearized
token indices back to row (column) indices in the
table.

The output of the token encoder layer is a se-
quence of token representations:

wh1,1, . . . ,whm,t,wc1,1,1, . . . ,wcn,m,t = ENC(T),

which is then fed into a classification layer with a
Softmax activation to assign a score for each token
to a class y ∈ Y .

1huggingface.co token classification models that take a
custom 2D attention_mask

4.2 Data Augmentation

As mentioned above, existing DA techniques for
NER, such as those presented in (Dai and Adel,
2020), are not a good fit for tabular data, since they
produce augmented tables with inconsistent con-
text. For example, the common label-wise token
replacement (LWTR) may replace the QUANT to-
ken nominal in Figure 1 with height or the UoM
bar with Celsius. This clearly introduces inconsis-
tencies in the context, since height pressure has no
physical meaning and neither height nor pressure
are measured in Celsius. A visualization of such
an inconsistent table can be seen in the Appendix
in Figure 5.

To overcome this problem external domain-
specific knowledge is needed. For many indus-
trial domains there exist resources (standardized
vocabularies, data models) that can be incorporated
for DA. We propose a novel DA approach which
leverages existing industrial semantic data models
to augment and to generate tables with consistent
context. In particular, we use the Reference Data
Library (RDL) of POSC Caesar (ISO-15926)2. The
RDL is a rich source of a domain-specific vocab-
ulary and relations in the process industry. For
example, it defines taxonomies that represent spe-
cific types of equipment (EQ), but also physical
quantities (QUANT) that plant equipment typically
possess. Figure 3 shows a small excerpt of the
RDL as knowledge graph. We leverage this data
in the process of augmenting existing tables with
consistent equipment, quantity and unit of measure
(UoM) context as follows.

First, we extract surface names (sfn) of
all entities of type ENT into a respective set
RDLENT = {sfn-ent1, sfn-ent2, . . . }, where
ENT ∈ {EQ,QUANT,UoM}. Additionally, we
extract a dictionary RDLE2Q : RDLEQ →
RDLQUANT that holds a set of applicable quanti-
ties for every equipment and a second dictionary
RDLQ2U : RDLQUANT → RDLUoM that stores
all applicable units of measure for a certain quan-
tity. The extracted sets for the example graph are
also shown in Figure 3.

To ease notation we define a function fner which
returns the set of entity types contained in the set
of cells passed as arguments, e.g., fner(T[:,2]) =
{EQ} means that the second column of table T
contains entities of type EQ.

2http://data.posccaesar.org/rdl/

361

Figure 3: Example graph from POSC Caesar and resulting sets/dictionaries for RDLTab.

Augmentation procedure Given a table T we
generate an augmented sample Taug as follows:

1. Sample k columns that contain no NER
annotations as starting point for augmenta-
tion, Taug ← sample(

⋃
j T[:,j], k), where

fner(T[:,j]) = ∅.

2. For every row i in Taug: An EQ entity surface
name sfn-eqi is sampled uniformly at random
from RDLEQ. The cells in column k+1 hold
the sampled names: ci,k+1 ← sfn-eqi.

3. Sample a column header heq from all training
table columns that contain at least one EQ
annotation: hk+1 ← heq.

4. For every sampled equipment sfn-eqi: a
QUANT entity surface name sfn-quanti
is sampled uniformly at random from
RDLE2Q(eqi). Each sfn-quanti is a new col-
umn header in Haug ← Haug ∪ {sfn-quanti}.
Fill the resp. cells ci,k+i+1 with a ran-
dom numeric value and optionally a ran-
domly sampled UoM surface name from
RDLQ2U (quanti).

5. Finally, generate a last column, where for ev-
ery sampled equipment sfn-eqi an artificial
TAG entity surface name sfn-tagi is generated.
This column’s header is then sampled from
all training tables headers that contain at least
one TAG annotation.

Artificial tags are generated by forming an
acronym from the EQ entity name and adding
groups of random alphanumeric strings, optionally
divided by the dash ’-’ character (which is similar
to tagging standards).

5 Experiments

In this section we empirically study the perfor-
mance of TABNER compared against several base-
lines as well as the benefits of our domain-specific
table DA technique.

tables µner TAG EQ QUANT UoM
79 18 295 359 427 359

Table 2: Dataset used for experiments.

5.1 Dataset

We extract 79 tables from a pool of real-world
spreadsheets describing industrial plant equipment.
To get expert labels, we sub-sampled each table
to have a maximum of 5 rows. The labels were
collected on a cell-by-cell basis using the tool
Prodigy3. The statistics of the dataset are shown in
Table 2; the mean number of NER-tags per table
is 18, the other columns show the absolute number
of NER-tags for each entity type. All experiments
are carried out in a 5-fold cross validation where
we use 10% of each fold’s training data as valida-
tion set.

5.2 Baselines

We compare the performance of TABNER to mul-
tiple baselines. First, we design a rule-based NER
(RULENER) based on spaCy’s EntityRuler4 us-
ing the same domain-specific vocabularies from
RDL as described in section 4.2 for matching. For
detecting entities of type TAG we employ a heuris-
tic: find the column with most unique body val-
ues which does not contain any known vocabu-
lary terms. Then we mark all alphanumeric to-
kens as TAG. The second baseline is a BILSTM-
CRF model that uses word embeddings (pre-trained
GloVe-6B-100d) as well as character embeddings
(Ma and Hovy, 2016). Here, we simply feed each
table in linearized form as input. Lastly, we fine-
tune a vanilla sequential BERT, again with lin-
earized input tables, without any table structure
encoding to study if the tabular structure inductive
bias is justified.

3https://prodi.gy
4https://spacy.io/api/entityruler

362

DA techniques We refer to the DA method ex-
plained in section 4.2 as RDLTab and compare
its performance against LWTR. For both DA tech-
niques, we experimented with n = 1, 2 number of
augmented tables per original table in each epoch.
In the case of LWTR, we generate n new tables
by randomly replacing m/2 tokens, where m is
the total number of NER labels available for the
table. When applying RDLTab, we generate n new
tables for every table in the training set. The best
performance was achieved with n = 1 sample of
augmented tables. Therefore, the presented results
are with n = 1 for both DA techniques and the
comparison with the performance when n = 2
samples is discussed in the Appendix.

6 Results and Analysis

Convergence First, we analyze the progress of
the training loss to study the convergence of the
different NER models, see Figure 4. The loss of
vanilla BERT is quite flat from the beginning and af-
ter a few epochs gets stuck at a bad local optimum
- hits early stopping based on validation. We ar-
gue that the global attention and position encoding
across the full table are blurring the NER training
signal for BERT and since we could not find a set-
ting to make it converge properly, we excluded it
from further experiments. A more detailed analysis
can be found in the Appendix.

In contrast to BERT, the training loss for TAB-
NER is converging quickly. Using only the training
data, without augmentation, has the least steepest
decline, which is due to observing less labels per
epoch. LWTR shows a very steep decline in the
beginning which, however, flattens out sooner than
RDLTab. Our hypothesis here is that LWTR adds
helpful variance in the labels at the beginning, but
has less variance to add in the long run, since it can
only sample from known training tables. RDLTab
on the other hand produces a more novel table con-
text over time as the RDL has richer external vo-
cabulary.

Table structure vs. sequential inductive bias
We present the final cross-validation F1 scores in
Table 3. It can be seen that TABNER outperforms
the baselines in all DA settings, proving the bene-
fits of being biased towards tabular structure. Sur-
prisingly, BILSTM-CRF does not suffer from the
linearized global table context as much as BERT
does and still shows competitive performance. One
reason might be that the sequential attention in the

Figure 4: Convergence of the training loss.

Model NoAug LWTR RDLTab
RULENER 0.08 - -
BILSTM-CRF 0.53 0.46 0.55
TABNER 0.54 0.52 0.58

Table 3: F1 scores with different DA techniques.

BILSTM is trained from scratch and can therefore
learn to only focus on very narrow context. While
BERT is already pre-trained to take long-range
context into account.

Data Augmentation The RDLTab DA boosts
performance for both TABNER and BILSTM-
CRF. This shows the added value of rich external
vocabulary for industrial low-resource problems.
Interestingly, LWTR harms performance in both
cases. We attribute this to the problem of produc-
ing phrases that are non-meaningful physically and
inconsistent in a tabular context.

7 Conclusion

In this paper, we demonstrate the applicability
of TaLMs to a novel NER problem in industrial
spreadsheets. Our experiments show that the tabu-
lar inductive bias of TaLMs is not only beneficial
for this problem, but may even a necessary condi-
tion when relying on pre-trained transformer-based
models. In addition to that we present a DA tech-
nique leveraging publicly-available industrial stan-
dard information models to produce augmented
tables with physically sound and consistent context.
Compared to an off-the-shelve DA, this technique
shows improved NER performance.

Future work includes understanding how much
tabular context is needed to make training large-
scale model more efficient. Another fruitful area is
active learning for tasks using TaLMs to reduce the
time for collecting expert labels.

363

References
Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-

Ruiz, and Matteo Palmonari. 2020. Tough Tables:
Carefully Evaluating Entity Linking for Tabular Data.

Xiang Dai and Heike Adel. 2020. An analysis of sim-
ple data augmentation for named entity recognition.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, COLING 2020,
Barcelona, Spain (Online), December 8-13, 2020,
pages 3861–3867. International Committee on Com-
putational Linguistics.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu,
and Cong Yu. 2020. Turl: Table understanding
through representation learning. Proc. VLDB En-
dow., 14(3):307–319.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table pre-training: A survey
on model architectures, pre-training objectives, and
downstream tasks. In IJCAI’2022 SURVEY TRACK.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard H. Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Associa-
tion for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 968–
988. Association for Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
4320–4333. Association for Computational Linguis-
tics.

Yusra Ibrahim, Mirek Riedewald, and Gerhard Weikum.
2016. Making sense of entities and quantities in web
tables. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Man-
agement, CIKM ’16, page 1703–1712.

Aneta Koleva, Martin Ringsquandl, Mitchell Joblin, and
Volker Tresp. 2021. Generating table vector repre-
sentations. In CEUR Workshop Proceedings - Deep
Learning for Knowledge Graphs (DL4KG).

Shayne Longpre, Yu Wang, and Chris DuBois. 2020.
How effective is task-agnostic data augmentation for
pretrained transformers? In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, volume
EMNLP 2020 of Findings of ACL, pages 4401–4411.
Association for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association
for Computer Linguistics.

Patrice Y. Simard, Yann LeCun, John S. Denker, and
Bernard Victorri. 1996. Transformation invariance
in pattern recognition-tangent distance and tangent
propagation. In Genevieve B. Orr and Klaus-Robert
Müller, editors, Neural Networks: Tricks of the Trade,
volume 1524 of Lecture Notes in Computer Science,
pages 239–27. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021. TUTA: tree-
based transformers for generally structured table pre-
training. In KDD ’21: The 27th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
Virtual Event, Singapore, August 14-18, 2021, pages
1780–1790. ACM.

Jason W. Wei and Kai Zou. 2019. EDA: easy data
augmentation techniques for boosting performance
on text classification tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 6381–6387. Association for
Computational Linguistics.

Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock,
Theodoros Rekatsinas, Philip Levis, and Christopher
Ré. 2018. Fonduer: Knowledge base construction
from richly formatted data. In Proceedings of the
2018 International Conference on Management of
Data, SIGMOD ’18, page 1301–1316, New York,
NY, USA. Association for Computing Machinery.

Usama Yaseen and Stefan Langer. 2021. Data aug-
mentation for low-resource named entity recognition
using backtranslation. CoRR, abs/2108.11703.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 8413–8426. Association for
Computational Linguistics.

364

Sangdoo Yun, Dongyoon Han, Sanghyuk Chun,
Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.
2019. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In 2019
IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27
- November 2, 2019, pages 6022–6031. IEEE.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649–657.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6869–6882. Associa-
tion for Computational Linguistics.

A Appendix

DA example Figure 5 shows how tabular con-
text becomes inconsistent when applying LWTR to
the table in Figure 1. The red tokens have been re-
placed with sampled tokens from the training set. It
can be seen that the QUANT entity height pressure
is now physically meaningless and neither height
nor pressure are measured in Celsius.

Probing table context To demonstrate the sensi-
tivity of TABNER towards table context, we con-
struct two synthetic tables with slightly modified
cell content. The table at the top in Figure 6a has
a column with header power (QUANT) with body
cells having random (inconsistent) UoM entities
8 celsius and 90 l. The bottom table’s column
with header capacity has consistent UoM context.
We are interested in how these two different con-
texts affect the classification of token ’l’, which is
hard to classify without context. In a column like
capacity it likely refers to the UoM entity ’liter’.
However, in most other contexts ’l’ is not part of
any entity. Looking at the respective logits in Fig-
ure 6b, we can see that TABNER is sensitive to
these context changes. The highest scoring class
for the random context is O, while in the consis-
tent case it is the class UoM. This is a beneficial
property, since it prevents false positives for highly
ambiguous tokens such as ’l’, which only in very
specific contexts are likely to be entities.

Experiment Details For fair comparison, both
TABNER and BERT are based on the pre-trained

Model TAG EQ QUANT UoM
RULENER 0.1 0.09 0.04 0.1
BILSTM-CRF 0.55 0.39 0.54 0.67
TABNER 0.60 0.43 0.47 0.77

Table 4: Class-wise F1 scores.

’bert-base-uncased’ and we select the best hy-
perparameters from these ranges: learning rate
{5e−5, 1e−5, 5e−4}, batch size {2, 4, 8}. The
learning follows a linearly decreasing schedule
with a maximum of 20 epochs. For the BILSTM-
CRF we use the NER hyperparmeters from (Ma
and Hovy, 2016).

BERT Analysis In our experiments, we observe
that BERT almost exclusively fits to the O token
labels in the training set and does not pick up on the
other NER signals. Since it is an imbalanced prob-
lem, our hypothesis is that the global attention and
position encoding across the full table blurs tokens
with less frequent NER signals and BERT cannot
properly fit them. More sophisticated weighted
loss functions could be tried to remedy this prob-
lem. In Figure 7 the progress of the validation
set F1 score is shown. Even though the training
loss is still slightly decreasing, the validation NER
performance seems to have already peaked. In all
hyperparameter settings (even with much lower
learning rate 1e−7) we could not achieve a test F1
score higher than 0.03.

Class-wise F1 scores As more fine-grained anal-
ysis, we present the class-wise F1 scores for each
model in Table 4. We can see that the TABNER
is better in extracting entities of types TAG, EQ
and UoM, while the BILSTM model is better at
classifying entities of type QUANT.

Data Augmentation Samples We experiment
with n = 1, 2 samples to evaluate if increasing the
training set by more then 100% will bring benefit
to the TabNER model. Figure 7 shows the vali-
dation set F1 score for the TabNER model with
the two DA techniques, LWTR and RDLTab, and
the different n = 1, 2 samples. Consistently, for
both techniques, when n = 2 the model converges
much faster, after only 5 epochs, however the per-
formance of the model is worse compared to when
we use n = 1.

365

Figure 5: LWTR introduces inconsistent tabular context. Red tokens have been replaced in the original in Figure 1.

(a) Two synthetic tables with small modifications. Top has
random context, bottom has consistent context.

(b) Unnormalized logits for token ’l’ in top and bottom table
in 6a.

Figure 6: TABNER token logits with synthetic consistent and randomized table context.

Figure 7: F1 score on validation set during training.

366

Proceedings of EMNLP 2022 Industry Track, pages 367–380
December 9–11, 2020. ©2022 Association for Computational Linguistics

Reinforced Question Rewriting for Conversational Question Answering

Zhiyu Chen, Jie Zhao, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko, Shervin Malmasi
Amazon.com, Inc., Seattle, WA, USA

{zhiyuche,zhaozjie,njfn,besnikf,olegro,malmasi}@amazon.com

Abstract

Conversational Question Answering (CQA)
aims to answer questions contained within dia-
logues, which are not easily interpretable with-
out context. Developing a model to rewrite con-
versational questions into self-contained ones
is an emerging solution in industry settings as
it allows using existing single-turn QA systems
to avoid training a CQA model from scratch.
Previous work trains rewriting models using
human rewrites as supervision. However, such
objectives are disconnected with QA models
and therefore more human-like rewrites do not
guarantee better QA performance.

In this paper we propose using QA feedback to
supervise the rewriting model with reinforce-
ment learning. Experiments show that our
approach can effectively improve QA perfor-
mance over baselines for both extractive and
retrieval QA. Furthermore, human evaluation
shows that our method can generate more ac-
curate and detailed rewrites when compared to
human annotations.

1 Introduction

Interacting through conversations is a natural
information-seeking procedure for humans, there-
fore it is important for AI assistants like Apple
Siri and Amazon Alexa to enable and improve
such experiences. In recent years Conversational
Question Answering (CQA) has gained more at-
tention, where a user can ask a series of related
questions and ideally obtain answers that leverage
the conversational context. Different from widely-
studied question answering (QA) tasks that happen
in single-turn (Rajpurkar et al., 2016, 2018; Tay
et al., 2018; Tang et al., 2019), the interpretation
of conversational questions in CQA depends on
questions and answers from previous turns.

Previous approaches to CQA usually train new
models from scratch, which can achieve promising
results but also are expensive in terms of obtaining
domain-specific training data. In industry settings,

q1: When was Joe Walsh born?

a1: November 20, 1947

q2: How did he get involved
 in music in his early life? a2: He was inspired by the

 success of the Beatles

q3: Did he perform in NYC ?

Conversation History

q3’: Did Joe Walsh perform
music in NYC ?

rewrite
Current Conversational Question

Figure 1: A conversational question rewriting example.

there are many single-turn QA models deployed.
Training new CQA models with additional annota-
tions to replace each existing single-turn QA model
is expensive, and generally not feasible. Moreover,
discarding existing single-turn models and datasets
is impractical, and studying how to reuse these
existing resources to tackle CQA merits attention.

Existing approaches to this task, called Conver-
sational Question Rewriting (CQR), often train
sequence-to-sequence models supervised by hu-
man rewrites to generate self-contained ques-
tions (Ren et al., 2018; Vakulenko et al., 2021).
Such methods have several limitations. First, the
CQR training objective is disconnected from CQA
performance. The annotation process of existing
rewriting datasets has no knowledge of the QA sys-
tems, and more human-like rewrites do not guaran-
tee better CQA performance. Second, the rewriting
model does not take into account the feedback from
downstream QA systems. In industry settings, mul-
tiple single-turn QA systems trained with different
datasets serve in the backend. It is impractical to
replace them with new CQA models, and we argue
that their output can still be used as signals to help
train rewriting models.

To overcome these limitations, we propose an
effective CQR approach upon the recent success of
Reinforcement Learning (RL) techniques for text
generation (Rennie et al., 2017). RL enables flexi-
ble ways to incorporate training objectives in the

367

form of reward functions. We systematically an-
alyze different rewards and their effectiveness in
terms of final QA performance, as well as the qual-
ity of the question rewrites (i.e. the question still
has to be understandable and interpretable by hu-
mans). To optimize QA performance, we propose
various QA rewards to measure the likelihood of a
question yielding a better answer. In comparison
with the QA rewards, we also propose to use the
same RL approach with question rewriting (QR)
rewards reflecting the similarity between a model-
generated question and the human’s ground-truth.

We summarize our contributions as follows:

• To the best of our knowledge, we are the first
to study how to incorporate QA signals to
improve CQR using RL.

• We systematically propose and compare using
different training signals as rewards.

• We conduct experiments on two CQA tasks to
show our approach is effective.

• A user study shows that our method can gener-
ate more accurate and detailed rewrites when
compared to human annotations.

2 Related Work

Conversational Question Answering. Recently,
conversational QA has been studied which presents
new challenges for QA models such as being able
to resolve conversational dependencies so that a
conversational question can be interpreted by QA
models with conversational context. QuAC (Elgo-
hary et al., 2019) and CoQA (Reddy et al., 2019)
are two datasets for extractive CQA where answers
are extracted from passages. CAsT-19 (Dalton
et al., 2020) is a benchmark for retrieval CQA and
the target is to return relevant passages given a
question. QReCC (Anantha et al., 2021) combines
retrieval and extractive CQA where the answers
are extracted from passages returned by a retrieval
component. Kim et al. (2021) propose to train the
CQA model and rewriter simultaneously, which is
impractical for industry setting. A directly related
work to ours is Vakulenko et al. (2021) which pro-
poses to rewrite questions for CQA. However, they
do not consider taking the QA feedback into the
CQR training which is studied in our work.
RL for Nature Language Generation. Reinforce-
ment learning methods have been widely applied
for various language generation tasks. Li et al.
(2016) propose to apply deep reinforcement learn-
ing in dialogue generation to model future rewards

related to conversational properties, such as in-
formativeness, coherence and ease of answering.
Ranzato et al. (2016) propose Mixed Incremental
Cross-Entropy Reinforce (MIXER) for sequence
prediction to directly optimize the metrics used at
test time, such as BLEU or ROUGE. They show
MIXER outperforms several strong baselines for
greedy generation on text summarization, image
caption and machine translation. Nogueira and
Cho (2017) train a query rewriter based on the re-
wards relying on the ground-truth ranking list for
information retrieval. Buck et al. (2018) use RL
for single-turn question rewriting by maximizing
the answers’ quality which requires ground-truth.
Similar to our F1 reward, Wu et al. (2021) design
rewards from ground-truth answers to train a con-
versational query rewriter. Instead, we propose
alternative rewards indicating the confidence of an-
swers from a model itself which do not require
human annotations.

3 Problem Definition

In CQA, each conversation contains a sequence of
(question, answer) pairs D = {q1, a1, ..., qn, an},
where ai is the answer for question qi. A con-
versational question qi can be ambiguous and its
interpretation depends on the conversational con-
text ci = {q1, a1, ..., qi−1, ai−1}. The goal of CQR
for QA is to learn a model Rθ, parameterized by
θ, that can translate qi associated with ci into q′i, so
that the semantic meaning of q′i is equivalent to qi.

q′i = Rθ(qi, ci) (1)

A pretrained single-turn QA model is expected
to answer q′i better than qi. Note that the QA model
can be trained from a single-turn dataset different
fromD and is fixed when training the rewriter. The
motivation is to explore whether the already de-
ployed single-turn QA models can be exploited to
train a rewriter and reused without further training
by accepting the rewritten questions.

4 Approach

4.1 Model Overview
We show our CQR approach with a modularized
design in Figure 2. There are two major compo-
nents: a CQR model Rθ as introduced in Section
3 and a reward function F that evaluates rewrite
q′i generated by Rθ by producing a reward score.
Then the CQR training can be formulated as a re-
inforcement training problem, where the objective

368

Le
ar

ni
ng

Rewriterqi
ci q'i

Feedback

QA

F F F

hi ai

QR Reward QA Reward

Conversation

context and question

Rewritten question

Additional annotation
R

ei
nf

or
ce

m
en

t

Figure 2: Overview of our CQR approach. hi is human
rewriting of qi and ai is the ground-truth answer of qi.

is to maximize an expected reward or equivalently
minimize the following loss function:

Lrl(θ) = −Eq′i∼Rθ(qi,ci), qi∼T (F(q′i)) , (2)

where qi comes from data distribution T . During
training, we push Rθ to generate q′i that achieves
a higher reward by minimizing Equation 2. Here-
inafter, we omit θ fromRθ for simplicity.

We define two types of rewards: QR rewards
evaluate how similar a question rewrite is to the
ground truth one produced by human annotators;
QA rewards evaluate how well a QA model can
answer a question rewrite. We summarize the char-
acteristics of different rewards in Table 1. By max-
imizing one of the QR or QA rewards, we can
explicitly optimize the model to achieve the QR
or QA target. Next, we describe the two types of
rewards.

Reward ROUGE F1 Confidence BM25

Reward Type QR QA QA QA
CQA Type - Extractive Extractive Retrieval

Need Annotated Rewrites Y N N N
Need Annotated Answers N Y N N

Table 1: Characteristics of different rewards.

4.2 QR Rewards

The rationale of maximizing QR rewards is similar
to the aims of prior work: a good question rewrite
should be similar to a human rewrite. We use the
ROUGE-L score (Lin, 2004) between the question
rewrite q′i and the ground-truth hi as the QR reward:

F(q′i, hi) = ROUGEL(q
′
i, hi) (3)

This reward has been widely used by RL methods
for language generation tasks. Note that Eq. 3 does
not depend on the QA model and prior work can
be considered as maximizing QR rewards.

4.3 QA Rewards

We define QA rewards that reflect how well the
question rewrites can help a QA model obtain bet-
ter answers. Since QA rewards are task/model-
dependent, we introduce QA rewards for the fol-
lowing two sub-types.

4.3.1 Extractive CQA
Extractive CQA is a machine reading comprehen-
sion (MRC) task and an extractive QA modelM
extracts the most likely span answer given a ques-
tion q and an evidence document p:

as = argmax
as

PM(as|q, p) (4)

We assume thatM is trained on regular single-
turn QA data, and expects the input question q
to be self-contained. Therefore, CQA questions
should be rewritten byR before being sent toM.
Next, we introduce supervised and unsupervised
QA rewards.
Supervised QA rewards. A straightforward way
to measure the quality of a question rewrite q′i in
terms of QA is to calculate the similarity between
the predicted answer by M with q′i as input and
the ground-truth answer ai. We denote a′s as the
extracted answer span byM using the rewritten
question q′i as input. We measure the overlap be-
tween a′s and ai by F1 score:

F(q′i, ai) = F1(argmax
a′s

PM(a′s|q′i, p), ai) (5)

Intuitively, the rewrite q′i is better if a′s is closer
to the ground-truth answer. Compared with Equa-
tion 3, Equation 5 depends on the ground-truth
answers instead of human rewrites.
Unsupervised QA rewards. For a predicted span
a′s, M assigns a probability rc = PM(a′s|q′i, p)
that reflects the model’s confidence about the an-
swer. We assume that a higher confidence score of
an answer indicates that the QA model has a bet-
ter question understanding. Therefore, we directly
use the probability of the most likely answer as the
confidence reward for a question rewrite:

F(q′i) = maxPM(a′s|q′i, p) (6)

F1 rewards can be considered as judgment scores
on predicted answers by humans since the ground-
truth answers are used, while confidence rewards
represent the model’s self-judgments.

369

4.3.2 Retrieval CQA
We also evaluate our method’s generalization on
a different retrieval CQA task, where the goal is
to return a list of documents in descending order
of relevance scores produced by a retrieval CQA
model:

rel =M(q, p) (7)

where p is a document. A retrieval CQA model
usually consists of two stages. In the first stage,
a lightweight ranking algorithm such as BM25 is
used to retrieve top-k candidate documents. In the
second stage, a more complex model such as BERT
(Devlin et al., 2019) is used to rerank candidate
documents. Here, we use the BM25 score between
a question and a document, which is a type of QA
reward that does not use annotated answers:

F(q′i) = BM25(q′i, p) (8)

We expect the rewrite q′i can retrieve documents
with higher BM25 scores in the first stage than qi
so that the performance in the re-ranking stage can
also be improved.

4.4 Training

There are two steps in our training framework.
The first step, the pre-training step, which has the
same supervised target as prior work. The objec-
tive is to minimize the cross-entropy loss between
the model’s prediction q′ and human ground-truth
rewrites h:

Lsup = −yh log yq′ , (9)

where yh is the one-hot vector of h and yq′ is
the distribution over tokens in q′ predicted by the
model. Supervised pre-training ensures the model
has the basic ability to rewrite the original question
given the conversational context.

The second step continues trainingR with RL to
maximize different rewards. In this work, we use
Self-Critical Sequence Training (SCST) (Rennie
et al., 2017). Given a question q, we generate two
question rewrites qs and q′. qs is generated by
sampling the word distribution fromR at each step,
and q′ is generated by R using greedy decoding.
Then we minimize the following loss function:

Lrl = (r′− rs)
N∑

t=1

logPR(ws
t |ws

1:t−1, q, c) (10)

Here, PR(·), which is defined by R, is the prob-
ability of generating the t-th word conditioning
on previously generated tokens of qs, the original
question q and conversational history c. Intuitively,
minimizing Lrl increases the likelihood of qs if it
obtains a higher reward than q′ (i.e. rs > r′), and
thus maximizes the expected total reward. Given a
reward function, we can obtain r′ = F(q′) (F can
be one of Equation 3,5,6,8) and rs = F(qs).

We only choose one of the reward functions to
obtain the reward for a question. We leave the
combination of different rewards as future work.
Additional training procedure details are described
in Appendix A.

5 Data and Experimental Setup

5.1 Datasets

Similar to Vakulenko et al. (2021), we experiment
with CANARD (Elgohary et al., 2019) for extrac-
tive CQA and CAsT-19 (Dalton et al., 2020) for
retrieval CQA. As CAsT-19 is small compared to
CANARD, prior work (Vakulenko et al., 2021) uses
the same model trained on CANARD to evaluate
the rewriting performance on the test set of CAsT-
19. Similarly, we start with the modelnon CA-
NARD, and continue RL training with the BM25
reward on the training set without using any human
annotations provided by CAsT-19.

5.2 Evaluation Metrics

We use BLEU-1, BLEU-4, ROUGE-1 and
ROUGE-L for automatic evaluation. We also eval-
uate the performance of rewrites on downstream
QA tasks. For CANARD, we use F1 and Exact
Match (EM). For CAsT-19, we report MAP, MRR
and NDCG@3 as in Vakulenko et al. (2021).

5.3 Baselines

We consider the following baselines:
Origin uses the original conversational question as
input of QA.
BARTCQR We fine-tune BART (Lewis et al.,
2020) as a supervised baseline which has the same
training procedure as the pre-training step of our
method.
Co-reference (Vakulenko et al., 2021) is a rule-
based method. We replace anaphoric expressions
in original questions with their antecedents from
the previous conversation turns. A public neural
co-reference model (Lee et al., 2018) is used.

370

QR Method QA Metrics QR Metrics

EM F1 B-1 B-4 R-1 R-L

Human 42.41 54.53 - - - -
Original 38.41 48.95 61.06 30.98 69.91 69.71
Co-reference 38.17 48.99 54.95 30.84 74.11 73.40
BARTCQR 41.26 53.60 64.20 39.33 76.70 74.00

RL-QR 41.33 53.74 64.25 39.52 76.70 74.01
RL-F1 41.91 54.27† 62.32† 37.79† 74.93† 72.09†

RL-C 41.91 54.61† 57.47† 34.18† 71.12† 68.21†

Table 2: Overall QR and QA performance (%) on CANARD. Bold indicates the best results except “Human”.
We denote BLEU-n as B-n and ROUGE-n as R-n. † denotes statistically significant difference from BARTCQR

(p < 0.05 with t-test).

QR Method QA Metrics QR Metrics
EM F1 B-1 B-4 R-1 R-L

BARTCQR (50%) 41.37 53.52 63.83 38.88 76.57 73.79
RL-C (50%) 42.09 54.76† 62.13 37.52 75.03 72.10
RL-C (50%+100%) 42.05 54.84† 57.86† 34.44† 71.67† 68.54†

Table 3: QR and QA performance (%) of BARTCQR and RL-C when using 50% of ground-truth rewriting. †
denotes statistically significant difference from BARTCQR (50%) (p < 0.05 with t-test).

Human uses the human rewrites and can be con-
sidered as an upper bound. However, we later show
that the human baseline is the upper bound for QR
target but not QA target.

5.4 Implementation Details

For all the QA models, we simulate the scenario
where they are trained on single-turn QA data and
cannot be updated when interacting with the rewrit-
ing component. The goal is to improve single-turn
QA models for CQA, which means the input for
QA models does not include any previous context.

Single-turn Extractive QA Model. To simulate
a single-turn extractive QA model, we fine-tune
ALBERT-XXLarge-v2 (Lan et al., 2020) on the
CANARD training set.

Single-turn Retrieval QA Model. Same as in
Vakulenko et al. (2021), we use Anserini’s imple-
mentation of BM25 (Robertson et al., 2009) for the
first-stage retrieval to obtain the top 1000 passages.
In the second stage, we use BERT-large for passage
re-ranking. Both components are fine-tuned on the
MS MARCO dataset so that the two-stage pipeline
resembles a single-turn retrieval QA model.

Rewriting Models. Our RL-based methods and
the supervised BART baseline (BARTCQR) use

BART-base model (Lewis et al., 2020).1 We use the
official CANARD validation set for early stopping.
RL-QR denotes the model when QR rewards are
used. RL-F1, RL-C and RL-BM25 denote models
where the F1, confidence and BM25 rewards are
used, respectively.

6 Results

Here, we study the following research questions:
RQ1: Can our proposed QR and QA rewards im-
prove the overall CQA performance? In particular,
how effective are unsupervised rewards?
RQ2: Does achieving the best QR target mean
achieving the best QA target?
RQ3: What is the quality, as judged by humans, of
the reward-guided question rewrites?

6.1 Evaluation on Extractive CQA
We list the results on CANARD in Table 2. EM
and F1 are QA metrics while others are QR metrics.
We observe several trends.

First, RL-based methods achieve the best results
on both QA or QR metrics over other non-human
baselines. Compared with BARTCQR, our pro-
posed RL methods can further improve the per-

1The max sequence length is set to 284, with batch size 24.
An Adam weight decay optimizer with an initial learning rate
of 1e-5 is used to train those models for 10 epochs.

371

QR Method QA Metrics QR Metrics

MAP MRR NDCG@3 B-1 B-4 R-1 R-L

Origin 17.85 46.44 27.86 71.63 51.54 82.65 81.24
Human 39.23 87.06 58.19 - - - -

BARTCQR 28.02 61.49 44.04 75.12 55.54 84.82 83.84
Co-reference 26.82 59.74 43.05 71.19 51.79 88.06 87.69
RL-BM25 28.41 63.20 45.54 71.92 52.01 82.92 81.59

Table 4: QR and retrieval performance (%) on CAsT-19.

formance on QA target and QR target. Specifi-
cally, RL-C outperforms BARTCQR by 1.88% and
1.58% in terms of F1 and EM, respectively. RL-
QR achieves marginally better scores on BLEU-1,
BLEU-4 and ROUGE-L than BARTCQR. RL-F1
achieves better F1 and EM scores than RL-QR
and BARTCQR but does not outperform RL-C. We
notice that the F1 reward is less sensitive to ques-
tion rewrites than the confidence reward. A small
change in a question can lead to the same answer
and F1 score. However, the confidence score can
be different. In this aspect, RL-C seems to dif-
ferentiate the fluctuations on rewrites better than
RL-F1. In answer to RQ1, the confidence reward
is the most effective for CQA performance. As an
unsupervised reward which does not require either
human rewrites or gold answers to a question, the
confidence reward is even more effective than the
F1 reward. However, we do not claim or target
state-of-the-art performance in our work. The goal
is to verify whether our RL framework for CQR
with different rewards can further improve the per-
formance of a single-turn QA system for CQA.

Second, using QR rewards (RL-QR) leads to lim-
ited performance improvement under both QA and
QR metrics compared with BARTCQR. Maximiz-
ing the ROUGE rewards (Eq. 3) and minimizing
the cross-entropy loss (Eq. 9) share the similar in-
tuition that a good reformulation from the model
should be similar to human reformulated questions.
The two objectives are very close and therefore
lead to similar results. It is important to note that
the best scores of QR metrics and QA metrics are
not achieved by the same method. Moreover, using
QA rewards even lead to a large decrease in QR
metrics. Therefore, in response to RQ2, achieving
the best QR target does not mean achieving the best
QA target, and vice versa.

Third, RL-C achieves higher F1 scores than
the human baseline. Previous work (e.g. Vaku-

lenko et al., 2021) treats human annotations as an
upper bound. However, we argue that more human-
like rewrites do not guarantee better QA perfor-
mance. The results verify our hypothesis that QA
target does not necessarily align with QR target. In
§6.4, we qualitatively analyze if rewrites generated
by RL-C are better than the ground-truth.

6.2 Training with Fewer Samples
For a real-world CQA system, we can obtain a
large number of user questions with no correspond-
ing ground-truth rewrites or answers. Since the
confidence reward can be obtained easily from the
downstream QA models without requiring human
annotations, we can use RL-C to continue train-
ing the rewriting model. We first train a baseline
using 50% of training data from CANARD (de-
noted as BARTCQR (50%)). Then we continue RL
training with the confidence reward using either
the same 50% data used in pre-training (denoted as
RL-C (50%)) or all questions in CANARD training
set (denoted as RL-C (50%+100%)). The results
are summarized in Table 3. We can see that RL-
C (50%+100%) benefits from the large amount of
questions during RL training and achieves better F1
and EM scores than RL-C (50%). Interestingly, RL-
C (50%+100%) outperforms the human baseline
in Table 2 by 0.31% in terms of F1. We also ex-
perimented with other ratios of data for supervised
pre-training and continually RL training. In the ex-
periments, we had similar observations that contin-
ual RL training with confidence rewards can further
improve the downstream CQA performance.

6.3 Evaluation on Retrieval CQA
For RL-BM25, we use RL-C trained on CANARD
as the pretrained model, then train it to maximize
the BM25 reward, which can be readily obtained
from the retrieval model. Results on CAsT-19 are
shown in Table 4. As with extractive CQA, RL-
BM25 achieves lower scores on QR metrics than

372

RL-C vs. BARTCQR (%) RL-C vs. Human (%)

(1) RL is better 121 (60.5%) 105 (52.5%)
(2) RL is worse 39 (19.5%) 58 (29.0%)
(3) Both are good 28 (14.0%) 33 (18.5%)
(4) Both are bad 12 (6.0%) 4 (2.0%)
Total 200 200

Table 5: Results of user study comparing two groups of rewrites using four preference options.

Example 1

Original What happened after he was fired?
Human What happened after Aynsley Dunbar was fired?

BARTCQR What happened after Aynsley Dunbar was fired?
RL-C What happened after Aynsley Dunbar was fired by Herbie

Herbert in late 1978?

Example 2

Original What position did he play?
Human What position did Red Schoendienst play?

BARTCQR What position did
:::::
Ernie Schoendienst play?

RL-C What position did
::::
Don Schoendienst play in the Majors?

Table 6: Qualitative comparison of question rewrites. More examples are shown in Appendix C.

baselines. However, it improves the NDCG@3 of
BARTCQR by relatively 3.4%, which shows our
framework also generalizes to retrieval CQA. Note
that we do not use any supervised signals in CAsT-
19 training set for RL training.

6.4 Human Evaluation
In addition to CQA performance, generating user-
friendly rewrites is also important for real-world
applications, since the rewrites sometimes will be
displayed to users. To answer RQ3, we perform
a user study to evaluate the quality of model gen-
erated rewrites. Specifically, two groups are com-
pared: (1) The first group contains the rewrites
generated by RL-C and human rewrites; (2) The
second group contains rewrites from RL-C and
BARTCQR, respectively. For each group, we ran-
domly choose 200 questions from CANARD test-
ing set. For each pair, we collect human’s judg-
ments on which rewrite contains more accurate
context and details from conversation history.

The results are shown in Table 5. The study
suggests that RL-C significantly performs better
than Human and BARTCQR (p-value < 0.001, see
details in Appendix B.2). Remarkably, annotators
prefer the rewrites from RL-C than humans in
more than 50% cases. We show two examples
in Table 6. In the first example, both RL-C and
BARTCQR correctly replace the pronoun with
the referred person name. However, the rewrite
generated by RL-C includes more accurate details
which appear in conversation history. In the

second example, both RL-C (same as RL-F1 and
RL-QR) and BARTCQR fail to generate the correct
person’s name. This error might be due to the prior
knowledge of BART. To answer RQ3, we find that
our reward-guided model can generate rewrites pre-
ferred by humans. However, all rewriting models
can suffer from the coreference resolution problem.

7 Conclusion

We proposed a conversational question rewrit-
ing (CQR) approach using reinforcement learning.
Such rewriting approaches are an emerging solu-
tion in real-world settings where QA systems with
many existing answering backends trained on stan-
dalone questions must be adapted to work in con-
versational settings.

After assessing various QA and QR rewards,
we showed that optimizing QR rewards is limited
in improving CQA performance. In contrast, QA
rewards that do not require ground-truth annota-
tions consistently achieve the best CQA perfor-
mance over baselines. For extractive CQA, us-
ing confidence rewards improved F1 by 2% over
BART-based baseline on CANARD; and for re-
trieval CQA, using BM25 rewards improved the
NDCG@3 of the baseline by 3.4% on CAsT-19. A
human evaluation also demonstrated that our ap-
proach can generate higher-quality rewrites with
more accurate and detailed context information.

373

References
Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu,

Shayne Longpre, Stephen Pulman, and Srinivas
Chappidi. 2021. Open-domain question answering
goes conversational via question rewriting. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
520–534, Online. Association for Computational Lin-
guistics.

Christian Buck, Jannis Bulian, Massimiliano Cia-
ramita, Wojciech Gajewski, Andrea Gesmundo, Neil
Houlsby, and Wei Wang. 2018. Ask the right ques-
tions: Active question reformulation with reinforce-
ment learning. In International Conference on Learn-
ing Representations.

Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. 2020.
Trec cast 2019: The conversational assistance track
overview. ArXiv, abs/2003.13624.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ahmed Elgohary, Denis Peskov, and Jordan Boyd-
Graber. 2019. Can you unpack that? learning to
rewrite questions-in-context. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5918–5924, Hong Kong,
China. Association for Computational Linguistics.

Gangwoo Kim, Hyunjae Kim, Jungsoo Park, and Jae-
woo Kang. 2021. Learn to resolve conversational
dependency: A consistency training framework for
conversational question answering. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6130–6141, Online.
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep re-
inforcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1192–
1202, Austin, Texas. Association for Computational
Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-
oriented query reformulation with reinforcement
learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 574–583.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Gary Ren, Xiaochuan Ni, Manish Malik, and Qifa Ke.
2018. Conversational query understanding using se-
quence to sequence modeling. In Proceedings of the
2018 World Wide Web Conference, pages 1715–1724.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 7008–7024.

374

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Min Tang, Jiaran Cai, and Hankz Hankui Zhuo. 2019.
Multi-matching network for multiple choice reading
comprehension. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
7088–7095.

Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018.
Hyperbolic representation learning for fast and effi-
cient neural question answering. In Proceedings of
the Eleventh ACM International Conference on Web
Search and Data Mining, pages 583–591.

Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu,
and Raviteja Anantha. 2021. Question rewriting for
conversational question answering. In Proceedings
of the 14th ACM International Conference on Web
Search and Data Mining, pages 355–363.

Zeqiu Wu, Yi Luan, Hannah Rashkin, David Reitter,
and Gaurav Singh Tomar. 2021. Conqrr: Conversa-
tional query rewriting for retrieval with reinforcement
learning. arXiv preprint arXiv:2112.08558.

375

Appendix

A Algorithm

There are two steps for training the rewriting
model.

1. The 1st step pre-training (line 1-6) is to
minimize the cross-entropy loss between the
model’s prediction q′ and human ground-truth
rewrite h. This objective is used in most of
prior work (e.g., Vakulenko et al. (2021)).

2. The 2nd step (line 8-16) continues training the
model with a reinforcement learning method
(Self-Critical Sequence Training). In line 10
and 11, we only chose one of the reward func-
tions to obtain the reward for a question. We
leave the combination of different rewards as
future work.

Algorithm 1: CQR training
Input :Initialized rewriterR, human question

rewrites H , conversations Tpre for
pre-training, conversations Trl for RL
training, selected reward function F

Output :Trained rewriterR
/* Step 1: pre-training R */

1 for D ∈ Tpre do
2 for question q, context c ∈ D and h ∈ H do
3 generate q′ = R(q, c) (greedy decoding);
4 minimize loss in Equation 9;
5 end
6 end
7 /* Step 2: self-critical training

*/
8 for D ∈ Trl do
9 for question q, context c ∈ D and h ∈ H do

10 generate qs fromR(q, c) by sampling;
11 generate q′ fromR(q, c) by greedy

decoding;
12 obtain rs = F(qs);
13 obtain r′ = F(q′);
14 minimize loss in Equation 10;
15 end
16 end

B Human Study Design

For each annotation, an annotator is presented with
the evidence document, conversation history, the
original question and two rewrites. The annotator is
required to select one from four options as listed in
Table 5. The source of rewrite is anonymized. For
each pair of rewrite, we randomly assign them to
two options so that the judgments are not biased by
the position of choices. We collect two judgments

per rewrite pair. If there is a tie, we collect addi-
tional judgments. The final judgments are based on
majority vote.

B.1 Appen Interface
Figure 3 shows the interface for annotators. Fig-
ure 4 contains the instruction which is visible for
each annotator. In the instruction, we show several
annotation examples in Figure 5.

B.2 Significance Tests
Here we describe how we conduct the Wilcoxon
signed-rank test on the annotation results. When
comparing RL-C with Human, for each sample,
if annotators think RL-C is better, RL-C obtains
score 1 and Human obtains score -1. Similarly,
if annotators think Human is better, then Human
obtains score 1 and RL-C obtains score -1. For
other cases (i.e. both are good or both are bad),
each of them obtains score 0. Then we use the
method “scipy.stats.wilcoxon” in scipy library2 to
do the test. About the study annotator agreement
rates, 48% samples have 100% agreement and the
overall agreement rate is around 80%.

C Rewriting Examples

In Table 7, we show examples where the rewrites
generated by RL-C are preferred by human an-
notators over the baseline method and ground
truth. Compared with ground-truth rewrites, RL-C
tends to generate rewrites with more factual de-
tails, which can help the user and also downstream
QA systems to understand the question without
conversation history. To some degree, it explains
why the CQA performance is improved with RL-C,
while the corresponding scores of QR metrics (i.e.,
BLEU-1, BLEU-4, ROUGE-1 and ROUGE-L) are
very low. It also indicates that the human ground-
truth in existing CQR datasets is not perfect and
only evaluating CQR model with QR metrics can
be biased.

The cases where both RL-C and the baseline
generate incorrect rewrites are shown in Table 8.
We can see that both methods make mistakes in
coreference resolution. However, RL-C still has the
tendency to include more conversational context in
the rewrites.

2https://docs.scipy.org

376

Original What kind of things did she write about?
Human What kind of things did Le Guin write about?
BARTCQR What kind of things did Le Guin write about?
RL-C What kind of things did Le Guin write about in Sociology?
Original What did he study at the university?
Human What did Chinua Achebe study at the university?
BARTCQR What did Chinua Achebe study at the university?
RL-C What did Chinua Achebe study at the University of Ibadan?
Original What did he do after leaving Arrowverse?
Human What did John Barrowman do after leaving Arrowverse?
BARTCQR What did John Barrowman do after leaving Arrowverse?
RL-C What did John Barrowman do after leaving the Arrowverse television franchise?
Original What kind of topics did the show cover?
Human What kind of topics did the Rush Limbaugh Show cover?
BARTCQR What kind of topics did Rush Limbaugh’s show cover?
RL-C What kind of topics did Rush Limbaugh’s radio show cover in the 1970s?
Original What did he do after he landed?
Human What did Lindbergh do after he landed?
BARTCQR What did Charles Lindbergh do after he landed at Le Bourget Aerodrome?

RL-C
What did Charles Lindbergh do after he landed at Le Bourget Aerodrome
at 10:22 p.m. on Saturday, May 21, 1927?

Table 7: Examples of rewrites where the reformulated questions from RL-C are the best judged by human annotators.

Original Did others agree with him?

Human
Did others agree with Gottfried Wilhelm on the idea that the truth of religion and philosophy
cannot contradict with each other?

BARTCQR Did others agree with
::::::::
Leibniz’s

::::::::::
Theodicy?

RL-C
Did others agree with

:::::::
Leibniz’s ideas that the truths of theology (religion) and philosophy

cannot contradict each other, since reason and faith are both "gifts of God" in the Theodicy?
Original What did he rejoin as?
Human What did Eddie Collins rejoin as?
BARTCQR What did

:::::
Chris

:::::::
Hedges rejoin as?

RL-C What did
:::::
Chris

:::::::
Hedges rejoin as in August?

Original What year did his first film debut?
Human What year did was Paul Verhoeven’s first film debut?
BARTCQR What year did

::::::
Steven

::::::
Seagal’s first film debut?

RL-C What year did
::::::
James

::::::::
Cameron’s first film debut? Flesh and Blood (1985)?

Original Did he go into acting then?
Human Did Coogan go into acting after college?
BARTCQR Did

::::::
Charlie

::::::::
Chaplin go into acting after

:
A

::::::
Day’s

::::::::
Pleasure?

RL-C Did
::::::
Charlie

::::::::
Chaplin go into acting after college?

Original Did they do a second album?
Human Did Gerry Mulligan and Chet Baker’s quartet do a second album?
BARTCQR Did

::::::
Pacific

::::
Jazz do a second album?

RL-C Did
::::::
Pacific

::::
Jazz do a second album after PJ-8?

Table 8: Examples question rewrites where both RL-C and BARTCQR make mistakes.

377

Figure 3: Interface on Appen.

378

Figure 4: Instruction for annotators.

379

Figure 5: An annotation example in the instruction.

380

Proceedings of EMNLP 2022 Industry Track, pages 381–388
December 9–11, 2020. ©2022 Association for Computational Linguistics

Improving Large-Scale Conversational Assistants using Model
Interpretation based Training Sample Selection

Stefan Schroedl Manoj Kumar Kiana Hajebi Morteza Ziyadi
Sriram Venkathapaty Anil Ramakrishna Rahul Gupta Pradeep Natarajan

Amazon Alexa AI, USA
{schroedl, abithm, hajkiana, mziyadi, vesriram, aniramak, gupra, natarap}@amazon.com

Abstract

Natural language understanding (NLU) mod-
els are a core component of large-scale con-
versational assistants. Collecting training data
for these models through manual annotations
is slow and expensive that impedes the pace of
model improvement. We present a three stage
approach to address this challenge: First, we
identify a large set of relatively infrequent ut-
terances from live traffic where the users im-
plicitly communicated satisfaction with a re-
sponse (such as by not interrupting), along
with the existing model outputs as candidate
annotations. Second, we identify a small sub-
set of these utterances usings Integrated Gra-
dients based importance scores computed with
the current models. Finally, we augment our
training sets with these utterances and retrain
our models. We demonstrate the effectiveness
of our approach in a large-scale conversational
assistant, processing billions of utterances ev-
ery week. By augmenting our training set
with just 0.05% more utterances through our
approach, we observe statistically significant
improvements for infrequent tail utterances: a
0.45% reduction in semantic error rate (Se-
mER) in offline experiments, and a 1.23% re-
duction in defect rates in online A/B tests.

1 Introduction

Large-scale, voice-based conversational assistants
such as Alexa, Siri, Google Assistant and Cor-
tana process each utterance through a multi-stage
pipeline that includes wakeword detection, auto-
matic speech recognition (ASR), natural language
understanding (NLU), entity resolution, and text-
to-speech. This is a well-understood sequence
(Sarikaya, 2017) and each of these steps leverage
multiple machine learning models. The NLU sys-
tem is often modularized into a number of domains
that handle distinct classes of utterances such as
Music, Weather, etc. (Su et al., 2018). The assistant
system comprises models for domain classification

(DC), intent classification (IC), and named entity
recognition (NER).

A key challenge in building, extending and main-
taining such a system is that the underlying mod-
els need annotated training data. Collecting large
volumes of such data through manual labeling is
expensive and does not scale. Our work aims at im-
proving the efficiency of this process. In contrast to
previous approaches which identify utterances with
defective responses, we instead focus on identify-
ing cases that were processed successfully by the
conversational assistant, and automatically retrain-
ing models with the additional data. However, this
introduces two challenges. First, the vast majority
of utterances are already processed correctly by the
deployed system, resulting in an overwhelmingly
large set of augmentation candidates. Secondly,
implicit signals for satisfaction are noisy, as users
might frequently ignore incorrect responses with-
out making the effort to reformulate their query
or provide a response that reflects dissatisfaction
with the experience. Thus, simply adding all ut-
terances from the full candidate pool (potentially
billions/week) is infeasible and might actually de-
grade performance due to noise. We present a novel
approach to address this based on Integrated Gra-
dients (IG) (Sundararajan et al., 2017), a technique
for understanding model behavior through feature
importance scores. We propose a sample impor-
tance score that aggregates word scores and ranks
the utterances in our initial candidate set, followed
by training set augmentation with a small fraction
of the top utterances.

Our experiments on live traffic data from a large
scale conversational assistant indicate that retrain-
ing models with training sets, augmented by as
little as 0.05% in size, produces a statistically sig-
nificant (p−value < 0.05) improvement in seman-
tic error rate (SemER) in offline test sets – 0.27%
overall and 0.45% on a more challenging set of less
frequent "tail" utterances. In online A/B tests, we

381

observe a 1.23% and 0.96% improvement in defect
rates for all and tail utterances, respectively. In
contrast, simply adding all utterances from our ini-
tial candidate set degrades SemER by 1.74% and
3.13% on the full and tail data sets, respectively. Fi-
nally, we demonstrate the repeatability and general-
izability of our approach on public benchmark data
sets. Despite the lack of label noise, we see small
but consistent accuracy gains of 0.21% resp. 0.65%
on the Snips and AGNews data sets.

2 Related Work

Several approaches have been proposed recently
to use distant or weak supervision to address spar-
sity of labeled data (see e.g. the survey in (Hed-
derich et al., 2020)). A number of works iden-
tify utterances with processing errors through of-
fline analysis (Sethi et al., 2021; Gupta et al., 2021;
Chada et al., 2021; Khaziev et al., 2022). These
approaches however still need human annotation
in an active learning loop to improve production
models. Query rewriting based approaches (Pon-
nusamy et al., 2020; Sodhi et al., 2021; Su et al.,
2019; Hao et al., 2020) aim to address this limita-
tion and enable self-learning without the need for
human annotation. They detect instances where
a user reformulates a query due to an unsatisfac-
tory response and learn to map the failed utterance
to a subsequent successful one. However, such
approaches do not generalize to other utterance
shapes. Falke et al. (2020) leverage user paraphras-
ing behavior in dialog systems to automatically
collect annotations for long-tail utterances. Mo-
erchen et al. (2020) present an approach where
implicit negative feedback from the user is used to
train a re-ranker that is then applied to pick correct
annotations for under-performing utterances.

A range of post-hoc model interpretability meth-
ods for machine learned models has been devel-
oped in recent years (see e.g., (Madsen et al., 2021;
Sundararajan et al., 2017; Ribeiro et al., 2016;
Lundberg and Lee, 2017). Local black-box meth-
ods typically measure the influence of individual
features of an input example (e.g., individual words
in a sentence) on the output prediction. Other tech-
niques aim to score complete examples with respect
to prototypicality (Carlini et al., 2019), influence
on test predictions (Garima et al., 2020), and diffi-
culty (Agarwal et al., 2022). Our word-occurrence
based approach can be seen as a computationally
scalable linear approximation to such measures.

Bhatt et al. (2019) conducted a survey on how
organizations use model interpretability in prac-
tice. They identified model debugging as one of
the primary uses of model explainability, seeking
explicit human feedback on gathering more data
for improving model performance.

Our approach differs from previous work as fol-
lows:

• There has been no prior work on the use of
model interpretability in the context of data
augmentation (though inversely, Chen and
Ji (2019) proposed data augmentation to im-
prove model explainability).

• Instead of detecting failed user interactions,
we focus on utterances with implicit positive
feedback.

• We leverage interpretability techniques in an
automated way, without the need for human
inspection.

3 Implicit User Feedback based Data
Augmentation

NLU services which cater to a large number of
users such as voice controlled agents typically col-
lect implicit feedback metrics for each interaction.
As a simplistic example, the absence of any nega-
tive feedback from the user to the agent’s action (no
interruption, no repetition, etc.) can suggest that
the agent successfully served the user’s request. In
this paper, we propose a mechanism that relies on
successful user interactions to identify additional
data for building NLU models.

Oftentimes, an unsuccessful action from our vir-
tual agent is followed by the user rephrasing their
request. If the rephrase is successfully served by
the agent, then this indicates that the NLU hypoth-
esis for the rephrased request is likely correct. We
believe that a correctly served rephrased turn is
a stronger positive feedback when compared to
a single-turn interaction with an implicit positive
feedback (i.e no negative feedback from the user).
We create a new training sample using the ASR
transcript of the rephrased user request and the
NLU hypothesis. We call this data set weak signal
labeled (WSL) data since we rely on weak supervi-
sion from the user to obtain NLU labels. We score
these utterances using integrated gradient technique
as described in Section 4 before using them as ad-
ditional data source for building NLU models.

382

Figure 1: Model improvement based on feature attribu-
tion.

4 Importance Score Computation

We describe our approach for scoring utterances
according to their importance to the performance
of a classification model (e.g., a domain or intent
classifier). Let T be the original training data, A
be a pool of augmentation data, V be a validation
data set, and Y be the test set. The model trained
on T typically makes some mistakes on V . The
objective is to use word attribution scores computed
with a local black-box interpretability technique
(Sundararajan et al., 2017; Ribeiro et al., 2016) on
V to score utterances in A; then, by adding some
of them to T , we hope to train a model that is more
robust against failures on Y that are similar to those
observed on V . Thus, our approach can be roughly
subdivided into three steps:

1. Calculation of an attribution score for each
word in a misclassified utterance in V (with
respect to the target and/or predicted class).

2. Aggregation of word scores over all instances.
3. Scoring of utterances in A based on the occur-

rences of important words.
See Figure 1 for a high level flow chart of our

approach. We describe the details of each of these
steps in the following sections.

4.1 Model interpretability

In this paper, we conduct experiments using the
Integrated Gradients (Sundararajan et al., 2017)
method. It is a local interpretation technique that
addresses the problem of attributing a prediction of
a deep network to its input features. Our approach
is not restricted to it and it could be replaced with
other methods such as LIME (Ribeiro et al., 2016)
or SHAP (Lundberg and Lee, 2017). However,
integrated gradients has several advantages:

word True Pred T-Attr P-Attr
tell Books Information -0.61 +3.29
us Books Information -1.01 +0.64
a Books Information +0.37 +0.93

bedtime Books Information -2.85 +3.27
story Books Information +7.82 -3.80

Table 1: Feature attributions for true and predicted
classes.

• It is scalable to large volumes of data.
• Its computed attributions are deterministic.
• It satisfies the desirable axioms of linear-

ity, implementation invariance, and sensitivity
(Sundararajan et al., 2017), which facilitate
comparability of attributions across features
and instances.

Integrated gradients require a non-informative
baseline input. In the context of text processing,
a natural choice is a sequence formed of padding
tokens of the same length as the input. We inter-
pret the words of an utterance as the features to be
attributed, by averaging over token embedding vec-
tors. Our implementation makes use of the PyTorch
Captum package (Kokhlikyan et al., 2020).

Table 1 illustrates an example utterance in the
validation set of the domain classifier along with
the feature attributions of the words towards the
true class (Books) as well as the predicted class
(Information). We can see that the word story
has positively influenced the model towards the
true class but was not able to influence enough
to make a right prediction. The word tell has
positively influenced the utterance towards an in-
correct prediction, while the word bedtime has
negative influence towards the true class and high
positive influence towards the predicted class. The
objective, therefore, is to alter the training data so
that the words tell and bedtime become more
strongly associated with the class Books, especially
in the context of the anchor word story.

4.2 Aggregation of word scores

The interpretability method produces an attribution
mapping ρ: (u, w, c, M) → R, where u is an
utterance in the validation set, w is a word in u, c
is the class label, and M is the interpreted model.

383

Let the aggregated word scores be

g(w, c) =
∑

(u,c)∈V,c′∈C
max(0,−ρ(u,w, c′,M) · δ(c, c′,M))

(1)
The function δ indicates the direction of the in-

fluence gap based on the true label of the utterance
and the model prediction. Negative attributions
with respect to the true class (c = c′), and posi-
tive attribution towards wrongly predicted classes
(c 6= c′ = M(u)) are summed over the validation
set. Our objective is to enrich the training set with
examples for the true class containing these words.

δ(c, c′,M) =





1 c = c′

−1 c 6= c′ =M(u)

0 otherwise

(2)

4.3 Score an utterance using word
attributions

LetG = {(w, c)} be the set of all word attributions
computed according to Eqn. 1. The most straight-
forward way of computing the score of utterance u
of class c is the greedy method of summing up the
importance scores of all word occurrences:

h(u, c) =
∑
{g(w, c)‖w ∈ u, (w, c) ∈ G} (3)

Then, we select the top n utterances from A
according to this score.

The greedy method has the drawback that it can
become too narrowly focused on just a few high-
scoring words, thus leading to heavily imbalanced
augmentation data sets. We introduce a diversity
method as a remedy. The idea is to incrementally
discount a score pair after selecting an utterance
containing it. One simple way of doing so is by
dividing the word importance by the number of
such utterances, as outlined in Algorithm 1.

5 Experimental Setup

We first present initial results of our approach
on the open source intent classification (IC) data
sets (Snips (Coucke et al., 2018) and AGNews
(Del Corso et al., 2005)), and then demonstrate
the impact of our approach on a joint intent clas-
sification and named entity recognition (IC-NER)
task on live traffic of a commercial conversational
assistant.

Algorithm 1 Diversity method for utterance scor-
ing.

function SELECT_DIVERSITY(n,G,A)
for all (w, c) ∈ G do

n(w, c)← 1
end for
S ← {}
for i← 1, ..., naugment do

for all (u, c) ∈ A \ S do
h(u, c)←∑{g(w, c)/n(w, c)‖

w ∈ u, (w, c) ∈ G}
end for
(u′, c′)← argmaxu,c h(u, c)
A← A ∪ {(u′, c′)}
for all w′ ∈ u′, (w′, u′) ∈ G do

n(w′, c′)← n(w′, c′) + 1
end for

end for
return S

end function

5.1 Data sets

5.1.1 Open source data sets

Snips (Coucke et al., 2018) is a natural language
understanding benchmark data set of over 16 000
crowdsourced queries distributed among 7 NLU
intents. It is pre-split into a training set (13 084
utterances), validation set, and test set (700 utter-
ances each with 100 queries per intent).

With AGNews (Del Corso et al., 2005), we chose
a data set with a slightly different but related task
(news topic classification), due to its sufficient size.
It contains 4 classes each containing 30 000 train-
ing samples and 1 900 testing samples. The total
number of training and testing data is 120 000 and
7 600, respectively. We apply stratified random
sampling to subdivide the training further for a
validation set of 7 600 instances.

Apart from the usual partitions of data into train,
validation and test sets, our experiments consider
a further sub-partition of the train set into base set
and augmentation set. The base set is a randomly
down-sampled version of the full train set to a de-
sired target size (e.g., 50% of the data). The rest of
the training data is the augmentation set from which
additional samples are selected. The validation set
is used for computing the feature attributions.

384

5.1.2 Proprietary data from conversational
assistant

In these experiments, we work with logs of user
interactions with our conversational assistant. This
data is prepared in accordance with our general
strict privacy protection procedures. All produc-
tion data is de-identified so that it is not personally
identifiable.

We evaluate our approach on the utterances from
a random partition of live traffic as well as on a set
of low frequency tail utterances. Tail utterances
constitute a significant portion of the overall traf-
fic, and measure the statistical model’s ability to
generalize to a wide gamut of real-world utterances
of users. Improving a machine-learned model’s
performance on rare utterances is of increasing in-
terest among industrial and academic applications,
as defects in frequently recurring head utterances
can often readily be addressed using rule based
systems. We compare models in terms of offline
NLU performance, but also run live traffic A/B
experiments to directly measure the user impact.

Our weak signal labelled data stems from unique
utterances with implicit positive user feedback
across all domains over a period of time. For im-
proved precision, we remove utterances with ASR
confidence scores below an empirically determined
threshold. We rank the utterances within each do-
main using the scores obtained using interpretabil-
ity methods, greedy and diversity, as described in
Section 4.1. The WSL data set thus prepared rep-
resents ≈8.5% of the total training data size. For
each domain, we rank WSL utterances in the order
of decreasing relevance: we favor utterances which
are likely to influence the domain classification
model predictions the most. We select a small frac-
tion of the most influential utterances (0.05% of the
training data) and fine-tuned IC-NER models. The
amount of data that can be augmented is limited
by engineering constraints (e.g., model build times,
storage capacity), hence the interpretability-based
scores are useful to identify an optimum subset of
utterances that provide the most utility.

5.2 Models

On the live traffic data set, we use a joint IC-NER
model with a distilled version of BERT encoder
pretrained with MLM objective on a combination
of public and internal data sets. The total parameter
count of the encoder is 17M . We use a sentence-
piece tokenizer of size 150K sub-word units. For

each of IC and NER tasks, the model uses feed-
forward layers of hidden size 256 followed by soft-
max layer. We train with early stopping, up to
10 epochs, at a learning rate of 5e−5 and a batch
size of 32. For the simpler public domain datasets,
we fine-tune the DistilBERT model from Hugging-
face1 (65M parameters) as an intent classifier.

6 Experiments and Results

6.1 Snips
For the experiments with data augmentation on
Snips, we use the model trained on ≈50% of the
training data (T) – constituting 8 192 out of 13 084
samples – as the base model. The remaining data
is considered the augmentation set (A). We inves-
tigate the accuracy impact of augmenting a small
fraction of examples to the training set with our
importance scoring approach. Specifically, we ex-
plore the greedy and diversity methods as explained
in Section 4.3, with a set of 82 (≈1%) augmenta-
tion utterances selected from A. As shown in Table
2, the diversity method improves performance to
0.976 compared to the baseline accuracy of 0.974,
while a model trained with the full augmentation
data set has 0.978 accuracy.

6.2 AGNews
For our interpretability experiments on the AG-
News data set, we choose a base model trained on
≈25% of data set, achieving an accuracy of 0.923.
According to Table 2, the diversity method achieves
a test accuracy of 0.929, an improvement over the
baseline by 0.6%.

6.3 Data augmentation with weak signal data
We evaluate the utility of WSL data augmentation
using model interpretability scores for NLU models
of the conversational assistant. We build a domain-
specific IC-NER model using the same training
data as in the production setting. All IC-NER mod-
els share a common encoder as described in Section
5. The output dimension for each model depends
on the number of intents and slot labels for each do-
main. We use similar training parameters (epochs,
learning rate, optimizer, etc.) as production settings
and defer any hyper-parameter tuning experiments
for future work. We refer to this model as baseline.

For each domain, we build a second model
(WSL) using the same architecture and training pa-
rameters as the baseline model. We augment all

1https://huggingface.co/distilbert-base-uncased

385

data set Full size Baseline size Modification size Baseline accuracy Augmentation Full accuracy
Diversity Greedy

Snips 13,084 8,192 82 0.974 0.976 0.971 0.978
AGNews 112,400 32,768 64 0.923 0.929 0.926 0.942

Table 2: Accuracy of intent classification on Snips and topic classification on AGNews data sets, comparing
different approaches with random selection baseline. Each number is the average over 5 runs with different seeds.

Table 3: Relative semantic error rates (SemER) for IC-
NER models trained on all WSL data (WSL), and WSL
data filtered with interpretability-based scores, greedy
and diversity, (WSL-IG). All metrics are reported rela-
tive to baseline model (p < 0.05∗).

Model All Tail
Baseline 0% 0%
WSL (no filtering) 1.74%∗ 3.13%∗

WSL-IG (greedy) -0.27% -0.45%∗

WSL-IG (diversity) -0.13% -0.33%∗

the WSL data described in Section 3 to the train-
ing data, before applying importance scores for
utterance selection. Finally, we build a third model
(WSL-IG) which uses interpretability-based scores
to select the most relevant utterances.

We report the IC-NER task performance using
weighted semantic error rate (SemER; (Makhoul
et al., 1999; Su et al., 2018)) metric. We construct a
label sequence for each utterance by concatenating
the intent and slots (in order). Given the total count
of erroneous insertion (I), erroneous deletions (D),
substitutions (S) and correct labels (C), SemER
is computed as: S = (I+D+S)

(C+D+S) . In Table 3, we
report the weighted mean of SemER relative to
the baseline model and weighted by the domain’s
test utterance count. We compare the baseline and
proposed models on two test sets: (i) All contains
user queries from the entire traffic; (ii) Tail contains
only low-frequency requests.

From Table 3, we notice that the interpretability-
based filtering plays an important role in improving
the semantic error rate on both test sets. SemER
reductions obtained with WSL-IG models are sig-
nificant at p < 0.05 on the tail test set. The magni-
tude of SemER improvement is higher on the Tail
test set, which is likely due to the similar nature
of WSL utterances (sourced from low-frequency
traffic). Interestingly, WSL models which are built
using the largest training data sizes are significantly
worse than the baseline, illustrating the noisy na-
ture of implicit user feedback. In contrast to our
Snips and AGNews results, the greedy method per-

Table 4: Relative defect rate from online A/B exper-
iment comparing NLU models built with WSL data.
The defect rates are reported for low-frequency utter-
ances (Tail) and all utterances (All) relative to the con-
trol model (p < 0.05∗).

Overall General Information
All -1.23%∗ -0.27% -1.04%∗

Tail -0.96%∗ -1.32%∗ -1.64%∗

forms better than diversity – possibly due to the
much larger training size, and suggesting a more
diverse range of defect patterns.

We followed up with an online A/B experiment
on our voice-controlled agent to test the impact of
WSL data on live traffic. We experiment with two
domains: General which serves generic requests
such as turn on device, change volume, etc. and
Information, which serves general knowledge re-
lated requests. For both domains, user requests
on the treatment group were served by NLU mod-
els trained with additional WSL data which were
filtered using interpretability-based scores, (WSL-
IG). We measure the outcome of the A/B experi-
ment using an internal business metric (referred to
as defect rate) which estimates whether the agent
was successful in serving the user’s request. Suc-
cess is estimated based on the user’s perception
following the agent’s response. For example, it is
likely that the agent has misinterpreted the user’s re-
quest when the user rephrases/repeats their request
or the agent communicates that it cannot serve the
user’s request: "sorry I don’t know the answer to
that". We present the relative change in defect
rate on both low-frequency utterances (Tail) and
all utterances (All). From Table 4, we observe im-
provements in the defect rate across both deployed
domains and the overall traffic. For both domains,
while defect reductions are observed on both All
and Tail test sets improvements in the latter are
more noticeable, which demonstrate the utility of
interpretability-based filtering of implicit customer
feedback for NLU model building.

386

7 Conclusions and Future Work

A key challenge in building state-of-the-art deep
learning models is the cost and effort involved in
obtaining large volumes of manually labeled data.
Our work is part of a line of investigations into
leveraging unlabeled or weakly supervised data at
scale. We extract large amounts of user dialogs
with a conversational assistant which are deemed
successful according to implicit feedback. How-
ever, it is not sufficient to add all such examples
indiscriminately to the training data – doing so does
not improve the model, nor is it computationally
scalable. We show how to leverage model inter-
pretability techniques to prioritize the most impor-
tant instances that should be added to the training
set. Our approach leads to statistically significant
error rate reductions of our live system. We also
demonstrate transferability on public NLU data
sets, Snips and AGNews.

In the future, we will apply our approach to other
challenging public data sets which suffer from sig-
nificant label noise and ambiguity. We will investi-
gate other types of data set modifications, such as
removal and replacement of examples.

References
Chirag Agarwal, Daniel D’souza, and Sara Hooker.

2022. Estimating example difficulty using variance
of gradients. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 10368–10378.

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian
Weller, Ankur Taly, Yunhan Jia, Joydeep Ghosh,
Ruchir Puri, José M. F. Moura, and Peter Eckersley.
2019. Explainable machine learning in deployment.
CoRR, abs/1909.06342.

N Carlini, U Erlingsson, and N Papernot. 2019. Proto-
typical examples in deep learning: Metrics, charac-
teristics, and utility. arXiv.

Rakesh Chada, Pradeep Natarajan, Darshan Fofadiya,
and Prathap Ramachandra. 2021. Error detection in
large-scale natural language understanding systems
using transformer models. In ACL-IJCNLP 2021.

Hanjie Chen and Yangfeng Ji. 2019. Improving the in-
terpretability of neural sentiment classifiers via data
augmentation. CoRR, abs/1909.04225.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding

system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Gianna M Del Corso, Antonio Gulli, and Francesco Ro-
mani. 2005. Ranking a stream of news. In Proceed-
ings of the 14th international conference on World
Wide Web, pages 97–106.

Tobias Falke, Markus Boese, Daniil Sorokin, Caglar
Tirkaz, and Patrick Lehnen. 2020. Leveraging user
paraphrasing behavior in dialog systems to automat-
ically collect annotations for long-tail utterances. In
COLING 2020.

Garima, Frederick Liu, Satyen Kale, and Mukund Sun-
dararajan. 2020. Estimating training data influence
by tracing gradient descent. In Advances in Neu-
ral Information Processing Systems, volume 2020-
Decem.

Saurabh Gupta, Xing Fan, Derek Liu, Benjamin Yao,
Yuan Ling, Kun Zhou, Tuan-Hung Pham, and Chen-
lei (Edward) Guo. 2021. Robertaiq: An efficient
framework for automatic interaction quality estima-
tion of dialogue systems. In KDD 2021 Workshop
on Data-Efficient Machine Learning.

Jie Hao, Linfeng Song, Liwei Wang, Kun Xu,
Zhaopeng Tu, and Dong Yu. 2020. Robust dialogue
utterance rewriting as sequence tagging. CoRR,
abs/2012.14535.

Michael A Hedderich, Lukas Lange, Heike Adel, Jan-
nik Strötgen, and Dietrich Klakow. 2020. A sur-
vey on recent approaches for natural language pro-
cessing in low-resource scenarios. arXiv preprint
arXiv:2010.12309.

Rinat Khaziev, Usman Shahid, Tobias Röding, Rakesh
Chada, Emir Kapanci, and Pradeep Natarajan. 2022.
FPI: Failure point isolation in large-scale conversa-
tional assistants. In NAACL-HLT.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,
Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan, et al. 2020. Captum: A unified and
generic model interpretability library for pytorch.
arXiv preprint arXiv:2009.07896.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. In Neural
Information Processing Systems.

Andreas Madsen, Siva Reddy, and Sarath Chandar.
2021. Post-hoc interpretability for neural NLP: A
survey. arXiv preprint arXiv:2108.04840.

John Makhoul, Francis Kubala, Richard Schwartz, and
Ralph Weischedel. 1999. Performance measures for
information extraction. In In Proceedings of DARPA
Broadcast News Workshop, pages 249–252.

Fabian Moerchen, Patrick Ernst, and Giovanni Zap-
pella. 2020. Personalizing natural-language un-
derstanding using multi-armed bandits and implicit
feedback. In CIKM 2020.

387

Pragaash Ponnusamy, Alireza Roshan-Ghias, Chen-
lei (Edward) Guo, and Ruhi Sarikaya. 2020.
Feedback-based self-learning in large-scale conver-
sational AI agents. In AAAI 2020.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "Why should I trust you?": Ex-
plaining the predictions of any classifier. CoRR,
abs/1602.04938.

Ruhi Sarikaya. 2017. The technology behind personal
digital assistants: An overview of the system archi-
tecture and key components. IEEE Signal Process.
Mag., 34(1):67–81.

Pooja Sethi, Denis Savenkov, Forough Arabshahi, Jack
Goetz, Micaela Tolliver, Nicolas Scheffer, Ilknur
Kabul, Yue Liu, and Ahmed Aly. 2021. AutoNLU:
Detecting, root-causing, and fixing NLU model er-
rors. CoRR, abs/2110.06384.

Sukhdeep S. Sodhi, Ellie Ka In Chio, Ambarish
Jash, Santiago Ontañón, Ajit Apte, Ankit Kumar,
Ayooluwakunmi Jeje, Dima Kuzmin, Harry Fung,
Heng-Tze Cheng, Jon Effrat, Tarush Bali, Nitin
Jindal, Pei Cao, Sarvjeet Singh, Senqiang Zhou,
Tameen Khan, Amol Wankhede, Moustafa Alzan-
tot, Allen Wu, and Tushar Chandra. 2021. Monde-
green: A post-processing solution to speech recogni-
tion error correction for voice search queries. CoRR,
abs/2105.09930.

Chengwei Su, Rahul Gupta, Shankar Ananthakrishnan,
and Spyros Matsoukas. 2018. A re-ranker scheme
for integrating large scale NLU models. In 2018
IEEE Spoken Language Technology Workshop, SLT
2018, Athens, Greece, December 18-21, 2018, pages
670–676. IEEE.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Peng-
wei Hu, Cheng Niu, and Jie Zhou. 2019. Improv-
ing multi-turn dialogue modelling with utterance
ReWriter. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 22–31, Florence, Italy. Association for Com-
putational Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. CoRR,
abs/1703.01365.

388

Proceedings of EMNLP 2022 Industry Track, pages 389–399
December 9–11, 2020. ©2022 Association for Computational Linguistics

Improving Precancerous Case Characterization via Transformer-based
Ensemble Learning

Yizhen Zhong, Jiajie Xiao, Thomas Vetterli, Mahan Matin,
Ellen Loo, Jimmy Lin, Richard Bourgon, Ofer Shapira

Freenome, South San Francisco, CA
{yizhen.zhong, jiajie.xiao, thomas.vetterli, mahan.matin}@freenome.com

{ellen.loo, jimmy.lin, richard.bourgon, ofer.shapira}@freenome.com

Abstract

The application of natural language processing
(NLP) to cancer pathology reports has been fo-
cused on detecting cancer cases, largely ignor-
ing precancerous cases. Improving the charac-
terization of precancerous adenomas assists in
developing diagnostic tests for early cancer de-
tection and prevention, especially for colorectal
cancer (CRC). Here we developed transformer-
based deep neural network NLP models to per-
form the CRC phenotyping, with the goal of
extracting precancerous lesion attributes and
distinguishing cancer and precancerous cases.
We achieved 0.914 macro-F1 scores for clas-
sifying patients into negative, non-advanced
adenoma, advanced adenoma and CRC. We fur-
ther improved the performance to 0.923 using
an ensemble of classifiers for cancer status clas-
sification and lesion size named entity recogni-
tion (NER). Our results demonstrated the poten-
tial of using NLP to leverage real-world health
record data to facilitate the development of di-
agnostic tests for early cancer prevention.

1 Introduction

Cancer has been the second leading cause of death
with more than 1,900k new cases and 600k cancer
deaths in the United States in 2022 (Siegel et al.,
2019). Among those, colorectal cancer (CRC) is
the third most common cancer and the third leading
cause of cancer death (Siegel et al., 2019). Detect-
ing CRC at its early stage can dramatically improve
clinical outcomes. The 5-year survival rate is 90%
when colorectal cancer is identified at the localized
stage compared to 73% and 17% survival rates at
the regional or distant stage, respectively1.

CRC progresses from asymptomatic non-
advanced adenoma (NAA) to advanced adenoma
(AA) and then to invasive carcinoma (Junca et al.,
2020). AAs are adenomas characterized by villous

1https://www.cancer.org/cancer/
colon-rectal-cancer/detection-diagnosis-staging/
survival-rates.html

or tubulovillous histology, adenomas or sessile ser-
rated lesions ⩾ 10mm, or high-grade dysplasia
(Junca et al., 2020; Shaukat et al., 2021). AA indi-
cates an intermediate or high risk for CRC (Lieber-
man et al., 2012) and requires CRC screening every
three years (Lieberman et al., 2012). Recent eco-
nomic studies suggest a test with increasing ade-
noma sensitivity in a blood-based CRC screening
test can reduce CRC incidence and reduce mortality
(Putcha et al., 2022a).

There is great interest in developing noninvasive
diagnostic tests with high sensitivity and specificity
for advanced adenoma and CRC screening (Im-
periale et al., 2014; Putcha et al., 2022a). This
development process requires biomarker discovery
and clinical validation based on samples collected
from large numbers of individuals whose colorec-
tal cancer statuses are confirmed by colonoscopy
(Putcha et al., 2022b). Correctly classifying the
colorectal cancer statuses, namely negative (NEG),
NAA, AA and CRC, requires expertise in distilling
and interpreting tumor stage and histology infor-
mation and size of precancerous adenoma from
colonoscopy and pathology reports. Such nuanced
annotations are typically not documented and col-
lected in structured sections of electronic health
records or standardized via International Classifi-
cation of Diseases (ICD) codes (Raju et al., 2015,
2013). Therefore, extracting this information from
colonoscopy and pathology reports and generating
reliable CRC status classification has heavily relied
on manual review by trained gastrointestinal pathol-
ogists. Such review is time-consuming, costly and
difficult to scale.

To reduce the burden of manually annotating
thousands to hundreds of thousands of pathology
reports, and to facilitate the development of nonin-
vasive diagnostic tools for colorectal cancer preven-
tion, we investigated classical and advanced natural
language processing (NLP) methods to automati-
cally extract precancerous lesion information and

389

determine CRC status (Figure 1). We developed
transformer models to extract both categorical and
numerical attributes from colonoscopy and pathol-
ogy reports. Compared to Bag-of-Word (BoW)
and convolutional neural network (CNN) models
(see Data and methods in section 3), we achieved
the best performance by fine-tuning the BioBERT
model. Since lesion size is an important factor to
distinguish between the AA and NAA classes (Ap-
pendix A.1, Winawer and Zauber (2002)), we de-
veloped an entity recognition model for lesion size
extraction and improved its performance through
transfer learning from a non-biomedical domain.
We further improved the cancer status classification
model performance by explicitly adding extracted
lesion size through an ensemble model. Our study
also addressed two challenges for NLP practice
that are specific to the biomedical industry set-
ting: annotation at the sentence level for numer-
ical variable extraction is limited; and most clin-
ical trial studies that enroll patients from various
sites still receive health records in the scanned PDF
format (Raju et al., 2015), creating challenges for
precisely locating the diagnosis section in health
records. Our research demonstrated that, along
with domain knowledge-informed feature learning,
fine-tuned advanced deep learning methods are able
to achieve high accuracy in highly complex and nu-
anced disease phenotyping tasks, even with only
several thousands of documents for model training.

2 Related Work

NLP methods have been applied to pathology re-
ports to extract categorical attributes associated
with cancer diagnosis. Yala et al. (2017) used ma-
chine learning methods with Bag-of-Words fea-
tures to classify patients into breast cancer carci-
noma and atypia categories. Adding clinical con-
cepts from the Unified Medical Language System
(UMLS) was shown to improve classification per-
formance (Li and Martinez, 2010; Martinez and
Li, 2011). Preston et al. (2022) used embedding
vectors that are pre-trained in BERT-based (Devlin
et al., 2018) models for tumor site, histology and
TNM staging (T: tumor size/location; N: lymph
node status; M: metastasis) classification from lon-
gitudinal reports and developed classifiers to detect
cancer cases. Park et al. (2021) extracted cancer
histology, site and surgical procedure from colon,
lung and kidney cancer data. They demonstrated
good performance by leveraging transfer learning

across cancer types and few-shot learning by ac-
counting for semantic similarity. Other deep learn-
ing approaches such as hierarchical attention neural
networks (Gao et al., 2018, 2019), multitask learn-
ing (Alawad et al., 2020), and graph convolutional
networks (Wu et al., 2020) have been employed
to extract cancer characteristics such as primary
site and histological grade. However, these studies
primarily focused on extracting categorical cancer
characteristics that are routinely collected in cancer
registries (Klein and Havener, 2011) and largely ig-
nored numerical and precancerous attributes, which
are critical for developing early cancer detection
technology.

The extraction of numerical cancer attributes is
challenging because the semantic context for nu-
merical variables is mostly at the sentence level
instead of document/patient level (Li and Martinez,
2010; Odisho et al., 2020). This creates a discrep-
ancy between training objectives (sentence level)
and output evaluation (patient level). To overcome
this limitation, Li and Martinez (2010) first iden-
tified the sentences that contain the numerical val-
ues and extracted them through regular expression
matching. AAlAbdulsalam et al. (2018) treated
TNM staging extraction as a sequence labeling task
with pattern matching and conditional random field
techniques. Odisho et al. (2020) encoded tokens
and their context words as bag-of-n-gram features
and classified the token sequence for TNM stag-
ing and tumor volume extraction. In our work,
we treated numerical lesion size extraction as a
named entity recognition (NER) task and addressed
the challenge of limited annotated sample size by
transfer learning from models pre-trained in a non-
biomedical domain.

Previous attempts to employ NLP methods to
parse colonoscopy reports and linked pathology
reports have aimed to characterize adenomas due
to their importance in estimating colorectal cancer
risk (Lee et al., 2019; Raju et al., 2013, 2015; Imler
et al., 2013). The limitations of current studies are
two fold: first, most studies still rely on rule-based
systems such as Linguamatics (Lee et al., 2019) and
cTAKEs (Imler et al., 2013; Savova et al., 2010)
for extracting adenomas through pattern-matching
and dictionary look-up. Deriving rules can be time-
consuming, require extensive domain knowledge,
and likely results in overfitting to the development
dataset and limited portability; second, NLP studies
for colorectal cancer do not perform end-to-end

390

Figure 1: Overall framework

CRC phenotyping to classify patients into NEG,
NAA, AA and CRC, which are of great interest
to characterize CRC risk and prioritize patients
for cancer screening and early cancer detection.
Here we performed end-to-end precancerous and
cancer status characterization with deep learning
methods which promise to be more generalizable
and efficient than rule-based approaches.

3 Data and methods

3.1 Dataset

In this study, we used health records from 3,068
patients collected as part of two studies from 68
collection sites. In some cases, multiple types of
health records are associated with one patient, in-
cluding colonoscopy, pathology, surgical pathol-
ogy, and radiology reports. In total, there are 5,405
documents for all patients. Appendix Figure A1
shows the distribution of document numbers for
each patient.

We split patients into train and test sets stratified
by cancer status. To assess the generalizability of
NLP models when applied to pathology reports
collected in unseen sites, we used samples from
independent collection sites for the train and test
sets. There are 2,149 samples in the training set
from 54 sites and 919 samples in the test set from
14 independent sites. Appendix Table A1 shows
the sample count for each cancer status in the train
and test sets.

3.2 Document and sentence level annotations

A certified pathologist reviewed and assigned
patient-level labels for colorectal cancer status and
lesion size. The detailed annotation criteria are
described in Appendix A.1. For lesion size annota-
tion, the pathologist first identified the index lesion,
which is the most clinically significant lesion ac-
cording to cancer status and lesion type. Then the
size of the index lesion was used as the patient-

level lesion size annotation. We used zero as the
lesion size for healthy samples with no identified
lesions.

We generated sentence-level annotation for le-
sion size. We treated the lesion size named entity
annotation as a binary label with tokens within the
lesion size entity as 1 and tokens outside the lesion
size entity as 0. We did not distinguish the start
or end token of the named entity. We randomly
selected 499 documents from 225 patients from
the training set and 331 documents from 114 pa-
tients from the test set for NER model training and
evaluation, respectively.

3.3 Data preprocessing

Since the reports are in scanned PDF format, we
first digitized the reports with optical character
recognition provided by the Google Vision API2.
The OCR algorithm outputs the recognized text
and the coordinates of the bounding box for each
text block.

We used fuzzy matching for words: "diagnosis,"
"finding," "impression," "diagnoses," "findings,",
"impressions," and "polyp" with text in each bound-
ing box. This allowed us to identify sections im-
portant for diagnosis and ignore irrelevant sections
to increase the signal-to-noise ratio. To allow for
some error in bounding box identification, we re-
tained texts within 10 bounding boxes and at most
100 words after the first matched bounding box.
These keywords for fuzzy matching and window
size were determined by an iterative manual inspec-
tion of reports in the training set.

For CNN and BoW, we concatenated documents
corresponding to one patient into one text segment
and padded the concatenated text segment to the
max length. For the BERT models with a sequence
length limit of 512 tokens, we split the text into
segments with 10 overlapping tokens.

2https://cloud.google.com/vision/docs/ocr

391

3.4 Cancer status classification model

We built and tested three models, namely Bag-of-
Words (BoW) (Zhong et al., 2018), CNN (Kim,
2019) and BioBERT (Lee et al., 2020), for cancer
status classification. We split the 2,149 documents
reserved for training into training and validation
sets in a 9:1 ratio and selected the best model based
on the validation macro-F1 score [See 3.7]. For
BoW, tf-idf representation (Zhong et al., 2018), a
term-frequency based featurization, was derived as
input features for SVM models with linear, poly-
nomial or radial basis function (RBF) kernels. We
used unigram features and removed terms that ap-
pear in less than 10 documents.

For the CNN model, instead of doing hand-
crafted feature engineering, 1D convolution kernels
were learned to extract localized text patterns from
pathology reports. The convolutional layer is fol-
lowed by a max-pooling layer and a fully connected
layer to classify colorectal cancer status.

For the BERT model, BioBERT (Lee et al.,
2020), a pre-trained biomedical language repre-
sentation, was employed and fine-tuned as follows
to encode the pathology reports for cancer status
classification. BioBERT was pre-trained based on
BERT initiated weights with biomedical domain
corpora (PubMed abstracts and PMC full-text arti-
cles) and has increased performance in biomedical
text mining tasks including NER, relation extrac-
tion and question-answering. We added a fully con-
nected layer after the [CLS] embedding vector for
multiclass classification (Devlin et al., 2018). Be-
cause one patient can be associated with multiple
documents or text segments but the cancer status
label is annotated for each patient, this creates a
multiple instance learning problem. We treated
each patient as a bag and each text segment as an
instance within the bag. We used max-pooling to
get the largest softmax probability for each class
across multiple text segments and renormalize with
the softmax function to calculate cross-entropy loss
per patient.

All these models were optimized through
Bayesian hyperparameter tuning (Snoek et al.,
2012; Shahriari et al., 2015) with early stopping
from the Hyperband algorithm (Li et al., 2017).
More details of the procedures can be found in the
Appendix Table A3.

3.5 Lesion size extraction model
We treated the lesion size extraction as a NER
task and compared two approaches. For direct
fine-tuning, we used a pretrained BERT-base-
uncased3 model and classified token embedding
into binary labels where the positive label indi-
cates the target named entity. We also fine-tuned a
XLM_RoBERTa_base4 model.

Observing the similarity between lesion size vs.
one of the annotated named entities (QUANTITY:
Measurements, as of weight or distance) from the
OntoNotes5 corpus (Weischedel et al., 2011), we
used an XLM_RoBERTa5 model that was previ-
ously fine-tuned on the OntoNotes5 dataset for
NER of QUANTITY. We then continued to fine-
tune this model on the cancer pathology dataset for
lesion size extraction to explore the benefit of trans-
fer learning. Both direct fine-tuning and transfer
learning models were trained and validated based
on a 7:1 split of the sentence-level annotated docu-
ments. We selected the model with the best valida-
tion F1 score and evaluated its performance on the
holdout test set. The hyperpameters can be found
in Appendix Table A3.

3.6 Ensemble model
We built an ensemble model with BioBERT pre-
dicted probability for each class and binarized le-
sion size feature (lesion size ⩾ 10mm or not).
For the model training, we used the binarized
ground-truth lesion size. For model inference, we
used the binarized NER-extracted lesion size. We
trained a random forest model with 10 trees and
max_depth=10 as the ensemble model on the train-
ing set and tested its performance on the validation
and test sets for the cancer status classification task.

3.7 Metrics
For cancer status classification evaluation, we com-
puted the precision, recall and F1 for each can-
cer status. We used the macro-F1=

∑n
i

Fi
n for the

overall model performance metric for multi-class
classification (n classes).

For NER evaluation, we count consecutive posi-
tive labeled tokens as one named entity. We iden-
tified named entities derived from ground-truth la-
bels (total ground-truth positive, TGP) and pre-
dicted labels (total predicted positive, TPP). We

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/xlm-roberta-base
5https://huggingface.co/asahi417/

tner-xlm-roberta-base-uncased-ontonotes5

392

counted an exact match of starting and ending in-
dex of the ground-truth and predicted entities as
true positive (TP). We calculated the precision as
TP
TPP , recall as TP

TGP and F1 score for the named
entity recognition task.

4 Results

4.1 Cancer status classification model
performance

We treated the cancer status (CRC, AA, NAA and
NEG) extraction as a document classification prob-
lem and trained BoW, CNN and BioBERT mod-
els. All models achieved over 0.8 macro-F1 scores,
with the BioBERT model outperforming BoW and
CNN (Table 1). In particular, all models including
BoW classified CRC and NEG with high accuracy
(> 0.9 F1 score) and AA and NAA with lower accu-
racy (< 0.8 F1 score). This suggests that unigram
features are sensitive for classifying cancer and
healthy patients from pathology reports but less
sensitive for differentiating precancerous patients.

The CNN model (NAA F1=0.842, AA
F1=0.773) improved NAA and AA performance
compared to BoW (NAA F1=0.706, AA F1=0.758).
This suggests that the larger kernels used in CNN
improve the capture of semantics for precancer-
ous classes compared with unigram features. The
BioBERT model further improved AA and NAA
performance (NAA F1=0.888, AA F1=0.833). As
the model complexity and its ability to capture long-
range interaction increases, the model performed
better. Although the number of training samples
was limited, the more complex models appear to
be more generalizable.

4.2 Lesion size extraction model performance

We performed an error analysis on the training and
validation data to identify the source of incorrect
predictions (Table 2, Appendix Table A2) for the
BioBERT model. We found misclassifications were
usually confusion between AA and NAA. 68.0%
(17/25) of incorrect predictions for NAAs were
classified as AA, and 65.0% (13/20) of incorrect
predictions for AAs were classified as NAAs. Since
lesion size is an important factor to distinguish be-
tween the AA and NAA classes (Appendix A.1),
we proposed to explicitly add lesion size as an ad-
ditional feature to improve the BERT-based cancer
status classification model.

The direct fine-tuning of the BERT model for
lesion size NER had low performance, potentially

due to the small sample size for sentence-level an-
notation (test F1 score=0.202, precision=0.159 and
recall=0.273, Table 3). We then evaluated the trans-
fer learning approach, using an XLM_RoBERTa
model that had been fine-tuned on the OntoNotes
dataset for QUANTITY extraction. Directly apply-
ing this model to the cancer pathology dataset to
extract lesion size led to an increased F1 (0.508)
score, with high recall (0.703) and low precision
(0.398). We next continued to train this model
on the cancer pathology dataset to perform lesion
size extraction. Interestingly, additional fine-tuning
substantially improved the performance (F1=0.757,
precision=0.761 and recall=0.753), especially the
precision. This suggests that transfer learning using
models fine-tuned on tasks outside the biomedical
domain can substantially improve domain-specific
NLP performance, even with a relatively small sam-
ple size.

4.3 Ensemble model improves cancer status
classification

We then assessed the effect of explicitly adding
lesion size as an additional feature to classify can-
cer status. The ensemble model which combined
BioBERT predicted probabilities and binarized le-
sion size (⩾ 10mm or not) improved NAA perfor-
mance from 0.888 to 0.894 and AA performance
from 0.833 to 0.854 while maintaining the already
high performance for the NEG and CRC classes
(Table 1). The macro-F1 was 0.923 for the en-
semble model compared to 0.914 for the BioBERT
model alone. This suggests that explicitly adding
features that are informed by domain knowledge
can improve classification performance compared
to fine-tuned transformer models alone. This ap-
proach may be particularly beneficial for applica-
tions in which training data are limited.

4.4 Integrated gradient analysis
To investigate which features are most important
for BioBERT model performance, we performed
integrated gradient analysis, which computes at-
tribution scores that measure feature importance
with respect to the classification prediction (Sun-
dararajan et al., 2017). We calculated attribution
with respect to the input embedding vector. We
performed integrated gradient analysis for a ran-
dom subset of 534 NEGs, 197 NAAs, 168 AAs and
80 CRCs and calculated the averaged feature at-
tributions across documents for each class (Figure
2). High-scoring tokens related to CRC classifica-

393

Model NEG F1
(n=515)

NAA F1
(n=183)

AA F1
(n=146)

CRC F1
(n=75) Macro-F1

BoW 0.941 0.706 0.758 0.952 0.839
CNN 0.971 0.842 0.773 0.947 0.883

BioBERT 0.972 0.888 0.833 0.962 0.914
BioBERT+Lesion Size 0.965 0.894 0.854 0.980 0.923

Table 1: Performance of cancer status classifiers as measured by the test F1 scores for each class and their macro-
averages.

Figure 2: Attribution score. Tokens with the largest integrated gradient analysis attribution score for each cancer
status. (Top 10 positive and negative attribution scores.)

Predicted Label
NEG NAA AA CRC Total

True Label

NEG 1195 8 15 0 1218
NAA 7 456 17 1 481
AA 5 13 257 2 277

CRC 1 0 0 172 173

Table 2: Error analysis for the BioBERT model in the
training and validation data.

tion included “tumor,” “invasion,” and “carcinoma.”
High-scoring tokens related to AA and NAA clas-
sification included “tub”, “##umour”, and “##eno.”
This model interpretability analysis helped to con-
firm that our NLP model is able to leverage key
terms that match domain knowledge.

5 Conclusion

Determining cancer status and characterizing pre-
cancerous lesions are critical and time-consuming
steps for the development and evaluation of diag-
nostic tests for colorectal cancer screening. Here
we achieved a 0.914 macro-F1 score for cancer
status classification with transformer models fine-
tuned using BioBERT. Informed by the domain
knowledge and error analyses, we identified le-
sion size as a critical factor for differentiating be-
tween AAs and NAAs, but one that was not effi-
ciently captured in BioBERT context-dependent
embeddings. Using an ensemble model combin-
ing a fine-tuned BioBERT model and a lesion size
named entity recognition model, we further im-
proved classification performance to a macro-F1

score of 0.923. The lesion size extraction model
was developed through transfer learning, using a
transformer model trained in a non-biomedical do-
main. We showed that directly fine-tuning of trans-
former models was inadequate for domain-specific
NLP tasks, and that precise feature engineering and
use of ensemble models was needed to improve
classification performance. Overall, we provided
an accurate algorithm for characterizing precancer-
ous cases that may help to improve early colorec-
tal cancer detection and prevention, and a model
training framework that leverages advanced NLP
techniques to address complex disease phenotyping
tasks in biomedical domain.

6 Limitations

One limitation of this work is that we could not
fully evaluate how use of scanned reports and OCR
affects performance as compared to use of elec-
tronic reports, due to a lack of dataset with paired
scanned and electronic formats. The scanned for-
mat makes the selection of relevant sections from
the colonoscopy and pathology reports challeng-
ing. We used fuzzy matching of selected keywords
to identify sections that are likely important for
diagnosis, but this process might introduce bias.
Additionally, the digitization process by OCR re-
sults in errors in keywords and numerical values.
For example, we observed “tubulovillous” was mis-
recognized as “tubulovillaus” and "0.2cm" is mis-
recognized as "0:2cm". This could affect the perfor-

394

Model Train Val Test
F1 precision recall F1 precision recall F1 precision recall

FT_BERT 0.316 0.240 0.450 0.174 0.142 0.225 0.202 0.159 0.273
FT_XLM_RoBERTa 0.471 0.372 0.644 0.259 0.197 0278 0.243 0.186 0.351

OntoNotes_XLM_RoBERTa 0.395 0.275 0.702 0.360 0.243 0.695 0.508 0.398 0.703
TL_OntoNotes_XLM_RoBERTa 0.933 0.911 0.956 0.874 0.856 0.893 0.757 0.761 0.753

Table 3: NER model performance. FT_BERT: direct fine-tuned BERT model. FT_XLM_RoBERTa: direct fine-
tuned XLM_RoBERTa model. OntoNotes_XLM_RoBERTa: XLM_RoBERTa model that has been fine-tuned
on OntoNotes dataset. TL_OntoNotes_XLM_RoBERTa: XLM_RoBERTa model that has been fine-tuned on
OntoNotes dataset and pathology lesion size dataset.

mance in NER and final cancer status classification.
Future work could include evaluating other OCR
tools besides Google Vision.

Another limitation is the lack of validation stud-
ies using an external dataset. It is known that health
records vary substantially in both formats and con-
tent. Studies have been done to transform pathol-
ogy reports to use standardized terminologies and
diagnoses (Kim et al., 2020; Ryu et al., 2020). Even
though the dataset used in this study is collected
from 68 collection sites across the US, the sam-
ple size is still relatively small and may not fully
capture the variabilities of real-world data.

7 Acknowledgments

This work was supported by Freenome. We thank
Paul Tittel and Michael Widrich for helpful discus-
sion; Chuanbo Xu for assistance in acquiring the
clinical documents; Amit Pasupathy for helping to
collect the reports; and Anooj Patel and David Liu
for support with the computational and machine
learning infrastructure.

References
Abdulrahman K AAlAbdulsalam, Jennifer H Garvin,

Andrew Redd, Marjorie E Carter, Carol Sweeny,
and Stephane M Meystre. 2018. Automated extrac-
tion and classification of cancer stage mentions fro-
munstructured text fields in a central cancer registry.
AMIA Summits on Translational Science Proceedings,
2018:16.

Mohammed Alawad, Shang Gao, John X Qiu, Hong Jun
Yoon, J Blair Christian, Lynne Penberthy, Brent
Mumphrey, Xiao-Cheng Wu, Linda Coyle, and Geor-
gia Tourassi. 2020. Automatic extraction of cancer
registry reportable information from free-text pathol-
ogy reports using multitask convolutional neural net-
works. Journal of the American Medical Informatics
Association, 27(1):89–98.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Shang Gao, John X Qiu, Mohammed Alawad, Jacob D
Hinkle, Noah Schaefferkoetter, Hong-Jun Yoon, Blair
Christian, Paul A Fearn, Lynne Penberthy, Xiao-
Cheng Wu, et al. 2019. Classifying cancer pathology
reports with hierarchical self-attention networks. Ar-
tificial intelligence in medicine, 101:101726.

Shang Gao, Michael T Young, John X Qiu, Hong-Jun
Yoon, James B Christian, Paul A Fearn, Georgia D
Tourassi, and Arvind Ramanthan. 2018. Hierarchical
attention networks for information extraction from
cancer pathology reports. Journal of the American
Medical Informatics Association, 25(3):321–330.

Timothy D Imler, Justin Morea, Charles Kahi, and
Thomas F Imperiale. 2013. Natural language process-
ing accurately categorizes findings from colonoscopy
and pathology reports. Clinical Gastroenterology
and Hepatology, 11(6):689–694.

Thomas F Imperiale, David F Ransohoff, Steven H
Itzkowitz, Theodore R Levin, Philip Lavin, Graham P
Lidgard, David A Ahlquist, and Barry M Berger.
2014. Multitarget stool dna testing for colorectal-
cancer screening. New England Journal of Medicine,
370(14):1287–1297.

Audelaure Junca, Gaëlle Tachon, Camille Evrard, Claire
Villalva, Eric Frouin, Lucie Karayan-Tapon, and
David Tougeron. 2020. Detection of colorectal can-
cer and advanced adenoma by liquid biopsy (decalib
study): The ddpcr challenge. Cancers, 12(6):1482.

Baek-hui Kim, Joon Mee Kim, Gyeong Hoon Kang,
Hee Jin Chang, Dong Wook Kang, Jung Ho
Kim, Jeong Mo Bae, An Na Seo, Ho Sung Park,
Yun Kyung Kang, et al. 2020. Standardized pathol-
ogy report for colorectal cancer. Journal of pathology
and translational medicine, 54(1):1–19.

Y Kim. 2019. Convolutional neural networks for
sentence classification. arxiv 2014. arXiv preprint
arXiv:1408.5882.

W Ted Klein and L Havener. 2011. Standards for cancer
registries volume v: Pathology laboratory electronic
reporting.

Jeffrey K Lee, Christopher D Jensen, Theodore R Levin,
Ann G Zauber, Chyke A Doubeni, Wei K Zhao, and
Douglas A Corley. 2019. Accurate identification of
colonoscopy quality and polyp findings using natural
language processing. Journal of clinical gastroen-
terology, 53(1):e25.

395

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. 2017. Hyperband:
A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Re-
search, 18(1):6765–6816.

Yue Li and David Martinez. 2010. Information extrac-
tion of multiple categories from pathology reports.
In Proceedings of the Australasian Language Tech-
nology Association Workshop 2010, pages 41–48.

David A Lieberman, Douglas K Rex, Sidney J
Winawer, Francis M Giardiello, David A John-
son, and Theodore R Levin. 2012. Guidelines
for colonoscopy surveillance after screening and
polypectomy: a consensus update by the us multi-
society task force on colorectal cancer. Gastroen-
terology, 143(3):844–857.

David Martinez and Yue Li. 2011. Information extrac-
tion from pathology reports in a hospital setting. In
Proceedings of the 20th ACM international confer-
ence on Information and knowledge management,
pages 1877–1882.

Anobel Y Odisho, Briton Park, Nicholas Altieri, John
DeNero, Matthew R Cooperberg, Peter R Carroll, and
Bin Yu. 2020. Natural language processing systems
for pathology parsing in limited data environments
with uncertainty estimation. JAMIA open, 3(3):431–
438.

Briton Park, Nicholas Altieri, John DeNero, Anobel Y
Odisho, and Bin Yu. 2021. Improving natural lan-
guage information extraction from cancer pathology
reports using transfer learning and zero-shot string
similarity. JAMIA open, 4(3):ooab085.

Sam Preston, Mu Wei, Rajesh Rao, Robert Tinn, Naoto
Usuyama, Michael Lucas, Roshanthi Weerasinghe,
Soohee Lee, Brian Piening, Paul Tittel, et al. 2022.
Towards structuring real-world data at scale: Deep
learning for extracting key oncology information
from clinical text with patient-level supervision.
arXiv preprint arXiv:2203.10442.

Girish Putcha, Lauren N Carroll, Tarun Chandra, and
Andrew Piscitello. 2022a. Interception versus pre-
vention in cancer screening in a medicare population:
Results from the crc-maps model.

Girish Putcha, Chuanbo Xu, MPH Aasma Shaukat, MD,
and Theodore R Levin. 2022b. Prevention of col-
orectal cancer through multiomics blood testing: The
preempt crc study.

Gottumukkala S Raju, Phillip J Lum, Rebecca S Slack,
Selvi Thirumurthi, Patrick M Lynch, Ethan Miller,
Brian R Weston, Marta L Davila, Manoop S Bhutani,
Mehnaz A Shafi, et al. 2015. Natural language

processing as an alternative to manual reporting of
colonoscopy quality metrics. Gastrointestinal en-
doscopy, 82(3):512–519.

Gottumukkala S Raju, Vikram Vadyala, Rebecca Slack,
Somashekar G Krishna, William A Ross, Patrick M
Lynch, Robert S Bresalier, Ernest Hawk, and John R
Stroehlein. 2013. Adenoma detection in patients
undergoing a comprehensive colonoscopy screening.
Cancer medicine, 2(3):391–402.

Borim Ryu, Eunsil Yoon, Seok Kim, Sejoon Lee, Hyun-
young Baek, Soyoung Yi, Hee Young Na, Ji-Won
Kim, Rong-Min Baek, Hee Hwang, et al. 2020.
Transformation of pathology reports into the com-
mon data model with oncology module: use case for
colon cancer. Journal of medical Internet research,
22(12):e18526.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507–513.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. 2015. Taking the
human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEE, 104(1):148–175.

Aasma Shaukat, Charles J Kahi, Carol A Burke, Linda
Rabeneck, Bryan G Sauer, and Douglas K Rex. 2021.
Acg clinical guidelines: colorectal cancer screening
2021. Official journal of the American College of
Gastroenterology| ACG, 116(3):458–479.

Rebecca L Siegel, Kimberly D Miller, and Ahmedin
Jemal. 2019. Cancer statistics, 2019. CA: a cancer
journal for clinicians, 69(1):7–34.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. Advances in neural information
processing systems, 25.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Ralph Weischedel, Sameer Pradhan, Lance Ramshaw,
Martha Palmer, Nianwen Xue, Mitchell Marcus,
Ann Taylor, Craig Greenberg, Eduard Hovy, Robert
Belvin, et al. 2011. Ontonotes release 4.0.
LDC2011T03, Philadelphia, Penn.: Linguistic Data
Consortium.

Sidney J Winawer and Ann G Zauber. 2002. The ad-
vanced adenoma as the primary target of screening.
Gastrointestinal Endoscopy Clinics, 12(1):1–9.

Jialun Wu, Kaiwen Tang, Haichuan Zhang, Chunbao
Wang, and Chen Li. 2020. Structured informa-
tion extraction of pathology reports with attention-
based graph convolutional network. In 2020 IEEE

396

International Conference on Bioinformatics and
Biomedicine (BIBM), pages 2395–2402. IEEE.

Adam Yala, Regina Barzilay, Laura Salama, Molly
Griffin, Grace Sollender, Aditya Bardia, Constance
Lehman, Julliette M Buckley, Suzanne B Coopey,
Fernanda Polubriaginof, et al. 2017. Using machine
learning to parse breast pathology reports. Breast
cancer research and treatment, 161(2):203–211.

Yizhen Zhong, Luke Rasmussen, Yu Deng, Jennifer
Pacheco, Maureen Smith, Justin Starren, Wei-Qi
Wei, Peter Speltz, Joshua Denny, Nephi Walton,
et al. 2018. Characterizing design patterns of ehr-
driven phenotype extraction algorithms. In 2018
IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 1143–1146. IEEE.

A Appendix

A.1 CRC status annotation criteria
• CRC

– All stages (I-IV)

• Advanced adenoma (AA)

– Adenoma with carcinoma in situ or high-
grade dysplasia, any size

– Adenoma, any villous features, any size
– Adenoma ⩾ 1.0 cm in size
– Serrated lesion, ⩾ 1.0 cm in size, in-

cluding sessile serrated adenoma/polyp
(SSA/P) with or without cytological dys-
plasia and hyperplastic polyps (HP) ⩾
1.0 cm

– Traditional serrated adenoma (TSA), any
size

• Non-advanced adenoma (NAA)

– Any number of adenomas, all < 1.0 cm
in size, non-advanced

• Negative (NEG)

– All SSA/P < 1.0 cm and HP < 1.0 cm
NOT in sigmoid or rectum

– HP < 1.0 cm in the sigmoid or rectum
– Negative upon histopathological review
– No findings on colonoscopy, no

histopathological review

397

Figure A1: Distribution of document number per patient.

Sample Count NEG NAA AA CRC Total
Train+Val set 1,221 482 273 173 2,149
Test set 515 183 146 75 919

Table A1: Sample count for combined training and validation set and for test set for cancer status classification
model.

Model Train Validation Test
F1 precision recall F1 precision recall F1 precision recall

BoW 1.000 1.000 1.000 0.909 0.926 0.897 0.839 0.845 0.838
CNN 0.998 0.998 1.000 0.920 0.932 0.911 0.883 0.886 0.882

BioBERT 0.960 0.955 0.965 0.946 0.946 0.946 0.914 0.904 0.925
BioBERT+Lesion Size 1.000 1.000 1.000 0.921 0.921 0.927 0.923 0.920 0.930

Table A2: Model performance for cancer status classification in training, validation and test sets.

398

Hyperparameters

BoW

TfidfVectorizer:
• Minimum frequency for building vocabulary: 0~100%
• Maximum number of words: 800~2500

SVM:
• Regularization strength C: 0.001~1000
• Kernel: {linear, rbf, poly}

CNN

CNN:
• Embedding size: {64, 96, 128, 200, 256, 512}
• Size of kernels: {[3], [3, 6], [3, 4, 5], [3, 6, 9], [3, 4, 5, 6]}
• Number of output channels: {32, 64, 100, 128, 256}

Training:
• Batch size: {16, 32, 50, 64, 128}
• Learning rate: {0.001, 0.005, 0.01, 0.05, 0.1}
• Dropout: 0.01~0.5
• Number of epochs: 256~2048
• Early stopping patience: 20~50
• Weight decay: {0.0, 0.01, 0.05, 0.1, 0.15}

BioBERT

Fine-tuning:
• Batch size: {4, 8, 10, 12}
• Learning_rate: 1.0e-7~5e-5
• Dropout: 0.001~0.5
• Number of fine-tuning epochs: {5, 6, 7, 8, 9, 10}

Table A3: Searched Hyperparameters for the cancer status classification models. We conducted 100 iterations of
hyperparameter search for each of the cancer status classification models via Hyperband-enabled early-stopping (Li
et al., 2017) Bayesian optimization (Snoek et al., 2012; Shahriari et al., 2015) using Weights & Biases’ sweeps.
The best hyperparameters were determined using macro-F1 in the validation set. For NER model training, we used
batch size=4, learning rate=5e-5, warmup_steps=2, lower_case=True, and n_epoch=10.

399

Proceedings of EMNLP 2022 Industry Track, pages 400–407
December 9–11, 2020. ©2022 Association for Computational Linguistics

Developing Prefix-Tuning Models for Hierarchical Text Classification
Lei Chen and Houwei Chou

Rakuten Institute of Technology (RIT)
Boston, MA

{lei.a.chen,houwei.chou}@rakuten.com

Xiaodan Zhu
Ingenuity Labs Research Institute & ECE

Queen’s University, Canada
xiaodan.zhu@queensu.ca

Abstract

Hierarchical text classification (HTC) is a key
problem and task in many industrial applica-
tions, which aims to predict labels organized in
a hierarchy for given input text. For example,
HTC can group the descriptions of online prod-
ucts into a taxonomy or organizing customer re-
views into a hierarchy of categories. In real-life
applications, while Pre-trained Language Mod-
els (PLMs) have dominated many NLP tasks,
they face significant challenges too—the con-
ventional fine-tuning process needs to modify
and save models with a huge number of param-
eters. This is becoming more critical for HTC
in both global and local modelling—the latter
needs to learn multiple classifiers at different
levels/nodes in a hierarchy. The concern will
be even more serious since PLM sizes are con-
tinuing to increase in order to attain more com-
petitive performances. Most recently, prefix
tuning has become a very attractive technology
by only tuning and saving a tiny set of parame-
ters. Exploring prefix turning for HTC is hence
highly desirable and has timely impact. In this
paper, we investigate prefix tuning on HTC in
two typical setups: local and global HTC. Our
experiment shows that the prefix-tuning model
only needs less than 1% of parameters and can
achieve performance comparable to regular full
fine-tuning. We demonstrate that using con-
trastive learning in learning prefix vectors can
further improve HTC performance.

1 Introduction

Hierarchical text classification (HTC) is a key task
in many industrial applications. Typically, a large
number of labels are defined and organized in a
taxonomic tree. How to accurately and efficiently
predict texts into label paths in the label hierar-
chies is an important capacity in high demand. For
example, many e-commerce applications need to
assign an online product to a path in the label hi-
erarchy, e.g., beverage→coffee→instant coffee or
beverage→tea→oolong tea. Identifying these la-

bel paths allows the information to be easily ac-
cessed by down-stream applications and human
users.

In the past few years, Pre-trained Language Mod-
els (PLMs) have become a dominant solution for
most natural language processing (NLP) applica-
tions. However, PLM models often contain a very
large number of parameters, and the model sizes
keep increasing, which can put a heavy burden
on HTC applications. As an example, HTC often
benefits from building a number of local models
to fully utilize label hierarchies. Instead of train-
ing one model as in global HTC modelling, local
HTC models rely on and leverage several inner
classifiers (Peng et al., 2018). Figure 1 shows that
when building a local HTC model for separating
various types of drinks into the beverage category,
the model sizes dramatically increase along with
the increase of hierarchy levels. (More discussion
about local and global HTC models can be found
in Section 2).

Most recently, prefix tuning (Li and Liang, 2021;
Lester et al., 2021) has become a very attractive
technology by only tuning and saving a tiny set
of parameters compared that of a fully fine-tuned
model. Exploring prefix turning for HTC is hence
highly desirable and has timely impact. In this pa-
per, we investigate prefix tuning on HTC in two
typical setups: local and global HTC. Our experi-
ment shows that the prefix-tuning model only needs
less than 1% of parameters and can achieve per-
formance comparable to regular full fine-tuning.
We demonstrate that using contrastive learning in
learning prefix vectors can further improve HTC
performance.

In brief, our contributions are summarized as
follows:

• To the best of our knowledge, this is the first
systematic study to develop prefix-tuning for
HTC

400

Beverage

Coffee Tea

Instant Coffee Starbuck Lipton Oolong

PL
M

 m
od

el
 s

iz
e

Hierarchy level

Local models on each level

Local models on many internal nodes

1 2 3

100%

200%

300%

Figure 1: An illustration to show that local HTC model will face a size issue when using PLM models to be
classifiers.

• Following local HTC modelling, we exam-
ine different architectures to leverage prefix
vectors learned at different levels of label hi-
erarchies and provide results about our best
practice.

• In the global HTC strategy, we propose to
add a self-training step built on a contrastive
learning (CL) loss and this shows to improve
performance.

• We provide detailed results on two HTC
datasets and the analyses to show how the
models work.

2 Related work

There are two major means of handling label hier-
archies for HTC, i.e., the local and global approach
(Zhou et al., 2020). The local approach builds a
number of classifiers on different label levels or
on many internal nodes in a label hierarchy but
the global approach develops a single classifier to
predict all labels that are flattened from the label
hierarchy.

Shimura et al. (2018) developed convolution neu-
ral network (CNN) based local models at each
level of label hierarchies and proposed to use the
trained CNN at the higher level to initialize the
CNN at a lower level. This transferring approach
that considers inter-connections among the CNN
models in a hierarchy showed to improve HTC per-
formance. Regarding the global HTC, a straight-
forward method is flattening labels’ hierarchical
structure into a flat list and modelling the HTC sim-
ply to a multi-label classification task. Recently,
a trending method is utilizing a structure encoder
to retain the label hierarchy to better utilize mu-
tual information among labels. (Zhou et al., 2020)

used a structure encoder, either a tree LSTM or
a graph convolution network (GCN), to consider
labels’ prior hierarchy information when learning
label representations. PLMs have become a foun-
dational paradigm on building various NLU tasks.
For example, BERT (Devlin et al., 2019) has been
applied to tackle the HTC task (Chen et al., 2021;
Wang et al., 2022).

In parallel, contrastive learning (CL) has been
found to be effective in providing high-quality en-
coders in a simple self-learning way. For example,
in computer vision, SimCLR (Chen et al., 2020)
uses the consistence between an anchor image and
its transformed version and the in-consistence be-
tween the anchor and other instances in a batch (in-
batch negative instances) to guide encoder training.
Inspired by the success of SimCLR in computer vi-
sion, CL-based textual representation learning has
become a hot research topic in NLP. SimCSE (Gao
et al., 2021) uses dropout operations existing in
Transformer (Vaswani et al., 2017) to provide self-
augmentation and can learn effective text represen-
tations.

The CL training has been applied on the HTC
task. (Chen et al., 2021) embeds both text inputs
and labels (in a hierarchy) into an unified seman-
tics space and solving the HTC via vector match-
ing. When training the text encoder, a CL setup
is used and it considers label hierarchy informa-
tion when forming contrastive pairs. (Wang et al.,
2022) uses a CL setup to train a high-quality text
encoder. Label hierarchy is firstly encoded by a
Graphormer (Ying et al., 2021) and the encoded
label information is used to generate text variations
for providing positive pairs in the CL.

Although fine-tuning PLM models enable
many down-stream natural language understand-
ing (NLU) tasks to achieve high performance, this

401

paradigm faces a challenge in real deployment com-
pared to other light weight models, e.g., CNN. Also,
PLMs contain a large number of parameters and
the model sizes have been exploding in recent years
for reaching more competitive performance and the
trend is continuing. When deploying the fine-tuned
PLM models, all model parameters (updated in the
fine-tuning process) need be stored. When many
such PLM models need be stored, for example, for
local HTC modelling, the required models sizes
can be very large. To use PLMs in a more space-
efficient way, previous efforts, such as fine-tuning
only several top layers in a PLM or fine-tuning
an adapter, are proposed (He et al., 2022). Unlike
them, prefix-tuning (Li and Liang, 2021; Lester
et al., 2021) only learns prefix vectors to trigger a
PLM, which is frozen and cannot be tuned, to out-
put the text representations fitting to the targeted
domain better. In addition, (Liu et al., 2022) ex-
tended the prefix-tuning on NLU tasks by using
prefix vectors on each PLM layer and dropped sev-
eral components in a conventional prompt-tuning,
e.g., verbalizer.

3 Exploring Effective Prefix Tuning for
Hierarchical Classification

Let x denote the text input, Y a label hierarchy and
y a specific category label path in Y . HTC aims to
solve a multi-label categorization task: given tex-
tual input x, HTC learns to predict possible label
paths y in the hierarchy Y . As discussed above,
when developing HTC in industrial applications,
PLM-based models face model-size issues, which
is becoming more serious as PLM sizes are con-
tinuing to increase. To tackle the challenge, we in-
vestigate soft prefix prompt (SPP) tuning on HTC.
We propose to explore the models in two typical
approaches. In Section 3.1 below, we explore a
transferring approach to better train SPP vectors
among different label levels in the local HTC mod-
elling. Section 3.2 explores global HTC models in
which we propose to add a CL-based self-training
step.

3.1 SPP tuning considering hierarchical
information

Figure 2 depicts two approaches of fine-tuning a
PLM model for text classification. The left subfig-
ure shows the conventional [CLS]-tuning, in which
the [CLS] token is appended in front of the input
text x. The entire text sequence goes through mul-

tiple Transformer layers in a PLM model. Built on
that, the hidden output h[CLS] at the final layer
serves as the representation for x. The h[CLS]

passes through a linear classifier layer (denoted
as CLF in Figure 2) to make predictions. Using
the fine-tuning data, losses can be fed back into the
model and all parameters in both the classifier head
and the PLM model are accordingly tuned. Unlike
that, the right subfigure highlights the process of
(SPP) tuning (Liu et al., 2022), in which the entire
PLM model is frozen and will not be updated dur-
ing fine-tuning. For the embedding layer and each
of PLM layers, tunable SPP vectors, which have
a much smaller sizes compared to the PLM, are
tuned to trigger the frozen PLM to output a more
informative h[CLS] for prediction.

When using the SPP-tuning, the HTC model
focuses on a set of SPP vectors. In the local
HTC model, these SPP vectors on different loca-
tions/layers in a hierarchy may have some inter-
constraints and therefore training them by consid-
ering their topological relationship in the hierarchy
is our first consideration.

Specifically, Figure 3 depicts how we perform
SPP-tuning on adjacent hierarchy layers. Subfigure
(a) shows a basic solution in which SPP vectors
on different levels of the hierarchy are trained in-
dependently without considering any inter-level
connections. However, subfigure (b) shows that
the trained SPP vector at a higher level is used
to initialize a part of SPP vector at a lower level.
The motivation is that knowledge learned in the
upper layer prefix can help inform the low layer
decision. In our study, we propose to assign lower-
level SPP vectors longer than the SPP vectors at
a higher level since the former needs handle more
labels. In addition, we propose and investigate the
architecture in subfigure (c) where the SPP vector
at the higher level is transformed to a longer vector
to initialize the lower-level SPP vector by using a
fully-connected neural network.

3.2 Global model using contrastive learning
when doing SPP-tuning

The other typical setup is investigating global HTC
models. As shown in the right subfigure of Figure 2,
when training SPP vectors, the loss after the clas-
sifier layer is used in supervised learning. Unlike
the local modelling, here we do not transfer prefix
among different layers. When develop the model,
inspired by the success of using self-learning to

402

BCE

...

CLF

e([CLS]) e(Amazing) e(movie) e(!)

[CLS] Amazing movie !

e([CLS]) e(Amazing) e(movie) e(!)

[CLS] Amazing movie !

Transformer

BCE

CLF

...

Layer 1 SPP

Layer N SPP
...

Transformer

(a) CLS-tuning (b) SPP-tuning

Layer 2 SPP

...

Figure 2: (a) shows conventional [CLS]-tuning for using PLM models. Note that all of parameters in a PLM need
tuning and are shown in a light yellow color. In a contrast, (b) shows Soft Prefix Prompt (SPP) tuning, in which a
frozen PLM model is used and only small-sized SPP vectors (on embedding input and each PLM layer) are tuned.

initLevel 1

Level 2

NN

non-transferring copy-transferring transform-transferring
(a) (b) (c)

Figure 3: When solving HTC using a local model strategy, there are several ways to train prefix vectors for local
models on each label level. (a) shows that vectors from upper and lower levels can be trained separately, (b) shows
that lower level vectors can be initialized based on trained vectors at an upper level, and (c) shows that lower level
vectors can be initialized based on the trained vectors at an upper level and go through a neural network (NN)
transformation. Rectangles at the two levels refer to SPP vectors, from being initialized (enclosed in dash lines) to
being fine-tuned (enclosed in solid lines).

learn proper representations, contrastive learning
is found to be beneficial when being applied with
SPP in the global modelling.

Specifically in our SPP-tuning setup, we follow
the SimCSE (Gao et al., 2021) contrastive approach
to feed inputs into a PLM model twice to obtain a
data anchor and its positive pair.

For a text title x, we append the SPP vector
(Vspp) to [CLS]. Then we obtain a text representa-
tion t with a BERT encoder BERT (∗, d) where
d is a dropout mask, and a projection function
g, which uses a simple multiple layer perception
(MLP) structure.

t = g(BERT (Vspp : [CLS] : x, d)) (1)

To obtain a positive pair, SimCSE runs the same
text title throughout the Transformer encoder
pipeline with a different dropout mask d+.

t+ = g(BERT (Vspp : [CLS] : x, d
+)) (2)

For the ith text title, the training objective of

SimCSE is as follows:

Li = −log
exp(sim(ti, t

+
i)/τ)∑N,j ̸=i

j=1 exp(sim(ti, tj)/τ)
(3)

For a mini-batch of N text titles, where
sim(∗, ∗) represents a similarity computation and
τ is the temperature. The total loss computed by
SimCSE, LsimCSE , is an average among all text
titles in the mini-batch,

∑N
i=1 Li/N . By running

an optimization to keep reducing LsimCSE , the
SPP vectors on multiple layers of the BERT model
can be tuned prior to applying the supervised fine-
tuning. To the best of our knowledge, this is the
first work to apply CL pre-training on an NLU task
in SPP-tuning.

4 Experiments

4.1 Datasets and Evaluation
We perform our study on the widely used Web of
Science (WoS) (Kowsari et al., 2017) and Ama-
zon review dataset (McAuley et al., 2015; He and

403

Dataset levels Train size Dev size Test size classes
WoS 2 33,070 7,518 9,397 141

Amazon Beauty 5 116,240 29,061 62,273 241

Table 1: Our experiments use both academic benchmark data set, WoS, which has been widely used in previous
HTC research (Chen et al., 2021; Wang et al., 2022), and also an industry data from Amazon review dataset.

McAuley, 2016), focusing on the Beauty category
for comparison and analysis. WoS contains ab-
stracts of published papers from Web of Science
and Amazon review contains titles of online prod-
ucts. For each instance in WoS, there is only a
single label path. However, for each instance in
Amazon Beauty, there could be more than one pos-
sible label paths. Regarding these two datasets,
more statistic details are reported in Table 1. Simi-
lar to previous works, we measure the experimen-
tal results by using micro-F1 (denoted as mi-F1)
and macro-F1 (denoted as ma-F1) to value perfor-
mances per instance and per label respectively.

4.2 HTC models

We consider a variety of HTC models:

• CLS-tuning: A global model using a binary
cross entropy (BCE) loss to train a HTC model
as a multi-label text classifier.

• Local SPP-tuning: A local model consist-
ing of two multi-label text classifiers trained
with SPP. Between SPP vectors at the top and
bottom label levels, there are three ways to
train: (a) non-transferring refers to the ba-
sic strategy described in Section 3.1, training
two sets of SPP vectors independently, (b)
copy-transferring refers to using the trained
SPP vector at the top level to initialize the
corresponding portion in the longer SPP vec-
tor at the bottom level, and (c) transform-
transferring refers to using a neural network
to transform the SPP vector at the upper level
to longer vector to initialize the SPP vector at
lower level. Since the label hierarchy in the
WoS data contains exactly two levels, we built
local models on each level.

• Global SPP-tuning: a global model trained
by using the SPP-tuning, and the BCE loss is
used to train the SPP vectors

• Global SPP-tuning with CL: before training
SPP vectors by the BCE loss, as described in

Section 3.2, a contrastive learning (CL) self-
learning step is used to better initialize SPP
vectors.

For the PLM model, we used BERT-base
provided in the Hugging Face’s Transformer li-
brary (Wolf et al., 2020). The batch size is set
to be 48. The optimizer is Adam with a learning
rate of 1e−2 for the SPP-tuning and the learning
rate of 2e−5 for CLS-tuning1. We implemented
all above-mentioned models based on the source
code2 provided by (Liu et al., 2022) in PyTorch.
We trained these models in an end-to-end way on
the training set for up to 40 epochs and use an
early stop if there was no any performance gain
for consecutive 5 epochs on the development set.
SPP vector length is an important hyper-parameter
controlling SPP-tuning performance. Typically for
simple NLU tasks, short SPP vectors, e.g., shorter
than 20, could work sufficiently. Hence, we did a
grid search among SPP vector lengths from 5 to 40
and found optimal SPP vector lengths for local and
global models respectively. When conducting CL
pre-training, we set the batch size to be 64 to main-
tain enough in-batch negative samples and used
a temperature (τ) of 0.1. We conducted the CL
pre-training for 10 epochs.

4.3 Results

Table 2 reports the result of comparing the three
training strategies for building HTC models built
on SPP-tuning. When using SPP-tuning to train a
global model on the WoS data, we can find that by
only using 0.46% of model parameters as used in
CLS-tuning, we can achieve a performance even
higher than that obtained by using the CLS-tuning.
Among the three local HTC models based on SPP-
tuning, the non-transferring approach yields the
lowest performance, even worse than the result
of using CSL-tuning. The transform-transferring
approach works better than non-transferring and

1(Liu et al., 2022) uses higher learning rate than what is
used by CLS-tuning. We found this choice makes our SSP-
tuning work.

2https://github.com/THUDM/P-tuning-v2

404

Model Detail Mi-F1 Ma-F1 Parameters(%)
CLS-tuning global, BCE 85.89 79.22 100%
SPP-tuning global, BCE, |Vspp| = 30 86.84 79.77 0.46%
SPP-tuning local, non-transferring, |V top

spp | = 10 |V bottom
spp | = 20 86.84 79.12 0.46%

SPP-tuning local, transform-transferring, |V top
spp | = 10

|V bottom
spp | = 20

86.93 79.33 0.46%

SPP-tuning local, copy-transferring, |V top
spp | = 10 |V bottom

spp | = 20 87.24 79.98 0.46%
SPP-tuning local, copy-transferring, |V top

spp | = 10 |V bottom
spp | = 30 87.34 80.09 0.66%

Table 2: HTC models on WoS dataset. By using a BERT-base, various fine-tuning methods, i.e., CLS-tuning, global
model using SPP-tuning, and local models using SPP-tuning, are compared.

WoS Amazon Beauty
Model Detail Mi-F1 Ma-F1 Parameters (%) Mi-F1 Ma-F1 Parameters (%)

CLS-tuning BCE 85.89 79.22 100.00% 87.49 63.38 100.00%
SPP-tuning BCE 86.84 79.77 0.46% 88.00 61.36 0.50%
SPP-tuning CL→BCE 87.55 80.07 0.46% 88.14 62.07 0.50%

Table 3: Global HTC models on both WoS and Amazon datasets. When training by SPP-tuning, we proposed
adding a CL pre-training stage and this turns out to improve HTC performance.

the best performance is from copy-transferring ap-
proach. When keep increasing V bottom

spp from 20 to
30, the performance can be improved further. It
shows that SPP vectors trained at a higher level
need be used intact when initializing SPP vectors
at lower levels. Also, both transferring approaches
work better than non-transferring.

Table 3 reports the results of comparing the two
types of training losses when training a global
model based on SPP-tuning. We can see that on
the two data sets, WoS and Amazon Beauty, the
SPP-tuning only using the BCE loss is worse than
the proposed model that leverages CL pre-training.

Note that when only using 0.5% of the param-
eters used in CLS-tuning, on the Amazon Beauty
data with 241 labels, the SPP-tuning model has a
performance comparable to CLS-tuning. A slight
gain is actually observed on micro-F1, although
macro-F1 has some drop from 63.38% to 61.36%.
We show that after adding CL self-training prior
to fine-tuning SPP vectors, macro-F1 is still lower
than what we can obtain when using CLS-tuning.
This is worth more investigations to evaluate SPP-
tuning approach comprehensively, on labels with
both sufficient and sparse training instances.

5 Conclusions and Future Work
HTC is a key task in many industrial applications.
The conventional fine-tuning process needs to mod-
ify and save models that have a large number of
parameters. This has become a more significant

concern as PLM sizes are continuing to increase in
the foreseeable future. In this paper, we investigate
prefix tuning on HTC in two typical setups: local
and global HTC. To the best of our knowledge,
this is the first systematic study towards developing
prefix-tuning for HTC in these typical architec-
tures.

In local HTC modelling, we examine different
architectures to leverage prefix vectors learned at
different levels of label hierarchies and provide
results about our best practice. We found that SPP
vectors trained at a higher level can be utilized to
initialize a portion of SPP vectors at a lower level of
the hierarchy and such a vector transferring strategy
is beneficial. For SPP vectors, using them intact
works better than using their transformed version.
In the global HTC strategy, we propose to add a
self-training step built on a contrastive learning
(CL) loss. On both WoS and Amazon datasets,
such a CL pre-training is found to be helpful on
improving model performance.

For future work, we will extend the current work
to study long-tailed labels which is very common
in many applications. Also, how to use labels’
hierarchical information that can be represented
by structural encoders is worth studying in SPP-
tuning.

405

References
Haibin Chen, Qianli Ma, Zhenxi Lin, and Jiangyue

Yan. 2021. Hierarchy-aware Label Semantics Match-
ing Network for Hierarchical Text Classification. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4370–
4379, Online. Association for Computational Lin-
guistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple Contrastive Learning of Sentence
Embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
Unified View of Parameter-Efficient Transfer Learn-
ing.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of
the 25th international conference on world wide web,
pages 507–517.

Kamran Kowsari, Donald E. Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S. Gerber,
and Laura E. Barnes. 2017. HDLTex: Hierarchical
deep learning for text classification. In 2017 16th
IEEE International Conference on Machine Learn-
ing and Applications (ICMLA). IEEE.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The Power of Scale for Parameter-Efficient Prompt
Tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:
Optimizing Continuous Prompts for Generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-Tuning:
Prompt Tuning Can Be Comparable to Fine-tuning
Across Scales and Tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on
research and development in information retrieval,
pages 43–52.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 world wide web conference,
pages 1063–1072.

Kazuya Shimura, Jiyi Li, and Fumiyo Fukumoto. 2018.
HFT-CNN: Learning Hierarchical Category Struc-
ture for Multi-label Short Text Categorization. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 811–
816, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, \Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30:5998–6008.

Zihan Wang, Peiyi Wang, Lianzhe Huang, Xin Sun,
and Houfeng Wang. 2022. Incorporating Hierarchy
into Text Encoder: a Contrastive Learning Approach
for Hierarchical Text Classification. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7109–7119, Dublin, Ireland. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in Neural Infor-
mation Processing Systems, 34:28877–28888.

406

Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu,
Ning Ding, Haoyu Zhang, Pengjun Xie, and Gong-
shen Liu. 2020. Hierarchy-aware global model for
hierarchical text classification. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1106–1117.

407

Proceedings of EMNLP 2022 Industry Track, pages 408–418
December 9–11, 2020. ©2022 Association for Computational Linguistics

PAIGE: Personalized Adaptive Interactions Graph Encoder
for Query Rewriting in Dialogue Systems

Daniel Biś
Amazon Alexa AI

bisdb@amazon.com

Saurabh Gupta 1

LinkedIn
saurabh3949@gmail.com

Jie Hao
Amazon Alexa AI

jieha@amazon.com

Xing Fan
Amazon Alexa AI

fanxing@amazon.com

Chenlei Guo
Amazon Alexa AI

guochenl@amazon.com

Abstract

Unexpected responses or repeated clarification
questions from conversational agents detract
from the users’ experience with technology
meant to streamline their daily tasks. To reduce
these frictions, Query Rewriting (QR) tech-
niques replace transcripts of faulty queries with
alternatives that lead to responses that satisfy
the users’ needs. Despite their successes, exist-
ing QR approaches are limited in their ability to
fix queries that require considering users’ per-
sonal preferences. We improve QR by propos-
ing Personalized Adaptive Interactions Graph
Encoder (PAIGE). PAIGE is the first QR ar-
chitecture that jointly models user’s affinities
and query semantics end-to-end. The core idea
is to represent previous user-agent interactions
and world knowledge in a structured form —
a heterogeneous graph — and apply message
passing to propagate latent representations of
users’ affinities to refine utterance embeddings.
Using these embeddings, PAIGE can poten-
tially provide different rewrites given the same
query for users with different preferences. Our
model, trained without any human-annotated
data, improves the rewrite retrieval precision of
state-of-the-art baselines by 12.5–17.5% while
having nearly ten times fewer parameters.

1 Introduction

Facilitating seamless human-computer interactions
is a fundamental goal of conversational AI agents
such as Alexa, Cortana, and Siri. However,
some user interactions lead to frictions, where the
AI agent delivers an unexpected response or repeat-
edly asks the user to clarify the query. Such fric-
tions stem from system errors such as Automatic
Speech Recognition (ASR) and Natural Language
Understanding (NLU). Some aspects of the frictions
are highly personalized, depending on characteris-
tics such as the user’s demographics and interests.
For example, when asking a conversational agent

1Work done while at Amazon Alexa AI.

to “Put on Skyfall,” one user may expect the system
to play a song named “Skyfall” while another may
wish to see a movie with the same title.

Query Rewriting (QR; Grbovic et al., 2015; Pon-
nusamy et al., 2020) aims to reduce frictions by
replacing the transcripts of faulty queries with alter-
natives that lead to desired responses. Personalized
QR systems were proposed in (Fan et al., 2021; Cho
et al., 2021), which restricted rewrite candidates
to the particular user’s historical requests. Such
systems, discussed in Section 6, typically trained
a text encoder to measure the similarity between
request and rewrite. While effective, they overlook
correlations between requests within a user’s dia-
logue history and the inter-dependencies spanning
across other users’ interactions. This information
can help reformulate defective and ambiguous re-
quests when augmented with external knowledge.

To address the aforementioned limitations, we
introduce a QR architecture named Personalized
Adaptive Interactions Graph Encoder (PAIGE) that
jointly models query semantics, world knowledge,
and users’ preferences in an end-to-end fashion.
The core idea is to represent users’ previous in-
teractions in a heterogeneous graph that we can
augment with external world knowledge (§3). The
graph representation learning with Graph Neural
Networks (GNNs) allows us to propagate the repre-
sentations of users’ historical interactions to refine
the utterance embeddings in an end-to-end manner
through joint training.

To construct the heterogeneous graph, we de-
compose the requests into smaller semantic units
such as domains, intents, utterances, entities, and
NLU-hypotheses (§3). We also create nodes repre-
senting the users and link every user node to nodes
representing entities (e.g., songs, artists) appearing
in the user’s historical requests. Inspired by work
in recommendation systems, we use cross-user con-
nections to capture communicative intents among
users (Goldberg et al., 1992; Wang et al., 2019b)

408

and further ground the entity nodes in a knowledge
graph (e.g., Wang et al., 2019b, 2020), allowing
PAIGE to learn from the emerging high-order con-
nectivities.

We cast query rewriting as a link prediction
problem between an utterance node and nodes
corresponding to NLU-hypotheses, that abstract
away syntactic variations. Once the link to
NLU-hypothesis node is predicted, we can fol-
low the graph’s edges to select the most fre-
quent non-defective utterance mapping to that NLU-
hypothesis as our rewrite.

PAIGE is scalable in training, without the need
to load the full graph in memory, and efficient at
inference, without the need to re-process the entire
graph. Our inductive node encoding scheme per-
mits dynamically updating the graph to new knowl-
edge and user interests without model re-training.
We demonstrate the efficacy of our system with
a detailed analysis of experiments on real-world
conversation data (§5);

Our contributions are summarized as follows:

• We introduce PAIGE—a novel graph-based archi-
tecture for the task of personalized query rewrit-
ing in dialogue systems.

• We present a scalable and inductive method for
joint learning of query semantics and structured
user preferences in an end-to-end fashion.

• We show that modeling the high-order relations
in the graph facilitates collaborative learning
from customers’ collective behaviors.

• PAIGE outperforms state-of-the-art baselines
(i.e., 43.8% P@1 increase) while having nearly
10× fewer parameters.

2 Preliminaries

Spoken dialogue systems consist of many sequen-
tial components. When a user interacts with their
device, the agent’s ASR takes the audio signal as in-
put and transcribes it into textual utterance (query).
Next, the transcript enters the NLU module that
interprets it so that the downstream modules can
satisfy the user’s request. An NLU component typ-
ically consists of domain and intent classification
and entity linking, executed sequentially. As a pre-
processing step for later modules in the dialogue
system, the NLU module is instrumental to the sys-
tem’s overall quality. One of the challenges in
the NLU module is handling ambiguity or errors
cascading from the previous components. Query

Rewriting (QR) component tackles this issue by re-
placing the ASR transcript with an alternative that
leads to a satisfactory response for the user. Once
the NLU pipeline receives a rewrite, regular data
flow resumes.

2.1 Interactions Data Selection
As hand-annotating a large set of query-rewrite
pairs is expensive, we use weakly-labeled data dur-
ing training. Inspired by Fan et al. (2021) and Cho
et al. (2021), we leverage users’ feedback to collect
the datasets. For example, if a user barged in or
stopped the agent’s response, the turn is defective.
The details are available in Appendix A.

3 Graph Construction

The first step is building a heterogeneous graph
from user-agent interactions expressed as text and
semi-structured metadata. The graph will provide
the computational architecture for the message
passing algorithm.

Heterogeneous Graph (HG; Sun and Han (2013)).
HG is defined as a directed graph G = (V, E) with
a node type mapping function τ : V → A and a
link type mapping function ψ : E → R, where each
node v ∈ V belongs to one particular node type
τ(v) ∈ A, each link ε ∈ E belongs to a particular
relation ψ(ε) ∈ R, |A|+|R| > 2, and if two links
belong to the same relation type, the two links have
the same starting node types and ending node types.

3.1 Design Motivation
A simple way to build an interactions graph would
be to link users with their utterances and the defec-
tive utterances with their rewrites. Unfortunately,
such an approach produces a sparse graph due to
the high degree of linguistic variance in the utter-
ances and fails to capture users’ entity and domain
level preferences. However, GNNs require suffi-
cient connectivity to be effective because their effi-
cacy stems from feature propagation and smooth-
ing across the graph’s edges (Zhang et al., 2021).

NLU-Hypothesis. To abstract away syntactic vari-
ance in users’ requests, we group queries with sim-
ilar meaning by parsing them into structured repre-
sentations called NLU-hypotheses using the agent’s
NLU module. Each hypothesis takes the form of
“domain | intent | slot_type:slot_value.” The domain
is the general topic of a query, e.g., “Weather.” The
intent reflects the action the user wants to take,
e.g., “PlayMusic.” Finally, the slot types/values

409

Pop

Adele

Pop Smoke

Skyfall

Hello1

Hip-Hop

Hello2

User1

User2

User3

Put on Skyfall by Adele

Play Hello

Play Hello by Adele

Play Hello

TARGET NODE

Music|PlayMusic|Hello|Adele

Music|PlayMusic|Skyfall|Adele

Music|PlayMusic|Hello|PopSmoke

Put on Hello by Adele

TARGET NODE

Music

PlayMusic

Figure 1: Customer interactions graph augmented with external knowledge. Knowledge enhances collaborative
learning across users to enable reasoning-powered affinity/preference prediction. The goal is to map the two
occurrences of an ambiguous utterance, Play Hello, to their respective interpretations (NLU-Hypotheses) for
user1 (red nodes) and user3 (yellow nodes). To achieve this, PAIGE utilizes message passing over paths such
as (Hello, Adele, user1, Play Hello), and (Hello, Pop Smoke, user3, Play Hello) for the two users. Nodes for
non-defective queries are shared among users, e.g., Play Skyfall by Adele (top, green).

are results of entity labeling from the NLU mod-
ule. To illustrate, the queries “Play Hello by Adele”
and “Put on Hello by Adele” map to the same hy-
pothesis: “Music | PlayMusic | SongName:Hello |
ArtistName:Adele.” We use the hypotheses’ fields
as “semantic units” and assign them nodes to in-
duce a dense graph with a rich set of relations.

3.2 Graph Schema

Every distinct hypothesis, h ∈ H, is assigned a
node in the graph. Moreover, we create a node for
each unique domain, intent, and entity (slot), and
link them to the nodes representing the hypotheses
in which they occur. Additionally, as illustrated in
Figure. 1, edges in our graph connect users, U , to
their respective utterances, T , and the utterances
to their corresponding hypotheses, H. The NLU-
hypothesis nodes act as sub-graph pooling nodes
and represent groups of equivalent queries and their
side information, whereas the utterance nodes rep-
resent the individual queries. The utterance nodes
do not need to be stored after training; instead, they
can be created on the fly to keep the adjacency ma-
trix up to date since PAIGE uses inductive encoders
for nodes with textual input features (§4.1).

There are two types of utterance nodes in our
graph: non-defective and defective. Including de-
fective queries in the graph allows to explicitly
model users’ rephrase behaviors. We use historical

query-rewrite pairs to replace the hypotheses of de-
fective queries with the ones generated for their re-
spective rewrites. In general, utterances with differ-
ent NLU hypotheses map to different nodes, even
if they have the same text, e.g., the two “Play Hello”
nodes in Figure 1. For non-defective queries, c ∈ C,
with identical text and NLU-hypothesis, we create a
single utterance node to represent their text for all
users, e.g., a single “Play Skyfall by Adele” node in
Figure 1 is shared by two users. For a defective ut-
terance, b ∈ B, we create a distinct defect node for
each user for whom the utterance caused friction.
Consequently, each defect node has a single incom-
ing edge from the author’s user node, and only the
information relevant to the defective query’s au-
thor directly affects the embedding of that query.
At inference, we create a new defect node for an
utterance that is not found in the user’s dialogue
history. Our task is to predict links between the new
utterance nodes and the nodes associated with their
NLU-hypotheses. Once the NLU-hypothesis node is
predicted, we can simply follow the graph’s edges
to select the most frequent non-defective utterance
that maps to that NLU-hypothesis as our rewrite.

Factual Knowledge. We align the entity nodes in
our graph with nodes in a knowledge graph (KG).
A KG is an instance of a heterogeneous graph that
consists of real-world entities and their relation-

410

ships. A KG is organized into (vi, r, vj)-triples,
where vi, vj ∈ V are the entities, and r ∈ R is the
relation type, e.g., (Adele, AUTHOROF, Hello).

Grounding the model in an explicit representa-
tion of knowledge facilitates rewrites that require
understanding relationships that are not obvious
from the user’s dialogue history alone, i.e., users’
implicit preferences. We link the nodes correspond-
ing to named entities found in each user’s queries
with the corresponding user nodes. As a result,
the information from KG propagates through the
user nodes to the utterance nodes. Crucially, as
described above, entities are also connected to the
NLU-hypotheses. Since GNN acts as neighborhood
smoothing, our model favors the NLU-hypotheses
with neighborhoods that contain entities relevant to
the user who submits the query.

4 PAIGE Model

Computing node representations involves two steps:
using specialized encoders to generate nodes’ input
features and applying message-passing layers to
enable the features to interact and coalesce. In the
message-passing step, we use relation-specific con-
volutional modules that aggregate feature vectors
of the neighboring nodes. These modules learn to
aggregate information from the node’s immediate
neighborhood, and stacking K such operations ef-
fectively convolves features across the K-th order
neighborhood, i.e., representations of nodes depend
on all the nodes that are at most K edges away.

4.1 Input Features

PAIGE uses dedicated encoders for different types
of nodes to produce input embeddings for the GNN.
Our inductive feature encoding design permits up-
dates to the graph’s structure without expensive
model retraining, i.e., adding nodes for users, en-
tities, and utterances. Thus, PAIGE can adapt to
evolving user interests and world knowledge.

A major scalability challenge for end-to-end
training of our model lies in encoding textual
inputs. The reason is that the number of utter-
ances needed to produce embeddings for a graph’s
nodes grows exponentially with the number of
GNN layers. Therefore, we encode textual inputs,
ti ∈ T , for the utterance nodes, τ(vi) ∈ T , us-
ing a lightweight, two-layer Bidirectional Gated
Recurrent Unit (BiGRU) network.

The domain and intent nodes are the only node
types for which we use a fixed vocabulary; this

is feasible because both sets change infrequently
and amount to fewer than 10K vectors. While
previous works tend to use fixed-size embedding
tables for users or entities (Wang et al., 2019b),
such an approach prohibits dynamic updates to the
graph’s structure (e.g., adding new users). Instead,
we embed historical queries using a pre-trained
RoBERTa-base model (Liu et al., 2019), and rep-
resent: i) users with the mean of embeddings of
their previous queries; ii) entities with the mean of
embeddings of queries in which they appear. The
parameters of RoBERTa are fixed during training
to prevent temporary trends in training data from
leaking into initial entity representations.

Formally, a feature encoder encτθ embeds a node
v ∈ V with type τ(v) ∈ A as xτ = enc(τ)θ(v),
where xτ ∈ Rdτ is a dense feature vector. As
the nodes come from different distributions, each
feature encoder contains a fully connected feed-
forward network that is applied to each node sepa-
rately and identically to project vectors to a shared
embedding space before the GNN layers.

h(0)
τ = ϕ

(
xτW

(1)
τ + b(1)τ

)
W (2)

τ + b(2)τ , (1)

where h
(0)
τ ∈ Rdgnn is a node embedding, and

W
(1)
τ ∈ Rdτ×dffn , W (2)

τ ∈ Rdffn×dgnn , b(1)τ ∈
Rdfnn , b

(2)
τ ∈ Rdgnn are learnable parameters,

and ϕ is a GELU activation (Hendrycks and Gim-
pel, 2016). We train feature encoders, except for
RoBERTa, jointly with the graph neural network to
enable each module to learn from other modalities.

4.2 Graph Encoder

In each layer, PAIGE propagates latent node feature
information across edges of the graph while taking
into account the type of an edge (Schlichtkrull et al.,
2018). A single message-passing layer takes the
following form

h̄
(k+1)
i = ϕ


∑

r

∑

j∈N i
r

Wrh
(k)
j

cijr
+

h
(k)
i

cir


 , (2)

where h̄
(k)
i ∈ Rdgnn is the hidden state of node vi

in the k-th layer of the neural network, r is a re-
lation type, W (k)

r ∈ Rdgnn×dgnn is a relation-type
specific parameter matrix, ϕ is a Leaky-ReLU acti-
vation, and cir and cijr are normalization constants.

To avoid over-smoothing, we apply residual con-
411

nections around each GNN layer,

h
(k+1)
i = α(k)GNN(h

(k)
i) + (1− α(k))h

(k)
i ,

(3)

where α(k) is a learnable scalar parameter.
Finally, we concatenate the representations of

utterance nodes, t ∈ T , from the BiGRU and GNN
and pass the result through a feedforward network,

hout
vi∈T = ϕ([BiGRU(vi) ∥GNN(vi)]W + b)

(4)

where [·∥·] is concatenation, W ∈ R(2·dgnn)×dgnn

and b ∈ Rdgnn are parameters, and ϕ is a Leaky-
ReLU activation. Our experiments show that con-
catenating the input and output embeddings of the
GNN improves the QR performance by up to 5.5%.

4.3 Graph Decoder

Once the encoder maps each node vi ∈ V to an
embedding, hi, the goal of the decoder is to use
these embeddings to predict labeled links in the
graph. In particular, the decoder scores a (vi, r, vj)-
triplet using a function g to represent how likely it
is that the hypothesis associated with vj is the right
interpretation of the utterance associated with vi.

g(vi, r, vj) =
∑

m

(him ⊙ r ⊙ hjm) , (5)

where⊙ is element-wise multiplication, r ∈ Rdgnn

is a parameter vector, hi,hj ∈ Rdgnn are embed-
dings of the source and target nodes, respectively.

4.4 Model Training

We train PAIGE on the link prediction task using
binary cross-entropy loss with negative sampling.
We sample N negative targets for each observed
triple in the training set. By sharing the negative
samples within each batch of size B, we obtain
N ×B negative targets for each positive triple.

The adjacency list and the feature matrix for the
nodes reside in CPU memory due to their large
memory footprint. We uniformly sample a fixed
number of neighbors to convolve over in eq. 2
to control the memory consumption. The train-
ing procedure employs multiple CPU processes
for neighborhood sampling, subgraph construction,
feature extraction, and negative sampling, which
then feed the constructed mini-batches to GPUs
running model computations in parallel.

Data Split Train Dev Test Human Annotated

of Examples 630K 89K 178K 1K

Table 1: Data summary.

Model Precision@N (%)

P@1 P@5 P@10

RoBERTa 28.3 47.1 54.5

PAIGE-BoW 34.9 57.3 65.0
PAIGE-BiGRU 36.9 59.0 66.6

PAIGE (BiGRU ∥GNN) 40.8 64.5 71.8

Table 2: PAIGE outperforms the RoBERTa-based base-
line. The PAIGE-BoW and PAIGE-BiGRU remove the
concatenation of the representations from the text and
graph encoders; PAIGE-BoW uses Bag-of-Words en-
coder instead of BiGRU.

We compute RoBERTa embeddings for histori-
cal utterances offline and place them in Redis in-
memory data store. The in-memory storage pro-
vides the CPU workers with fast access to the in-
put features for a minibatch. This allows us to
avoid repeated computation of utterance embed-
dings needed to produce the initial representations
for the user and entity nodes.

4.5 Inference

Our graph design offers highly efficient inference
as the representations of nodes added for incoming
utterances do not affect other nodes in the graph.
For an utterance node created at runtime, the only
outgoing edge is the self-loop, and the only incom-
ing edge is from the author’s user node. Thus, we
can cache the representations for the users’ nodes
from each GNN layer and compute the convolu-
tions in eq. 2 only for the new utterance node. We
cache the representations of the NLU-hypothesis
nodes multiplied with the decoder’s relation param-
eter vector, r in eq. 5, and use efficient Maximum
Inner Product Search to select the rewrite.

5 Experiments

Here we evaluate PAIGE and empirically validate
its performance. We begin with a quantitative as-
sessment on general QR, followed by an evaluation
on personalized use-cases.

5.1 Experimental Setup

Given a defective query, our task is to retrieve rele-
vant rewrites from a large pool of candidates. The
embeddings inferred by a model for a given user’s

412

Model
User Index Global Index

P@1 P@5 P@1 P@5 P@10

RoBERTa 78.0 98.2 28.9 47.0 54.27
PAIGE 82.1 98.4 43.41 66.5 73.6

Table 3: Rewrite precision (%) in a mock setting where
all target rewrites are among the previous queries of the
user who issued the query. Performance gains from our
model increase when rewrite candidates are not limited
to the user’s previous queries (User Index) and a Global
Index storing queries from all users is used.

RoBERTa PAIGE

Precision@1 77.9% 79.4%

Table 4: Rewrite precision on the human annotated
dataset with rewrite candidates confined to individual
users’ past queries.

queries are evaluated on future rewrite actions of
that user. Table 1 summarizes our datasets. We con-
struct the datasets following the procedure detailed
in Section 2.1 and Appendix A. The implementa-
tion details and hyperparameters are available in
Appendix B. We follow previous works and eval-
uate models using Precision@N (P@N) metrics.
The P@N measures if at least one rewrite among
the first N retrieved candidates matches the tar-
get’s utterance or NLU hypothesis. We implement
the retriever from Fan et al. (2021) as our baseline
but replace the Deep Structured Semantic Mod-
els (DSSM; Huang et al., 2013) with a pre-trained
RoBERTa-base encoder to make it stronger. The
baseline neural encoder takes a query’s text as in-
put and learns to minimize cosine distance between
the embeddings of the query and the rewrite. The
pre-trained model is fine-tuned on the dataset used
to train PAIGE.

5.2 Results
Table 2 shows that PAIGE outperforms the base-
lines by 12.5–17.3%, indicating the efficacy of our
personalized query embeddings. We observe the
largest absolute gain of 17.3% for P@10, and the
largest relative gain of 43.8% for P@1.

Query’s semantics and graph’s topology are
complimentary. Ablation results in Table 2 show
that feeding query embeddings from GNN to the
decoder without first concatenating them with ut-
terance representations from GRU results in a large
drop in performance of up to ∼5.5%. Removing
the concatenation step and replacing GRU with less

Model Precision@N (Relative change %)

P@1 P@5 P@10

RoBERTa 25.7 47.3 55.7
PAIGE 28.5 (+10.9) 54.5 (+15.3) 63.0 (+13.1)

Table 5: Rewrite precision (%) on a dataset of query–
rewrite pairs such that the rewrites do not appear in the
user’s dialogue history.

expressive Bag-of-Words (BoW) encoder for tex-
tual input features decreases performance only by
additional ∼2%. Finally, all graph-based models
outperform the RoBERTa-based baseline.

PAIGE improves personalized QR. To evalu-
ate how well representations from PAIGE reflect
users’ proclivities, we evaluate models on a dataset
of defective queries with rewrites that are among
the user’s previous requests. We consider two set-
tings: 1) limiting rewrite candidates to individ-
ual users’ past queries (User Index), and 2) using
a global candidate index storing queries from all
users (Global Index). The former setting is an easier
task as the indexes for individual users typically
contain ∼ 100 utterances while the latter uses a
global index that contains ∼4.5M unique requests
mapping to ∼2.2M hypotheses.

Table 3 shows that both models work well when
the index is confined to the user’s past queries. No-
tably, PAIGE offers nearly 4% higher P@1, open-
ing promising avenues for future work on consoli-
dating the retrieval and ranking steps into a single
model. The performance gap increases dramati-
cally when attempting rewrites from a global index
storing queries from all users — i.e., compared to
RoBERTa, PAIGE improves P@1 by 14.4% and
P@10 by 19.3% (Table 3, Global Index).

For a more comprehensive evaluation of PAIGE,
we evaluate models on a test set consisting of query–
rewrite pairs identified by human annotators (1K
examples). As in the previous paragraph, the hu-
man annotated dataset consists of defective queries
for which rewrites can be found among the individ-
ual users’ historical requests. We confined rewrite
candidates to the user’s past queries (User Index
setting). PAIGE achieves 79.4% P@1 on this test
set compared to 77.9% from RoBERTa (Table 4).

PAIGE generalizes to unseen user preferences.
To check if our model generalizes to unseen user
preferences, we evaluate it on a set of query –
rewrite pairs such that the rewrites do not appear
in the user’s dialogue history. We use examples

413

from entertainment domains that contain entities
like songs and movies and tend to reflect users’
affinities. Table 5 shows that our model offers up
to 15.3% relative precision improvement over the
baseline in this setting. This result is noteworthy
since most traffic comes from entertainment do-
mains.

6 Related Work

Non-personalized QR. Several prior studies have
investigated the QR problem in a non-personalized
context. Statistical QR models have been deployed
in Alexa (Ponnusamy et al., 2020) and Google
voice search (Sodhi et al., 2021). In their seminal
work, Ponnusamy et al. (2020) apply an Absorbing
Markov Chain (AMC) model as a collaborative fil-
tering mechanism to mine reformulation patterns
from sequences of user queries. At inference, an
exact text match with a defect query in the index
mined offline triggers a rewrite to the correspond-
ing reformulation. Although statistical QR models
are efficient at inference, they are transductive —
limited to a fixed set of utterances — and do not
generalize to unseen queries. Building on the work
of Ponnusamy et al. (2020), Yuan et al. (2021) re-
place the Markov Chain with a GNN to capitalize
on the distributed query representations, however,
their method is still transductive. To facilitate infer-
ence on unseen queries, Chen et al. (2020) train a
RoBERTa (Liu et al., 2019) encoder on a QR cor-
pus. Other than the lack of personalization, the
main limitation of these NR methods is that they
treat each interaction independently, with side infor-
mation encoded implicitly in the model’s parame-
ters. Recent studies show that performance of such
methods tends to suffer when inputs contain rare
words (Schick and Schütze, 2020; Biś et al., 2021)
or spurious patterns (McCoy et al., 2019) such as
common misconceptions (Podkorytov et al., 2021).
PAIGE, on the other hand, uses the rich connectivi-
ties within the interactions graph and KG to refine
the query representations.

Personalized QR. Fan et al. (2021) propose a
Neural Retrieval NR-based personalized QR system.
Through A/B testing on Alexa traffic, they demon-
strate that the personalized approach improves user
satisfaction relative to the non-personalized base-
line. Fan et al. (2021) build a unique index for
each user from the user’s personal query log. They
also build a global index storing historical queries
from all customers. For each index type, dedicated

neural encoders are trained to retrieve rewrite can-
didates, which are then ranked by an arbitration
model. Cho et al. (2021) extend personalization
to the ranker, providing it with user-specific fea-
tures. As in the case of non-personalized NR, these
models rely on user-agnostic query embeddings. In
comparison, PAIGE selects rewrites using query
representations that depend on users’ prior experi-
ences.

Graph Neural Networks. GNNs use input
graph structures as computational architectures that
aggregate neighborhood information to produce
contextual representations for the nodes (Kipf and
Welling, 2017; Schlichtkrull et al., 2018). In rec-
ommendation systems, GNNs operate on collab-
orative knowledge graphs that combine user-item
interactions and structured knowledge (Wang et al.,
2019b, 2020) to predict users’ interests. These
methods model the relations between interactions
to learn from the customers’ collective behaviors
and alleviate issues caused by sparsity in interac-
tions data (Wang et al., 2019b). While these studies
tend to use bipartite graphs, PAIGE supports any
graph structure. Other works use GNNs to model
language and KGs together (Ghazvininejad et al.,
2018; Talmor et al., 2019; Yang et al., 2020; Zhang
et al., 2022). In comparison, PAIGE jointly models
the language, knowledge, and user interactions.

7 Limitations

PAIGE enables rewrite retrieval from a global set
of reformulation candidates but not all defects will
be covered by the index. Considering this, a gener-
ative approach to the problem (Roshan-Ghias et al.,
2020) offers an advantage but generative models
pose quality control challenges in production sys-
tems, where issues like hallucinations (Lee et al.,
2018) could have harmful effects.

8 Conclusion and Future Work

We put forward a graph-based framework for learn-
ing user affinities from their interactions with con-
versational AI agent. The proposed framework
learns directly from user feedback and requires
no human annotated data. Through extensive ex-
periments on real-world conversations, we demon-
strate that our proposed PAIGE improves the per-
formance of QR systems and, as a result, reduces
friction in users’ interactions with the AI agent.

414

References
Daniel Biś, Maksim Podkorytov, and Xiuwen Liu. 2021.

Too much in common: Shifting of embeddings in
transformer language models and its implications. In
NAACL.

Zheng Chen, Xing Fan, and Yuan Ling. 2020. Pre-
training for query rewriting in a spoken language
understanding system. In ICASSP.

Eunah Cho, Ziyan Jiang, Jie Hao, Zheng Chen, Saurabh
Gupta, Xing Fan, and Chenlei Guo. 2021. Person-
alized search-based query rewrite system for con-
versational ai. Proceedings of the 3rd Workshop on
Natural Language Processing for Conversational AI.

Xing Fan, Eunah Cho, Xiaojiang Huang, and Chenlei
Guo. 2021. Search based self-learning query rewrite
system in conversational ai. In 2nd International
Workshop on Data-Efficient Machine Learning (De-
MaL).

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neu-
ral conversation model. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

David Goldberg, David A. Nichols, Brian M. Oki, and
Douglas B. Terry. 1992. Using collaborative filtering
to weave an information tapestry. Commun. ACM,
35:61–70.

Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavl-
jevic, Fabrizio Silvestri, and Narayan Bhamidipati.
2015. Context-and content-aware embeddings for
query rewriting in sponsored search. In SIGIR.

Saurabh Gupta, Xing Fan, Derek Liu, Benjamin Yao,
Yuan Ling, Kun Zhou, Tuan-Hung Pham, and Chen-
lei Guo. 2021. Robertaiq: An efficient framework
for automatic interaction quality estimation of dia-
logue systems. In 2nd International Workshop on
Data-Efficient Machine Learning (DeMaL).

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
International Conference on Information & Knowl-
edge Management, CIKM ’13, page 2333–2338, New
York, NY, USA. Association for Computing Machin-
ery.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fan-
njiang, and David Sussillo. 2018. Hallucinations in
neural machine translation. In Interpretability and

Robustness in Audio, Speech, and Language Work-
shop, (NeurIPS 2018).

Yuan Ling, Benjamin Yao, Guneet Kohli, Tuan-Hung
Pham, and Chenlei Guo. 2020. Iq-net: A dnn
model for estimating interaction-level dialogue qual-
ity with conversational agents. In Proceedings of
KDD Workshop on Conversational Systems Towards
Mainstream Adoption.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3428–3448.

Maksim Podkorytov, Daniel Biś, and Xiuwen Liu. 2021.
How can the [mask] know? the sources and limi-
tations of knowledge in bert. In 2021 International
Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE.

Pragaash Ponnusamy, Alireza Roshan Ghias, Chenlei
Guo, and Ruhi Sarikaya. 2020. Feedback-based self-
learning in large-scale conversational ai agents. In
AAAI.

Alireza Roshan-Ghias, Clint Solomon Mathialagan, Pra-
gaash Ponnusamy, Lambert Mathias, and Chenlei
Guo. 2020. Personalized query rewriting in conver-
sational ai agents. ArXiv, abs/2011.04748.

Timo Schick and Hinrich Schütze. 2020. Bertram: Im-
proved word embeddings have big impact on contex-
tualized model performance. In ACL.

M. Schlichtkrull, Thomas Kipf, Peter Bloem, Rianne
van den Berg, Ivan Titov, and Max Welling. 2018.
Modeling relational data with graph convolutional
networks. ArXiv, abs/1703.06103.

Sukhdeep Sodhi, Ellie Ka-In Chio, Ambarish Jash,
Santiago Ontan’on, Ajit Apte, Ankit Kumar, Ay-
ooluwakunmi Jeje, Dima Kuzmin, Harry Fung, Heng-
Tze Cheng, Jonathan J. Effrat, Tarush Bali, Nitin Jin-
dal, Pei Cao, Sarvjeet Singh, Senqiang Zhou, Tameen
Khan, Amol Wankhede, Moustafa Alzantot, Allen
Wu, and Tushar Chandra. 2021. Mondegreen: A
post-processing solution to speech recognition error
correction for voice search queries. Proceedings of
the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

415

Yizhou Sun and Jiawei Han. 2013. Mining hetero-
geneous information networks: a structural analy-
sis approach. Acm Sigkdd Explorations Newsletter,
14(2):20–28.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Ling-
fan Yu, Yu Gai, Tianjun Xiao, Tong He, George
Karypis, Jinyang Li, and Zheng Zhang. 2019a. Deep
graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint
arXiv:1909.01315.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and
Tat-Seng Chua. 2019b. Kgat: Knowledge graph at-
tention network for recommendation. In Proceedings
of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 950–
958.

Ze Wang, Guangyan Lin, Huobin Tan, Qinghong
Chen, and Xiyang Liu. 2020. CKAN: Collabora-
tive Knowledge-Aware Attentive Network for Rec-
ommender Systems, page 219–228. Association for
Computing Machinery, New York, NY, USA.

Zhuoyi Wang, Saurabh Gupta, Jie Hao, Xing Fan,
Dingcheng Li, Alexander Hanbo Li, and Chenlei
Guo. 2021. Contextual rephrase detection for reduc-
ing friction in dialogue systems. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1899–1905, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Shiquan Yang, Rui Zhang, and Sarah Erfani. 2020.
GraphDialog: Integrating graph knowledge into end-
to-end task-oriented dialogue systems. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1878–1888.

Siyang Yuan, Saurabh Gupta, Xing Fan, Derek Liu,
Yang Liu, and Chenlei Guo. 2021. Graph enhanced
query rewriting for spoken language understanding
system. In ICASSP.

Wentao Zhang, Yuezihan Jiang, Yang Li, Zeang Sheng,
Yu Shen, Xupeng Miao, Liang Wang, Zhi Yang, and
Bin Cui. 2021. Rod: reception-aware online distil-
lation for sparse graphs. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pages 2232–2242.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D Manning,
and Jure Leskovec. 2022. GreaseLM: Graph REA-
Soning enhanced language models. In International
Conference on Learning Representations.

A Data Collection

We first find two consecutive user utterances in
which the first turn was defective and the second
was successful. To this end, we use defect detec-
tion models from Ling et al. (2020) and Gupta
et al. (2021), and rephrase detectors from Wang
et al. (2021). Moreover, we gather rewrites based
on n-best hypotheses from ASR. In particular, if
two consecutive user utterances are submitted less
than t seconds apart and the first turn’s ASR n-best
(n > 1) is the same as the second turn’s ASR 1-best,
we deem them rephrases. Finally, we apply rule-
based filters to reduce noise in the data. We retain
examples for which the edit distance between the
two turns is less than d, and the time gap between
the two turns is shorter than t seconds. We em-
pirically set the t= 45, d= 7 to reduce noise and
maintain the opportunity.

B Implementation Details

We implement PAIGE using Deep Graph Li-
brary (DGL) (Wang et al., 2019a). We set the
GNN’s dimension (dgnn = 256) and number of
GNN layers (L = 3). We use the batch size
(B = 512) and the number of negative samples
per training example (N = 32). With the in-
batch sharing of corrupted triples, this results in
(N ×B = 16384) negatives per example. The pa-
rameters of the model are optimized by AdamW
with weight decay 1e− 3. We use a warmup proce-
dure that linearly increases the learning rate from
0. to 1e− 3 over the first 2000 training steps. Af-
terward, the learning rate decreases following the
values of the cosine function. We use a dropout
rate of 0.1 applied to each layer (Srivastava et al.,
2014). The models are trained using eight GPUs
(NVIDIA V100) with total memory of 256GB,
which takes ∼20 hours on average.

C Additional Results

In Table 6 we report examples of faulty queries
for which PAIGE provides correct rewrites but the
baseline is unable to correct the defects.

416

Defective Query RoBERTa Rewrite PAIGE Rewrite

play pop junior clean play pop culture radio clean play pop clean

play downtown baby play bad romance play down down baby

what is the weather in what is the weather today what is the weather in utah

Table 6: Examples of defective queries where PAIGE provides correct rewrites, but the baseline fails to correct the
defects.

D Relationships in the Interactions
Graph

We provide additional details on the node and re-
lation types in PAIGE interactions graphs. Table 7
summarizes node counts and their respective fea-
tures and feature encoders. Table 8 describes the
main relations captured by the graph’s edges.

417

of Nodes Count† Features Encoder End-to-End
Utterance 4.4M Text BiGRU

+ Adapter

√
√

Defect-Utterance 635K

NLU-Hypothesis 2.2M Frequency & Defect-rate MLP + Adapter
√√

User 400K Mean embedding of user’s queries RoBERTa
+ Adapter

×√
Entity 650K Mean embedding of queries w/entity

Domain 38 Embedding Matrix Embeddings
+ Adapter

√
√

Intent 6722

Table 7: Our node encoding strategy allows graph updates without model re-training, e.g., for new knowledge or
users. †The node counts do not include nodes added on-the-fly during evaluation.

Interaction Linking Entities Link Type Description

Affinity Entity-User Directed A user interacts with an entity

Authorship User-Utterance Directed A user submitted an utterance

Realization Utterance-Hypothesis Directed An utterance expresses the hypothesis

Rewrites DefectUtt.-Hypothesis Directed A defect-uttr. maps to non-defective hypothesis

Slot-Value-Rel Entity-Hypothesis Bi-Directed An entity appears in hypothesis

Domain of Domain-Hypothesis Bi-Directed A domain appears in hypothesis

Intent of Intent-Hypothesis Bi-Directed A intent appears in hypothesis

Attribute entity-entity Bi-Directed A relationship between entities

Table 8: Relationships in PAIGE’s Interactions Graph.

418

Proceedings of EMNLP 2022 Industry Track, pages 419–426
December 9–11, 2020. ©2022 Association for Computational Linguistics

Fast Vocabulary Transfer for Language Model Compression

Leonidas Gee
Expert.ai, Italy

lgee@expert.ai

Andrea Zugarini
Expert.ai, Italy

azugarini@expert.ai

Leonardo Rigutini
Expert.ai, Italy

and
University of Siena

lrigutini@expert.ai

Paolo Torroni
Department of Computer Science

and Engineering,
University of Bologna

paolo.torroni@unibo.it

Abstract

Real-world business applications require a
trade-off between language model performance
and size. We propose a new method for model
compression that relies on vocabulary transfer.
We evaluate the method on various vertical do-
mains and downstream tasks. Our results indi-
cate that vocabulary transfer can be effectively
used in combination with other compression
techniques, yielding a significant reduction in
model size and inference time while marginally
compromising on performance.

1 Introduction

In the last few years, many NLP applications have
been relying more and more on large pre-trained
Language Models (LM) (Devlin et al., 2018; Liu
et al., 2019; He et al., 2020). Because larger LMs,
on average, exhibit higher accuracy, a common
trend has been to increase the model’s size. Some
LMs like GPT-3 (Brown et al., 2020) and BLOOM1

have reached hundreds of billion parameters. How-
ever, these models’ superior performance comes
at the cost of a steep increase in computational
footprint, both for development and for inference,
ultimately hampering their adoption in real-world
business use-cases. Besides models that only a few
hi-tech giants can afford, like GPT-3, even smaller
LMs with hundreds of million parameters could
be too expensive or infeasible for certain products.
For one thing, despite being tremendously cheaper
than their bigger cousins, fine-tuning, deploying
and maintaining large numbers of such models (one
for each downstream task) soon becomes too ex-
pensive. Furthermore, latency and/or hardware re-
quirements may limit their applicability to specific

1https://bigscience.huggingface.co/blog/bloom

use-cases. For all these reasons, significant efforts
– in both academic and industry-driven research –
are oriented towards the designing of solutions to
drastically reduce the costs of LMs.

Recently, several attempts have been made to
make these models smaller, faster and cheaper,
while retaining most of their original performance
(Gupta et al., 2015; Shen et al., 2020). No-
tably, Knowledge Distillation (KD) (Hinton et al.,
2015) is a teacher-student framework, whereby the
teacher consists of a pre-trained large model and
the student of a smaller one. The teacher-student
framework requires that both the teacher and the
student estimate the same probability distribution.
While the outcome is a smaller model, yet, this
procedure constrains the student to operate with
the same vocabulary as the teacher in the context
of Language Modeling.

In this work, we explore a method for further
reducing an LM’s size by compressing its vocab-
ulary through the training of a tokenizer in the
downstream task domain. The tokenizer (Sennrich
et al., 2016; Schuster and Nakajima, 2012; Kudo
and Richardson, 2018) is a crucial part of modern
LMs. In particular, moving from word to subword-
level, the tokenization solves two problems: vocab-
ulary explosion and unknown words. Moreover,
the capability to tokenize text effectively in any do-
main is key for the massive adoption of pre-trained
general-purpose LMs fine-tuned on downstream
tasks. Indeed, tokenizers are still able to process
out-of-distribution texts at the cost of producing
frequent word splits into multiple tokens.

However, the language varies significantly in
vertical domains or, more generally, in different
topics. Hence, ad-hoc tokenizers, trained on the
domain statistics, may perform a more efficient to-

419

Figure 1: Sketch of the VT procedure. First, the vocabulary is constructed on the in-domain data, then an embedding
is assigned to each token, transferring information from the pre-trained representations of the general-purpose
language model.

kenization, reducing on average the length of the
tokenized sequences. This is important since com-
pact and meaningful inputs could reduce computa-
tional costs, while improving performance. Indeed,
memory and time complexity of attention layers
grows quadratically with respect to the sequence
length (Vaswani et al., 2017). Furthermore, a ver-
tical tokenizer may require a smaller vocabulary,
which also affects the size of the embedding matrix,
hence further reducing the model’s size.

Following this intuition, we propose a Vocab-
ulary Transfer (VT) technique to adapt LMs to
in-domain, smaller tokenizers, in order to further
compress and accelerate them. This technique is
complementary to the aforementioned model com-
pression methods and independent of the type of
tokenizer. As a matter of fact, we apply it in com-
bination with KD.

Our experiments show that VT achieves an infer-
ence speed-up between x1.07 and x1.40, depend-
ing on the downstream task, with a limited perfor-
mance drop, and that a combination of VT with
KD yields an overall reduction up to x2.76.

The paper is organized as follows. After re-
viewing related works in Section 2, we present
the methodology in Section 3, we then outline the
experiments in Section 4 and draw our conclusions
in Section 5.

2 Related Works

The goal of Model Compression is to shrink and
optimize neural architectures, while retaining most
of their initial performance. Research on LM com-
pression has been carried out following a variety
of approaches like quantization (Gupta et al., 2015;
Shen et al., 2020), pruning (Zhu and Gupta, 2017;
Michel et al., 2019) knowledge distillation (Sanh

et al., 2019; Jiao et al., 2020; Wang et al., 2020),
and combinations thereof (Polino et al., 2018).

A most popular distillation approach in NLP
was proposed by Sanh et al. (2019). The obtained
model, called DistilBERT, is a smaller version of
BERT, with the same architecture but half the lay-
ers, trained to imitate the full output distribution
of the teacher (a pre-trained BERT model). Dis-
tilBERT has a 40% smaller size than BERT and
retains 97% of its language understanding capabil-
ities. This enables a 60% inference-time speedup.
Further compression was achieved by Jiao et al.
(2020) by adding transformer-layer, prediction-
layer and embedding-layer distillation. The result-
ing model, TinyBERT, is 10 times smaller than
BERT, with only four layers and reduced embed-
dings sizes. Related methods were proposed (Sun
et al., 2020; Wang et al., 2020), achieving simi-
lar compression rates. All these works focus on
the distillation of general-purpose language models.
Gordon and Duh (2020) investigated the interaction
between KD and Domain Adaptation.

Little focus has been devoted thus far to the role
of tokenization in the context of model compres-
sion. Even in domain adaptation (Gordon and
Duh, 2020), the vocabulary was kept the same.
Both the versatility of the subword-level tokeniza-
tion, and the constraints imposed by the teacher-
student framework (same output distribution), dis-
couraged such investigations. Recently, Samenko
et al. (2021) presented an approach for transfer-
ring the vocabulary of an LM into a new vocabu-
lary learned from new domain, with the purpose of
boosting the performance of the fine-tuned model.
To the best of our knowledge, we are the first to
study VT in the scope of model compression.

420

3 Vocabulary Transfer

Let us consider a LM, trained on a general-purpose
domain Dgen and associated with a vocabulary
Vgen. Such a vocabulary is used by the LM’s tok-
enizer in order to produce an encoding of the input
string via an embedding matrix Egen defined on
Vgen. More specifically, a tokenizer is a function
that maps a textual string into a sequence of sym-
bols of a given vocabulary V . Let T be a tokenizer
associated with a vocabulary V and a string s, we
have T : s → (t1, . . . , tn), ti ∈ V, ∀i = 1, . . . , n.
Hence, the vocabulary of the tokenizer determines
how words in a text are split, whether as words, sub-
words, or even characters. These symbols, which
define the LM’s vocabulary, are statistically deter-
mined by training the tokenizer to learn the distri-
bution of a dataset.

Now, let us consider a vertical domain Din, also
referred as in-domain. For the reasons discussed
earlier, a vocabulary Vin specialized on Din itself
better fits the language distribution than Vgen. Un-
fortunately, with a new vocabulary, embedding
representations associated with the tokens of Vgen
would be lost. Thus, VT aims to initialize Vin by
re-using most of the information learned from the
LM pre-trained on Dgen. Once the new tokenizer
Tin has been trained on the in-domain dataset Din

using a given vocabulary size, Tin will be differ-
ent from the LM’s tokenizer Tgen. However, the
two tokenizers’ vocabularies Vgen and Vin may still
have a large portion of their symbols in common.
Our objective is to transfer most of the information
from Vgen into Vin. To this end, we first define a
mapping between each symbol in Vin and a set of
symbols in Vgen. Then, we define an assignment
criterion, based on the mapping, to obtain the em-
beddings for the tokens of Tin. The existence of a
meaningful mapping is the only underlying assump-
tion for VT, which holds for all the phonographic
languages.

One such criterion, called Vocabulary Initializa-
tion with Partial Inheritance (VIPI), was defined
by Samenko et al. (2021). Whenever a token is in
Vin but not in Vgen, VIPI calculates all the parti-
tions of the new token with tokens from Vgen, then
takes the minimal partitions and finally averages
them to obtain an embedding for the new token.
Differently, we define a simplified implementation
of VIPI called FVT for Fast Vocabulary Transfer.
Instead of calculating all tokenizations, FVT uses
a straightforward assignment mechanism, whereby

Input:
He was initially treated with interferon alfa.

Tgen:
He, was, initially, treated, with, inter,##fer,
##on, al, ##fa, .

T100:
He, was, initially, treated, with, interferon,
alfa, .

Figure 2: Example of different tokenizations using a
pre-trained or an adapted tokenizer. In the latter case,
domain-specific words are not broken down into multi-
ple word pieces.

Dataset Tgen T100 T75 T50 T25
ADE 31 21 22 23 26

LEDGAR 155 131 131 132 135
CoNLL03 19 17 17 18 20

Table 1: Average sequence length on the three datasets
with different tokenizers. Tgen is the generic tokenizer
(BERT cased), the same in each corpus, while T% are the
tokenizers trained in the vertical domain itself, where %
indicates the percentage of the original vocabulary size
that has been set for training it.

each token ti ∈ Vin is partitioned using Tgen. If ti
belongs to both vocabularies, ti ∈ Vin ∩Vgen, then
Tgen(ti) = ti and the in-domain LM embedding
Ein(ti) is the same as the embedding in the general
LM:

Ein(ti) = Egen(ti). (1)

If instead ti ∈ Vin \ Vgen, then the in-domain em-
bedding is the average of the embeddings associ-
ated with the tokens produced by Tgen:

Ein(ti) =
1

|Tgen(ti)|
·

∑

tj∈Tgen(ti)
Egen(tj). (2)

Please notice that Equation 2 is a generalization
of Equation 1. Indeed, in case ti ∈ Vin ∩ Vgen,
Equation 2 falls back to Equation 1.

Once embeddings are initialized with FVT, we
adjust the model’s weights by training it with MLM
on the in-domain data before fine-tuning it on the
downstream task. MLM eases adaptation and has
already been found to be beneficial in (Samenko
et al., 2021). We observed this trend as well during
preliminary experiments, therefore we kept such a
tuning stage in all our experiments.

As a baseline model, we also implement a
method called Partial Vocabulary Transfer (PVT),

421

whereby only the tokens belonging to both vocab-
ularies ti ∈ Vin ∩ Vgen are initialized with pre-
trained embeddings, while unseen new tokens are
randomly initialized.

Transfer ADE LEDGAR CoNLL03
Tgen 90.80 80.93 89.43

T100 + FVT 90.77 80.60 87.87
T75 + FVT 90.40 80.93 87.90
T50 + FVT 90.07 80.93 86.87
T25 + FVT 90.27 81.03 86.17
T100 + PVT 82.57 80.07 84.53
T75 + PVT 82.47 80.33 84.63
T50 + PVT 83.07 80.23 84.43
T25 + PVT 83.57 80.20 83.47

Table 2: F1 results on the three benchmarks. A pre-
trained language model fine-tuned on the task (Tgen)
is compared with models having differently sized
in-domain tokenizers (T100, T75, T50, T25) adapted by
transferring information with FVT or PVT.

3.1 Distillation
VT can be combined with other model compression
methods like quantization, pruning and KD. For
some of the methods, the combination is trivial,
since they have no impact on the vocabulary. KD,
however, requires the vocabularies of the student
and teacher to be aligned. Hence, its integration
with VT is non-trivial. Accordingly, we set up a
KD procedure with VT, in order to determine the
effects of applying both VT and KD to an LM.

Our distillation consists of two steps. In the first
step, we replicate the distillation process used in
(Sanh et al., 2019) for DistilBERT, in which the
number of layers of the encoder is halved and a
triple loss-function is applied: a distillation loss, a
MLM loss, and a cosine embedding loss. However,
unlike the original setup, we do not remove the
token-type embeddings and pooler. Inspired by
Gordon and Duh (2020), after distilling the student
on Dgen, we further distil the student using Din.
However, instead of adapting the teacher before the
second distillation, we simply distil the student a
second time on the in-domain dataset. Finally, we
apply VT using either FVT or PVT and fine-tune
the student model on the in-domain datasets.

Our choice of applying VT after KD is based on
findings by Kim and Hassan (2020), that different
input embedding spaces will produce different out-
put embedding spaces. This difference in spaces
is not conducive to knowledge transfer during dis-

Distillation
Transfer ADE LEDGAR CoNLL03
Tgen 90.47 78.37 86.90

T100 + FVT 89.47 78.33 84.63
T75 + FVT 88.57 78.90 84.23
T50 + FVT 88.43 79.30 83.80
T25 + FVT 88.23 78.10 83.13
T100 + PVT 79.13 76.97 81.13
T75 + PVT 78.87 76.93 81.40
T50 + PVT 76.30 77.37 81.63
T25 + PVT 77.90 77.33 79.50

Table 3: F1 results on the three benchmarks. A distilled
language model fine-tuned on the task (Tgen) is com-
pared with models having differently sized in-domain
tokenizers (T100, T75, T50, T25) adapted by transferring
information with FVT or PVT.

tillation. Hence, if VT were to be applied first to
the student, its input embedding space would differ
greatly from that of the pre-trained teacher during
distillation.

4 Experiments

In the experiments we measure the impact of FVT
on three main KPIs: quality (F1 score), size of the
models and speedup in inference.

4.1 Experimental Setup
We consider for all our experiments the pre-trained
cased version of BERTbase (Devlin et al., 2018) as
our pre-trained language model. Its tokenizer is
composed of 28996 wordpieces. We then define
four vocabulary sizes for retraining our tokenizers.
Specifically, we take the original vocabulary size
and define it as a vocabulary size of 100%. We sub-
sequently reduce this size to 75%, 50%, and 25%.
From now on, we will refer to such tokenizers as
T100, T75, T50, T25 respectively, while the original
vocabulary will be called Tgen.

Models are fine-tuned for 10 epochs with early
stopping on the downstream task. We set the initial
learning rate to 3 · 10−5 and batch size to 64 for
each task. The sequence length is set to 64 for ADE
and CoNLL03 and 128 for LEDGAR. Each config-
uration is repeated 3 times with different random
initializations. MLM is performed for one epoch.

4.2 Datasets
To best assess the effectiveness of VT, we apply
it on three different tasks from three heteroge-
neous linguistic domains: medical (ADE), legal

422

Figure 3: Sequence length distribution of each tokenizer on ADE, LEDGAR and CoNLL03 (left to right).

(LEDGAR) and news (CoNLL03). Table 4 reports
the dataset statistics.

ADE. The Adverse Drug Events (ADE) corpus
(Gurulingappa et al., 2012) is a binary sentence
classification dataset in the medical domain. This
domain is particularly suitable for investigating the
benefits of VT, since documents are characterized
by the presence of frequent technical terms, such
as drug and disease names, that are usually rare
in common language. Domain-specific words are
usually split into multiple tokens, yielding longer
sequences and breaking the semantics of a word
into multiple pieces. An example is shown in Fig-
ure 2.

LEDGAR. LEDGAR (Tuggener et al., 2020) is a
document classification corpus of legal provisions
in contracts from the US Securities and Exchange
Commission (SEC). The dataset is annotated with
100 different mutually-exclusive labels. It is also
part of LexGLUE (Chalkidis et al., 2022), a bench-
mark for legal language understanding.

CoNLL03. CoNLL03 (Tjong Kim Sang and
De Meulder, 2003) is a popular Named Entity
Recognition (NER) benchmark. It is made of news
stories from the Reuters corpus. We chose this cor-
pus because, differently from ADE and LEDGAR,
the news domain typically uses a more standard
language, hence we expect its distribution to differ
less from the one captured by a general-purpose
tokenizers in the web. Statistics in Table 1 con-
firms this hypothesis. We can observe that the
sequence compression gain obtained with domain-
specific tokenizers is less significant with respect
to LEDGAR and ADE.

4.3 Results
We report an extensive evaluation of FVT on differ-
ent setups and perspectives.

In-domain Tokenization. By retraining the tok-
enizer on the in-domain dataset, the average num-

Dataset Train Validation Test
ADE 16716 3344 836

LEDGAR 60000 10000 10000
CoNLL03 14042 3251 3454

Table 4: Number of examples of each dataset.

Figure 4: F1-score vs model size of VT with or without
KD on ADE. VT and KD together can further compress
a LM’s size in exchange for a limited performance drop.
FVT is better than PVT. A smaller vocabulary size does
not always imply a lower performance.

ber of tokens per sequence decreases since the
learned distribution reduces the number of word
splits, as shown in Table 1. In the medical domain,
which is particularly specialized, we notice a re-
markable 32% reduction of the average number of
tokens per sequence. We expect this to yield a no-
ticeable impact on inference time speedup. Further-
more, we can notice in Figure 3 that the sequence
length distribution shifts to the left for the learned
tokenizers. It can also be observed that by reduc-
ing the vocabulary size of the in-domain tokenizer,
the sequence length distribution will begin to shift
back to the right. Indeed, with fewer tokens in its
vocabulary, the tokenizer will need to break down
words more frequently into subwords.

Vocabulary Transfer. From the results shown
in Tables 2 and 3, we note a few interesting find-
ings. First, FVT vectors initialization method con-
sistently outperforms the baseline PVT, which con-
firms the positive contribution of Equation 2. Sec-

423

Transfer ADE LEDGAR CoNLL03
∆F1 ∆Size Speedup ∆F1 ∆Size Speedup ∆F1 ∆Size Speedup

Tgen 90.80 433.32 1.00 80.93 433.62 1.00 89.43 430.98 1.00
T100 + FVT -0.04 0.00 1.40 -0.41 0.00 1.21 -1.75 0.00 1.07
T75 + FVT -0.44 -5.14 1.35 0.00 -5.14 1.21 -1.71 -5.17 1.07
T50 + FVT -0.81 -10.28 1.32 0.00 -10.27 1.10 -2.87 -10.33 1.02
T25 + FVT -0.59 -15.42 1.20 0.12 -15.41 1.09 -3.65 -15.50 0.99

Distil + Tgen -0.36 -39.26 1.97 -3.16 -39.24 1.97 -2.83 -39.48 1.95
Distil + T100 + FVT -1.47 -39.26 2.76 -3.21 -39.24 2.38 -5.37 -39.48 2.11
Distil + T75 + FVT -2.46 -44.40 2.64 -2.51 -44.37 2.38 -5.81 -44.64 2.11
Distil + T50 + FVT -2.61 -49.54 2.59 -2.02 -49.51 2.16 -6.30 -49.81 2.01
Distil + T25 + FVT -2.83 -54.68 2.37 -3.50 -54.64 2.14 -7.04 -54.98 1.96

Table 5: The first row (Tgen) reports absolute values of the LM fine-tuned on the downstream task without VT or
KD. The rows below show values relative to Tgen.

ond, transferring vocabulary with FVT causes lim-
ited drops in performance, especially in LEDGAR
(the largest one), where F1 slightly increases de-
spite a 75% vocabulary reduction. We observed a
higher degradation in CoNLL03. We believe this
is due to the less specialized nature of the news
domain, whereby the benefits of adapting the vo-
cabulary to it are reduced. Overall, the effects of
FVT on model performance do not have a steadily
decreasing trend, as it might be presumed when
reducing the vocabulary size, as also evident from
Figure 4. In some cases, somewhat surprisingly,
reducing the vocabulary size yields better model
performance. In other cases, a 50% vocabulary
size reduction yields better results than a full scale
reduction or no reduction. Hence, vocabulary size
should be considered as a hyper-parameter, where
the model selection criteria may vary depending on
the application’s KPIs, such as acceptable F1 drop,
disk occupation and delay constraints.

Vocabulary Transfer and Distillation. The re-
sults summarized in Table 3 clearly indicate that
KD is complementary to VT: there is no harm in
applying them together, in terms of performance
on the downstream task. Crucially, this guarantees
a full exploitation of FVT in the scope of language
model compression.

Compression and Efficiency. After showcasing
that VT has limited impact on performance, we
analyze and discuss its effects on efficiency and
model compression. Table 5 reports the relative F1
drop on the downstream task with respect to the
original LM (∆F1), the relative reduction in model
size (∆Size) and the speedup gained by FVT alone

and by FVT combined with KD for varying vocab-
ulary sizes. Either way, FVT achieves a remarkable
15%+ reduction with respect to BERT’s learnable
parameters, with almost no loss in F1.

Furthermore, the reduced input length enabled
by in-domain tokenization brings a reduction in
inference time. The more a language is specialized,
the higher is the speedup with in-domain tokeniz-
ers. This is also confirmed by the experiments,
where the major benefits are obtained on the med-
ical domain, with a x1.40 speedup. In CoNLL03
instead where language is much less specialized,
speedup reduces and even disappears with T25. Dis-
tillation further pushes compression and speedup
in any benchmark and setup, up to about 55% (of
which 15% due to VT) and x2.75 respectively.

In summary, depending on the application needs,
VT enables a strategic trade-off between compres-
sion rate, inference speed and accuracy.

5 Conclusion

The viability and success of industrial NLP applica-
tions often hinges on a delicate trade-off between
computational requirements, responsiveness and
output quality. Hence, language model compres-
sion methods are an active area of research whose
practical ramifications are self-evident. One of the
factors that greatly contribute to a model’s infer-
ence speed and memory footprint is vocabulary
size. VT has been recently proposed for improving
performance, but never so far in the scope of model
compression. In this work, we run an extensive ex-
perimental study on the application of a lightweight
method for VT, called FVT. An analysis conducted
on various downstream tasks, application domains,

424

vocabulary sizes and on its possible combination
with knowledge distillation indicates that FVT en-
ables a strategic trade-off between compression
rate, inference speed and accuracy, especially, but
not only, in more specialized domains. Importantly,
FVT appears to be orthogonal to other model com-
pression methods.

In the future, we plan to fully integrate Vocab-
ulary Transfer within Knowledge Distillation dur-
ing the learning process in order to maximize the
information transfer. We also plan to define a uni-
fied metric that combines all the KPIs, to facilitate
model selection.

Acknowledgments

This work is part of the SCUDO project, which
was funded by the "FESR 2014-2020" Regional
Operational Program of the Tuscany Region (Italy),
Call 2: "Research and development projects of the
SMEs".

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael
Bommarito, Ion Androutsopoulos, Daniel Katz, and
Nikolaos Aletras. 2022. LexGLUE: A benchmark
dataset for legal language understanding in English.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4310–4330, Dublin, Ireland.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Mitchell Gordon and Kevin Duh. 2020. Distill, adapt,
distill: Training small, in-domain models for neural
machine translation. In Proceedings of the Fourth
Workshop on Neural Generation and Translation,
pages 110–118, Online. Association for Computa-
tional Linguistics.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. 2015. Deep learning with lim-
ited numerical precision. In International conference
on machine learning, pages 1737–1746. PMLR.

Harsha Gurulingappa, Abdul Mateen Rajput, Angus
Roberts, Juliane Fluck, Martin Hofmann-Apitius, and
Luca Toldo. 2012. Development of a benchmark

corpus to support the automatic extraction of drug-
related adverse effects from medical case reports.
Journal of Biomedical Informatics, 45(5):885 – 892.
Text Mining and Natural Language Processing in
Pharmacogenomics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. DeBERTa: Decoding-enhanced
BERT with disentangled attention. arXiv preprint
arXiv:2006.03654.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174.

Young Jin Kim and Hany Hassan. 2020. Fast-
Formers: Highly efficient transformer models for
natural language understanding. In Proceedings
of SustaiNLP: Workshop on Simple and Efficient
Natural Language Processing, pages 149–158, On-
line. Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Antonio Polino, Razvan Pascanu, and Dan Alistarh.
2018. Model compression via distillation and quanti-
zation. arXiv preprint arXiv:1802.05668.

Igor Samenko, Alexey Tikhonov, Borislav Kozlovskii,
and Ivan P Yamshchikov. 2021. Fine-tuning
transformers: Vocabulary transfer. arXiv preprint
arXiv:2112.14569.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE
international conference on acoustics, speech and
signal processing (ICASSP), pages 5149–5152.
IEEE.

425

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian based ultra low
precision quantization of BERT. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. arXiv preprint arXiv:2004.02984.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages
142–147.

Don Tuggener, Pius von Däniken, Thomas Peetz, and
Mark Cieliebak. 2020. Ledgar: A large-scale multi-
label corpus for text classification of legal provisions
in contracts. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 1235–
1241.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Advances in neural information
processing systems, 30.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural
Information Processing Systems, 33:5776–5788.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

426

Proceedings of EMNLP 2022 Industry Track, pages 427–438
December 9–11, 2020. ©2022 Association for Computational Linguistics

Multimodal Context Carryover

Prashan Wanigasekara, Nalin Gupta, Fan Yang, Emre Barut, Zeynab Raeesy,
Kechen Qin, Stephen Rawls, Xinyue Liu, Chengwei Su, Spurthi Sandiri

Alexa AI-Natural Understanding, Amazon

{wprasha, nalgupta, fyaamz, ebarut, raeesyzr,

qinkeche, sterawls, luxnyu, chengwes, spurthi}@amazon.com

Abstract

Multi-modality support has become an inte-
gral part of creating a seamless user experience
with modern voice assistants with smart dis-
plays. Users refer to images, video thumbnails,
or the accompanying text descriptions on the
screen through voice communication with AI
powered devices. This raises the need to either
augment existing commercial voice only dia-
logue systems with state-of-the-art multimodal
components, or to introduce entirely new ar-
chitectures; where the latter can lead to costly
system revamps. To support the emerging vi-
sual navigation and visual product selection
use cases, we propose to augment commer-
cially deployed voice-only dialogue systems
with additional multi-modal components. In
this work, we present a novel yet pragmatic
approach to expand an existing dialogue-based
context carryover system (Chen et al., 2019a)
in a voice assistant with state-of-the-art multi-
modal components to facilitate quick deliv-
ery of visual modality support with minimum
changes. We demonstrate a 35% accuracy im-
provement over the existing system on an in-
house multi-modal visual navigation data set.

1 Introduction

Figure 1: Product Selection Use Case

Tracking the state of the conversation and under-
standing context is a crucial component in voice-
based dialogue systems. The Context Carryover

Figure 2: Scene Selection Use Case. The images are
from unsplash.com and used here only for illustrative
purposes.

Figure 3: Video Selection Use Case

(CC) framework (Chen et al., 2019a; Naik et al.,
2018; Sharaf et al., 2018; Rastogi et al., 2019) is
a framework that handles identification and carry-
over of relevant context information in a multi-turn
dialog interaction between a voice assistant and
the user. The CC framework determines which
tokens and intents in the most recent system-user
interaction history are relevant as supporting infor-
mation to fulfill user’s current request. The details

427

of the context carryover framework are well docu-
mented in (Chen et al., 2019a). One key limitation
of the framework is that it is purely text-based, and
therefore it struggles to capture user interactions
that involve visual components. In this work, we
introduce augmentations that enable the Context
Carryover framework to deal with multimodal use
cases. We focus on two specific use cases that’s
related to a user’s visual navigation and selection
experience: Visual product selection and visual
scene and video selection.

Visual product selection, demonstrated in Fig.
1, consists of the use case where the user is referring
to a single product on the screen. In the provided
example, the user is shopping for a handbag and the
voice assistant is displaying a number of handbags
on the screen. The user selects one out of many
handbags on the screen using a referring utterance,
for instance the color of the handbag. The user
is free to use any other natural language phrase
that can differentiate the product from the others
displayed on the screen.

In visual scene and video selection, as seen in
Fig. 2, and Fig. 3, the user can refer to a scene or
movie that has multiple products with a more clut-
tered visual landscape. Here, a “scene image” is
defined as an image of an individual in a landscape
wearing multiple products (dress, hat, purse, sun-
glasses etc.). The user then tries to select a scene
using a referring expression (e.g., “The scene with
the lady in the denim jacket”). In Fig. 3, a movie
can be associated with multiple frames and the user
can refer to the movie by referring to an action or
content from a specific frame.

The main contributions of our work are:

1. We introduce a Vision Augmentation
scheme that enables ingestion of visual
content in a dialogue-based context carryover
framework.

2. We introduce an Aligned Vision and Text
Augmentation that incorporates the latest
state-of-the-art developments in multi-modal
contrastive learning to a dialogue-based con-
text carryover framework.

3. The newly proposed methods result in signif-
icant accuracy improvements on an in-house
data collected through Amazon Mechanical
Turk (MTurk). We present sensitivity analy-
ses that display the effectiveness of the var-
ious suggested model augmentations on our

in-house dataset.

4. We introduce a synthetic data generation
pipeline that generates synthetic visual prod-
uct selection data that helps to train the mod-
els and cuts down on manual annotation and
MTurk survey costs.

2 Related work

Thanks to the advent of Transformer-based models
over the past few years, multimodal representations
have seen significant advances. The types of mul-
timodal models can be roughly categorized into
three, a) Single Encoder (Girshick et al., 2013;
Long et al., 2014; Simonyan and Zisserman, 2014;
Tan and Bansal, 2019; Chen et al., 2019b; Zhang
et al., 2021; Li et al., 2020; Wanigasekara et al.,
2022), b) Dual Encoder (Radford et al., 2021; Li
et al., 2021a; Zhang et al., 2020; Jia et al., 2021;
Yuan et al., 2021), and c) Encoder-Decoder mod-
els (Vinyals et al., 2014; Wang et al., 2021, 2022;
Piergiovanni et al., 2022; Li et al., 2022). Attempts
at unifying these foundational models have also
been made in (Yu et al., 2022; Singh et al., 2021).
Single Encoder models appear early in the multi-
modal literature and pave the way for the other 2
types of models. For this family of models, usually
the image and text representations exist in sepa-
rate spaces and there is an ensuing fusion layer.
Dual Encoder models leverage image-text con-
trastive loss (Oord et al., 2018; He et al., 2019;
Chen et al., 2020; Tian et al., 2019) during train-
ing, exhibit higher image-to-text alignment and
bring the image, text representations to a common
more aligned representation space. They perform
well on image-text retrieval tasks but underperform
in vision-language understanding tasks requiring
higher reasoning, e.g., Visual Question Answering
(VQA), and Natural Language Inference (NLI).

Our current task of Multimodal Context Carry-
over uses the latest advances in the multimodal
representation learning space and injects state-of-
the-art components with minimal changes into a
framework for dialog tracking and slot selection,
and results in a system that can handle multimodal
user-system dialog interaction. Our current multi-
modal use cases are set up to be similar to a text-
to-image retrieval task that occur within the con-
text of a user-system dialog interaction. Thus, we
incorporate the latest developments in Dual En-
coder design in our work, since the approach is
well suited for the multimodal text-to-image re-

428

trieval step. The latest state-of-the-art models that
incorporate multimodal representations to dialogue
state tracking systems, e.g., VDST (Pang and Wang,
2019), Flamingo (Alayrac et al., 2022), and VDTN
(Le et al., 2022), would require costly system re-
vamps.

Recently, Kottur et al. (2021) released a novel
multimodal conversation dataset with labeled dia-
logue state (e.g., entity and dialogue act), which
motivated further studies (Garcia et al., 2022; Agar-
wal et al., 2021). These datasets contain dialog act
and products but do not have the scene and video
information required for our purposes. For our cur-
rent study we resort to collecting our own dataset
through Amazon Mechanical Turk which is catered
for our commercial needs.

3 Models

3.1 Problem Formulation

Each interaction between the user and the sys-
tem can be formulated as a sequence of utter-
ances �, consisting of alternating utterances be-
tween the user * and the system (: � =
(ℎ*0 , ℎ

(
1 , ℎ

*
2 ,, ℎ

{*,(}
38BC), where each element ℎ ∈

� is an utterance either by the user, ℎ* or the sys-
tem, ℎ(. We refer to � as the dialog history. A
subscript 38BC denotes the utterance distance, which
measures the offset from the most recent user ut-
terance (ℎ*0). The 8Cℎ token of an utterance with
distance 38BC is denoted as ℎ38BC [8].

Each utterance in the dialog history, � consists
of slots. A slot G = (38BC, :G , EG) in a dialog is de-
fined as a key-value pair that contains information
about an entity. For e.g., in Fig. 1 the user says,
“Show me the one with the brown handle”. Here
one of the slots would be [COLOR:Brown]. Each
slot is defined by the distance of it’s corresponding
utterance 38BC, slot key :G and slot value EG . We
refer to - as the context slots which comprise of
all the slots in the dialog history.

In addition to the context slots - which are de-
rived from the dialogs, we also have on-screen lists
which can be present in the current turn as shown
in Fig. 1. Users can reference items in these lists
either through visual features or through references
to the title, e.g., “Canvaslove Rose one ...”. A list
object ; = (:;, E;, �;) in the current turn is defined
as a key-value pair along with the associated image.
The key :; in our case is ProductTitle, the value E;
is the title itself and �; refers to the image associ-
ated with the list object. We refer to ! as all the list

objects in the current turn.
Given the dialog history �, context slots - and

the on-screen list !, we can define the candidate
slots as � = (- ∪ !). The task can be formulated as
correctly identifying the subset of candidate slots
� which are relevant to the current turn. A binary
decision is made jointly over each of these can-
didate slots � by the model �9>8=C , which takes
the slot interdependencies into consideration, i.e.,:
�9>8=C (�, �) = �20AA H , where �20AA H ⊆ �.

The full details of the context carryover (CC)
architecture which forms our baseline are provided
in Appendix A.1. The baseline solution is not ca-
pable of ingesting visual content and hence cannot
perform selection based on visual features. In Sec-
tion 3.2, we introduce the vision and vision aligned
text augmentations to the CC model, which add
the capability to process visual features and are the
main contributions of this paper.

3.2 Augmentations

3.2.1 Vision Augmentation

Recently CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021), ALBEF (Li et al., 2021b), ConVIRT
(Zhang et al., 2020) train dense, aligned image-text
embeddings using contrastive loss. The training re-
quires having # matched (image, text) pairs where
the text can be free form. The bidirectional con-
trastive losses for the 8Cℎ image-text pair is given
in equation 1 and equation 2 in Appendix A.2. The
image and text are projected onto a shared embed-
ding space I ∈ R3 , T ∈ R3 respectively. 〈I8 ,T8〉
represents the cosine similarity and g ∈ R+ is a
temperature parameter. The losses are then added
as seen in equation 3 in Appendix A.2.

Our on-screen image selection use case
is slightly different from this generic paired
(image, text) training setting. In our case, the user
makes a reference to a specific product, scene, or
movie that is shown on the screen, which is more
akin to a text-to-image retrieval task. The user also
focuses on differentiating the desired product from
the list of products shown on the screen. This is
slightly nuanced than a generic text description of a
product as the referring utterance is conditioned on
the desired image and other surrounding images.

In our initial solution, we obtain the CLIP vision
embeddings for the product images and add it to the
CC framework as shown in Fig. 4a) which we term
as the Vision Augmentation. In Fig. 4a), b), the
term List SeMI stands for a List of [Se]mantically

429

Figure 4: Augmented Context Carryover Models. Vision only augmentation (a), Vision, text and similarity score
augmentation (b)

[M]eaningful [I]mages. More concretely, each
product shown to the customer is represented by
a list object ; = (:;, E;, �;) and considered as a po-
tential carryover candidate as mentioned in Section
3.1. As part of the Vision Augmentation, we use the
CLIP visual embedding of the product image as �; .
These product list objects with CLIP visual embed-
dings are then sent to the CC Candidate Encoder.
The CC Encoder-Decoder framework subsequently
decides whether to carry over the list product ob-
ject to the next dialogue state, which would signify
a product selection. The rationale here is to simply
augment the existing system with the visual modal-
ity and evaluate the effectiveness on a multimodal
dataset. Even though we select CLIP as our initial
vision embedding, the system is compatible with
any embedding trained with a contrastive loss (e.g.
we also show similar performance improvements
on ALBEF (Li et al., 2021b)).

3.2.2 Aligned Vision and Text Augmentation

Using the notation from Section 3.1, at a given
moment, there are = product list item objects
; = (:;, E;, �;) shown to the user. Here, :; is the key
word ProductTitle, the value E; is the actual title
itself and �; is the associated image. Given the prod-
uct images {�1, �2, ...�=}, their titles {E1, E2, ..., E=},
and the most recent user referring utterance ℎ*0
which is obtained from the dialog history, our task
here is to find the best product list object ; that
matches the user’s request ℎ*0 . We utilize CLIP
to bring images {�1, �2, ...�=} and the textual refer-

ring expression ℎ*0 to the same embedding space,
and get the dot product similarity between each im-
age in {�1, �2, ...�=} and ℎ*0 , as shown in Fig. 4b).
In other words, we obtain the similarity score per
candidate list image with the referring utterance.
We term this as the Aligned Vision and Text Aug-
mentation. The pseudocode for this operation is
shown in Fig. 7, in Appendix A.3. The resulting
multimodal dot product tensors are shown in Fig.
8, in Appendix A.4.

4 Experiments

4.1 Datasets

In this section, we describe the newly gathered
Amazon Mechanical Turk (MTurk) multimodal
dataset and the pre-existing text-only dataset.

4.1.1 Multimodal dataset
The MTurk dataset is created by showing Mechani-
cal Turkers (MTurkers) product images, scene im-
ages, video thumbnails and asking them to pick
one out of the many products, scenes or movies
using a single referring utterance. We define one
such referring act that includes multiple images
and a single referring utterance as a single “in-
stance”. The newly collected MTurk dataset has
a Train/Dev/Test split sizes of 33,526/4,087/4,152
instances respectively. Additional details about the
dataset are included in the Appendix A.5.

We also utilize an internally annotated dataset,
that we refer to as the existing Context Carryover
dataset, details of which can be seen in Appendix

430

Table 1: Results on the multimodal test set for various CLIP augmentation schemes and the CC baseline. The +
<modality type> indicates an augmentation.

Visual
Emb. Model

Slot Level

Weighted (P, R, F1) Accuracy Δ
P R F1 Δ

1 None Baseline 0.59 0.63 0.60 - 0.6301 -

2

CLIP

+ Utterance Text 0.65 0.67 0.54 -10.05% 0.6671 5.87%
3 + Similarity 0.81 0.80 0.78 30.41% 0.7955 26.25%
4 + Visual 0.78 0.78 0.78 31.12% 0.7811 23.96%
5 +Visual + Utterance Text 0.79 0.78 0.79 32.26% 0.7844 24.49%

6
{+ Visual + Utterance Text
+ Similarity }
(with non-contrastive fine-tuning)

0.80 0.80 0.79 33.35% 0.8003 27.01%

7 { + Visual + Utterance Text
+ Similarity } 0.85 0.85 0.85 42.15% 0.8484 34.65%

A.6.

4.1.2 Synthetic Visual Data Generation
Pipeline

Figure 5: Synthetic Data Generation

Even though we use MTurk data for our current
study, it is expensive to generate and infeasible to
extend to more domains. An alternative cheaper
and scalable approach to quickly collect carryover
data in multimodal settings is to employ a data syn-
thesizer. The synthetic data generation process is
as follows; for each synthetic data sample, we first
randomly sample a slot type (e.g., bag) and visual
attributes (e.g., red) to create slot candidates. Note
that for each slot, we only randomly select one type
from a pre-defined object list, and we sample three
different visual attributes under the same attribute
category (e.g., color) from a pre-define attribute
list. For example, we select one slot type bag from
the object list, and then we draw three visual at-
tributes red, blue, orange from the attribute list.
We then combine them to obtain three slots: red
bag, blue bag, orange bag to simulate the screen
shown to the user when shopping for bags. In the
second step, we retrieve an image from a product
image catalog for each generated slot. To do so,
we employ CLIP to get text embeddings of each
slot: {e1, e2, e3}. For each image in the product

catalog, we precompute the image embedding with
the same CLIP model: { p1, . . . , p# }. We use the
inner product as the similarity metric to perform
the image retrieval: �G = arg max8 e>G p8 , where �G
denotes the image selected for slot G. To add more
randomness, we retrieve the top-: similar images,
and randomly select one image from the : candi-
dates. After getting all of the product images (and
associated metadata), we simulate a user selection
phrase by randomly selecting one out of the three
generated slots as the ground-truth and fill it in a
predefined template.

4.2 Results

We compare various combinations of vision, text
and similarity augmentation schemes against the
baseline CC model in Table 1. All the models are
trained on a combined CC and multimodal MTurk
training dataset. Since we are interested in how our
models perform on multimodal use cases, we show
the results only on the multimodal test dataset. Fur-
ther details of the experiment setup, such as model
training details, are described in the Appendix A.7.

In Table 1, row 1 is the current baseline CC
model, and rows 2-7 are the augmentations. Aug-
menting the existing CC framework with only
CLIP Visual components (Table 1, row 4) gives a
23.96% accuracy improvement over the baseline on
the multimodal test set. When adding CLIP Vision
and CLIP user current utterance Text embeddings
(Table 1, row 5), we see accuracy gains increase to
24.49%. The highest improvement comes when the
CLIP vision, text embeddings and the dot product
similarity scores (Table 1, row 7) are given to the
CC framework with a 34.65% accuracy improve-
ment over the baseline. These methods keep the

431

Table 2: Performance improvements on MTurk test data when MTurk training data is added to the CC train data
set.

Model Train
Data

Slot Level

Weighted (P, R, F1) Accuracy Δ
P R F1 Δ

1 baseline CC 0.53 0.67 0.53 - 0.67 -
2 baseline MTurk 0.68 0.68 0.68 27.81% 0.68 2.34%
3 baseline CC + MTurk 0.59 0.63 0.60 11.48% 0.63 -5.31%
4 Visual CC + MTurk 0.78 0.78 0.78 46.17% 0.78 17.39%

CLIP embeddings frozen, but in Table 1, row 6 we
attempt to fine-tune the CLIP embeddings in an
end-to-end fashion using the CC framework. We
find that fine-tuning the CLIP embeddings in our
setting does not provide further gains. This maybe
because the generic loss of the CC framework is
non-contrastive (i.e., it’s cross-entropy based) and
thus it does not improve the effectiveness of CLIP
embeddings being further fine-tuned. A similar
observation is recorded in parallel work Flamingo
(Alayrac et al., 2022) and likened to “catastrophic
forgetting”. In Table 1, row 3, we exclude the vi-
sion and textual embeddings altogether and provide
only the dot product similarity scores. We find that
only providing similarity scores (row 3) is on par
with row 5 which is to provide both visual and tex-
tual embeddings. This has implications where the
CC encoder can simply work with similarity scores
instead of embeddings. Finally, in row 2 we only
give the CC framework the CLIP Text embeddings
(i.e., no vision components) and we find the perfor-
mance to be worse than the other augmentations.
We hypothesize that this is because the CC frame-
work gets textual information from two sources in
row 2. One from the dialogue history, which it
processes in the usual fashion described in Section
A.1 through the CC slot carryover framework, and
one via the CLIP Text embeddings. Since there
is no accompanying visual input, the CLIP Text
input is redundant and might add additional noise,
which leads to minor accuracy improvements and
a weighted F1 degradation seen in row 2.

We are also interested in seeing how the CC base-
line model behaves when the multimodal MTurk
training data is added to its training set. More
simply put, we want to check whether adding the
MTurk training data to the CC framework will im-
prove the performance of the CC baseline on the
multimodal MTurk test set, even if the CC baseline
is a purely text-based system that have no notion
of the visual modality. From Table 2, row 1 we

see that even when no multimodal training data is
added, the CC baseline still has an absolute accu-
racy of 67% on the MTurk test set. This can be at-
tributed to the CC framework using the product im-
age titles which are textual to make inferences. In
Table 2, row 2 when the baseline is only trained on
the multimodal MTurk dataset (without the 1.28M
pre-existing CC dataset) there is an 2.34% accuracy
improvement relative to the baseline, mainly due
to training and testing distributions being similar.
In Table 2, row 3, when the data sets are combined
during training, the baseline shows a −5.31% degra-
dation compared to Table 2, row 1 which indicates
that the CC baseline is not equipped to handle a
combined multimodal and non-multimodal dataset.
In Table 2, row 4 we see that the best results are ob-
tained when visual modality related model changes
are added and the model is trained on the combined
multimodal and pre-existing CC dataset.

We also experiment with ALBEF (Li et al.,
2021b) embeddings and show results in Appendix
A.8. We anticipate the science community to
produce ever-improving dense multimodal embed-
dings as time goes on, and hope that our simple yet
effective augmentation enables commercial frame-
works to utilize the latest state-of-the-art embed-
dings with minimal changes.

5 Conclusion

We augment the existing Context Carryover frame-
work with Visual and Vision Aligned Text com-
ponents. We collect a multimodal dataset which
mimics real world customer interactions to train
and evaluate our models. We show a 35% accuracy
improvement when the existing CC framework is
augmented with Vision and Vision Aligned Text
components.

432

Limitations

Our solution is only limited to the English lan-
guage: our training data only contain products with
English titles and all of the referring expressions
are in English. Transferring the model to another
language will require re-training the model and
potential architecture changes. Furthermore, the
Mturkers who provided the experssions in our study
may not be representative of the user demographics,
and the data may not provide a well grounded proxy
of user behavior. While collecting more data can
mitigate some of these limitations, curation and val-
idation of visual expressions is a time-consuming
and expensive process, which is why our dataset is
limited in size.

Our models leverage visual embeddings from
systems such as CLIP, ALBEF which have their
own set of limitations. For instance, CLIP is known
to fail in cases which requires counting objects, or
relations of multiple objects in an image. Thus,
visual models leveraging CLIP embeddings will
have issues with referring expressions that refer to
counts of objects. Further, we need to be cognizant
and optimize for inference latency, which prevents
us from using large scale language or vision models
which could potentially improve upon the current
solution.

Ethics Statement

Although our solution has no unethical applications
or risky broader impacts, we need to consider as-
pects of fairness. In our setting, the images shown
to the users can contain images of people along
with the products. We need to consider how sen-
sitive queries, e.g., ones that refer to protected at-
tributes of the people in the image or expressions
that contain hateful or derogatory speech, should
be resolved.

During the data collection and model training
process we take strong consideration on the type
of referring expression we are curating and using
to train the model. Expressions that contain ref-
erences to protected and/or physical attributes of
people are filtered out to ensure that our model is
not capable of handling sensitive queries.

6 Acknowledgements

The authors would link to thank Balaji Kamakoti
and Henry Zhang for their contributions in clearly
defining the use cases and driving the visual prod-
uct selection project. Rohit Parimi for managing

the engineering effort. Melanie Gens, Matt John-
son, and Adam Kalman for their contributions in
engineering design. Chevanthie Dissanayake for
her help in visualizations.

References
Sanchit Agarwal, Jan Jezabek, Arijit Biswas, Emre

Barut, Shuyang Gao, and Tagyoung Chung. 2021.
Building goal-oriented dialogue systems with situ-
ated visual context.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, An-
drew Brock, Aida Nematzadeh, Sahand Sharifzadeh,
Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a visual language model for few-shot
learning.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework
for contrastive learning of visual representations.

Tongfei Chen, Chetan Naik, Hua He, Pushpendre Ras-
togi, and Lambert Mathias. 2019a. Improving long
distance slot carryover in spoken dialogue systems.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2019b. Uniter: Universal image-text
representation learning.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An image
is worth 16x16 words: Transformers for image
recognition at scale.

Jack FitzGerald, Shankar Ananthakrishnan, Konstan-
tine Arkoudas, Davide Bernardi, Abhishek Bha-
gia, Claudio Delli Bovi, Jin Cao, Rakesh Chada,
Amit Chauhan, Luoxin Chen, Anurag Dwarakanath,
Satyam Dwivedi, Turan Gojayev, Karthik Gopalakr-
ishnan, Thomas Gueudre, Dilek Hakkani-Tur,
Wael Hamza, Jonathan J. Hüser, Kevin Mar-
tin Jose, Haidar Khan, Beiye Liu, Jianhua Lu,
Alessandro Manzotti, Pradeep Natarajan, Karolina
Owczarzak, Gokmen Oz, Enrico Palumbo, Charith
Peris, Chandana Satya Prakash, Stephen Rawls,
Andy Rosenbaum, Anjali Shenoy, Saleh Soltan,
Mukund Harakere Sridhar, Lizhen Tan, Fabian
Triefenbach, Pan Wei, Haiyang Yu, Shuai Zheng,
Gokhan Tur, and Prem Natarajan. 2022. Alexa
teacher model. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining. ACM.

433

Francisco Javier Chiyah Garcia, Alessandro Suglia,
José Lopes, Arash Eshghi, and Helen F. Hastie.
2022. Exploring multi-modal representations for
ambiguity detection & coreference resolution in the
SIMMC 2.0 challenge. CoRR, abs/2202.12645.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. 2013. Rich feature hierarchies for accu-
rate object detection and semantic segmentation.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2019. Momentum contrast for unsu-
pervised visual representation learning.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up visual
and vision-language representation learning with
noisy text supervision.

Satwik Kottur, Seungwhan Moon, Alborz Gerami-
fard, and Babak Damavandi. 2021. SIMMC 2.0:
A task-oriented dialog dataset for immersive mul-
timodal conversations. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 4903–4912. Association for Computa-
tional Linguistics.

Hung Le, Nancy F. Chen, and Steven C. H. Hoi. 2022.
Multimodal dialogue state tracking.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation.

Junnan Li, Ramprasaath R. Selvaraju,
Akhilesh Deepak Gotmare, Shafiq Joty, Caim-
ing Xiong, and Steven Hoi. 2021a. Align before
fuse: Vision and language representation learning
with momentum distillation.

Junnan Li, Ramprasaath R. Selvaraju,
Akhilesh Deepak Gotmare, Shafiq Joty, Caim-
ing Xiong, and Steven Hoi. 2021b. Align before
fuse: Vision and language representation learning
with momentum distillation.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xi-
aowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, Yejin Choi, and Jianfeng Gao.
2020. Oscar: Object-semantics aligned pre-training
for vision-language tasks.

Jonathan Long, Evan Shelhamer, and Trevor Darrell.
2014. Fully convolutional networks for semantic
segmentation.

Chetan Naik, Arpit Gupta, Hancheng Ge, Mathias Lam-
bert, and Ruhi Sarikaya. 2018. Contextual slot car-
ryover for disparate schemas. In Interspeech 2018.
ISCA.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding.

Wei Pang and Xiaojie Wang. 2019. Visual dialogue
state tracking for question generation.

AJ Piergiovanni, Wei Li, Weicheng Kuo, Moham-
mad Saffar, Fred Bertsch, and Anelia Angelova.
2022. Answer-me: Multi-task open-vocabulary vi-
sual question answering.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pushpendre Rastogi, Arpit Gupta, Tongfei Chen,
and Mathias Lambert. 2019. Scaling multi-
domain dialogue state tracking via query reformu-
lation. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Industry Papers), pages
97–105, Minneapolis, Minnesota. Association for
Computational Linguistics.

Amr Sharaf, Arpit Gupta, Hancheng Ge, Chetan Naik,
and Lambert Mathias. 2018. Cross-lingual ap-
proaches to reference resolution in dialogue sys-
tems.

Karen Simonyan and Andrew Zisserman. 2014. Two-
stream convolutional networks for action recogni-
tion in videos.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2021. Flava: A foun-
dational language and vision alignment model.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2019.
Contrastive multiview coding.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2014. Show and tell: A neural im-
age caption generator.

434

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022. Ofa: Unifying ar-
chitectures, tasks, and modalities through a simple
sequence-to-sequence learning framework.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yu-
lia Tsvetkov, and Yuan Cao. 2021. Simvlm: Simple
visual language model pretraining with weak super-
vision.

Prashan Wanigasekara, Kechen Qin, Emre Barut, Fan
Yang, Weitong Ruan, and Chengwei Su. 2022. Se-
mantic vl-bert: Visual grounding via attribute learn-
ing. In 2022 International Joint Conference on
Neural Networks (IJCNN), pages 1–8.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Ye-
ung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022.
Coca: Contrastive captioners are image-text founda-
tion models.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel
Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu,
Mengchen Liu, Zicheng Liu, Yumao Lu, Yu Shi, Li-
juan Wang, Jianfeng Wang, Bin Xiao, Zhen Xiao,
Jianwei Yang, Michael Zeng, Luowei Zhou, and
Pengchuan Zhang. 2021. Florence: A new founda-
tion model for computer vision.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. Vinvl: Revisiting visual representa-
tions in vision-language models.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christo-
pher D. Manning, and Curtis P. Langlotz. 2020. Con-
trastive learning of medical visual representations
from paired images and text.

A Appendix

A.1 Existing Context Carryover framework

Our baseline architecture follows a similar ap-
proach to Chen et al. (2019a), where they jointly
model the slots to make a slot carryover decision.
One of the key differences in our model is that
we act on entities extracted from an on-screen list
along with the entities in the discourse history. We
highlight the components of the existing CC model
as follows:

Candidate Generation We create candidates
based on a handcrafted slot map, which defines
carryover compatibility between each pair of slots.
We create a set of slots - from the context by lever-
aging the slot map to identify slots compatible with
the current turn slots. We also append the candi-
dates with the on-screen list entities.

Slot Encoder Given a candidate slot, which is
represented as a (slotKey, slotValue), we average
the word embeddings of the slot pair tokens and
convert them into a fixed-length vector representa-
tion x ∈ '3G .

Dialog Encoder We serialize the tokens in the
dialog and use an LSTM (Hochreiter and Schmid-
huber, 1997) to create a fixed length embedding.
c380;>6 = !()"(�), where c380;>6 is the dialog
encoding and H is the dialog.

Intent Encoder The intent tagged by an up-
stream Natural Language Understanding module
is encoded by averaging the word embeddings
of the tokens to create a fixed length embedding
int ∈ '38=C .

Decoder Given the encoded representation of
the slots {G1, ..., G=}, dialog c380;>6, and intent
int, we use the self-attention decoder presented
in (Chen et al., 2019a). Self-attention allows the
decoder to model relationships between all the slots
in the dialog, which is shown to yield better results.
In our model, we use 12 attention heads, which
allows the model to jointly attend to information
from different perspectives at different positions.

A.2 Contrastive Learning equations

L(8<064→C4GC)
8 = − log

exp (〈I8 ,T8〉 /g)∑#
:=1 exp (〈I8 ,T:〉 /g)

,

(1)

L(C4GC→8<064)
8 = − log

exp (〈T8 , I8〉 /g)∑#
:=1 exp (〈T8 , I:〉 /g)

.

(2)
435

The final loss is a weighted combination of the
two losses averaged over the training dataset. Here
_ ∈ [0, 1] is a scalar weight.

(3)
L =

1
#

#∑
8=1

(
_L(8<064→C4GC)

8

+ (1 − _)L(C4GC→8<064)
8

)
.

A.3 Pseudocode for the vision aligned text
dot product

The pseudocode for the vision aligned text dot prod-
uct is shown in Fig. 7.

A.4 Multimodal dot product tensors

Fig. 8 a) shows the dot product between the utter-
ance text and the product visual embeddings for
visual product selection for each carryover candi-
date. Fig. 8 b) shows the dot product between the
utterance text and scene or video and associated
product’s visual embeddings for visual scene and
video selection. Fig. 8 c) shows the dot product
between the utterance text and the product meta-
data text associated with each candidate, where
the product metadata can be available for both vi-
sual product selection and visual scene and video
selection.

A.5 Additional Details on the multimodal
dataset.

Some randomly sampled instances from the multi-
modal MTurk dataset for visual product selection
are given in Fig. 6. To better simulate a real-world
customer interaction with the voice assistant, the
MTurkers are free to use any phrase to refer to the
product image. Some MTurkers use specific prod-
uct attributes like color, size, shape, product ma-
terial, product label text while there are instances
where more ambiguous terms are used (e.g., “the
animal one”). To dissect the dataset further, we en-
code a few randomly selected product images and
their associated labels in a joint CLIP embedding
space.

As seen in Fig. 9a. The product images are
shown on the horizontal axis and the product labels
are shown on the vertical axis. The numbers in the
table are CLIP similarity scores ∈ [0, 1] between
the images and the product labels (higher scores
mean higher similarity). Fig. 9a has a dual pur-
pose: first, it shows the products and their labels
in a matrix format where products that match with

multiple labels or labels that match with multiple
products can be clearly seen; second, it shows the
effectiveness of CLIP embeddings in terms of quan-
tifying image-text similarity. Ideally, the diagonal
elements of the matrix should contain the largest
scores, but we can see that there are a few off di-
agonal high similarity scores, which indicates that
there is high ambiguity. In Fig. 9b we look at the
alignment between the images, their labels and the
referring utterance. It can be clearly seen from Fig.
9b row 1 that the image that matches the referring
utterance (“the black one”) has the highest CLIP
similarity score (the middle image has the highest
alignment score; 0.24 with the referring utterance
compared to the other two images in row 1).

A.6 Existing Context Carryover Dataset
The existing CC dataset is created by internal anno-
tators who were shown the dialogue history, current
turn, context slots and were asked to select all the
appropriate slots for the current turn. The dialogs
originate from a commercial voice assistant, and
we process the data so that users are not identifiable
(“de-identified”). The dataset spans 30 domains,
500 intents and includes both within domain (dia-
log that span a single domain) and cross domain
cases (dialog than spans multiple domains). It has
an average dialog distance length of 3.94 which
is roughly 2 user turns and 2 system turns. The
existing CC dataset has a Train/Dev/Test split size
of 1,280,000/158,043/158,000 respectively.

A.7 Experimental Setup
We set the Context Carryover framework to the
settings that are similar to the current commercial
settings and run our experiments. The results in Ta-
ble 1 and Table 2 use a context carryover threshold
of 0.5. The context carryover threshold determines
the probability threshold above which the slot will
be labeled as a carryover instance (i.e., label of 1).
We get the pretrained CLIP embeddings from the
open-source CLIP (Radford et al., 2021) repo un-
der the MIT license. For the CC model we use an
embedding size of 300 for the dialog encoder and
intent encoder. For the slot encoder, CLIP visual
and CLP text we use an embedding size of 512.
We use CLIP (ViT-B/32) (Dosovitskiy et al., 2020)
as the vision encoder and a transformer (Vaswani
et al., 2017) based text encoder as described in
(Radford et al., 2019) for the CLIP text encoder.
For the decoder, we use a single layer transformer
based decoder with 12 attention heads which are

436

Figure 6: Randomly sampled instances from the MTurk dataset. Each instance is a single referring utterance and
multiple associated product images. The label array signifies the ground truth label associated with the referring
utterance. A label of 1 signifies the ground truth true label, and 0 otherwise.

Figure 7: Pseudocode for vision-text embedding dot product similarity

Figure 8: Tensors that contain the dot product between the user’s referring utterance text and a) a candidate’s
single product visual embedding for the “Visual product selection" use case, b) a candidate’s scene or video and
multiple product visual embeddings for the “Visual scene and video selection" use case, c) a candidate’s metadata
text embeddings for both the use cases. Here, the metadata are the textual information that are associated with
commercial products provided by sellers, marketplace annotators and at times generated by the system. The
“candidates” here refer to the visual list item candidates.

then passed to a single layer feed-forward network
to make binary decisions over the slots. The model
is trained for 100 epochs using a batch size of 160
with an Adam optimizer and learning rate of 0.001.
We train on a single p3.16xlarge instance, which
consists of 8 GPUs.

A.8 ALBEF results
We also experiment with ALBEF (Li et al., 2021b)
embeddings trained using a Large Language Model
training framework (FitzGerald et al., 2022) and
find them to have a similar performance to CLIP as
seen in Table 3.

437

Figure 9: CLIP image-text alignment between images, labels, and referring utterance.

Table 3: Comparison with CLIP and ALBEF

Visual
Emb. Model

Slot Level

Weighted (P, R, F1) Acc. Δ
P R F1 Δ

1 None Baseline 0.59 0.63 0.60 - 0.6301 -

2
CLIP

+ Visual 0.78 0.78 0.78 31.12% 0.7811 23.96%

3
+ {Visual + Utterance Text
+ Similarity}

0.85 0.85 0.85 42.15% 0.8484 34.65%

4
ALBEF

+ Visual 0.77 0.78 0.77 29.97% 0.7772 23.35%

5
+ {Visual + Utterance Text
+ Similarity} 0.86 0.86 0.86 44.34% 0.8617 36.76%

438

Proceedings of EMNLP 2022 Industry Track, pages 439–449
December 9–11, 2020. ©2022 Association for Computational Linguistics

Distilling Multilingual Transformers into CNNs for Scalable Intent
Classification

Besnik Fetahu, Akash Veeragouni, Oleg Rokhlenko, and Shervin Malmasi
Amazon.com Inc., Seattle, WA, USA

{besnikf,avveerag,olegro,malmasi}@amazon.com

Abstract

We describe an application of Knowledge Dis-
tillation used to distill and deploy multilingual
Transformer models for voice assistants, en-
abling text classification for customers glob-
ally. Transformers have set new state-of-the-
art results for tasks like intent classification,
and multilingual models exploit cross-lingual
transfer to allow serving requests across 100+
languages. However, their prohibitive infer-
ence time makes them impractical to deploy in
real-world scenarios with low latency require-
ments, such as is the case of voice assistants.

We address the problem of cross-architecture
distillation of multilingual Transformers to
simpler models, while maintaining multi-
linguality without performance degradation.
Training multilingual student models has re-
ceived little attention, and is our main focus.

We show that a teacher-student framework,
where the teacher’s unscaled activations (log-
its) on unlabelled data are used to supervise
student model training, enables distillation of
Transformers into efficient multilingual CNN
models. Our student model achieves equiv-
alent performance as the teacher, and outper-
forms a similar model trained on the labelled
data used to train the teacher model. This
approach has enabled us to accurately serve
global customer requests at speed (18x im-
provement), scale, and low cost.

1 Introduction

For nearly all natural language understanding tasks,
e.g. SuperGLUE (Wang et al., 2019), state-of-the-
art results are obtained using pre-trained Trans-
former models. Their performance is dependent
on their size and the amount of pre-training data,
typically billions of tokens (Xue et al., 2021).

Intent Classification (IC), the task of understand-
ing a user’s intent from an utterance, is a core
component of all voice assistants such as Siri or
Alexa. IC is challenging due to the hundreds of

intents and contexts that such systems must sup-
port, and IC performance has benefited greatly
from Transformers (Chen et al., 2019). As voice
systems have expanded support to new languages,
the benefits of Transformers have multiplied with
the advent of multilingual versions such as XLM-
RoBERTa (Conneau et al., 2020).

Despite the advantages, deploying Transformers
at scale is not always feasible, mainly due to: (i)
large memory footprint (hundreds of GB),1 and (ii)
long inference time2 that is prohibitive for applica-
tions processing millions of inputs per minute.

While approaches to reducing memory footprint
— such as quantization (Vargaftik et al., 2021) or
pruning (Gordon et al., 2020) — have been pro-
posed, minimizing inference time is more challeng-
ing. Pruning can speed up inference, but there are
limitations to how many self-attention layers can
be pruned without loss of performance. Knowledge
Distillation (KD) (Hinton et al., 2015) is another
approach for transferring knowledge across model
architectures, e.g. from Transformers to LSTMs
(Wasserblat et al., 2020), to optimize performance.

However, cross-architecture distillation of
multilingual Transformers to multilingual non-
Transformer architectures has received almost no
attention in the community. In this work we present
the first exposition of this task. Specifically, we de-
scribe an approach used to deploy multilingual IC
models for voice assistants allowing accurate infer-
ence at scale, speed, and low-cost.

We face two key challenges: (i) meeting low in-
ference latency requirements, allowing us to glob-
ally serve customers in real time (millions per
minute), and (ii) supporting multi-linguality, here
we support 11 locales with 7 languages. Exam-
ple utterances are shown below, which represent e-
commerce questions issued in different languages.

1e.g. GPT-3 (Brown et al., 2020) contains 175B parame-
ters, roughly requiring 350GB, when using float16.

2Self-attention layers have quadratic time-complexity.

439

• how many calories are in a banana? (EN)

• wie viel fett enthält hühnchen? (DE)

• come si conservano le vongole in frigo (IT)

• cómo se hace un queque de yogur (ES)

• combien de temps peut-on réfrigérer une banane (FR)

• é possível congelar pastéis de nata (PT)

We use the teacher-student distillation paradigm,
and show the optimal KD strategy for multilingual
IC can leverage teacher logits alone (Mukherjee
and Awadallah, 2020). Utterances for IC are typ-
ically 10-40 tokens, allowing us to exploit an ef-
ficient ConvNet architecture, and assess how they
can obtain multilingual and pretrained knowledge
from models like XLM-R via distillation.

While there have been previous attempts on dis-
tilling transformer models into ConvNets (Chia
et al., 2019), our work is the first to explore cross-
architecture multilingual KD on real-world appli-
cations with strict requirements for latency and
accuracy. We make the following contributions.

• Knowledge distillation from Transformers to
multilingual student (ConvNet) for intent clas-
sification based on the teacher-student paradigm;

• Minimal inference latency multilingual student
models (18x speed up relative to teacher) without
any loss in classification accuracy.

• Evaluation framework outlining the amount of
distillation data required, and assessment of the
student model’s generalization on unseen data.

2 Related Work

We now review some of the popular approaches for
distilling and compressing Transformer models.

Model Finetuning. Eisenschlos et al. (2019) pro-
pose an efficient way to fine tune monolingual mod-
els on multilingual tasks by simply using the output
of cross-lingual Transformer models as pseudo-
labels. Their approach is based on the ULMFiT
model (Howard and Ruder, 2018), where instead
of the stacked LSTM networks (Hochreiter and
Schmidhuber, 1997), they rely on quasi recurrent
neural networks (Bradbury et al.) (QRNN). QRNN
are similar to CNN, with the difference that the
convoluational operators are done at each timestep,
however, due to parallelization, they can be com-
puted much more efficiently than LSTMs.

QRNNs are up to 16x faster than LSTMs, how-
ever, for our case, we find that ConvNets are more
efficient than QRNNs, as they do not perform step-
wise computations as QRNNs do. We compare the
inference time of QRNNs and our proposed student
model, and conclude that simple ConvNets have
significantly lower inference time.

Model Compression. Ganesh et al. (2021) sys-
tematically review approaches for compressing
transformers. To reduce memory usage, quantiza-
tion is often applied (Vargaftik et al., 2021). Quan-
tization reduces the amount of bits required to store
network parameters. For example, parameters rep-
resented using float32, can instead be stored us-
ing only 16 or fewer bits, reducing memory usage
significantly. This allows deploying larger models
in compute infrastructure with limited resources.

Model pruning is a widely explored research
direction for compression, mainly consisting of two
techniques. First, in unstructured pruning, weights
are zeroed out using different strategies (Gordon
et al., 2020). Second, in structured pruning either
the self-attention heads (Fan et al., 2019) or the
encoder layers (Hou et al., 2020) are pruned.

Quantization and pruning facilitate usage of
large transformers without the requirement of very
high memory capacity (GPU or CPU) machines.
Quantization, and unstructured model pruning,
mainly reduce memory usage. Structured prun-
ing, where encoder and self-attention layers are
dropped, can improve efficiency. Yet, for many
real-world applications the latency needs cannot be
met (with few milliseconds, as is our case). For
instance, pruning more than 50% of attention heads
can lead to performance loss (Fan et al., 2019).

Knowledge Distillation (KD). Hinton et al.
(2015) discuss the trade-offs between model size
and performance. Training a larger model, and dis-
tilling its knowledge to a smaller model, either us-
ing the same training data or unsupervised training
data, yields identical performance. The contrary
cannot be said when training a small model directly,
where the performance is significantly worse than
its bigger counterpart. KD works under the teacher-
student paradigm, where the teacher’s output is
used to train the student model such that it mimics
the teacher model in terms of the output.

There are several efforts in distilling transform-
ers into recurrent (Wasserblat et al., 2020) and con-
volutional architectures (Chia et al., 2019). While
recurrent models like LSTMs can significantly re-

440

duce memory footprint and latency, the step-wise
sequential computation induces a large latency
overhead that cannot be overcome. Conversely,
ConvNets are highly efficient for text classification,
both in terms of performance and latency.

Our approach is similar to that of Chia et al.
(2019), in that we use CNNs as the main building
block of the student model, However, we differ
in several fundamental aspects and make contribu-
tions that further push the application of knowledge
distillation. First, we deal with a multilingual task,
which increases the complexity of the knowledge
transfer from the teacher to the student model. Sec-
ond, our ConvNet architecture is different to ac-
count for the multilingual requirement. Thirdly, we
rely on unsupervised data for distillation, where we
show how much data is necessary across different
languages to have identical performance between
the teacher and student models.

3 Multilingual Distillation Method

We now describe the KD approach: the IC task, the
teacher/student models, and the learning objective.

3.1 IC Task
Our intent classification task requires categoriz-
ing utterances into two intents: Commerce Ques-
tion (CQ), which are questions to the voice assis-
tant about consumer products, and Non-Commerce
Question (NCQ), which are all other questions.

3.2 Teacher and Student Models
Teacher Model: As our classifier is deployed
globally in many languages, we use the multilin-
gual XLM-RoBERTa (XLMR) transformer (Con-
neau et al., 2020) as our teacher model.

Given an utterance w = (w1, . . . , wn), consist-
ing of n tokens, the teacher model is used to encode
the input, T(w) = hT (w), where hT (w) ∈ Rm

represents the [CLS] pooling representation from
the last XLMR layer. This is fed to a softmax classi-
fication head, consisting of a dense projection that
yields the raw activations of the network (i.e. un-
scaled log probabilities, or logits), which are then
normalized to probabilities via softmax:

logitsT (w) = hT (w)T · WT (1)

pT (w) = softmax(logitsT (w)) (2)

where W ∈ Rm×C , C is the number of intent
classes, and logitsT (w) captures the intent of the
utterance, and is used to student training.

Student Model: Figure 1 shows our student
model architecture. We use a deep convolu-
tional model (ConvNet) (LeCun and Bengio, 1995),
which are widely used for text classification (Kim,
2014), mainly for two reasons. Firstly, their convo-
lutional operators allow for effective extraction of
local subword interactions in an utterance, allow-
ing to connect question shapes (e.g. “how many
calories”) and product names (e.g. banana). Sec-
ondly, convolutional operations can be computed
in parallel, allowing for minimal inference time,
an important prerequisite for real-world applica-
tions. Finally, as IC utterances are typically short
(10-40 tokens), CNNs can sufficiently capture all
the important local/global lexical cues for the IC
task.

Tokenization and Word Representations: Ut-
terances are tokenized using the byte-pair encoding
tokenizer model (Sennrich et al., 2016). To create a
multilingual ConvNet, we leverage pretrained mul-
tilingual subword embeddings (Heinzerling and
Strube, 2018). This approach allows representa-
tions of all languages, with a small vocabulary.

Encoder: Five 1D kernels of size 2-6 tokens,
each with 500 filters, are aggregated with max-
pooling. The pooled outputs are concatenated to
form the final text representation.

Next, the student model computes the utterance
representation (cf. Figure 1 (e)), S(w; θ) = hS ∈
Rm, that is used to predict the intent probability:

logitsS(w) = hS(w)T · WS (3)

pS(w) = softmax (logitsS(w)) (4)

where WS ∈ Rm×C and θ represent the student
model parameters that need to be optimized.

3.3 Distillation Learning Objective

We use soft targets from the teacher, i.e. the un-
scaled log probabilities prior to softmax normaliza-
tion (the logits), to train the student. We directly
supervise the training of the student model S(w; θ)
such that logitsS(w) ≈ logitsT (w).

To this end, our learning objective is to minimize
the Mean Squared Error (MSE) loss over the log-
its (Mukherjee and Awadallah, 2020), computed
over the N unlabelled instances:

L =
1

N

N∑

i=1

‖logitsS(wi) − logitsT (wi)‖2 (5)

441

�✁✂✄✁☎✆✝✂✞ ✟✠✡✄✆✡✆✝☛✠☎✡ ☞✌✍✂✞✞✆✝☛✎

✏✑✒✓✔✕✕✖✗✘✙

✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★✏✑✒✓✔✕✕✖✗✘✙

✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★

✩✪✫ ✌☎✝✬ ✭☎✡✪✁✆✂✎ ✆✝ ☎ ✍☎✝☎✝☎✮

✯�☞ ✰✪✱✂✝✆✲✂✁

✏✑✒✓✔✕✕✖✗✘✙

✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★ ✚✛✜✢✣ ✤✥✦✜✥✧★
✳
✴
✵
✶
✷
✸
✹
✺
✻
✼
✽✾

✿❀❁❂❃❄❅❁❃❄❅❆ ❇❅❈❉❅❊❅❁❄❃❄❋❀❁

●✑❍

●■❍

●❏❍

●❑❍

✿▲❃❊❊❋▼❂❃❄❋❀❁ ◆❅❃❆

●❖❍

●P❍

Figure 1: Student model: (a) input text, (b) byte-pair
tokenizer, (c) pretrained embeddings compute subword
representation; (d) 1D kernels with max-pooling; (e)
concatenated representations; (f) output classification.

This logit loss encourages the student to output
the same unnormalized activations as the teacher,
which result in the same probabilities when nor-
malized, and is more numerically stable to train.
By minimizing L on a large sample of unlabelled
data, the distillation process can successfully trans-
fer the intent classification knowledge from the
teacher to the student. In this aspect, it is impor-
tant to consider a large and representative sample
given that L can be minimal for a specific set of
utterances, i.e. |logitsS(w) − logitsT (w)| < ǫ,
however, for unseen utterances the difference be-
tween |logitsS(w) − logitsT (w)| ≫ ǫ (for some
value that induces change in utterance’s label.)

4 Experimental Setup

We now describe the datasets used to train the
teacher model, and for distillation. We also de-
fine the evaluation metrics used to asses how well
the student model mimics its teacher.

4.1 Datasets
We use 3 types of data: (i) teacher datasets (su-
pervised IC training data); (ii) student datasets,
unannotated utterances to train the student; and (iii)
test data used to evaluate the teacher and student.

Teacher Datasets: Table 1 (a) shows details of
the training data used for the teacher model. Ut-
terances come from 7 different languages and 11
locales. The task is imbalanced, but for confiden-
tiality, the class distribution cannot be disclosed.

(a) (b) (c)

Language Locale Teacher
instances

Distillation
instances

Test
instances

English en-US 1.7M 4M 733k
en-GB 443k 32k 280k

Spanish
es-ES 7.5k 2.9M 106k
es-US 6.8k 1.7M 11k
es-MX 6.8k 1.4M 61k

French fr-FR 7.3k 2.4M 62k
fr-CA 11.6k 911.3k 10.8k

German de-DE 1M 3M 208k
Italian it-IT 7.4k 3M 11k
Portuguese pt-BR 11k 1.3M 30k
Hindi hi-IN 12.6k 647k 45k

3.5M 22.6M 1.7M

Table 1: (a) Teacher data includes 3.5M utterances with
annotated binary labels. (b) Student data has 22.6M
unannotated utterances used to train the student model.
(c) Test instances are used to evaluate both models.

Distillation Datasets: Table 1 (b) shows the
statistics of the distillation data. We randomly sam-
ple a target number of utterances from each locale
over a 1-month period. The data is unlabelled. Us-
ing unsupervised data allows the KD process to
transfer any of Transformer’s pretrained knowledge
that may not overlap with our supervised set.

Test Datasets Table 1 (c) shows the test datasets
used to evaluate the performance of our teacher
and student models. In total, our test set across all
locales consists of 1.7M labelled instances.

4.2 Teacher and Student Configuration

Teacher Model: Model T is based on XLMR
base model3 with a total of 278M parameters, is
fine-tuned on data from Table 1 for our multi-
lingual IC task. The model is trained by mini-
mizing the cross-entropy loss function using the
AdamW (Loshchilov and Hutter, 2019) optimizer
with a learning rate of lr = 3e − 5.

Distilled Student Model: Model S is described
in Figure 1, and consists of a total of 103M param-
eters. It is trained using the data in Table 1 (b) by
minimizing the loss in Equation (5). A dropout rate
of 10% is applied to the embeddings and CNN fil-
ters for regularization. We fine-tune the pretrained
embeddings, and apply learning rate warmup over
the first 2 epochs to prevent catastrophic forgetting.
We train for 50 epochs (via the Adam optimizer),
with an early stopping criterion of 3 consecutive
epochs of non-decreasing loss.

3https://huggingface.co/
xlm-roberta-base

442

4.3 Baseline

Our main objective is minimizing inference latency
of Transformer models for IC. IC accuracy is not
problematic for in-domain data, and most models
achieve high performance (Larson et al., 2019).
QRNN: We focus in comparing only w.r.t the in-
ference time between different approaches.4 We
compare S to QRNN, proposed in (Bradbury et al.),
and consider two configurations: (i) QRNN4: with
4 ConvNet layers (as reported in Bradbury et al.),
and (ii) QRNN5: with 5 ConvNet layers, equiva-
lent to the layers used in S.
Supervised Student Model: To assess whether
distillation of teacher’s knowledge into S using
unlabelled data is needed in the cases of abundance
of labelled training data, we additionally train an
identical model to S using the supervised training
data in Table 1 instead, which we denote with Ssup.
The training loss for Ssup is the cross-entropy loss.

4.4 Evaluation Metrics

Accuracy: We measure performance based on Pre-
cision (P) and Recall (R). Specifically, we compare
the models at the threshold-agnostic P/R Break-
Even Point (PR-BEP) (Joachims, 2005), where the
precision and recall of the model are equal. To
compare performance over all thresholds, we re-
port PR-AUC (area under the PR Curve) which is a
meaningful metric for imbalanced tasks (Liu et al.,
2019). Due to confidentiality, we report only the
gap of S and Ssup to T, as their absolute difference.

Efficiency: We measure wall-time t to compute
the inference latency in milliseconds (ms). All
measurements are the averaged latency over 100
trials, computed on an m5.4xlarge instance.5

5 Results

5.1 Model Accuracy

Overall Performance: Table 2 shows the perfor-
mance difference between the teacher and student
models. The overall PR-BEP gap across locales
with 0.1% between T and S is negligible.6

Contrary to S, Ssup has a large gap to T, with
an overall difference of 6%, and in certain locales,
exceeding 30% in terms of PR-AUC. This gap

4Experimental evaluation shows that S achieves nearly
identical performance to T. Thus, we do not report accuracy
metrics for QRNN, given that its inference latency is higher.

5https://aws.amazon.com/ec2/
instance-types/

6Statistically not significant per Binomial Proportion Test.

S Ssup

PR AUC PR BEP PR AUC PR BEP

en-US H 0.2% H 0.2% H 6% H 6%
en-GB N 0.2% N 0.8% H 5% H 3%
es-ES N 0.2% H 0.1% H 8% H 6%
es-US H 1.3% H 0.9% H 8% H 7%
es-MX H 0.4% H 0.4% H 10% H 7%
fr-FR N 0.1% N 0.1% H 8% H 6%
fr-CA N 0.4% N 0.8% H 7% H 6%
de-DE H 0.4% H 0.6% H 6% H 5%
it-IT H 0.3% H 1.0% H 11% H 9%
pt-BR N 0.2% H 0.1% H 33% H 25%
hi-IN N 0.2% H 1.0% H 30% H 24%

average H 0.1% H 0.2% H 6% H 6%

Table 2: The gap between the student models (S and
Ssup) to T is reported for the same test set. For S the
gap of 0.2% is marginal, whereas for Ssup the gaps are
highly significant according to the Binomial proportion
test (p–value < 0.01).

remains large in the languages with the largest
amount of supervised data, but is much more promi-
nent in those with little data. This highlights two
main findings: (i) T due to its Transformer ar-
chitecture has a superior learning capacity when
compared to directly training Ssup in a supervised
manner; (ii) knowledge distillation allows us to suc-
cessfully transfer the teacher’s pretrained knowl-
edge to the student, allowing the student to ac-
quire knowledge not present in the labeled data,
and achieve similar generalization as the teacher
(cf. Appendix A).

Incremental Distillation Performance: Ta-
ble 3 shows the gap in performance between the
student and teacher models, for varying amount of
data used to train the student model. The data from
Table 1 (b) is sampled using stratified sampling,
with the locales representing the groups.

With only 1% of the data, the gap in terms of
PR-BEP is 8.7% absolute points. Increasing this
to 10% or more, the gap closes to less than 1%.
Concretely, 10% represents 2.2M instances across
all locales. In real-world settings it is reasonably
cheap to obtain such amounts of unlabelled data.

Results indicate that with appropriate data, logit
loss is highly effective for capturing the teacher’s
knowledge. The student, using a different tokenizer
and subword embeddings, is able to match teacher
performance. Relative to other methods, logit loss
is simpler to implement, and faster to train. For the
IC task, we did not need to distill internal model

443

PR-BEP Absolute Percentage Difference to the Teacher Model.

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

en-US H 8.60% H 2.70% H 1.40% H 0.90% H 0.70% H 0.30% H 0.40% H 0.20% H 0.40% H 0.60% H 0.20%
en-GB H 7.30% H 2.10% H 0.80% H 0.50% H 0.70% H 0.10% H 0.30% 0% N 0.40% N 0.20% N 0.10%
es-ES H 9.40% H 4.40% H 1.40% H 0.70% H 0.60% H 0.80% H 0.80% H 0.90% H 0.50% H 0.70% H 1.00%
es-US H 9.00% H 3.90% H 3.60% H 0.90% H 0.60% H 1.20% N 0.60% N 0.30% N 0.90% N 0.90% H 1.20%
es-MX H 9.80% H 4.60% H 1.90% H 1.50% H 0.80% H 1.40% H 0.80% H 0.60% H 0.40% H 0.90% H 1.20%
fr-FR H 8.30% H 3.10% H 1.30% H 1.60% H 0.90% H 1.10% H 0.80% H 0.70% H 0.80% H 1.00% H 0.70%
fr-CA H 9.50% H 3.00% H 0.30% H 0.30% H 0.30% N 0.30% N 1.20% H 0.30% N 0.60% H 1.20% H 0.30%
de-DE H 8.20% H 3.30% H 1.70% H 1.20% H 1.30% H 0.70% H 0.60% H 0.60% H 0.60% H 0.50% H 0.20%
it-IT H 11.20% H 4.30% H 2.00% H 1.10% H 1.90% H 1.20% H 0.70% H 1.00% H 1.10% H 1.10% H 1.40%
pt-BR H 11.80% H 5.10% H 1.80% H 1.70% H 2.60% H 1.00% H 0.40% H 0.80% H 1.40% H 0.60% H 1.50%
hi-IN H 11.90% H 8.30% H 5.90% H 4.30% H 3.10% H 2.40% H 1.80% H 1.40% H 1.20% H 1.10% H 1.30%

average H 9.54% H 4.1% H 2.01% H 1.34% H 1.22% H 0.95% H 0.76% H 0.62% H 0.75% H 0.8% H 0.82%

Table 3: PR-BEP performance of the student model trained on varying portion of the distillation data from Table 1
(b). Overall, with 1% of the data used for distillation, the student model has an average gap in terms of PR-BEP of
8.7%. With increasing percentage of data used for distillation the gap is shrunk to 0.6% for 40% of the data.

values (e.g. representation loss). We did not use the
supervised data for student training (e.g. with cross-
entropy loss); our finding is that a sufficiently large
and representative unsupervised sample will con-
tain samples similar to those in the supervised set,
as well as dissimilar ones, thus allowing the trans-
fer of knowledge represented by both the labelled
data and the Transformer’s pretrained knowledge.

5.2 Inference Latency

A drawback in deploying transformers is their pro-
hibitive inference latency, mainly impacted by: (i)
model size, and (ii) number of encoder layers.

Figure 2 shows the latency for different ablations
of T (with varying numbers of encoder layers),
and the latency of S, as the model with the lowest
latency. Comparing T and S, our student model
has nearly 18x lower inference latency, with only
2.7ms. This represents a drastic latency reduction,
allowing us to process inputs extremely quickly.

For the teacher ablations, even for T1, the in-
ference latency is still higher than that of S, with
an additional +1.24ms latency per utterance. Fur-
thermore, pruning layers is not lossless in terms of
performance, especially in this case where only one
layer is retained (Fan et al., 2019). The bottom part
of Figure 2 shows the gap of the different pruned
teacher models Tl w.r.t the full model T. The gap
is high when we use fewer than 8 layers, with more
than 12% drop in PR-BEP. It is clear that there is no
clear trade-off between self-attention layer pruning
and inference latency reduction.

Finally, comparing the baseline QRNN4 and
QRNN5, we note that the proposed student archi-
tecture, relying solely on ConvNets, results in a
significantly lower inference latency. Our student

architecture has 3.8x and 2.95x lower latency than
QRNN5 and QRNN4, respectively. This signif-
icant increase in terms of latency can be explained
by the fact that QRNN applies its convolutional
operators for timestep (each token in an utterance),
which although more efficient than LSTMs (due to
parallelization), it introduces a significant overhead
over the traditional ConvNet architectures.

6 Conclusions

We described an approach for distilling knowledge
from Transformer into a single multilingual CNN.
To our knowledge this is the first detailed exposi-
tion of cross-architecture KD to multilingual stu-
dent models. We leverage the outlined framework
to accurately serve predictions for our customers
at speed, scale, low-cost, and across all languages.
Empirically we showed how such a KD framework
can be utilized in practice:

1. With sufficient unsupervised data, leveraging
logits is an optimal distillation strategy for train-
ing smaller and more efficient student models,
without significant performance loss.

2. KD allows smaller and more efficient models to
mimic the performance of their teacher counter-
parts, which is not the case if similar architec-
tures are directly trained using labelled data.

3. KD is highly preferred over other techniques
such as pruning. Transformers, even with a sin-
gle encoder layer have higher inference latency,
and the performance drop with pruning is large,
where T1 has a 23% and 22% gap in terms of
PR-BEP w.r.t T and S, respectively.

444

3.95 ms

7.94 ms

12.1 ms

16 ms

19.8 ms

24.4 ms

28.4 ms

32.6 ms

36.5 ms

40.2 ms

44.8 ms
48.4 ms

−22.8 %

−16.9 %
−14.5 %−13.4 % −12 % −12.4 %−11.7 %

−3.2 % −2.8 % −1.8 % −2.7 %
0 %

Student: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 msStudent: 2.71 ms

QRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 msQRNN4: 8.02 ms

QRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 msQRNN5: 10.2 ms

0

10

20

30

40

50

−30

−25

−20

−15

−10

−5

0

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T

Teacher Model

In
fe

re
n

c
e

 T
im

e
 (

m
s
)

∆
 P

R
−

B
E

P

Figure 2: The upper plot shows the inference latency (in milliseconds) for the teacher models, where Tl (l ∈
{1, . . . , 11}). T1 is a single encoder layer, with the other 11 layers pruned. The bottom plot shows the gap in
terms of PR-BEP of the Tl models to the full teacher model. Note that, T1 which has the closest inference time to
S (with 2.71ms latency), has a 22.8% and 22.5% drop in terms of PR-BEP w.r.t T and S, respectively. Similarly,
for QRNN, the inference time is shown in the orange and yellow dashed lines, with a latency of QRNN4 = 8.02
ms and QRNN5 = 10.02 ms.

4. For IC, a single multilingual CNN using mul-
tilingual subword embeddings can match the
teacher performance despite using a different
tokenizer. It is highly efficient, decreasing the
latency by nearly 18x relative to the teacher.

5. Using as few as 2-3M distillation instances, S
achieves highly comparable performance as T,
with less than 1% PR-BEP difference. The gap
diminishes to 0.95% with just 40% of distilla-
tion data, specifically 8.8M instances.

6. S achieves the same generalization power as T.
On a held out test set (unseen during training
and distillation), the output probabilities have a
very low KL divergence (cf. Appendix A).

References

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. Quasi-recurrent neural networks.
In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Yew Ken Chia, Sam Witteveen, and Martin An-
drews. 2019. Transformer to CNN: label-scarce
distillation for efficient text classification. CoRR,
abs/1909.03508.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In

445

Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 8440–8451. Associa-
tion for Computational Linguistics.

Susan Dean and Barbara Illowsky. 2018. Descrip-
tive statistics: skewness and the mean, median, and
mode. Connexions website.

Julian Eisenschlos, Sebastian Ruder, Piotr Czapla,
Marcin Kardas, Sylvain Gugger, and Jeremy
Howard. 2019. Multifit: Efficient multi-lingual lan-
guage model fine-tuning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5701–5706. Association for
Computational Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali
Khan, Yin Yang, Hassan Sajjad, Preslav Nakov,
Deming Chen, and Marianne Winslett. 2021. Com-
pressing Large-Scale Transformer-Based Models: A
Case Study on BERT. Transactions of the Associa-
tion for Computational Linguistics, 9:1061–1080.

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Benjamin Heinzerling and Michael Strube. 2018.
Bpemb: Tokenization-free pre-trained subword em-
beddings in 275 languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation, LREC 2018, Miyazaki,
Japan, May 7-12, 2018. European Language Re-
sources Association (ELRA).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic
BERT with adaptive width and depth. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Thorsten Joachims. 2005. A support vector method for
multivariate performance measures. In Proceedings
of the 22nd international conference on Machine
learning, pages 377–384.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An evaluation dataset for intent classification and
out-of-scope prediction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 1311–1316. Association for
Computational Linguistics.

Yann LeCun and Yoshua Bengio. 1995. Convolu-
tional networks for images, speech, and time series.
The handbook of brain theory and neural networks,
3361(10):1995.

Shengchao Liu, Yingyu Liang, and Anthony Gitter.
2019. Loss-balanced task weighting to reduce nega-
tive transfer in multi-task learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 9977–9978.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Subhabrata Mukherjee and Ahmed Hassan Awadallah.
2020. Xtremedistil: Multi-stage distillation for mas-
sive multilingual models. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2221–2234. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for
Computer Linguistics.

Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal
Mendelson, Yaniv Ben-Itzhak, and Michael Mitzen-
macher. 2021. Communication-efficient federated
learning via robust distributed mean estimation.
CoRR, abs/2108.08842.

446

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 3261–3275.

Moshe Wasserblat, Oren Pereg, and Peter Izsak. 2020.
Exploring the boundaries of low-resource bert distil-
lation. In Proceedings of SustaiNLP: Workshop on
Simple and Efficient Natural Language Processing,
pages 35–40.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mt5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pages
483–498. Association for Computational Linguis-
tics.

447

Appendix

A Generalizability of Distillation

Distribution Loyalty: We now assess the gener-
alization of the KD process: whether the teacher
and student behave similarly on unseen data. From
the test set in Table 1, we take the instances that
are not present in either the teacher or distillation
data, resulting in 806k instances. We measure the
Kullback-Leibler (KL) divergence between the out-
put probabilities of the teacher and student models
(trained with varying number of instances). KL
values closer to zero, reflect similar distributions
and behavior of the two models on the unseen data.

Figure 3 shows that with increasing amount of
distillation data, the teacher and student models out-
put highly similar probabilities. Further, we note
that in some cases, such as for hi-IN, with 1%
of the distillation data (or 6472 instances), the two
models output highly diverging probabilities. In-
creasing the distillation data to 30% and upwards,
we see that the probability distributions become
highly similar, a fact also reflected in Table 3,
where the student models have very close scores.

NCQ/CQ Class Separation: Figure 4 shows the
class separation for the different student models,
distilled with varying amount of data (1%, 10%,
and 50%), and as well as the teacher model (rep-
resenting the target performance for S). An ideal
classifier would output 0 probability for NCQ class,
and 1.0 for the CQ class, given that the IC models
are trained on the binary case to predict whether an
utterance is a commercial question or not.

From Figure 4, it can be noted that for S1%,
there is a large amount of CQ utterances that have
low CQ probability (x-axis). As the amount of
distillation data is increased, we note that the distri-
bution become more skewed (Dean and Illowsky,
2018), which represents an increase in classifier
accuracy. For instance, from a skewedness score of
G1CQ = −2.29 for S1%, we obtain a skewedness
score of G1CQ = −3.71 for S50%, which implies
that the CQ probability distribution is more skewed
towards the higher CQ scores. In the case of classi-
fication models, the more skewed the distributions,
the higher the classification performance.

448

0.036

0.049

0.202

0.025

0.083

0.031

0.035

0.055

0.026

0.016

0.018

0.028

0.054

0.203

0.025

0.094

0.021

0.032

0.045

0.02

0.017

0.018

0.032

0.057

0.223

0.023

0.09

0.031

0.034

0.059

0.026

0.024

0.021

0.059

0.134

0.58

0.059

0.191

0.062

0.061

0.112

0.054

0.052

0.048

0.064

0.132

0.351

0.06

0.177

0.073

0.067

0.118

0.052

0.059

0.052

0.028

0.048

0.145

0.019

0.087

0.03

0.03

0.045

0.02

0.023

0.017

0.031

0.05

0.156

0.026

0.063

0.028

0.036

0.044

0.024

0.021

0.023

0.025

0.042

0.154

0.011

0.064

0.01

0.017

0.049

0.018

0.014

0.014

0.023

0.036

0.216

0.013

0.1

0.024

0.035

0.034

0.014

0.022

0.009

0.039

0.068

0.256

0.035

0.141

0.035

0.037

0.063

0.036

0.038

0.022

0.021

0.034

0.134

0.013

0.071

0.021

0.022

0.036

0.015

0.014

0.012

1

5

10

20

30

40

50

60

70

80

90

en
−U

S

en
−G

B

es
−E

S

es
−U

S

es
−M

X

fr−
FR

fr−
C
A

de
−D

E
it−

IT

pt
−B

R
hi
−I

N

D
is

ti
lla

ti
o
n
 D

a
ta

 (
%

)

Figure 3: KL-Divergence of the confidence score distribution between teacher and student models on unseen data.
With increasing amounts of distillation data, the probability distributions become highly similar.

Figure 4: NCQ/CQ confidence distribution (x–axis) as a function of how likely an utterance is to be CQ. For NCQ,
this probability ideally should be close to zero, and vice-versa for CQ (close to one). The skewedness score G1
measures the concentration of the probability mass for NCQ and CQ, respectively. For NCQ the higher score the
better (in the positive range), whereas for CQ, the lower the score the better (negative range). The results are shown
for the student models: S1%, S10%, S50% (distilled with 1%, 10%, and 50% of the data, respectively), and for the
teacher model T.

449

Proceedings of EMNLP 2022 Industry Track, pages 450–460
December 9–11, 2020. ©2022 Association for Computational Linguistics

Bringing the State-of-the-Art to Customers: A Neural Agent Assistant
Framework for Customer Service Support

Stephen Obadinmab , Faiza Khan Khattaka, Shirley Wanga,c, Tania Sidhoma,b,
Elaine Laud,g, Sean Robertsona,c, Jingcheng Niua,c, Winnie Aua, Alif Munima,

Karthik Raja K. Bhaskare, Bencheng Weie, Iris Rene, Waqar Muhammade, Erin Lie,
Bukola Isholae, Michael Wangf , Griffin Tannerf , Yu-Jia Shiahg, Sean X. Zhangg,

Kwesi P. Apponsahg, Kanishk Patelh, Jaswinder Naraing, Deval Pandyaa,
Xiaodan Zhua,b, Frank Rudzicza,c, Elham Dolatabadia,c

aVector Institute for Artificial Intelligence, bQueen’s University , cUniversity of Toronto,
dMcGill University, eCIBC, fKPMG, gPwC Canada, hUniversity of Alberta, gMila

Abstract

Building Agent Assistants that can help im-
prove customer service support requires inputs
from industry users and their customers, as
well as knowledge about state-of-the-art Nat-
ural Language Processing (NLP) technology.
We combine expertise from academia and in-
dustry to bridge the gap and build task/domain-
specific Neural Agent Assistants (NAA) with
three high-level components for: (1) Intent
Identification, (2) Context Retrieval, and (3)
Response Generation. In this paper, we outline
the pipeline of the NAA’s core system and also
present three case studies in which three indus-
try partners successfully adapt the framework
to find solutions to their unique challenges. Our
findings suggest that a collaborative process is
instrumental in spurring the development of
emerging NLP models for Conversational AI
tasks in industry. The full reference implemen-
tation code and results are available at https:
//github.com/VectorInstitute/NAA

1 Introduction

Rising demand for AI-powered conversational
agents (Fu et al., 2022; Sundar and Heck, 2022), es-
pecially for customer support service, is estimated
to grow at a compound annual growth rate (CAGR)
of 23.4%, earning a predicted revenue of around
$29.9B USD by 2028 (Market, 2018). As such,
conversational AI research has increased substan-
tially, especially to enhance customer service sup-
port (Nicolescu and Tudorache, 2022). Despite
a proliferation of agent assistants from Microsoft,
IBM, Oracle, and Google, there remain many unan-
swered questions and challenges (Fu et al., 2022)
that need to be addressed before the widespread
proliferation of AI in practice. We argue that bridg-
ing the gap between natural language processing
(NLP) research in academia and industry is an over-
looked issue in conversational AI.

Apart from the handful of aforementioned con-
glomerates, it is difficult for most other compa-
nies, which are not in the process of conducting
cutting-edge NLP research, to benefit from the
recent progress of NLP. Conventional conversa-
tional AI architectures are delicate and complex,
and require a large degree of specialised knowl-
edge to bring a full system into fruition. How-
ever, with the introduction of the large-scale pre-
trained transformer-based language models such
as BERT (Devlin et al., 2018) and GPT-2 (Rad-
ford et al., 2019), it is possible for smaller teams to
take advantage of this “monopoly” by being able
to fine-tune these powerful models on their com-
paratively small amount of data and achieve high
performance, therefore harnessing the architectural
achievements of those powerful language models
to devise their own conversational AI systems that
exploit their more fine-grained expertise and knowl-
edge of their customers’ needs.

The interdisciplinary nature of AI-enabled cus-
tomer service support makes for an inherently dif-
ficulty task (Nicolescu and Tudorache, 2022). To
arrive at an answer to a user query, a system must
bore through several layers of complexity: first, the
intent behind the question must be categorized and
quantized into a form which can be manipulated by
the system; second, determining from thousands or
millions of stored records the information relevant
to that intent; and finally to manipulate said infor-
mation into a form which the user may understand.

To handle such complexity, techniques from
across NLP must be employed, raising the barrier-
of-entry for companies with significant customer
support needs. Larger, well-established companies
can offer solutions as a service, but said solutions
are often closed-source, trained on generic data
with few in-domain terms, and may not be easily
integrated into a company’s workflow.

This paper represents the cumulative efforts of
450

both researchers and industry practitioners over a
yearlong project (whose details may be found in
Appendix A) to develop state-of-the-art customer
service support systems. In its publication, we hope
to help lower the barrier-of-entry for future industry
practitioners by inspiring similar collaborations.
Our contributions are twofold and in line with the
strengths of the contributors:

1. We release an open-source Neural Agent As-
sistant (NAA) based on state-of-the-art neural
architectures (Fu et al., 2022). The implemen-
tations are well-documented, illustrating how
the systems can be extended for specific use
cases.

2. To wit, we explore three case studies in which
three industry partners successfully adapt the
agent to find solutions to their unique chal-
lenges.

In their presentation, we stress that a perfect, uni-
versal customer service system is unattainable as
their real-world applications are not identical. As
such, any dialogue about real-world NAA must fea-
ture a discussion of both the technologies shared
with, and the differences between tasks.

2 Neural Agent Assistant framework for
Customer Service Support

As the basis of our collaborative project, we estab-
lished a common Neural Agent Assistant (NAA)
framework to serve as a guide for industry partners
to adapt to their companies’ workflows. Those tech-
nologies were made available in a clear, easy-to-use
engineering pipeline, alleviating one of the greater
challenges for industry in obtaining a foothold in
building competent neural agents.

The framework features three high-level compo-
nents shown in Figure 1: (1) Intent Identification,
(2) Context Retrieval, and (3) Response Genera-
tion. Though designed as parts in a pipeline in
generating a natural language response to customer
questions (Figure 1 (b)), the output from any given
component can nonetheless be transferred back to
the human agent when needed (Figure 1 (a)).

2.1 Intent Identification

Intent identification is a critical component of NAA
as it is often the first step in a customer service
pipeline upon which all subsequent components
depend on. Its goal is to classify the intent of

a given query. This may be binary, determining
whether the query is relevant or irrelevant to the
knowledge base (KB) (see Section 3). More of-
ten, the task involves classifying the query into a
fine-grained, domain-specific intent class. For this
purpose, we designed a query encoder to detect and
understand customers’ input and classify it into one
of N classes. The encoder consists of a pre-trained,
Transformer-based language model (Vaswani et al.,
2017), followed by a pooling layer, then a final lin-
ear layer. A query is fed as an input to the encoder,
with the latter outputting a categorical probability
distribution over the intents.

We chose BERT (Devlin et al., 2018) as the
encoder, which we fine-tune and evaluate on two
task-specific corpora: Banking77 (Casanueva et al.,
2020) and CLINC150 (Larson et al., 2019). Fol-
lowing the methodology proposed by (Zhang et al.,
2021), we first fine-tune the BERT model for the in-
tent classification task using the Banking77 dataset,
which is composed of 13k queries labelled into
77 intents. We then evaluate it on the CLINC150
dataset (banking domain) in the few-shot setting
using all 15 classes. We achieved 92% F1-score
for fine-tuning and 85% and 90% F1-score for one-
shot and five-shot learning, respectively.

For NAA’s core system demonstration, the intent
label is not used to guide the context retrieval and
response generation, but it can be easily leveraged
for knowledge extraction and abstractive summa-
rization as shown in Section 3.

It is important to note that intent identification is
only one of the main natural language understand-
ing (NLU) components that a complete customer
support agent would possess. Named-entity recog-
nition (NER) is often an equally important task,
where the goal is to identify any named entities, in-
cluding relevant people, organizations, or products
the user is inquiring about, as well as details about
time and location, like for scheduling a restaurant
reservation. There can be a great need for an agent
to identify domain-specific entities in user dialog
for the purposes of slot filling, hence there is a sim-
ilar need for NER frameworks for easily adapting
to domain-specific industry needs. For the sake of
simplicity, and because an NER component was
not requested from our industry partners, it is not
included within the scope of the project. We leave
developing this NER framework to future work.

451

Figure 1: Neural Agent Assistant framework. (a) shows how a human agent is able to leverage the three NAA
components for support. (b) shows the complete NAA pipeline, starting with an input query from a customer which
is first fed to the NAA’s intent identification module. The intent label is generated and can be used to guide the
context retrieval and response generator. The retriever and re-ranker work together to find the most relevant context
candidate passages from the KB, which the response generator employs to craft a response to the user query.

Table 1: Primary results for Passage Retriever (PR) and
the Re-Ranker (RR), comparing the performance of pre-
trained and fine-tuned models with a variety of standard
passage retrieval evaluation metrics (note higher results
are better).

MRR MAP
PR pretrained

msmarco-distilbert-base-tas-b 0.835 0.801
fine-tuned
multi-qa-mpnet-base-dot-v1 0.886 0.860
msmarco-distilbert-base-tas-b 0.864 0.834

RR pretrained
msmarco-MiniLM-L-6-v2 0.998 0.997
fine-tuned
msmarco-MiniLM-L-6-v2 1.000 1.000

2.2 Context Retrieval

This component is designed to retrieve the most
semantically similar documents from a predefined
knowledge base (corpus of documents) given a
user query. Documents or passages extracted
from the KB are presumed to contain an appro-
priate answer to the query, though not in a con-
cise form. Context retrieval is a two-step process
starting with passage retrieval and followed by re-
ranking. The retriever uses a bi-encoder design
(Karpukhin et al., 2020), extracting supporting con-
text from a knowledge-base at the level of para-
graphs (hence asymmetric semantic search) based
on SentenceBERT (Reimers and Gurevych, 2019).

The re-ranker is a BERT-based encoder designed
for sequence-pair classification that scores the rele-
vancy of all top-k retrieved candidate contexts for
a given input query (Nogueira and Cho, 2019).

Our implementation includes pipelines to run the
retriever and re-ranker pre-trained on MSMARCO
(Bajaj et al., 2016) as-is, or to fine-tune both mod-
els using Multiple Negatives Ranking Loss on a
knowledge-grounded, question-answering corpus
such as ELI5 (Fan et al., 2019). The MSMARCO
dataset was generated by sampling and anonymiz-
ing Bing usage logs. The dataset includes over 1
million queries with at least one human-generated
answer per query, as well as relevant Wikipedia pas-
sages retrieved by Bing for each query. The ELI5
dataset is made up of complex questions and long
and explanatory answers from Reddit users about
random topics. Each question and answer pair is
grounded in relevant Wikipedia passages for sup-
porting information. Table 1 compares and reports
the performance of the pretrained and fine-tuned
models on the ELI5 dataset, illustrating the benefits
of fine-tuning across systems and conditions.

Different alternative approaches have been taken
in previous works for context retrieval, including
combining dense passage retrieval with lexical rule-
based retrieval such as BM25 to improve results
and computational efficiency (Gao et al., 2021;
Khazaeli et al., 2021), and using extensive pretrain-

452

Table 2: Primary results for the Response Generation
component of NAA. Models were fine-tuned on MS-
MARCO.

Model Test-set F1-score BLEU-1 Rouge-L

GPT2-meduim MSMARCO 40.2% 32.0% 36.0%
GPT2-large MSMARCO 32.0% 20.4% 28.0%
DialoGPT-medium MSMARCO 28.2% 15.3% 24.6%
GPT2-meduim ELI5 6.98% 0.1% 5.22%

ing on the encoders (Khattab and Zaharia, 2020).
Although these methods have been shown to be
effective in some cases, it adds further complex-
ity and makes for a less generalizable approach
compared to the BERT-based approach we take.

2.3 Response Generation

The ultimate goal of our NAA is to be able to au-
tomatically generate a human-like answer to a cus-
tomer’s query. Therefore, the final component is
dedicated to producing in-context natural-language
responses to customers’ queries via a generative
transformer model. The model is fed the ranked
passages from the retrieval component and outputs
the natural-language response. Though the input is
extractive, the output is abstractive.

Our reference implementation provides pipelines
for training GPT-2 models of any size (Radford
et al., 2019) for the question answering (QA)
task on both of the above-mentioned knowledge-
grounded datasets: MSMARCO and ELI5. We
used a multi-task loss combining language model-
ing with a next-sentence prediction objective. Fol-
lowing training, nucleus top-p sampling was used
for decoding and text generation. The results for
GPT-2 medium are presented in Table 2.

The three components of our pipeline - intent
classification, context retrieval, and response gen-
eration - perform well on the domains and tasks
they were trained on. However, as discussed in Sec-
tion 1, a general system will fail to account for the
specific challenges companies face related to the
content and quality of NAA. As was illustrated, the
pipeline above provides numerous opportunities
for tailoring each function, opportunities leveraged
by our industry partners in the next section.

3 Industry-specific Proof Of Concept
Implementations

In this section, we demonstrate how the NAA
framework outlined in Section 2 was adapted to

our industry partners’ use-cases and settings, which
is continuing to be refined for deployment in real-
world scenarios.

Canadian Imperial Bank of Commerce (CIBC) is
a financial institution with an Advanced Analytics
team focusing on finding the correct curated re-
sponse to banking queries. KPMG is a professional
services firm which is looking to NAA to service
internal queries over large bodies of legal and regu-
latory documents. PricewaterhouseCoopers (PwC)
is also a professional services firm looking to better
advise its banking clients on building NAA tech-
nologies. In the following subsections we clarify
the companies’ motivations in participating in the
project, how they adapted our NAA framework,
and their plans for deployment.

3.1 Company I: CIBC - NAA Tools for
Banking Customer Service Support

The primary motivation for implementing and de-
ploying NAA by CIBC is to support the bank’s
continued focus on leveraging digital technologies
to make clients’ banking experiences even better.

The pipeline modified by CIBC (see Figure 2 in
Appendix A) consisted of four components. The
first component was a binary classifier (i.e., a BERT
encoder) which was trained to classify whether an
input query has a banking intent. The inputs iden-
tified as being banking related were further pro-
cessed by the assistant. Module 2 was the same
as NAA’s intent identification component, though
it was improved through data augmentation: the
component was fine-tuned on back translation (Sen-
nrich et al., 2016) (English→ German→ English)
and insertion data. With data augmentation, F1-
scores improved from 91.8% to 92.7%. Module
3 was a knowledge-driven QA system including
both the Context Retrieval and Response Genera-
tion components of the NAA. If the banking intent
from the previous layer had a confidence score
greater than parity, then the top 5 most relevant fi-
nancial contexts from a curated financial KB were
retrieved and ranked. The KB included long-format
questions and answers, as well as FAQs down-
loaded from the company’s publicly available web-
site. The context, therefore, was question/answer
pairs that, after being retrieved, provided a simi-
lar question along with an answer to the customer
query. In addition, the GPT-2 Medium model pre-
trained on MSMARCO was also used to gener-

453

Table 3: KPMG: Legal data NAA pipeline results. Pas-
sage size (PS) refers to number of sentences used for
the passages (2, 3, and 4 for short, medium, and long
respectively). Corpus refers to whether the dataset was
preprocessed. Retriever refers to corpus embedding
bi-encoder (all retrieval components are pretrained on
MSMARCO). Response generator (RG) shows the pre-
training dataset used for GPT-2-medium.

PS Corpus Retreiver RG Manual Score BLEU-1 F1-score
Med. Raw DISTILBERT ELI5 44 0.193 0.218
Med. Clean DISTILBERT ELI5 40 0.176 0.198
Short Clean DISTILBERT ELI5 30 0.181 0.206
Long Clean DISTILBERT ELI5 43 0.212 0.232
Med. Clean BERT ELI5 49 0.303 0.336
Med. Raw BERT MSMARCO 74 0.450 0.506
Med. Clean BERT MSMARCO N/A 0.459 0.443
Short Clean BERT MSMARCO N/A 0.422 0.426

ate human-like responses for the questions based
on the retrieved long answers. Low-confidence
queries were passed into the final component of
the pipeline, which is based on KeyBERT, an ar-
chitecture utilizing BERT, and deals with out-of-
domain intent identification. Using the KeyBERT,
keywords from the query were extracted and kept
as new out-of-domain intents. Moreover, these new
out-of-domain intents were recorded and tracked to
enhance banking intent classification in the future
by creating more relevant intent categories.

Following a successful implementation of the
pipeline, a web application was developed to be
used directly by clients. React and REST API ser-
vice were used as the basis for the web application,
which were integrated with the Amazon Web Ser-
vices (AWS) cloud platform. Extensive developer
testing has been conducted, and additional deploy-
ment include carrying out agent volunteer testing,
which involves using several agents at the bank test-
ing the application for optimal functionality and
usability. Lastly, in order to make the system able
to dynamically improve in response to customer
feedback, the developers plan to implement a feed-
back loop using customer data. The feedback loop
is a mechanism that helps determine how well the
model works in production, and provides the nec-
essary feedback to determine whether any changes
are needed as a response to customers’ user experi-
ence with the application and any desired improve-
ments (see Figure 3 in the Appendix).

3.2 Company II: KPMG - A Q&A Tool for
Legal Documents Analysis

The motivation for adapting NAA and its imple-
mentation by KPMG was reduce the inefficiencies

in providing accurate information to user queries
in the legal domain drawn from agreements and
reports. The company aims to improve their exist-
ing text search parsing relying on manual/keyword
search using a more robust and easy-to-use novel
knowledge-based document query tool based on a
NAA.

The pipeline for this implementation included
using and externally evaluating the context re-
trieval and response generation components of
NAA framework on a curated legal dataset, CUAD
v1 (Hendrycks et al., 2021), which contains over
13k sentences based on commercial legal contracts
labelled into 41 types of legal clauses. A group
of 5 experts including 3 data scientists and 2 le-
gal domain data engineers helped create the le-
gal domain knowledge grounded QA dataset and
provided manual evaluation of the performance of
the model on the response generation task. The
legal QA dataset includes in-house human gener-
ated question and answer pairs (n=47) drawn from
CUAD v1. In particular, the dataset is a collec-
tion of question-answer-evidence triplets, and a KB
where the questions and answers were generated by
the experts and were accompanied by a supporting
context from the KB. The quality and accuracy of
the generated responses by the pipeline was eval-
uated manually by one of the data engineers with
legal domain expertise, as well as automatically by
using BLEU and F1-scores as can be seen in Ta-
ble 3. Through manual evaluation, each generated
response was scored from 0 to 100 based on their
quality and relevance, and the average score of all
of them was calculated. The retriever and GPT-2-
medium fine-tuned on MSMARCO achieved the
highest score of 74 through manual evaluation, as
well as a BLEU-1 and F1-score of 0.45 and 0.5,
respectively.

A two-phase production deployment plan is im-
plemented for the developed prototype. In phase
I, the prototype is planned to be made available
to internal employees only as a document process-
ing tool. The service will be based on a cloud-
hosted managed service environment, and would
allow users to upload a set of documents and enter
queries. Based on the queries, related context will
be extracted from the documents and abstractive
responses, which can be used in the formation of
summary reports. Built on phase I, in phase II the
tool will be made available to external clients and

454

integrated with their systems through an API for
the their managed services platform.

3.3 Company III: PwC Canada - Transferring
Emerging Technologies to Financial
Customer Queries

The main motivation for adapting and applying
NAA by PwC was to gain experience in creating
an end-to-end NAA pipeline to process customer
queries regarding bank account opening and mort-
gage applications. The aim was to later use the
acquired knowledge to support small to mid-sized
financial clients in building NAA chatbots that can
reduce inefficiencies when dealing with large vol-
umes of requests (particularly during high-volume
seasons like home-buying seasons).

The first component of the prototype included
a binary classifier to classify the text into either a
“general” or “agent-related” topic to mitigate the
answer generation model from confusing the user
by responding to irrelevant queries. The binary
classifier was trained on a labeled dataset including
a total of 15,732 queries (10,331 “agent-related”
and 5,401 “general”), and achieves an F1-score
of greater than 0.95. The “general” queries were
extracted from English-Second-Language practice
conversations and common greetings, while “agent-
related” queries were pulled from the Banking77
dataset (Casanueva et al., 2020). In case of a gen-
eral query, a pretrained dialogue generation model,
DialoGPT (Zhang et al., 2020), was triggered to
make a basic response to the user.

The answer generation component included both
the retrieval and response generation tasks. For
the retrieval task, both the retriever and re-ranker
provided by NAA (pretrained on MSMARCO)
were used to extract relevant question-answer pairs
from the KB. The KB included 250 long format
questions and their respective answers downloaded
from FAQs owned by top banks in Canada. Follow-
ing the retrieval task, the top 3 contexts (including
question-answer pairs similar to section 3.1) along
with the user’s query were provided as inputs to
the answer generation model which uses a GPT-2
model further fine-tuned on the 250 question an-
swer sets. The generated answers were compared
and evaluated on a set of new human-generated
question answer pairs (n=30), achieving a Rouge1
F1-score of 0.088 and a RougeL of 0.084.

The deployment of this solution at the produc-

tion level is to combine NAA components with
Automated Speech Recognition (ASR) tools using
a backend service that determines whether a client
request is audio or text, after which the request
would be processed by the appropriate pipeline.
An asynchronous web framework such as NodeJS’
Express or Python’s FastAPI is planned to be used
to create a system scalable to multiple concurrent
users, and using an Apache MXNet framework in
combination with distributing the workload across
multiple GPUs will support inference on the ASR
and the response generation models.

4 Summary and Discussion

We summarize our experiences in this section.

Domain/task-specific system works better: As
stated earlier, the task/domain agnostic system is
not well-suited for different use-cases as our in-
dustry partners found, and as confirmed by our
experiences. Real-world conversational datasets
are noisy and contain domain-specific concepts,
and as a result, domain agnostic systems that are
trained on clean open-source datasets are likely to
have poor performance when evaluated on realistic
inputs. The best practice would be to have a system
designed/adapted based on domain and task.

Finding a good performance evaluation method:
Due to the inherent difficulty in evaluating the qual-
ity of retrieved contexts and generated answers,
finding a suitable model assessment strategy is im-
perative (Khapra and Sai, 2021), which includes the
processes of model selection, bench-marking, and
deciding between manual and automated assess-
ment. Automatic evaluation metrics in particular,
although flawed, allow for the ability to benchmark
many different model variations, leading to a strong
model being picked if there is a general agreement
between different metrics. The companies found
that using a combination of automatic evaluation
metrics like BLEU score, F1-score, Rouge-1, along
with expert manual evaluation, helped better inform
model selection.

Efficiency and optimization: The efficiency of
the algorithm/model being used is important, as is
weighing trade-offs and discovering optimizations.
For example it was noted that BERT-base models
tend to perform better than DistilBERT-base for the
bi-encoder, but at the cost of longer inference time.
Hence, it is important to consider multiple different

455

approaches when implementing a component and
deciding what is the most important aspect of per-
formance. Another challenge that was identified
by one company was designing an efficient algo-
rithm for parsing customer inputs into meaningful
entities, which was solved by using a custom built
parser tailored specifically for in-domain data.
Effectively Combining Academia and Industry
Expertise: This collaborative project combined
the expertise from academia and industry, which
resulted in successful implementation of systems
to be deployed at the industry participants’ compa-
nies. We tried to keep the whole process smooth
by having regular meetings and adding documen-
tation. This helped us to collaborate in an efficient
and effective manner while keeping engagement
throughout the whole process.

5 Conclusion

In this paper, we present a collaborative project
for building three customized NAA systems for
different tasks and domains in industry. Through
our framework and collaborative process, we have
tried to bridge the gap between industry and cut-
ting edge NAA technologies by providing much
needed open-source tools and expertise in founda-
tional language models and conversational AI. We
have observed this framework being successfully
adapted into real-world use-cases to enhance cus-
tomer service support, and it has helped spur NAA
development in industry. We hope that our cur-
rent effort will serve as a valuable use-case to the
community, and it is our plan to continue similar
collaborative efforts in future in other areas of AI.

6 Ethical Considerations

A limitation of the natural language response gen-
eration module of our framework is that there are
few guarantees that the model does not produce
erroneous or harmful responses in response to user
queries. As the base of this module is a language
model such as GPT-2 that is pretrained on a massive
corpus of data that has not been carefully ensured
to be debiased and free from harmful or prejudiced
content, it can be susceptible to adversarial inputs
and thus has the potential to produce bigoted re-
sponses even to benign user queries (Kirk et al.,
2021). This presents ethical concerns when hav-
ing the NAA deal directly with customers, and
therefore, to avoid such concerns, we recommend

that the NAA in its current form only be used in a
human-in-the-loop process, where a human agent
works closely with the NAA for assistance. The hu-
man agent can ensure that any potential customer
or client does not receive any unwanted responses
from the NAA.

Acknowledgements

We would like to acknowledge and give thanks to
Sedef Akinli Kocak and Gerald Penn from the Vec-
tor Institute for Artificial Intelligence for their help
in facilitating this project. We also acknowledge
the contributions of Andrew Brown from CIBC on
CIBC’s NAA implementation.

References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. MS MARCO: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020. Ef-
ficient Intent Detection with Dual Sentence En-
coders. In Proceedings of the 2nd Workshop
on NLP for ConvAI - ACL 2020. Data avail-
able at https://github.com/PolyAI-LDN/task-specific-
datasets.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. Cite arxiv:1810.04805Comment: 13
pages.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:
Long Form Question Answering. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3558–3567, Florence,
Italy. Association for Computational Linguistics.

Tingchen Fu, Shen Gao, Xueliang Zhao, Ji-rong Wen,
and Rui Yan. 2022. Learning towards conversational
AI: A survey. AI Open, 3:14–28.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL:
Revisit Exact Lexical Match in Information Retrieval
with Contextualized Inverted List. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3030–3042,
Online. Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Anya Chen, and Spencer
Ball. 2021. CUAD: An Expert-Annotated NLP
Dataset for Legal Contract Review. NeurIPS.

456

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.

Mitesh M Khapra and Ananya B Sai. 2021. A tuto-
rial on evaluation metrics used in natural language
generation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies: Tutorials, pages 15–19.

O. Khattab and Matei A. Zaharia. 2020. ColBERT:
Efficient and Effective Passage Search via Contex-
tualized Late Interaction over BERT. Proceedings
of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Soha Khazaeli, Janardhana Punuru, Chad Morris, San-
jay Sharma, Bert Staub, Michael Cole, Sunny Chiu-
Webster, and Dhruv Sakalley. 2021. A Free Format
Legal Question Answering System. In Proceedings
of the Natural Legal Language Processing Workshop
2021, pages 107–113, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Hannah Rose Kirk, Yennie Jun, Filippo Volpin, Haider
Iqbal, Elias Benussi, Frederic Dreyer, Aleksandar
Shtedritski, and Yuki Asano. 2021. Bias out-of-the-
box: An empirical analysis of intersectional occupa-
tional biases in popular generative language models.
Advances in neural information processing systems,
34:2611–2624.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An Evaluation Dataset for Intent Classification and
Out-of-Scope Prediction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Gold Nanoparticles Market. 2018. Global Industry
Analysis, Size, Share, Growth, Trends, and Forecast
2017–2026. Transparency Market Research.

Luminit,a Nicolescu and Monica Teodora Tudorache.
2022. Human-Computer Interaction in Customer
Service: The Experience with AI Chatbots—A Sys-
tematic Literature Review. Electronics, 11(10):1579.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage Re-ranking with BERT. arXiv e-prints, page
arXiv:1901.04085.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving Neural Machine Translation Mod-
els with Monolingual Data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Anirudh Sundar and Larry Heck. 2022. Multimodal
Conversational AI: A Survey of Datasets and Ap-
proaches. arXiv preprint arXiv:2205.06907.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingFace’s Transformers: State-of-the-art Natural
Language Processing.

Haode Zhang, Yuwei Zhang, Li-Ming Zhan, Jiaxin
Chen, Guangyuan Shi, Xiao-Ming Wu, and Albert
Y. S. Lam. 2021. Effectiveness of Pre-training
for Few-shot Intent Classification. arXiv preprint
arXiv:2109.05782.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. DialoGPT: Large-Scale
Generative Pre-training for Conversational Response
Generation. In ACL, system demonstration.

457

A Appendix

Project participants: The participants of this
project consist of:

• Technical and project management teams
from Vector Institute for AI initiating this
project with the mission to bring industry and
academia closer so that the two groups could
learn and benefit from each other.

• Data scientists from three industry partners
participated to enhance their knowledge and
apply new methods in their companies.

• University faculty from partnering universi-
ties providing additional advising and expo-
sure to the state-of-the-art methods.

Project steps: The following are the points de-
scribing the project steps and participation.

• Vector Institute for AI:

– defined the problem statement and
project scope with the help of some input
from the industry partners,

– implemented general domain-agnostic
NAA reference implementations con-
sisting of three high-level components:
(1) Intent Identification, (2) Context Re-
trieval, and (3) Response Generation,

– provided tutorial, open-source datasets,
computing services, training, and con-
stant feedback & support.

• Faculty provided advising on cutting edge
technologies.

• Industry partners (CIBC, KPMG, PwC):

– identified the use-cases,
– modified, trained/re-trained and impro-

vised the framework on the datasets of
their choice according to their use-cases
and industry settings.

– developed their own domain/industry
specific end-to-end pipeline to deploy in
their respective companies.

B Environment Setup

The following resources were provided by the Vec-
tor Institute for AI to the participants.

• Git repos: Git repositories containing full
reference implementation code and training
details were provided by the Vector Institute
for AI1.

• Cluster and GPU access: Access to cluster
and GPUs was provided by the Vector Institute
for AI. Model training was conducted on a
remote cluster on one of 3 GPUs: NVIDIA
T4 (16GB), NVIDIA® Tesla P100 (16GB),
and NVIDIA RTX 6000 GPU (24GB)

• Dataset storage: All datasets used were made
available on cluster. Moreover, each partici-
pant had 50GB storage space (which could
be increased upon request) to store datasets,
model checkpoints, and other files necessary
to formulate their solutions.

• Google Cloud Platform (GCP) access: The
participants were provided access to GCP and
TPUs. Also a GCP training session from
Google was hosted by the Vector Institute for
AI. The purpose of this platform was to pro-
vide the participants with experience using
cloud services to train and deploy their sys-
tem.

C Reference Implementation Training
Details

In this section, we provide some of the pre-
processing decisions, training details, and hyper-
parameters for our reference implementations for
replication purposes. For our implementation of
the transformer-based language models we use the
python libraries, Huggingface Transformers (Wolf
et al., 2019) for BERT and GPT-2, and Sentence-
Transformers (SBERT) (Reimers and Gurevych,
2019) for the bi-encoder and cross-encoder. We
use Pytorch as the backbone of our implementa-
tions. An AdamW optimizer is used for the training
of all of the models.

• Intent Identification: The max sequence
length for BERT is set to be 300 tokens. The
model is fine-tuned for 40 epochs using a
batch size of 16 and a learning rate of 2e-5.
We utilize a linear scheduler with a warmup ra-
tio of 20%. We used 5% of the training set for
model validation purposes, and the provided

1https://github.com/VectorInstitute/NAA

458

Banking77 test set for evaluation. Early stop-
ping based on validation loss with a patience
of 2 was used to select the best performing
model. The training settings for the few shot
model include using a frozen BERT encoder
previously fine-tuned on Banking77 as a fea-
ture extractor for few shot classification. A
new linear layer on top of the BERT encoder
is trained to classify the new 15 classes from
CLINC150. The linear layer is trained for 5
epochs with a batch size of 6 and a learning
rate of 0.001. The rest of the training settings
are similar to before.

• Context Retrieval: For the version of the
bi-encoder fine-tuned on the ELI5 dataset,
the dataset is preprocessed such that a re-
ranker pretrained on MSMARCO re-ranks the
original 7 wikipedia passages per query, and
picks the most relevant passage to be part of
the question-answer training pair. The base
msmarco-distilbert-base-tas-b bi-encoder is
fine-tuned on this dataset for 3 epochs with a
batch size of 16. A scheduler with a warmup
ratio of 10% is also used. 15% of the training
data is set aside for testing. The cross encoder
has the same hyperparameters, with the addi-
tion of the max sequence length being set to
512 tokens. A learning rate of 2e-5 is used for
fine-tuning both modules.

• Answer Generation: Lastly, the GPT-2 an-
swer generation model generates an output
sequence that is a maximum of 200 tokens,
at a temperature of 0.7, and with top_k and
top_p values of 100 and 0 respectively. The
model is trained for 5 epochs on MSMARCO
using a batch size of 1 (with 8 gradient ac-
cumulation steps simulating a batch size of
8), and a learning rate of 5e-5. Furthermore,
the maximum number of input tokens is set
to 330. Additional settings include setting the
language modelling loss coefficient to 10.0,
applying gradient clipping with a magnitude
of 10.0, and using a multiple choice classifica-
tion head for the second head of GPT-2 with
a loss coefficient of 1.0. The MSMARCO
dataset is preprocessed such that we use the
well-formed answer if possible, and avoiding
using questions for which there are multiple
answers without a well formed answer. We

use the existing train and validation sets for
fine-tuning and evaluating the model.

459

D Supplementary Figures

Figure 2: CIBC Banking Agent Assistance Implementation Pipeline.

Figure 3: CIBC - Diagram showing the Banking Chatbot Service API. The user (human agent) interacts with the
NAA pipeline through the React App, and sends a response. Then the NAA pipeline processes the request and a
chatbot sends a response.

460

Proceedings of EMNLP 2022 Industry Track, pages 461–467
December 9–11, 2020. ©2022 Association for Computational Linguistics

Zero-Shot Dynamic Quantization for Transformer Inference

Yousef El-Kurdi∗ Jerry Quinn* Avirup Sil
IBM Research AI

{yousefelk, jlquinn, avi}@us.ibm.com

Abstract
We introduce a novel run-time method for sig-
nificantly reducing the accuracy loss associ-
ated with quantizing BERT-like models to 8-
bit integers. Existing methods for quantizing
models either modify the training procedure,
or they require an additional calibration step to
adjust parameters that also requires a selected
held-out dataset. Our method permits taking
advantage of quantization without the need for
these adjustments. We present results on sev-
eral NLP tasks demonstrating the usefulness of
this technique.

1 Introduction

Transformer-based Neural Networks (NN) such as
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019) and XLM-R (Conneau et al., 2019), pre-
trained on large amounts of data, have led to state-
of-the-art (SOTA) results on many NLP tasks such
as machine translation (Zhu et al., 2019), text clas-
sification (Wang et al., 2018) and question answer-
ing (Kwiatkowski et al., 2019; Clark et al., 2020).
However, run-time inference of such large mod-
els is very costly due to their large computational
requirements. In addition, deploying these mod-
els on smaller footprint mobile devices (Ravi and
Kozareva, 2021) or cost-effective (Sanh et al., 2019;
Jiao et al., 2020) CPU based machines require ag-
gressive optimization techniques for both speed
and network size. One popular speed optimization
technique is NN quantization (Gholami et al., 2021;
Kim et al., 2021; Zafrir et al., 2019), where network
weights and activations are transformed from 32-bit
floating-point representations to integers (typically
8-bit). Running inference using integer operations
has two key advantages. First, the model size foot-
print is considerably reduced e.g. 8-bit quantization
shrinks models by a factor of four. Second, infer-
ence throughput is significantly increased by us-
ing more efficient integer-based “single instruction

∗Equal contribution.

multiple data” (SIMD) (Hennessy and Patterson,
2012) instructions while improving memory band-
width utilization, which is typically a bottleneck
limiting computational throughput for NNs (Quinn
and Ballesteros, 2018).

Fundamentally, quantization leads to a quantita-
tive loss of information due to the lowered numeri-
cal precision. As a result, applying integer quanti-
zation directly to NN models leads to considerable
drop in accuracy (Zafrir et al., 2019). However,
by carefully adjusting the quantization parameters
such as the clipping thresholds, the accuracy loss
can be significantly reduced, if not eliminated.

The majority of quantization research (Gholami
et al., 2021) involve a mix of quantization-aware
training (QAT) and post-training calibration tech-
niques with varying complexities to resolve the
quantization performance gap. Several works (Kim
et al., 2021; Choi et al., 2018; Zhou et al., 2017;
Choi et al., 2018; Krishnamoorthi, 2018; Louizos
et al., 2019; McKinstry et al., 2019) detail tech-
niques for QAT as well as approaches where the
quantization parameters are optimized using statis-
tics gathered during training. While these ap-
proaches typically close the gap in the quantized
model accuracy, they requires access to the training
pipeline as well as the training data. In addition,
these methods are not applicable to black-box mod-
els where both training procedures and data are not
available. Also, these methods may be affected
by training instabilities, increasing the complex-
ity of the training regimes as described in (Krish-
namoorthi, 2018). Post-training approaches such
as (Migacz, 2017; Bhandare et al., 2019) require
calibration techniques on selected datasets. For
example, in (Migacz, 2017) KL-divergence (Kull-
back and Leibler, 1951) between the unquantized
and quantized activations on each layer was used to
tune the quantization clipping thresholds. Special
care needs to be taken when selecting a calibration
dataset; as it needs to be diverse enough but yet task

461

specific. In certain cases this leads to low accuracy,
or even unpredictable behaviour, if the run-time
input deviates from the calibration dataset.

Two methods that share our high-level goals of
eliminating the need for training datasets are in-
troduced in (Nagel et al., 2019; Cai et al., 2020).
These methods are implemented with CNN-based
(Gehring et al., 2017) networks, and are used for im-
age classification and object detection tasks. (Nagel
et al., 2019) reduces the quantization error by re-
scaling the weights of consecutive CNN layers
while taking advantage of the equivariance prop-
erty of the piece-wise linear ReLU function. (Cai
et al., 2020), on the other hand, tunes the quanti-
zation parameters using synthetic data generated
utilizing mean and variance statistics obtained from
the batch normalization layers of the model it-
self. While both methods are applicable for mainly
CNN-based networks, our algorithm is consider-
ably simpler to implement and targets transformers
(Vaswani et al., 2017); particularly SOTA NLP net-
works with BERT-like (Devlin et al., 2018; Liu
et al., 2019) pre-trained representations.

In this work, we present a method that utilizes
the Interquartile Range (IQR) (Tukey et al., 1977;
Rousseeuw and Croux, 1993), which is a measure
of statistical dispersion, to clip the activations dy-
namically during inference time. Our method en-
sures that at least 75% of the token-wise extreme
activations are not modified, while leaving the re-
maining 25% to be statistically modified as out-
liers, leading to a robust behaviour while consider-
ably improving quantization accuracy. Our method
works for any transformer-based “trained” model
and does not require any form of training or calibra-
tion. Overall, our contributions can be summarized
as follows:

• We propose a novel “ready-to-use” inference-
time dynamic quantization method that does
not require sophisticated re-training/fine-
tuning and additional calibration strategies.

• Empirically our proposed model demonstrates
both effectiveness and robustness on several
different NLP benchmark tasks.

• Further, contrary to prior work, experiments
suggest that our proposed method works both
for monolingual and multilingual transformer
architectures out-of-the-box.

2 Methodology

2.1 Backgound

Existing approaches to speeding up inference for
Transformers mostly focus on General Matrix Mul-
tiply (GEMM) operations. Fast GEMM implemen-
tations routinely use GPU and CPU specific SIMD
instructions, to execute many multiplications and
additions in parallel. They also optimize memory
access patterns to make the best use of available
memory bandwidth. Integer quantization speeds
up the GEMM operations by increasing the amount
of data transferred with each memory transaction.
They also take advantage of denser SIMD instruc-
tions. For example, 8-bit quantization packs four
times the data per memory transaction compared
to 32-bit floating point values. Many CPUs also
support 8-bit SIMD multiplication operations, pro-
viding faster as well as cost-effective computation.

2.1.1 Uniform Quantization
Dynamic quantization for inference quantizes acti-
vations at run time. The model weights are typ-
ically quantized once ahead of execution. Let
M ∈ Rm×n be a matrix of either an activation
or parameter weights. The quantization scale (QS)
is obtained as:

QS = max
∀i∈{1,...,m}
∀j∈{1,...,n}

|M(i, j)|. (1)

The matrixM is then quantized to M̄ ∈ Zm×n as
follows:

M̄ = int

(
2b/2− 1

QS
M

)
, (2)

where b is the number of integerization bits, typ-
ically 8, and the function int is the element-wise
integer conversion operator; e.g. a floor function.
The reason for the subtraction by 1 in (2) is to en-
sure that the quantization range is equally spread
around zero. In the case of 8 bits, the range be-
comes ±127. This formulation also results in a
symmetric form of uniform quantization, where the
quantization is evenly split around zero. This can
be modified by adding a zero-shift resulting in an
asymmetric quantization (Krishnamoorthi, 2018),
which may particularly be useful for certain acti-
vation functions such as ReLU (Nair and Hinton,
2010) and GELU (Hendrycks and Gimpel, 2016).
While non-uniform quantization (Gholami et al.,
2021) has been explored to better capture weight
and activation distribution with variable step sizes,

462

uniform quantization leads to more efficient imple-
mentation on current hardware such as GPUs and
CPUs with acceptable accuracy. Once matrices are
quantized, GEMM operations can be performed
using integer arithmetic allowing the use of fast
SIMD instruction sets.

Quantization lowers numerical precision which
leads to loss of information. Examining (1) shows
how the QS can increase precision errors if it takes
extreme values that largely deviate from the ma-
jority activations. Therefore, the activation tensor
must be clipped to reduce the quantization error;
however, excessive clipping can lead to distortions
in the activation which also leads to drops in accu-
racy.

In the following section, we will outline a
method that chooses better QS values for each acti-
vation tensor dynamically during inference, with-
out any modification to the training pipeline or any
requirement for calibration procedures.

2.2 Interquartile Range Clipping

If we consider the extreme values in the activations
as outliers in a distribution, there is a substantial
amount of research for identifying outliers (Ben-
Gal, 2005; Hodge and Austin, 2004). Our solution
makes use of a low complexity univariate statistical-
based method for outlier detection referred to as
the Interquartile Range (IQR) method originally
proposed by Tukey (Tukey et al., 1977).

IQR is also considered a robust statistical mea-
sure (Rousseeuw et al., 2011) of the data spread,
with the notion of robustness being defined using
the concept of a breakdown point (Rousseeuw and
Croux, 1993; Rousseeuw et al., 2011). The break-
down point is the minimum number of data that can
be arbitrarily replaced while keeping the statistical
measure bounded. The sample mean and variance
have a 0 breakdown point, meaning that these mea-
sures are changed by even a single outlier; on the
other hand, the IQR has a 25% breakdown point,
making it a stable measure even if up to 25% of the
data are outliers.

We introduce an algorithm that effectively uses
IQR to clip outliers from an activation tensor which
consequently improves the selection of the quanti-
zation scale as in (1). It is worth noting that a direct
implementation of the IQR method is too slow as
it uses a sorting operation in order to identify the
quartiles on the data. The complexity of a naive
implementation would be O(N logN) where N

is the number of elements of the activation tensor.
In the case of BERT-like models, N = L × H ,
where L is the sequence length andH is the hidden
dimension; e.g. for BERT-Large, N = 512× 1024.
To lower this complexity, we obtain the IQR clip-
ping threshold from a reduced set formed by tak-
ing the maximums, in absolute sense, along the
H dimension. We will refer to this algorithm
as the Token-Maximums IQR (TM-IQR) clipping.
The resulting complexity of the IQR clipping be-
comesO(N+L logL). Our experiments show that
adding this form of IQR clipping slows inference
by less than 2%, which is negligible considering
the resulting accuracy gains.

Algorithm 2 Activation clipping using TM-IQR
Input: Activation tensor A ∈ RL×H

L ← {1, 2, . . . , L}
H ← {1, 2, . . . , H}

1: M(i)← max
∀j∈H

|A(i, j)|, ∀i ∈ L
2: M ← sort(M)
3: q1← first-quartile(M)
4: q3← third-quartile(M)
5: t← q3 + 1.5(q3− q1) -
6: A(i, j)← min(A(i, j), t), ∀(i,j)∈L×H
7: A(i, j)← max(A(i, j),−t), ∀(i,j)∈L×H

Return: A

Algorithm 2 outlines the basic procedure of our
TM-IQR clipping. In Line 1 we compose the set of
token-maximum activations in the absolute sense.
Essentially, we are reducing the set of activations
to a smaller representative set that contains the top
outliers of the larger set. Lines 2 to 5 compute the
IQR threshold twhich is then used to clip the entire
activation tensor in lines 6 and 7. The value 1.5 in
line 5 is commonly referred to as the IQR scale. It
was historically proposed by Tukey (Tukey et al.,
1977) as a level to detect outliers. It is possible to
attempt to fine-tune this value, however we chose
to use the historical value without tuning in line
with the objective of our paper.

It is important to note that the TM-IQR algo-
rithm assigns a dynamic clip value for each ac-
tivation tensor as opposed to using a fixed value
for all run-time inference. Unlike fixed clipping
tuned by training datasets, we expect TM-IQR clip-
ping to be applied in a zero-shot approach across
multiple tasks while maintaining reasonable em-
pirical accuracy. This is due to the fact that our
clipping strategy guarantees that at least 75% of
the row-wise extreme activations are not impacted
by it, while a fixed clipping method does not of-
fer such guarantees for all types of input, as is the

463

CPU Precision Method Batch WPS
Xeon 8260 int8 none 48 29005
Xeon 8260 int8 IQR 48 28640
V100 fp16 none 128 71998

Table 1: IQR throughput cost in WPS (words per sec)
averaged over 4 runs. Each input is 512 tokens. 48 core
Xeon 8260 and V100 speed included for reference.

case when the input is not very aligned with train-
ing data. This has the important effect of limiting
the distortion error, which occurs when quantizing
activations with excessive clipping.

3 Experimental Setup

Our run-time inference engine, implemented in
C++, supports both FP32 and optimized 8-bit inte-
ger quantized inference (I8). We quantize model
weights at load-time and dynamically quantize ac-
tivations at run-time. The TM-IQR technique is
a straightforward modification with a negligible
impact on inference speed, as shown in Table 1.

3.1 TM-IQR

TM-IQR can be applied to the activations before
each quantized GEMM operation. However, we
found that the second feed-forward GEMM, hence-
forth referred to as FF2, contributes the majority of
the quantization error. The input dimension of FF2
is very wide, 4×H , providing more of a chance for
saturation and integer numerical instability to ac-
cumulate. In addition, the input to FF2 constitutes
the activations of either ReLU or a GELU non-
linearities. The range of such activation functions
is unbounded on the positive side, which further
increases the chance of saturation. Therefore, we
found it most effective to apply the TM-IQR to the
input activations of the FF2 GEMM operation.

3.2 Tasks

We test our proposed method on GLUE (Wang
et al., 2018) and 2 popular question answering (QA)
tasks: Natural Questions (NQ) (Kwiatkowski et al.,
2019) and TyDI 1 (Clark et al., 2020). We train
all our tasks using the publicly available (Wolf
et al., 2019). For GLUE tasks, we run 5 seeds with
hyper-parameters using HuggingFace’s defaults for
BERT while tuning the learning rate for RoBERTa
(refer to A for more details). For QA tasks, we
follow (Alberti et al., 2019; Clark et al., 2020). Our

1Note that TyDI is multilingual among 11 typologically
diverse languages.

Task FP32 I8 TM-IQR
XLM-R-base TyDI 67.7 62.9 67.0
XLM-R-large TyDI 68.8 66.8 68.4
XLM-R-base NQ 54.6 48.0 53.4
XLM-R-large NQ 56.6 53.3 56.1

Table 2: Question Answering performance.

underlying pre-trained language model for GLUE
is both BERT (cased) (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019), while for QA, we used
XLM-R (Conneau et al., 2019). Note our method
does not need any fine-tuning once this step is done
and models are obtained.

4 Results

Since our method does not modify the training
pipeline or tune the quantization parameters on
training sets, we compare our results directly to the
FP32 numbers. We are not expecting our method to
outperform FP32 but rather to reduce the negative
effect of quantization while keeping its speed as
well as simplifying the model deployment process.

4.1 Question Answering

On TyDI and NQ (Table 2), TM-IQR clearly re-
covers most of the performance lost to dynamic
quantization and is superior to I8 by 1 point on
average. Similar to GLUE, TM-IQR still performs
well with the I8 drop being the highest.

4.2 GLUE

Table 3 shows that TM-IQR is robust with an over-
all average score drop, compared to FP32, by only
0.2% for BERT-base, 0.5% for BERT-large, 1.2%
for RoBERTa-base and 0.4% for RoBERTa-large.
For all 4 pretrained models, TM-IQR wins on av-
erage. Even when TM-IQR does not outperform
I8, the loss is relatively small. Interestingly, TM-
IQR does well for cases where I8 drop is large,
e.g. CoLA and RTE for all models and STS-B for
RoBERTa-base.

5 Conclusion

We show that BERT-like models can be quantized
to 8-bit integers with good accuracy without the
need to modify training procedures or add extra
data sets for parameter calibration. We present a
robust statistically-based algorithm that dynami-
cally adjusts the quantization clipping to maintain
reasonable accuracy. Our empirical results demon-
strate the effectiveness of our method on a number

464

Task FP32 I8 TM-IQR
BERT-base-cased
MNLI 83.7 (0.2) 82.3 (0.5) 83.5 (0.3)
MNLI-MM 84.1 (0.1) 82.9 (0.2) 83.8 (0.2)
CoLA 58.0 (1.4) 48.3 (0.9) 57.7 (1.6)
SST-2 92.3 (0.3) 92.1 (0.2) 92.0 (0.4)
MRPC 88.5 (1.2) 88.8 (1.6) 88.5 (1.5)
STS-B 88.3 (0.8) 87.7 (0.8) 88.1 (0.8)
QQP 87.4 (0.1) 86.2 (0.3) 87.2 (0.2)
QNLI 90.8 (0.2) 90.3 (0.1) 90.5 (0.2)
RTE 64.6 (1.0) 63.9 (1.0) 64.9 (1.6)

Average 82.0 80.3 81.8
BERT-large-cased
MNLI 86.4 (0.1) 86.0 (0.2) 86.0 (0.1)
MNLI-MM 86.5 (0.2) 86.3 (0.1) 86.3 (0.2)
CoLA 62.9 (0.8) 60.6 (1.5) 62.1 (1.2)
SST-2 93.3 (0.5) 92.8 (0.7) 92.9 (0.4)
MRPC 90.5 (0.5) 89.6 (0.9) 90.5 (0.7)
STS-B 89.6 (0.6) 87.4 (1.2) 89.1 (0.3)
QQP 88.3 (0.2) 88.1 (0.1) 88.1 (0.1)
QNLI 92.4 (0.1) 91.9 (0.1) 92.2 (0.2)
RTE 69.8 (1.4) 64.0 (2.0) 68.5 (1.7)

Average 84.4 83.0 84.0
RoBERTa-base
MNLI 87.0 (0.1) 85.8 (0.3) 86.1 (0.1)
MNLI-MM 87.1 (0.1) 85.8 (0.2) 86.1 (0.1)
CoLA 53.7 (1.9) 22.7 (4.7) 50.8 (1.8)
SST-2 93.9 (0.2) 93.4 (0.4) 93.5 (0.3)
MRPC 78.6 (2.7) 77.2 (1.1) 78.4 (2.0)
STS-B 87.1 (0.8) 69.6 (0.8) 85.5 (0.8)
QQP 88.3 (0.1) 87.2 (0.2) 87.6 (0.1)
QNLI 92.5 (0.1) 90.1 (1.9) 91.4 (0.3)
RTE 68.0 (2.1) 64.7 (2.5) 67.4 (2.8)

Average 82.0 75.2 80.8
RoBERTa-large
MNLI 90.6 (0.0) 90.0 (0.2) 90.3 (0.1)
MNLI-MM 90.0 (0.3) 89.6 (0.1) 89.6 (0.2)
CoLA 63.5 (0.6) 63.1 (1.3) 63.4 (0.6)
SST-2 96.3 (0.4) 95.8 (0.2) 95.8 (0.4)
MRPC 89.6 (0.4) 90.1 (0.7) 88.7 (0.8)
STS-B 91.8 (0.1) 91.2 (0.2) 91.4 (0.2)
QQP 89.8 (0.1) 89.4 (0.2) 89.4 (0.2)
QNLI 94.6 (0.2) 94.1 (0.3) 94.1 (0.3)
RTE 77.7 (2.0) 76.0 (5.1) 77.3 (1.5)

Average 87.1 86.6 86.7

Table 3: The TM-IQR clipping algorithm on GLUE
tasks with three computational modes, 32-bit floating-
point (FP32), 8-bit quantization (I8) and our algorithm
TM-IQR. Metric values are mean and standard devia-
tion (in parenthesis) over 5 seeds.

of NLP monolingual and multilingual tasks, trained
on both base and large size BERT-like models.

References

Chris Alberti, Kenton Lee, and Michael Collins. 2019.
A bert baseline for the natural questions. arXiv
preprint arXiv:1901.08634.

Irad Ben-Gal. 2005. Outlier detection. In Data mining
and knowledge discovery handbook, pages 131–146.
Springer.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi
Karkada, Vivek Menon, Sun Choi, Kushal Datta,
and Vikram Saletore. 2019. Efficient 8-bit quan-
tization of transformer neural machine language
translation model. CoRR, abs/1906.00532.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. 2020. Ze-
roq: A novel zero shot quantization framework. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13169–
13178.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and
Kailash Gopalakrishnan. 2018. PACT: parameter-
ized clipping activation for quantized neural net-
works. CoRR, abs/1805.06085.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi QA: A benchmark
for information-seeking question answering in typo-
logically diverse languages. CoRR, abs/2003.05002.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In International
Conference on Machine Learning, pages 1243–1252.
PMLR.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei
Yao, Michael W Mahoney, and Kurt Keutzer.
2021. A survey of quantization methods for ef-
ficient neural network inference. arXiv preprint
arXiv:2103.13630.

465

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units. CoRR, abs/1606.08415.

John L. Hennessy and David A. Patterson. 2012. Com-
puter Architecture - A Quantitative Approach, 5th
Edition. Morgan Kaufmann.

Victoria Hodge and Jim Austin. 2004. A survey of out-
lier detection methodologies. Artificial intelligence
review, 22(2):85–126.

S. Iyer, N.and Dandekar, and K. Csernai. 2017. First
quora dataset release: Question pairs.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling bert for natural language
understanding. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing: Findings, pages 4163–4174.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer-
only bert quantization. International Conference on
Machine Learning.

Raghuraman Krishnamoorthi. 2018. Quantizing deep
convolutional networks for efficient inference: A
whitepaper. CoRR, abs/1806.08342.

S. Kullback and R. A. Leibler. 1951. On information
and sufficiency. Annals of Mathematical Statistics,
22(1):79–86.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christos Louizos, Matthias Reisser, Tijmen
Blankevoort, Efstratios Gavves, and Max Welling.
2019. Relaxed quantization for discretized neural
networks. In International Conference on Learning
Representations.

Jeffrey L McKinstry, Steven K Esser, Rathinaku-
mar Appuswamy, Deepika Bablani, John V Arthur,
Izzet B Yildiz, and Dharmendra S Modha. 2019.

Discovering low-precision networks close to full-
precision networks for efficient inference. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edi-
tion (EMC2-NIPS), pages 6–9. IEEE.

Szymon Migacz. 2017. Nvidia 8-bit inference with
TensorRT. In GPU Technology Conference.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort,
and Max Welling. 2019. Data-free quantization
through weight equalization and bias correction. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 1325–1334.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In ICML, pages 807–814. Omnipress.

Jerry Quinn and Miguel Ballesteros. 2018. Pieces of
eight: 8-bit neural machine translation. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
3 (Industry Papers), pages 114–120, New Orleans
- Louisiana. Association for Computational Linguis-
tics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Sujith Ravi and Zornitsa Kozareva. 2021. SoDA: On-
device conversational slot extraction. In Proceed-
ings of the 22nd Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 56–65.

Peter J Rousseeuw and Christophe Croux. 1993. Alter-
natives to the median absolute deviation. Journal of
the American Statistical association, 88(424):1273–
1283.

P.J. Rousseeuw, F.R. Hampel, E.M. Ronchetti, and
W.A. Stahel. 2011. Robust Statistics: The Approach
Based on Influence Functions. Wiley Series in Prob-
ability and Statistics. Wiley.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

John W Tukey et al. 1977. Exploratory data analysis,
volume 2. Reading, Mass.

466

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert.
arXiv preprint arXiv:1910.06188.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and
Yurong Chen. 2017. Incremental network quanti-
zation: Towards lossless cnns with low-precision
weights. CoRR, abs/1702.03044.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Houqiang Li, and Tieyan Liu. 2019.
Incorporating bert into neural machine translation.
In International Conference on Learning Represen-
tations.

A Evaluation on GLUE Task

For GLUE experiments we use the publicly avail-
able open-source library PyTorch-Transformers
(Wolf et al., 2019). We report the standard metric
on each task, specifically: Accuracy is used for
MNLI, MNLI-MM (mismatch) (Williams et al.,
2018), SST-2 (Socher et al., 2013), QNLI (Ra-
jpurkar et al., 2016), and RTE (Dagan et al., 2005).
Mathews correlation coefficient is used for CoLA
(Warstadt et al., 2019). F1 is used for MRPC
(Dolan and Brockett, 2005) and QQP (Iyer et al.,
2017). Finally, Pearson correlation coefficient is

used for STS-B (Cer et al., 2017), For BERT mod-
els, We use the default hyper-parameters provided
by the HuggingFace’s library, specifically the learn-
ing rate is 2. × 10−5, the batch-size is 32 and the
fine-tuning epochs is 3, except for MRPC where the
the fine-tuning epochs is 5. For RoBERTa models,
we tuned the learning rate in [5e−7, 2e−6] for best
devset results on FP32 evaluations, in addition we
increase the epochs to 6 for the two large datasets,
MNLI and QQP, and to 12 for the rest of the tasks.
Similarly to (Kim et al., 2021) we exclude WNLI
(Levesque et al., 2012) since it showed unstable
results even on FP32 due to its small dataset.

467

Proceedings of EMNLP 2022 Industry Track, pages 468–476
December 9–11, 2020. ©2022 Association for Computational Linguistics

Fact Checking Machine Generated Text with Dependency Trees

Alex Estes∗ †
Balto, Seattle, WA

g.alex.estes@gmail.com

Nikhita Vedula∗, Marcus Collins∗, Matthew Cecil,
and Oleg Rokhlenko
Amazon, Seattle, WA

{veduln,collmr,mattceci,olegro}@amazon.com

Abstract
Factual and logical errors made by Natural
Language Generation (NLG) systems limit
their applicability in many settings. We study
this problem in a conversational search and
recommendation setting, and observe that we
can often make two simplifying assumptions
in this domain: (i) there exists a body of struc-
tured knowledge we can use for verifying fac-
tuality of generated text; and (ii) the text to be
factually assessed typically has a well-defined
structure and style. Grounded in these assump-
tions, we propose a fast, unsupervised and
explainable technique, DepChecker, that as-
sesses factuality of input text based on rules de-
rived from structured knowledge patterns and
dependency relations with respect to the input
text. We show that DepChecker outperforms
state-of-the-art, general purpose fact-checking
techniques in this special, but important case.

1 Introduction and Background

Prior work has noted the benefits of natural lan-
guage text generated by NLG models over fixed
templates, for various language processing and lan-
guage understanding tasks, i.e., fewer grammatical
or structural disfluencies, increased conversational
nature, textual diversity and user satisfaction (Kale
and Rastogi, 2020; Challa et al., 2019; Vedula et al.,
2023). Recent NLG approaches based on language
models allow conversational agent designers to cre-
ate natural-sounding responses in a very wide range
of situations without exhaustively testing template-
based response text (Wang et al., 2022; Asai et al.,
2021; Kim et al., 2021). However, neural NLG
systems may emit hallucinated, factually incorrect
or even nonsensical content that is not entailed by
their inputs (Wang et al., 2020; Tian et al., 2019;
Liu et al., 2021b; Dhingra et al., 2019). For in-
stance, an NLG model may synthesize multiple
∗These three authors contributed equally
†Work done while at Amazon

independent hypotheses involving comparisons or
aggregations, which must be verified. There has
been growing attention towards checking the fac-
tual accuracy of statements produced by neural
NLG systems in conversational settings. These
statements fall into two categories depending on
the source input data used for generation (Guo
et al., 2022). First, the input whose factuality is to
be determined can be unstructured, as in abstrac-
tive summarization (Teredesai et al., 2019; Goyal
and Durrett, 2020) or the FEVER task (Thorne
et al., 2018; Zhou et al., 2019; Zhang et al., 2020;
Bekoulis et al., 2021; Vedula and Parthasarathy,
2021). Second, the input to be factually assessed
may involve structured components, like knowl-
edge graphs (Auer et al., 2007; Shiralkar et al.,
2017) or tabular data (Chen et al., 2019; Zhong
et al., 2020; Liu et al., 2021a).

In conversational, high-consequence domains
like health, finance, or e-commerce, we must be
sure that any factual error introduced by an NLG
system is detected (Chen et al., 2021; Di Sotto
and Viviani, 2022; Khan et al., 2022). While su-
perficially similar to other fact verification efforts,
this setting presents both unique challenges, and
unique simplifications. In this work, we investigate
the factuality of fluent e-commerce statements gen-
erated via neural NLG techniques using structured
data, namely, a commercial product catalog (Ni
et al., 2019) containing tables of products and their
attributes. We show that the state-of-the-art sys-
tems typically developed for general-purpose struc-
tured data fail to perform well in our conversa-
tional e-commerce setting. Though we focus on
the e-commerce domain, our proposed system can
be used with any structured data source to check
statements generated from non-e-commerce do-
mains such as finance (e.g., the recent FinQA chal-
lenge (Chen et al., 2021) or health (consider the
consequences of providing inaccurate health rec-
ommendations to users of personal health trackers

468

in a system like (Harris and Zaki, 2022)).
We focus on three main challenges while build-

ing our proposed fact checking model, DepChecker.
First, since presenting factually untrue statements
to users in high-consequence domains may lead to
a poor decision, we must achieve very high false
statement recall, and very high true statement pre-
cision. Second, deploying fact verification in a
conversational setting demands speed – during run-
time evaluation of responses to customers of voice
assistants, and in case we want to use fact verifi-
cation output as a signal to improve an accompa-
nying conversational response generation model.
As a result, we seek to avoid using large language
models for fact checking in production, if possi-
ble. Third, data-to-text NLG systems may rephrase
entities from the input values, e.g., if a data entity
is itself disfluent. In benchmark corpora like Tab-
Fact (Chen et al., 2019), data and reference text
mentions of the same entity are generally identical,
which can limit the flexibility of fact verification
models trained on those corpora.

DepChecker also benefits from some simplifica-
tions, especially in the e-commerce domain. We
observe that in the conversational product search
and recommendation setting, NLG systems are un-
likely to generate product statements that have a
complicated linguistic style or form (Jannach et al.,
2021). Thus, unlike TabFact which requires com-
plex hops and joins to reason over structured table
data, we can concentrate on a simpler, reduced set
of operations. We are inspired by (Reddy et al.,
2016), who approached question answering by de-
veloping rules over dependency parse trees. Con-
sider the example in Figure 1: key entities have
very simple structures. The product mention has an
nsubj (nominal subject) dependency1; attributes
are either attr (attribute) or conj (conjunct) de-
pendents of attr. These basic observations hold
over a wide set of examples in this domain, prompt-
ing us to exploit dependency trees to better extract
claims, perform entity linking to match the input
statement with its associated structured data, and
finally determine the factuality of the statement.

A current limitation of DepChecker could be
that manually constructing rules over parse trees
requires both time and domain expertise. As a
result, we also seek to automatically induce the
manually generated rules using genetic optimiza-

1 We use ClearNLP dependency labels:
github.com/clir/clearnlp-guidelines

tion algorithms (Mitchell, 1998), in a system we
call DepCheckerGA. Our contributions can thus be
summarized as follows:

1. We develop a high-speed fact-verification sys-
tem that has a very high false statement recall
and very high true statement precision, for
future deployment in production.

2. We show that highly performing fact verifi-
cation models on structured, open domain
data benchmarks fail to perform well on NLG
statements created from structured, domain-
specific inputs, despite fine-tuning.

3. We show that our unsupervised, accurate sys-
tem DepChecker is explainable and up to 10×
faster than neural baselines.

4. We discuss how DepChecker’s rules can be
automatically learned and generalized to other
systems or domains via genetic optimization.

2 Methodology

2.1 Parsing and Fact Extraction Rules

DepChecker consists of three high-level compo-
nents: (1) a set of rules applied to a dependency
parse to identify the heads of entity mentions; (2)
rules over token tags and text used to identify the
complete mention; and (3) a system to link the
identified entity mentions to corresponding struc-
tured evidence, and thereby verify whether the text
is factual. Here, we focus on the product names,
attribute names, and attribute values that are part
of our structured product catalog. We use spaCy’s
dependency parser2 to extract product-attribute re-
lations from the text. We describe several examples
of rule development in Section 2.2. These rules
however only identify the head-tokens of product
and attribute mentions. A second set of patterns
over exact strings, regular expressions, lemmas,
parts of speech, and other linguistic attributes is
used to complete the entity spans, described in
Section 2.3. We end with product-attribute-value
relations like {product_3, size, 550w} (see Fig-
ure 1), which we call a “hypothesis”. We note that
an NLG based text generation model may produce
non-standard statements which the parser may not
parse “correctly”. We emphasize that DepChecker
is not actually affected by the correctness of the de-
pendency parse, so long as it is consistent across all
statements in the domain. We are using the parse

2 spacy.io/usage/linguistic-features

469

The important things to know about product 3 are its 550w 4.7-star noise level rating 4.77-star easy to install ratingand
NN NN NNNNNNNNNN NN NNVBADJNUMNUMADJAUX PRONNUMVB

conj

comp
comp

conj
xcompamod dobj

size

attr

comp

poss

nsubj

relcl pobj

Figure 1: Identifying entity attributes from the dependency parse tree of an input claim whose factuality is to be
assessed. Potential product mentions are shown in pink, attribute names in yellow, and attribute values in green.

only as a set of features to identify product and
attribute mentions and their relations to each other.

Statements in this shopping domain can also
compare attributes of different products. For ex-
ample, for the claim “With 5 stars, Product 1 has
the highest battery life rating of all three products”
to be true, Product 1’s battery life rating must be
5 stars, and the other products’ battery life ratings
must be less than 5 stars. We add to the hypothe-
ses one or more comparands (products to which
we compare), and a comparator (e.g., “more” or
“less”). Here, there are two implied pairwise com-
parisons, one each with Products 2 and 3.

The third component evaluates the extracted hy-
potheses against the catalog data. For each hypoth-
esis extracted from a claim, we iterate through the
catalog attributes to find a match. We first check
for an exact match. If there is none, we search
for catalog and hypothesis attributes whose cosine
similarity of their GloVe embeddings (Pennington
et al., 2014) is more than 0.9. If any hypothesis fails
to match, then the claim is False. If all hypotheses
evaluate to True, the claim is labeled True.

2.2 Dependency Rule Development

We illustrate the process of finding good rules to
identify product-attribute relationships with two ex-
amples. We annotate 250 examples and identify the
dependency paths from key verbs (e.g., “has”, “is”)
and possessives (poss) to product attributes. For
instance, the dobj (direct object) of “has” is always
a product attribute phrase. An obvious example is
“Product 1 has four processors”. Now consider the
example in Figure 1. We identify the verb are, and
descend the tree from there to identify products and
attributes. The first attribute (“550w size”) has a
attr dependency arc from “are”. Remaining at-
tributes are all (conj) children of another attribute.
DepChecker uses six of these attribute existence
rules rules to extract attributes.

Figure 2 shows a case with a possessive pronoun,
its, whose head, quality, is universally an attribute,

are its good quality, compact size, and high-end appearance…product 3

attr conj conj

poss

Figure 2: An example parse with a possessive, showing
that attributes are the head, and conjunct dependencies
of the head, of its. Color scheme as in Figure 1.

so we add a rule head(poss)→attribute. Again,
conj arcs link remaining attributes to the first. We
follow a similar process to find the product men-
tion, first climbing the tree to the main verb of
the sentence (here “like”, not shown in the figure),
and descending again to find the product mention.
DepChecker has six rules for possessives. Two ad-
ditional rules handle more generic verb heads, to
identify product attributes phrased like “the lights
are bright”. DepChecker has six more rules to han-
dle comparisons, closely following attribute exis-
tence rules. Thus, DepChecker relies on just twenty
rules to identify products from dependency trees.

2.3 Attribute Token Rules

Our dependency rules find the head token of a prod-
uct or attribute, and we must identify the complete
attribute and value, if present, for which we de-
veloped regular expressions on the part-of-speech
tags. In all, there are 30 rules for different prod-
ucts and attributes. For example, to extract the
complete attribute “easy to set up”, we use the pat-
tern /(NN|ADV)* ADJ (ADP|PART) (VB|NN) NN?
ADP?/. Finally, taking advantage of the relatively
simple statement structure for the e-commerce do-
main, we have two co-reference rules linking pro-
nouns to product mentions. We observe that these
rules are more accurate and faster than co-reference
resolution with general purpose models (Stylianou
and Vlahavas, 2021).

2.4 Genetic Rule Optimization

We now describe how we can automatically learn
the rules detailed in the above sections. To extract

470

product:attribute and attribute name:value pairs
from statements, we first observe that we can iden-
tify a path from any token in the sentence up to a
common head and down to any other token. Each
pair of paths from two tokens to a shared head can
be expressed as a list of dependencies. For instance,
in Figure 1, “product” has a path [pobj, relcl,
nsubj] to the shared head token “are”, while the
attribute phrase “550w size” has a path [attr] to
“are”. Together, these paths form a candidate rule
for product:attribute extraction.

We extract all such candidate rules from a small
set of ground truth-labeled example sentences. In
principle, we could apply all of the extracted rules,
but not all are sufficiently precise. We therefore
apply genetic optimization (Fortin et al., 2012;
Mitchell, 1998), optimizing our rule selection to
increase product and attribute phrase head recall,
while maximizing token level precision to avoid
selecting spurious phrases.

We start from a set of candidate rules Rcand,
which are regular expressions over the dependency
labels linking products and attributes to common
head tokens. We further define a fitness function
E which we use to optimize individuals Ii, which
are collections of rules, and the population P as a
whole. In our case, we optimize for a combination
of precision and recall in identifying labeled prod-
ucts and attributes, and add a penalty for adding
more rules. To initialize the population, we cre-
ate npop individuals, each of which is initialized
by randomly selecting between 1 and 8 rules from
Rcand. Next, we begin to evolve the population.
At each step, we evaluate each individual in the
population using E. While our best individual is
below some target threshold fitness Etgt, we select
individuals, mutate some of them, and recombine
rules between individuals.

Selection consists of choosing the most “fit” in-
dividuals from the population, based on the fitness
evaluated using E. We use tournament selection
(Mitchell, 1998), implemented using deap (Fortin
et al., 2012)3. In tournament selection, we choose
a tournament size k (10 in our case) and select
that number participants randomly from the current
population generation. The most fit individual from
that subset of k individuals is added to the next gen-
eration. We use sampling with replacement, so the
most fit individuals are likely to be added more than
once to the next generation, strengthening the next

3 deap.readthedocs.io

generation while also allowing for some variation
to carry forward.

Next, we iterate over all individuals, first remov-
ing from each individual any redundant rules which
are wholly entailed by some other rule. Then with
probability pmut, we mutate the individual, and
recombine or “crossover” rules with another indi-
vidual with probability pcr. We mutate individuals
to diversify the new rule generation. Then, we
merge rules. Merging consists of aligning pairs of
rules and combining the aligned forms. We use
the Needleman-Wunsch (Needleman and Wunsch,
1970) algorithm to align the patterns. We choose
the most closely aligned pairs of rules to merge.
Where the tokens match, we simply add them to
the pattern; where there are gaps, we add a ‘*’ (re-
peater or Kleene star) operator, and where there are
differences, we use an ‘|’ (or) operator. For exam-
ple, given the patterns ABCD and ACE, the alignment
and merge would result in AB*C(D|E). As we will
explain below, this pairwise alignment is somewhat
limited, and can lead to complex patterns that are
hard to further combine or generalize.

If we recombine rules with another individual,
we first select an individual at random. We then
choose a rule at random from each individual, and
swap them between the two individuals.

3 Evaluation

To test our proposed approaches, DepChecker
and DepCheckerGA, we first developed a BART-
based (Lewis et al., 2020) data-to-text NLG model
to generate conversational statements in the e-
commerce domain, taking as input tabular product-
attribute data from a structured product catalog (Ni
et al., 2019). To train this NLG model, we asked hu-
man annotators to write text describing and compar-
ing the product attribute values of 2-3 catalog prod-
ucts (Figures 1 and 2 contain examples of the hu-
man generated sentences). We used this set of NLG
model generated sentences as our test set for factu-
ality assessment, to test DepChecker in this work.
As a baseline for DepChecker, we also trained a su-
pervised factual error detection binary classifier
(henceforth called RoBERTaChecker) using the
RoBERTa (Liu et al., 2019) language model, with
a mix of the above mentioned human-generated
product domain statements and artificially gener-
ated negative examples (generated by corrupting
the entity names and values in the human-generated
factually correct statements). This binary classifi-

471

Method Acc TP FR AIT
Table-BERT (Chen et al., 2019) 0.56 0.50 0.31 452
GNN-TabFact (Ran et al., 2019) 0.43 0.53 0.20 644
TAPEX-base (Liu et al., 2021a) 0.52 0.54 0.79 228
TAPAS-base (Herzig et al., 2020) 0.51 0.66 0.97 724
RoBERTaChecker 0.67 0.87 0.94 681
DepChecker (proposed) 0.65 0.85 0.94 72
DepCheckerGA (proposed) 0.63 0.84 0.94 256

Table 1: Fact verification performance of different mod-
els. Acc: Accuracy; TP: True precision; FR: False re-
call; AIT: Average Inference Time (in milliseconds).

cation dataset was also used to fine-tune the neural
baselines shown in Table 1. The first four baselines
are approaches that have been specifically devel-
oped for the TabFact dataset (Chen et al., 2019),
and were also fine-tuned on TabFact. We also la-
beled some of this data with product name, attribute
name, and attribute value tags, to select dependency
rules as described in Section 2.4.

The factual error detection test set to evaluate
DepChecker consists of 195 sentences generated
by our BART based NLG model described above,
and includes 98 factually consistent or true state-
ments and 97 factually inconsistent or false state-
ments. This test set was manually labeled after
finalizing the DepChecker rules, to avoid any data
leakage. The values of all hyperparameters used
by DepChecker and DepCheckerGA were tuned
on a manually curated validation set. We report
the average execution time over all examples at
inference, on a single 2.3GHz Intel Xeon E5-2686
v4 CPU (an Amazon AWS EC2 p3.8xlarge in-
stance). Note that we explicitly include the de-
pendency parsing time in the reported execution
time for DepChecker. An example of a structured
product table from our dataset is {size_product3:

550w, noise level rating_product3: 4.7, easy to

install rating_product3: 4.77}, from which our
BART based NLG model generates the sentence
shown in Figure 1.

3.1 Results

As shown in Table 1, DepChecker outperforms all
baselines on accuracy or speed, and outperforms
most models on both. Models developed for large-
scale fact checking baselines have surprisingly low
accuracy: the best system, TAPAS (Herzig et al.,
2020) reaches only 51%: it labels nearly all ex-
amples as false. A more important task here is
to detect false statements, since making a false
statement to a customer in an e-commerce setting
could seriously damage a business’s reputation.
TAPAS identifies 97.0% of factually inconsistent

sentences (at the cost of very low precision on fac-
tually true statements), followed by our baseline
neural model, RoBERTaChecker, with false recall
94% but much better overall accuracy 67%. De-
pChecker is equally good, reaching 94% false re-
call and 65% accuracy. In addition, neural models,
especially those using transformer architectures,
are slow. Using GPUs makes them faster, but much
more costly. For both cost and energy impact in
a production deployment setting, as well as for a
lower latency in a conversational response gener-
ation setting, it is desirable to use more efficient
models. Table 1 shows that DepChecker is three to
ten times faster than all other baseline models, and
9.4 times faster than the only neural model with
comparable accuracy, RoBERTaChecker.

We next test how well we could automatically
reproduce DepChecker’s rules using our genetic
optimization scheme in Section 2.4 (DepCheck-
erGA). We find that the rules generated by genetic
optimization are not as compact or efficient as man-
ually created rules. These rules extract 95% of
head tokens of the 1000 product name, attribute
name, and attribute value spans in our test set, and
96% of the extracted tokens belonging to those
spans. These values are statistically indistinguish-
able from DepChecker, albeit with almost twice
as many rules. As a result of the additional rules,
average execution time increases to about 250 mil-
liseconds per sentence4, making DepCheckerGA
still superior to several of our baseline systems.

3.2 Discussion

Error Analysis and Explainability: Of all mod-
els, DepChecker and RoBERTaChecker have sig-
nificantly higher accuracy and high false recall.
They mis-classify very few false statements, and
also make different errors. Combined, these two
models achieve 99% false recall, better than any
other system. RoBERTaChecker makes errors on
encountering attributes altered from the input table
(“80 plus gold”→ “80 plus gram”), misses nega-
tion (attribute “heat sensitive: false”→ “customers
like its heat sensitivity”, or when an attribute value
is associated with the wrong product. DepChecker
makes errors only of the first kind, e.g., if it gets as
input “soft material” for the attribute “soft”.

Other neural models appear to make similar er-

4 Note that to implement our genetic optimization, we convert
dependency parses to strings and execute regular expression
rules; it may be possible to further optimize this by converting
the rules to SpaCy’s tree regex, used in DepChecker.

472

rors to RoBERTaChecker. For instance, TAPEX
classifies “... product 3’s 1.0-inch unit count
...”, as true even though it is obviously wrong;
DepChecker classifies it correctly. TAPEX and
TAPAS both fail in cases where NLG transforms
attributes like “battery” to “battery life”, or when
the NLG fabricates an attribute completely, with
no corresponding input value. As with RoBER-
TaChecker, TAPEX and TAPAS make orthogonal
errors to DepChecker, and near 100% false recall
can be achieved. We aren’t sure why this should
be, since the neural models are opaque. However,
unlike other state-of-the-art systems, our proposed
approach DepChecker is both fast and explainable.
Its rules make it clearer to diagnose and understand
the exact reason DepChecker fails on an input, and
use this signal to correct the input claim or im-
prove the fact verification process. DepChecker’s
speed also enables it to be easily used in real-time
systems, and as a potential signal to improve the
training of NLG models generating factually incon-
sistent statements.

Comparing DepChecker and DepCheck-
erGA rules: We assess whether DepCheckerGA
can learn similar rules as those created by humans
or expert linguists (see Table 2). First, we observe
DepCheckerGA’s rules tend to be more narrow, il-
lustrated by the second example in Table 2, which
has a number of additional constraints compared
to the DepChecker rule, which has broader cover-
age as well. This is likely due to the fact that in
order to facilitate the genetic optimization strategy,
DepCheckerGA must fully specify the dependency
paths to each product and attribute in its rules. By
contrast, a linguist can find patterns that involve
only the key parts of the dependency links. It may
also be partly due to the limitations of our align-
ment and merging strategy in Section 2.4. This
leads to more, and unnecessarily specific rules.

In many cases, however, the rules found by
DepCheckerGA match those formed by expert
linguists. The first and third examples in Ta-
ble 2 demonstrate this. However, we note that
DepCheckerGA has redundant rules that identify
different parts of the same sentences. In the
third example, the rules shown find a link be-
tween “product”, “strap”, and the shared head
“style”. Another DepCheckerGA rule, NOUN
conj* ((pobj prep)|amod)5, unnecessarily iden-
tifies “adjustable”, showing that DepCheckerGA

5 see Table 2 caption for notation

could also do a better job pruning its rules.
Finally, while matches are more or less uni-

formly distributed across our hand-crafted rules,
only about 1 in 6 of DepCheckerGA’s rules match
more than 10 statements. In future, we will further
explore DepChecker’s rule combining strategies
for it to match DepChecker’s performance. Further,
our rule merging relies on two rules being mostly
identical. We do not merge multiple rules at once
to generalize better. Multiple sequence alignment
techniques could be used to improve DepCheck-
erGA (Chowdhury and Garai, 2017).

Dependency Parsing Errors: As noted in Sec-
tion 2.1, since we learn dependency patterns from
the parsed NLG text, the parse need only be con-
sistent across the domain, and not linguistically
correct. Parsing errors are taken into account while
learning the rules of DepChecker. It thus implicitly
handles any language errors made by the chosen
dependency parser, which might be more common
if the NLG input is not completely fluent. For
instance, in the statement customers feel highly
positive about product 1’s great features, the parser
incorrectly labels “features” as the object of adpo-
sition about, when it should be product. Both De-
pChecker and DepCheckerGA learn rules to handle
this technical error.

Generalizability: We showed that we can au-
tomatically learn a comparable set of rules over
dependency parse trees using genetic optimization
(Section 2.4). This allows DepChecker to gener-
alize to other domains, requiring only a small set
of data instances labeled with the relevant entity
names and values. It also allows a domain-specific
fact verification system to be built rapidly with al-
most no manual effort. However, as mentioned
earlier, the automatically learned rules may be less
efficient, so some expert linguist effort may still be
required. Our analysis indicates that our domain of
conversational shopping likely exhibits a compara-
tively small amount of variation in style and linguis-
tic structure of the text whose factuality is being
assessed in this paper. Extending DepChecker to
work well for domains with higher textual variation
is something we leave for future work.

To investigate DepChecker’s generalizability to
large-scale, general purpose corpora like TabFact,
we extend our defined rules to a sample of Tab-
Fact entities, which have been derived from DBPe-
dia (Auer et al., 2007). We replace the ‘product’
and ‘attribute’ entity mentions in our rules by more

473

attribute rule; product rule or example sentence
DepChecker have dobj; have nsubj
DepCheckerGA have dobj; have nsubj conj*
example sentence Product 2 has the highest rating.
DepChecker have dobj .* conj; have nsubj
DepCheckerGA have dobj; VB advcl (acomp|dobj*) conj (acomp|amod*)*
example sentence According to reviews, previous buyers feel positive about product 1 because it

has easy setup and installation, great picture quality, and lights are bright.
DepChecker attribute product case; attribute .* conj
DepCheckerGA NOUN conj*; NOUN (nmod|poss)
example sentence previous buyers feel highly positive about product 1’s laptop style, adjustable

strap, and 17.3-inch grey color.

Table 2: Comparing similar rules from DepChecker (manually created) and DepCheckerGA (automatically learned
via genetic optimization). Rules are expressed as regular expressions over dependency paths. Italics indicates a
specific lemma must be at that position. Capital letters indicate a part-of-speech class. Heads are to the left. We
use universal dependencies and standard regular expression notation: * means zero or more instances of the token,
’.’ means any token. Bolded words indicate matched attributes; underlined words indicate matched heads. Note
that attribute stands for any word, and product is a specialized lemma.

generic ‘table-row’ and ‘table-column’ tokens of
the TabFact tables, and verify if a claim is true,
given an input table. DepChecker cannot yet han-
dle some of TabFact’s aggregations, so we check
the statement veracity for each table row indepen-
dently. If a claim is false for any one row of the
input table, we label it False, otherwise it is labeled
True. This simple technique achieves 60% accu-
racy on the TabFact test set (current state-of-the-art
model accuracy is 85%), suggesting the potential of
using dependency parse structure in more general
or complex fact checking scenarios.

4 Limitations

The major limitation of our work is that De-
pChecker in its basic form requires manual ef-
fort to construct rules for fact checking. While
we showed that this rule construction can be auto-
mated, it comes with a trade-off in the compactness
of the automatically generated rules and the overall
latency. However, as shown in Sections 3.1 and 3.2,
large, neural language models developed for fact
checking with structured general purpose data (e.g.,
TabFact derived from Wikipedia tables) are unable
to perform fact checking well on statements based
on our e-commerce structured catalog data. The
time required to assemble such a large volume of
labeled data in specific domains (e.g., health or
e-commerce) to train large neural models would
certainly cost more than one or two weeks of a
linguist’s time, and may still not be fast or accurate
enough to be deployed for production purposes.

Hence, it isn’t clear how much effort would be re-
quired to build a neural system comparable in speed
and accuracy to DepChecker, or that the benchmark
systems scale or generalize better than DepChecker
for a real-world deployment scenario. Like existing
data-to-text fact checking work, DepChecker also
assumes that the underlying structured data used to
verify the statement factuality is accurate.

Finally, we acknowledge that rule-based ap-
proaches are not new, but as we show in this work,
they can still outperform or at least complement
state-of-the-art language models. Their speed, sim-
plicity, accuracy, and explainability make them
valuable tools in production use cases. Since seem-
ingly state-of-the-art results based on large lan-
guage models may not generalize as well as hoped
across different domains and datasets, we would
like to point out that our rule-based approach, De-
pChecker, remains competitive in many scenarios.
Such a system can therefore still be worth investing
in, especially in an age of larger and slower models.

5 Conclusion

We propose DepChecker: a fast, unsupervised, and
explainable model to detect factual inconsistencies
in a conversational shopping and recommendation
setting. We show that DepChecker can outperform
strong baselines, and suggest that instead of pursu-
ing costlier, less explainable, slower models, more
research should go into how to further automate
development of simpler, less expensive and more
interpretable models for production use cases.

474

References
Akari Asai, Matt Gardner, and Hannaneh Ha-

jishirzi. 2021. Evidentiality-guided generation for
knowledge-intensive nlp tasks. arXiv preprint
arXiv:2112.08688.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722–735. Springer.

Giannis Bekoulis, Christina Papagiannopoulou, and
Nikos Deligiannis. 2021. A review on fact extrac-
tion and verification. ACM Comput. Surv., 55(1).

Ashwini Challa, Kartikeya Upasani, Anusha Balakrish-
nan, and Rajen Subba. 2019. Generate, filter, and
rank: Grammaticality classification for production-
ready nlg systems. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Industry Papers),
pages 214–225.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2019. Tabfact: A large-scale
dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge,
and William Yang Wang. 2021. FinQA: A dataset of
numerical reasoning over financial data. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3697–3711,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Biswanath Chowdhury and Gautam Garai. 2017. A re-
view on multiple sequence alignment from the per-
spective of genetic algorithm. Genomics, 109(5-
6):419–431.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh,
Ming-Wei Chang, Dipanjan Das, and William Co-
hen. 2019. Handling divergent reference texts when
evaluating table-to-text generation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4884–4895.

Stefano Di Sotto and Marco Viviani. 2022. Health
misinformation detection in the social web: An
overview and a data science approach. Interna-
tional Journal of Environmental Research and Pub-
lic Health, 19(4):2173.

Félix-Antoine Fortin, François-Michel De Rainville,
Marc-André Gardner, Marc Parizeau, and Chris-
tian Gagné. 2012. DEAP: Evolutionary algorithms
made easy. Journal of Machine Learning Research,
13:2171–2175.

Tanya Goyal and Greg Durrett. 2020. Evaluating Fac-
tuality in Generation with Dependency-level Entail-
ment. Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3592–3603.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178–206.

Jonathan Harris and Mohammed J. Zaki. 2022. To-
wards neural numeric-to-text generation from tem-
poral personal health data. arxiv.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Mueller, Francesco Piccinno, and Julian Eisensch-
los. 2020. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333.

Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and
Li Chen. 2021. A survey on conversational recom-
mender systems. ACM Computing Surveys (CSUR),
54(5):1–36.

Mihir Kale and Abhinav Rastogi. 2020. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520.

Suleman Khan, Saqib Hakak, N Deepa, Kapal Dev,
and Silvia Trelova. 2022. Detecting covid-19 related
fake news using feature extraction. Frontiers in Pub-
lic Health, page 1967.

Jinhyeon Kim, Donghoon Ham, Jeong-Gwan Lee,
and Kee-Eung Kim. 2021. End-to-end document-
grounded conversation with encoder-decoder pre-
trained language model. In Proceedings of the
DSTC9 Workshop, Online, pages 8–9.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021a.
Tapex: Table pre-training via learning a neural sql
executor. In International Conference on Learning
Representations.

Tianyu Liu, Xin Zheng, Baobao Chang, and Zhifang
Sui. 2021b. Towards faithfulness in open domain
table-to-text generation from an entity-centric view.
In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 13415–13423.

475

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Melanie Mitchell. 1998. An Introduction to Genetic
Algorithms. MIT Press.

Saul B. Needleman and Christian D. Wunsch. 1970.
A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–453.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 188–197.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan
Liu. 2019. Numnet: Machine reading comprehen-
sion with numerical reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2474–2484.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming Dependency
Structures to Logical Forms for Semantic Parsing.
Transactions of the Association for Computational
Linguistics, 4:127–140.

Prashant Shiralkar, Alessandro Flammini, Filippo
Menczer, and Giovanni Luca Ciampaglia. 2017.
Finding streams in knowledge graphs to support fact
checking. In 2017 IEEE International Conference
on Data Mining (ICDM), pages 859–864. IEEE.

Nikolaos Stylianou and Ioannis Vlahavas. 2021. A neu-
ral entity coreference resolution review. Expert Sys-
tems with Applications, 168:114466.

Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Ros-
ales, Evimaria Terzi, George Karypis, Ben Goodrich,
Vinay Rao, Peter J Liu, and Mohammad Saleh. 2019.
Assessing The Factual Accuracy of Generated Text.
Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 166–175.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of

the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Ran Tian, Shashi Narayan, Thibault Sellam, and
Ankur P Parikh. 2019. Sticking to the Facts: Confi-
dent Decoding for Faithful Data-to-Text Generation.
arXiv.

Nikhita Vedula, Marcus Collins, Eugene Agichtein,
and Oleg Rokhlenko. 2023. Generating explainable
product comparisons for online shopping. In Pro-
ceedings of the Sixteenth ACM International Confer-
ence on Web Search and Data Mining.

Nikhita Vedula and Srinivasan Parthasarathy. 2021.
Face-keg: Fact checking explained using knowledge
graphs. In Proceedings of the 14th ACM Interna-
tional Conference on Web Search and Data Mining,
pages 526–534.

Weizhi Wang, Zhirui Zhang, Junliang Guo, Yinpei Dai,
Boxing Chen, and Weihua Luo. 2022. Task-oriented
dialogue system as natural language generation. In
Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 2698–2703.

Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu,
and Changyou Chen. 2020. Towards Faithful Neu-
ral Table-to-Text Generation with Content-Matching
Constraints. Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1072–1086.

Wenxuan Zhang, Yang Deng, Jing Ma, and Wai Lam.
2020. AnswerFact: Fact checking in product ques-
tion answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2407–2417, Online. As-
sociation for Computational Linguistics.

Wanjun Zhong, Duyu Tang, Zhangyin Feng, Nan
Duan, Ming Zhou, Ming Gong, Linjun Shou, Daxin
Jiang, Jiahai Wang, and Jian Yin. 2020. Logical-
FactChecker: Leveraging logical operations for fact
checking with graph module network. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6053–6065,
Online. Association for Computational Linguistics.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. 2019.
GEAR: Graph-based evidence aggregating and rea-
soning for fact verification. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 892–901, Florence, Italy.
Association for Computational Linguistics.

476

Proceedings of EMNLP 2022 Industry Track, pages 477–484
December 9–11, 2020. ©2022 Association for Computational Linguistics

Prototype-Representations for Training Data Filtering in
Weakly-Supervised Information Extraction

Nasser Zalmout and Xian Li
Amazon.com

{nzalmout,xianlee}@amazon.com

Abstract

The availability of high quality training data
is still a bottleneck for the practical utilization
of information extraction models, despite the
breakthroughs in zero and few-shot learning
techniques. This is further exacerbated for in-
dustry applications, where new tasks, domains,
and specific use cases keep arising, which
makes it impractical to depend on manually
annotated data. Therefore, weak and distant
supervision emerged as popular approaches
to bootstrap training, utilizing labeling func-
tions to guide the annotation process. Weakly-
supervised annotation of training data is fast
and efficient, however, it results in many irrel-
evant and out-of-context matches. This is a
challenging problem that can degrade the per-
formance in downstream models, or require a
manual data cleaning step that can incur sig-
nificant overhead. In this paper we present a
prototype-based filtering approach, that can be
utilized to denoise weakly supervised training
data. The system is very simple, unsupervised,
scalable, and requires little manual intervention,
yet results in significant precision gains. We ap-
ply the technique in the task of attribute value
extraction in e-commerce websites, and achieve
up to 9% gain in precision for the downstream
models, with a minimal drop in recall.

1 Introduction

Weak supervision and data programming have re-
cently emerged as powerful techniques to sup-
port information extraction models. Weak super-
vision is useful for dynamic environments, where
new tasks or deployment domains keep emerging,
and using manually annotated data is impractical.
Weakly supervised data programming aims to refor-
mulate the training data annotation process into a
programming paradigm. Instead of manually anno-
tating each training sample, the annotation process
is handled through labeling functions, which are
then used to automatically annotate the training cor-
pora. These labeling functions are usually based

on manually predefined patterns or regular expres-
sions, that are matched against the target unanno-
tated data. The weak supervision setup allows for
an efficient and scalable training data collection
process, but at the expense of accuracy. Labeling
functions can over-match, resulting in many irrele-
vant and out-of-context matches. This hinders the
performance, and could require manual cleaning
steps to lift quality, adding to the overall overhead.

In this paper we present a data filtering system
based on prototype-learning. Prototype here refers
to the correct contexts where a given target value is
usually mentioned, based on a sample dataset. This
can be drawn from a manually annotated corpus
(making it more supervised), or it can be based on
the centroid of the raw dataset (more noisy, but
totally unsupervised). At runtime, we get the em-
bedding of the prototype, along with context em-
bedding of the annotated label for each training
sample, and use outlier detection constructs to re-
move outliers. We calculate the distance between
the prototype and the in-context label representa-
tion, and if the distance is above a certain threshold
we filter it out. These out-of-context annotations
are out-of-distribution, so approaches that utilize
prototype-learning as part of the end-to-end net-
work, or other noise-robust strategies, would not
handle them properly. Removing them before mod-
eling is the best approach to reduce noise. The
intuition behind this filtering logic is that value
context embeddings that are distant from the pro-
totype tend to be more noisy, likely reflecting out-
of-context matches. We use several prototype and
data embedding techniques.

We utilize the filtering technique for attribute
value extraction (AVE), an information extraction
task that has recently been gaining much momen-
tum in e-commerce applications. The goal of the
AVE task is to obtain structured product features
from the unstructured natural language description
of the product’s page in e-commerce websites. This

477

Figure 1: Sample product profile and relevant attributes.

has several downstream applications in areas in-
cluding product search, comparison, question an-
swering, among others. Due to the dynamic and
large scale nature of this domain, contributions for
the AVE task often use weak and distant learn-
ing techniques to train the extraction models. Our
results show up to 9% absolute improvement in pre-
cision, with minimal drop in recall (about 1%), for
the extraction model trained on the filtered data.

2 Background

2.1 Attribute Value Extraction

The AVE task aims to extract the corresponding
values for a given attribute, out of a number of at-
tributes of interest, from the textual sequence of a
product profile (Zheng et al., 2018). Given a text
sequence X = [x1, . . . , xn] in a product profile,
where n is the number of words, and an attribute
r ∈ R, where R is a predefined set of attributes,
the model is expected to extract all text spans from
X that could be valid values for attribute r charac-
terizing this product’s features. When there are no
corresponding values mentioned in X , the model
should return an empty set. For example, for the
product in Figure 1, given its title as X , the model
is expected to return (“8 Fl Ounce”) if r =“Size”,
and an empty set if r =“Hair Type”. The various
products are categorized into diverse product types
(PTs), like Shampoo, Tea, TVs, etc. The products
within a given PT are homogeneous, sharing sim-
ilar overall product features, including the set of
relevant attributes. And different PTs can have a
different set of relevant attributes.

The content in e-commerce websites is very dy-
namic, where new products are frequently added.

The PT categorizations themselves also change
overtime with new products, along with the set
of relevant attributes. This makes manual train-
ing data annotation with a predefined set of PTs
and attributes infeasible for attribute value extrac-
tion. Zero and few-shot learning for new attributes
have also shown limited success (Yang et al., 2022).
Therefore, most of the AVE contributions rely on
distant or weak supervision, which is very suscep-
tible to noisy and out-of-context annotations.

2.2 Training Data Denoising

To better understand how weak supervision with
simple regular expressions or labeling functions
can result in very noisy annotations, we use the
product in Figure 1 as an example. The figure
shows the product profile, which includes the title,
description, along with the product image, for a
Skin Moisturizer PT. Some of the relevant attribute
values are highlighted with different colors. These
are the values that an AVE model is expected to
return, out of the target space of each separate at-
tribute and PT. The target space for the ItemForm
attribute and Skin Moisturizer PT, for example, in-
cludes “lotion”, “cream”, “oil”, among others. The
ItemForm label for this product should be “lotion”
as shown. However, a weakly supervised training
data, that does not consider contextual understand-
ing when assigning labels, could have chosen the
more frequent “oil” as the label. The same behavior
could happen with the Scent attribute, where “Co-
conut” could have been selected instead, or in ad-
dition to, “Island Mango”, which is the right value
for this product. This paper suggests a filtering step
on top of the weakly supervised training data, that
eliminates such out-of-context annotations.

Our filtering setup is on the <attribute, PT> pair
level. So we learn a different prototype for each <at-
tribute, PT> pair, and apply the filtering approach
for product attribute values in each pair separately.

2.3 Desiderata

There are a few constraints and specific desider-
ata that should guide the filtering technique to be
deployed actively in a production system, with-
out being disruptive to the advantages of distant-
supervision. The filtering approach should be unsu-
pervised, with minimal manual overhead. Ideally,
the filtering approach should also provide an easy
mechanism to control the balance between preci-
sion and recall, if needed. And finally, the filtering

478

approach should be easy to deploy without causing
much disruption to existing pipelines.

3 Related Work

Prototype-based approaches for NLP have tradi-
tionally been used in the word representation liter-
ature (Huang et al., 2012; Reisinger and Mooney,
2010). Interest for prototype-based approaches in-
creased significantly with the onset of Prototypical
Networks (ProtoNet), with successful utilization in
few-shot learning classification in computer vision
tasks (Snell et al., 2017), and contrastive learn-
ing models (Gao et al., 2021). ProtoNet-based
approaches compute one prototype per class as the
class mean. These prototypes are then used in a
nearest neighbour classifier to update the objective
function. This is consistent with our overall setup.
There have been many contributions since then uti-
lizing Prototypical Networks for NLP tasks, mostly
in few-shot learning in information extraction (Cui
et al., 2021; Lai et al., 2021; Gao et al., 2019). But
as far as we are aware, this paper is the first to use
prototype representations for training data filtering
in weak supervision models. There are other contri-
butions utilizing data centroids for outlier detection,
mostly through k-nearest neighbor formulation as
well. The idea is to remove samples that are far
from the cluster’s centroid, in a clustering setup
(Wang et al., 2021; Pamula et al., 2011). And we
in fact use a similar formulation in our filtering
approach, with the context prototype as the target.

The attribute value extraction task has tradition-
ally been modeled using distant-supervision (Ding
et al., 2022; Yang et al., 2022; Lin et al., 2021; Yan
et al., 2021; Wang et al., 2020; Zheng et al., 2018)
which is prone to noise. Practical utilization of the
AVE task in production makes further use of weak-
supervision and data programming techniques for
training data collection (Zalmout et al., 2021). This
further amplifies the noise issue, and makes train-
ing data filtering techniques more important.

4 Approach

4.1 Context-Aware Embeddings
Each product in a given <attribute, PT> pair is
represented through the context embedding of the
mentioned attribute value, using pre-trained lan-
guage models like BERT (Devlin et al., 2018). We
use a masking vector on top of the text sequence,
for each value. We then use BERT-like models to
get the context embedding with the sequence and

mask as input. Within this scope, we can use two
embedding paradigms:

• Value-Based Embeddings: We get the context
embedding for the value mention in each prod-
uct profile directly, based on the target value.
For multi-worded values, we take the average
of the word embeddings.

• Name-Based Embeddings: We replace the
value mention with the attribute and PT names,
separated with [BOA] and [EOA] special to-
kens (BOA: beginning of attribute, EOA: end
of attribute). Like “[BOA] skin moisturizer
item form [EOA]”, instead of the “lotion”
value in the example in Figure 1. We then
get the embedding as before.

We also fine-tune the pre-trained language model
using the MLM objective. Fine-tuning is more crit-
ical for name-based embeddings, since the pattern
of using the attribute and PT names instead of val-
ues, along with the additional special tokens, are
not covered in the existing pretrained models. We
follow the same value format mentioned above, and
replace the attribute value with the PT and attribute
names, along with the [EOA] and [BOA] special
tokens. In the fine-tuning dataset, we randomly re-
place value mentions with the above name notation
for n% of the overall corpus products.

It is worth noting that the masking setup in the
name-based embeddings is used both during fine-
tuning and context embedding retrieval at runtime.

4.2 Prototype Representation
The prototype embedding is the mean of the con-
text embeddings of a representative sample of the
values in a given <attribute, PT> pair. The proto-
type representation in prototype-learning is usually
learnt from a small set of manually annotated data.
However, in our case having annotated data for
each PT is challenging, since production systems
would be working with a large number of different
PTs. And collecting annotated data for each PT
is expensive. We therefore identify two different
approaches to obtain the prototype representation;
using a small annotated sample as typically done
in classical prototype-learning, or using the cen-
troid of the raw training data as a proxy for the
prototype.

4.2.1 Gold Prototype
Manually annotated data for each PT would allow
the model to capture more representative embed-

479

Figure 2: Filtering setup using centroid prototype.

dings. In this case, the PT embedding might not be
at the centroid of the training data cluster, depend-
ing on how noisy and how representative it is of the
real distribution. The main advantage of this setup
is that we can have more accurate and meaningful
representations, for the PTs with enough annotated
data coverage. However, the size of the annotated
sample for each PT would be small, given the large
number of different PTs. This might lead to bias,
misrepresentation, and limited coverage of all pos-
sible target values. Moreover, relying on annotated
data incurs significant overhead, and creates a de-
pendency between data annotation and the training
data generation process, which hinders scalability.

4.2.2 Training Data Centroid Prototype
We also use the training data itself to calculate the
prototype. The training data is noisy, so it cannot
be used directly to get the prototype. However, in
this case the goal would be to identify the centroid
of the context embeddings, and then assign a nu-
meric distance score for each context against the
centroid as a proxy. The threshold for the distance
is then used to eliminate outlier contexts relative to
the centroid representation. This can work if the
training data is not too excessively noisy, where the
centroid is somewhat close to the PT representa-
tion if a large amount of gold data was used. The
advantages of such setup is that the weakly super-
vised training data is cheap and does not require
manual curation. We can also get sizable training
data for each PT, that covers most of the relevant
values. However, if the training data is too noisy,
the centroid would not be capturing any meaningful
representations. Figure 2 shows a sample distribu-
tion of the different contexts, centroid, and distance
threshold.

4.3 Outlier Detection

After obtaining the prototype representation,
whether using the gold prototype or data centroid,
along with the individual context embeddings, we
formulate the cleaning task as an outlier detection
task. We use distance metrics to calculate distance
between each training sample context embedding
and the prototype. And eliminate training samples
with a distance above a tunable threshold. We ex-
periment with several distance metrics, in addition
to Euclidean distance, including:

• Mahalonobis Distance: Mahalonabis distance
is a multivariate distance metric, that consid-
ers the potential covariance between the differ-
ent variables. It is commonly used in anomaly
detection literature. However, excessive noise
can bias the covariance matrix, hence result-
ing in biased distance calculations.

d(x, µ) =
√
(x− µ)TC−1(x− µ)

Where x is the vector representation of the
given sample. µ is the vector representation of
the centroid or prototype, C−1 is the inverse
covariance matrix estimate for the samples.

• Cosine Distance: The inverse of the cosine
of the angle between sample and prototype
vectors, through the dot product of the vectors
divided by the product of their lengths.

d(x, µ) = 1−
∑n

i=1 xiµi√∑n
i=1 x

2
i

√∑n
i=1 µ

2
i

4.4 Evaluation Criteria

Throughout the various experiments we evaluate
the filtering setup based on two different criteria,
precision/recall for the training data itself, and pre-
cision/recall for the downstream extraction model.

Training data recall vs model recall. We op-
timize mainly for precision in the training data
evaluation. Recall in the training data evaluation is
calculated based on the intersection of the bench-
marking and training datasets, and does not neces-
sarily correlate with the recall of the model itself.
Therefore, lower recall in the training data evalua-
tion is not problematic, as long as it does not cause
a significant bias in specific values, as in eliminat-
ing certain values completely or near completely.
Whereas for the actual trained model, we optimize

480

Attribute # PTs Training Set Gold Testing Set
ContainerType* 34 265,822 2,119
ItemForm* 14 1,195,256 5,432
Pattern 33 126,153 2,665
ItemShape 80 511,977 2,825
ChocolateType 1 6,797 75
Material 21 41,245 2,198
ControlType 9 72,489 892

Sum 192 2,219,739 16,206

Table 1: Statistics of the training and evaluation datasets
for the various attributes. *We use two attributes (Item-
Form and ContainerType) for the ablations. And we
expand to the remaining attributes afterwards.

for both precision and recall. The goal is to max-
imize precision, with minimal sacrifice in recall.
We confirm this behavior in Table 4, where the re-
call of the model does not drop significantly, even
though the training data evaluation reflects a bigger
drop. Throughout the training data evaluation ex-
periments we mainly focus on the precision results,
but also report recall as a sanity check. But we opt
not to report F1 scores, since it does not reflect a
meaningful metric in this case.

5 Experiments and Results

5.1 Dataset

We collect our raw dataset from the product pro-
files (title, bullets, and description) from the public
web pages at Amazon.com. The goal is to col-
lect training data that is entirely weakly supervised,
without any manual cleaning or intervention. This
is why we opted not to use available public data
like MAVE (Yang et al., 2022), which has been
extensively processed. We selected seven different
attributes, and identified the set of relevant values.
The value identification is the only manual step in
this setup, gathered from Amazon pages. The train-
ing data is then collected through labeling functions
based on regular expressions for each of the target
values. This setup is commonly used in the AVE
task, usually followed by a manual curation step to
fix erroneous matching patterns.

To better understand the limits of our setup, we
also worked on enhancing the quality of the train-
ing data manually, to compare against the auto-
matic filtering system. We selected a sample of
products per PT, and worked with annotators to
identify patterns of erroneous value annotations in
the training data and fix them. The goal is to up-
date the labeling function with negative patterns
that it should avoid matching, through look ahead

and behind phrases in the regular expression. For
example, "whole" is a valid value for the ItemForm
attribute, used in cases like "whole beans". A nega-
tive matching pattern would be phrases like "whole
foods". A manually curated pattern in this case is to
avoid matching the "whole" value if it is followed
by the "foods" word. We call the resulting dataset
manually curated throughout the experiments.

We also collected a benchmarking set of man-
ually annotated set of products in each PT, for
general evaluation. Table 1 shows the statistics
of the datasets we collected. We also collected a
dataset of about 3 million products, from the public
pages at Amazon.com. We use this dataset for the
pre-trained language model fine-tuning, using the
MLM objective.

5.2 Training Data Evaluation

In this part we evaluate the resulting training
datasets directly, through a manually labeled sam-
ple from the raw training data. Since the various ab-
lations aim to filter out erroneous annotations, the
recall of the raw data would be the upper bound for
all subsequent variations. Recall of training data is
not as important as precision, since the downstream
extraction model is expected to cover the recall gap,
as we highlighted earlier. So we report recall in
the various results, but we focus on precision gain.
We use the raw data as the main baseline. We also
compare against the manually curated datasets, that
were handled through manual inspection and sets
of manually curated rules to fix them. The K value,
at the P@R=K metric, were chosen for each case to
match the recall for the manually curated datasets,
to facilitate easier comparison.

Results in Table 2 show significant improvement
compared to the unfiltered data, along with large
improvements compared to the manually curated
data as well. Value-based embeddings outperform
name-based embeddings across the various settings.
And the centroid approach seems to outperform the
Gold Prototype approach. This is significant, since
it indicates that we do not need manually anno-
tated dataset to utilize the filtering approach. This
is probably due to the more representative nature
of the centroid, despite the noise, compared to a
small annotated sample. We also experiment with
the different outlier detection methods. Results in
Table 3 show that Cosine distance outperforms the
other metrics. One theory for why Mahalanobis
distance did not perform well is that covariance

481

Training Data ItemForm ContainerType
Precision Recall Precision Recall

Raw Data 86.5% 44.0% 78.1% 24.1%
Manually Curated 93.2% 29.6% 80.3% 20.2%

Centroid Prototype

Value-based max precision 96.4% 21.2% 82.7% 18.8%
Value-based P@R=K* 95.6% 30.0% 81.6% 20.0%
Name-based max precision 89.2% 38.0% 80.0% 21.0%
Name-based P@R=K* 88.5% 30.0% 77.6% 20.0%

Gold Prototype

Value-based max precision 95.1% 21.5% 81.4% 18.5%
Value-based P@R=K* 94.7% 29.3% 80.5% 20.4%
Name-based max precision 87.1% 38.2% 80.5% 21.5%
Name-based P@R=K* 84.5% 30.5% 75.4% 19.4%

Table 2: Training data evaluation results after the various filtering approaches. These results reflect the training data
evaluation, not the extraction model evaluation. Therefore, precision gain is more important than recall, and raw
data recall is not a baseline. Check Section 4.4 for more details. *The K value, for P@R=K, is 0.3 for ItemForm,
and 0.2 for ContainerType, as described in Section 5.2.

Distance Metric ContainerType ItemForm
Precision Recall Precision Recall

Raw Data 78.1% 24.1% 86.5% 44.0%
Cosine Distance 81.6% 20.0% 95.6% 30.0%
Mahalanobis Distance 78.6% 20.8% 88.4% 30.9%
Euclidean Distance 78.9% 20.3% 92.7% 29.8%

Table 3: Training data evaluation results for the various
distance metrics. The data is filtered using value-based
embeddings, centroid prototype, and the P@R=K setup.
We do not include F1 results, as explained in Section 4.4.

matrices are susceptible to noise. To test if this is
more prominent in centroid-based filtering, we also
used the Gold Prototypes approach, and results are
actually lower, in accordance to the results for Gold
Prototypes in general.

We also experimented with a number of pre-
trained language models, including BERT (Devlin
et al., 2018) (base and large), RoBERTa (Liu et al.,
2019) (base and large), and GPT2, all fine-tuned
using the same dataset. Results are very close to
each other, besides GPT2 which is significantly
lower, so we opted to use BERT base.

5.3 Downstream Extraction Models Results

The training data results show significant precision
gain, at the expense of some recall drop, which is
not a problem as we highlighted earlier. To assess
the impact of the filtering setup on the downstream
extraction models themselves, and investigate the
role of cosine distance threshold, we train several
models using the filtered data. There are several ar-
chitectures used for the AVE task in literature, with
a varying degree of complexity (Zalmout et al.,
2021). In this part we opt for the original Open-
Tag model (Zheng et al., 2018). Table 4 shows the
results of the filtered compared to raw data, and Fig-

Figure 3: Results for the extraction models trained using
the filtered training data for the ItemForm attribute, as a
function of the cosine distance threshold.

ure 3 shows the results as a function of the cosine
distance threshold. The filtering setup achieves up
to 10% absolute gain in precision, with a minimal
recall drop of around 1%, after filtering more than
50% of the original training dataset. Interestingly,
recall seems to be doing well overall across most of
the filtering thresholds, even though we are doing
significant filtering of the training data.

5.4 Experimenting with Additional Attributes

We also expanded the experiments to five additional
attributes, to further evaluate the consistency of the
improvement. We evaluated the resulting training
data compared to the unfiltered datasets. Results
in Table 5 show gains across all attributes, with an
average precision gain of about 9% absolute.

6 Conclusion

We presented an automatic filtering approach using
prototype-based representations. We applied the
approach on the AVE task, and showed that using
centroid-based prototypes outperforms gold-data

482

Training Data ContainerType ItemForm
Precision Recall F1 Score Precision Recall F1 Score

Raw data 71.3% 34.6% 46.7% 82.4% 67.1% 73.9%
Filtered data* 80.6% 33.5% 47.4% 85.1% 66.8% 74.9%

Table 4: Results for the extraction model evaluation, trained using the filtered data compared to the raw data. *The
data is filtered using cosine distance, value-based embeddings, centroid prototype, and the P@R=K setup.

Attribute Raw Data Filtered Data
Precision Recall Precision Recall

Pattern 74.4% 14.5% 90.8% 14.1%
ItemShape 59.7% 17.8% 70.3% 16.7%
ChocolateType 88.9% 32.9% 93.1% 27.8%
Material 71.6% 16.1% 74.9% 14.5%
ControlType 69.7% 18.0% 80.1% 12.4%

Average 72.9% 19.9% 81.8% 17.1%

Table 5: Training data results for five additional at-
tributes. As explained earlier, recall drop is not as im-
portant as precision gain for training data evaluation,
and we do not report F1 scores. Check Section 4.4 for
more details.

prototypes. We also showed that cosine distance
outperforms other outlier detection techniques. We
also showed that although recall in the filtered train-
ing data drops, the precision gain would still pro-
vide the downstream model with the capacity to
cover any recall gaps. Model results show signifi-
cant precision gain, with a minimal drop in recall.

Future work in this direction include tying the
filtering process to the underlying task, which
would help learn more meaningful representations.
Along with developing an iterative filtering process,
through which we get the centroids, filter data, then
use filtered data to learn centroids again. Such it-
erative process could improve the quality of the
filtering process.

Limitations

Despite the impressive overall performance, along
with the simplicity of the approach, the filtering
system covers a subset of all possible errors. The
goal is to address out-of-context annotations, so
errors that are not far off contextually would be
more difficult to filter out. Moreover, even for
the out-of-context matches, the filtering system
is relatively crude and aggressive. The filtering
decisions are not fine-grained, so false positives
and negatives can still happen. Finally, the centroid
prototype, which provides the best results in our
setup, is highly dependent on the level of noise in
the raw datasets. So we would expect the filtering
process to be more biased for attributes that are

excessively noisy. Albeit, we still think the filtering
system is powerful, useful, yet simple enough for
successful utilization in production.

References
Li Cui, Deqing Yang, Jiaxin Yu, Chengwei Hu, Jiayang

Cheng, Jingjie Yi, and Yanghua Xiao. 2021. Refining
sample embeddings with relation prototypes to en-
hance continual relation extraction. In Proceedings
of ACL-IJCNLP’21 (Volume 1: Long Papers), pages
232–243.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina N. Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing.

Yifan Ding, Yan Liang, Nasser Zalmout, Xian Li,
Christan Grant, and Tim Weninger. 2022. Ask-and-
verify: Span candidate generation and verification
for attribute value extraction. In Proceedings of
EMNLP’22 Industry Track, Abu Dhabi, UAE.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun.
2019. Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In Proceed-
ings of AAAI’19, volume 33, pages 6407–6414.

Yizhao Gao, Nanyi Fei, Guangzhen Liu, Zhiwu Lu,
and Tao Xiang. 2021. Contrastive prototype learning
with augmented embeddings for few-shot learning.
In Uncertainty in Artificial Intelligence, pages 140–
150. PMLR.

Eric Huang, Richard Socher, Christopher Manning, and
Andrew Ng. 2012. Improving word representations
via global context and multiple word prototypes. In
Proceedings of ACL’12 (Volume 1: Long Papers),
pages 873–882, Jeju Island, Korea.

Viet Lai, Franck Dernoncourt, and Thien Huu Nguyen.
2021. Learning prototype representations across few-
shot tasks for event detection. In Proceedings of
EMNLP’21, pages 5270–5277, Online and Punta
Cana, Dominican Republic.

Rongmei Lin, Xiang He, Jie Feng, Nasser Zalmout, Yan
Liang, Li Xiong, and Xin Luna Dong. 2021. Pam:
Understanding product images in cross product cate-
gory attribute extraction. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, KDD ’21, page 3262–3270,
New York, NY, USA. Association for Computing
Machinery.

483

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Rajendra Pamula, Jatindra Kumar Deka, and Sukumar
Nandi. 2011. An outlier detection method based on
clustering. In 2011 Second International Conference
on Emerging Applications of Information Technology,
pages 253–256.

Joseph Reisinger and Raymond J. Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
Proceedings of NAACL-HLT’10, pages 109–117, Los
Angeles, California.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Ad-
vances in neural information processing systems, vol-
ume 30.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai,
D. Sivakumar, Bin Shu, Zac Yu, and Jon Elsas. 2020.
Learning to extract attribute value from product via
question answering: A multi-task approach. KDD
’20, New York, NY, USA. Association for Computing
Machinery.

Xiaochun Wang, Xiali Wang, and Mitch Wilkes. 2021.
A k-nearest neighbor centroid-based outlier detection
method. In New Developments in Unsupervised Out-
lier Detection: Algorithms and Applications, pages
71–112, Singapore. Springer Singapore.

Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant,
Xiang Ren, and Xin Luna Dong. 2021. AdaTag:
Multi-attribute value extraction from product profiles
with adaptive decoding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4694–4705, Online. Association
for Computational Linguistics.

Li Yang, Qifan Wang, Zac Yu, Anand Kulkarni, Sumit
Sanghai, Bin Shu, Jon Elsas, and Bhargav Kanagal.
2022. Mave: A product dataset for multi-source
attribute value extraction. In Proceedings of WSDM

’22, WSDM ’22, page 1256–1265, New York, NY,
USA.

Nasser Zalmout, Chenwei Zhang, Xian Li, Yan Liang,
and Xin Luna Dong. 2021. All you need to know to
build a product knowledge graph. In Proceedings of
KDD’21, page 4090–4091, New York, NY, USA.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna
Dong, and Feifei Li. 2018. Opentag: Open attribute
extraction from product profiles. In Proceedings of
KDD’18.

484

Proceedings of EMNLP 2022 Industry Track, pages 485–493
December 9–11, 2020. ©2022 Association for Computational Linguistics

CGF: Constrained Generation Framework for Query Rewriting
in Conversational AI

Jie Hao1 Yang Liu1 Xing Fan1 Saurabh Gupta2∗ Saleh Soltan1

Rakesh Chada1 Pradeep Natarajan1 Chenlei Guo1 Gokhan Tur1
1Amazon Alexa AI

2Linkedin
{jieha,yangliud,fanxing,ssoltan,rakchada,
natarap,guochenl,gokhatur}@amazon.com

saurabh3949@gmail.com

Abstract
In conversational AI agents, Query Rewrit-
ing (QR) plays a crucial role in reducing user
frictions and satisfying their daily demands.
User frictions are caused by various reasons,
such as errors in the conversational AI system,
users’ accent or their abridged language. In this
work, we present a novel Constrained Genera-
tion Framework (CGF) for query rewriting at
both global and personalized levels. It is based
on the encoder-decoder framework, where the
encoder takes the query and its previous di-
alogue turns as the input to form a context-
enhanced representation, and the decoder uses
constrained decoding to generate the rewrites
based on the pre-defined global or personal-
ized constrained decoding space. Extensive of-
fline and online A/B experiments show that the
proposed CGF significantly boosts the query
rewriting performance.

1 Introduction

Large-scale conversational AI agents such as Alexa,
Siri and Google Assistant help millions of users to
perform a lot of tasks, such as playing music, con-
trolling light devices at home, etc. In general, such
conversational AI agents have multiple components
including automatic speech recognition (ASR) and
natural language understanding (NLU). ASR is re-
sponsible for converting the speech signal of the
user’s query (e.g., “play Michael Jackson music")
to a text transcript. Following this, NLU provides
domain/intent classification (e.g., domain: Music,
intent: PlayMusic) and entity labelling (e.g., Artist-
Name: Michael Jackson), which are used to fulfill
the user’s request.

However, sometimes there are frictions due to
speech recognition or NLU errors. For example,
ASR errors may lead to an erroneous transcript
“play alien bridges”, when the user actually meant
“play leon bridges”. Due to such errors, the down-
stream NLU system is affected, capturing a wrong

∗Work done when working at Amazon.

entity “alien bridges” for the slot “ArtistName”.
This leads to a bad user experience and the user has
to rephrase their query. Additionally current NLU
technology has limitations and cannot handle all
the user requests. For example, “tv to input three”
cannot be properly handled by NLU (the user’s in-
tended request is “turn tv to h.d.m.i. three”). To re-
duce the friction and make the dialog system more
robust, query rewriting (QR) (Ponnusamy et al.,
2019; Chen et al., 2020) becomes an increasingly
important technique in conversational AI agents. In
production conversational AI agents, the QR com-
ponent is often triggered when the system cannot
process user requests with a good confidence. For
example, if ASR or the named entity recognition
(NER) confidence is low, the QR component can
be triggered to automatically map a user query to
another form, so that the dialog system can success-
fully take the right action.

Many existing QR systems use search-based
pipelines for either global-wise query rewrit-
ing (Fan et al., 2021; Chen et al., 2020) or personal-
ized query rewriting (Cho et al., 2021). These sys-
tems typically have two steps: retrieval and ranking.
Users’ historical defect-free interactions with con-
versational agents are used to construct the global
or personalized index. When a new request ar-
rives, the system compares it to those utterances
in the index using a retrieval model such as a dual
encoder with billion-scale similarity search (e.g.,
FAISS) (Johnson et al., 2017) and retrieves top N
candidates from the index. Then a ranking model
is used to rank these candidates with both neural se-
mantic and IR features as input. The system picks
the top 1 ranked candidate as the final rewrite. Such
a search-based system is widely used in the large
scale conversational AI agents since it can effec-
tively control the output because of the use of the
index and thus reduce the risky rewrites.

However, there are also limitations in such
retrieval-based systems. First, the query and

485

rewrite candidate affinity is mainly captured
through a vector dot product and lacks token level
modeling. Second, a large memory footprint is
needed to store dense representations when a large
index is used in the retrieval step.

In this work, we propose to leverage generation-
based models under the Constrained Generation
Framework (CGF) for the query rewriting task.
Since little work has incorporated the previous con-
text information in query rewriting, although its
importance is recognized (Wu et al., 2018), we use
the previous dialog context and the user’s current re-
quest in the encoder. The decoder uses constrained
decoding in inference to force the generated rewrite
to be in a predefined candidate set. The proposed
CGF enables us to mitigate the aforementioned
shortcomings from the search-based system since
the autoregressive formulation allows the model
to directly capture relations between the contex-
tual input and target rewrites and thus effectively
cross encode both. Moreover, the memory footprint
is greatly reduced because the parameters of our
encoder-decoder architecture scale with the vocab-
ulary size, not the index count. Though the neural
language generation approaches are known to hallu-
cinate content, our proposed constrained decoding
approach with a predefined candidate set makes the
generation model faithful to the model input and
avoids the potential hallucinations or bad rewrites.
We conducted extensive offline experiments for
both global and personalized query rewriting to
show the effectiveness of the proposed approach.
Our online experimental results also demonstrate
that the proposed CGF indeed generates rewrites
of better quality.

2 Related Work

2.1 Query Rewriting

In dialogue systems, query rewriting benefits dia-
logue state tracking especially coreference resolu-
tion (Rastogi et al., 2019; Vakulenko et al., 2020;
Hao et al., 2021), and in general can seamlessly
replace the user’s utterance in order to remove fric-
tion and unsatisfactory experience to users (Pon-
nusamy et al., 2019; Wang et al., 2021). To do
this, Ponnusamy et al. (2019) proposed to refor-
mulate the queries with a Markov Chain. Chen
et al. (2020) proposed a retrieval-based model with
a pre-training method. Fan et al. (2021) and Cho
et al. (2021) leveraged multi-stage search-based
systems to perform global and personalized query

rewriting. In this work, we propose CGF based on
Seq2Seq models to generate a rewrite of the initial
user query.

Another thread of work that is related to query
rewriting is the Grammatical Error Correction
(GEC) task. GEC is the task of correcting different
kinds of grammatical errors in text such as spelling,
punctuation, and word choice errors. Recently,
Seq2Seq based models have become the state-of-
the-art approach for GEC (Zhao et al., 2019; Wang
et al., 2019; Kaneko et al., 2020). The main differ-
ence between GEC and our query rewriting is that
GEC is more concerned with grammatical correc-
tions, and we focus on the errors from users, ASR
or NLU systems to reduce the friction.

2.2 Constrained Generation

Constrained generation has been applied in many
tasks such as machine translation and web search.
Hokamp and Liu (2017) introduced grid beam
search to allow the inclusion of pre-specified lexi-
cal constraints. Mohankumar et al. (2021) applied
constrained decoding with a diverse sibling search
algorithm for search advertising. To the best of our
knowledge, ours is the first work that introduces
the constrained decoding into query rewriting for
conversational AI agents. Moreover, we extend
the approach to personalized rewriting to take full
advantage of the constrained generation.

3 CGF for Query Rewriting

As shown in Figure 1, we introduce the sequence-
to-sequence (Seq2Seq) model to generate the
rewrite, where a bidirectional encoder takes the
context and current request as input, and an autore-
gressive decoder relies on the pre-defined index
to perform the constrained decoding in order to
generate the target rewrite.

3.1 Context-enhanced Modeling

We adopt the Seq2Seq pre-trained model
BART (Lewis et al., 2020). It has the same
model architecture as the widely-used Transformer
model (Vaswani et al., 2017) and is pre-trained
with a denoising way (Devlin et al., 2019). In
this work, we flatten the previous dialogue turns
(including both user requests and agent responses)
and the current user request into a single sequence
for the encoder input, as shown in Figure 1, and
fine-tune BART.

486

Figure 1: Illustration of the Constrained Generation Framework (CGF) for query rewriting. When a new utterance
arrives, the model performs the contextual encoding and constrained decoding and outputs the final rewrites. “Model
output nBest” denotes multiple candidates generated using beam search.

Formally, given a context-enhanced request se-
quence Q = {q1, ..., qM}, where qi denotes a to-
ken in the sequence, and the corresponding rewrite
R = {r1, ..., rN}. The encoder is responsible for
reading the input request and its previous dialogue
turns, and the decoder autoregressively generates
the rewrites. Given the hidden representations of
the context-enhanced request and the rewrite, the
conditional probability of the n-th target word rn
is calculated as following:

HEnc = ENCBART (Q
0), (1)

HDec = DECBART (R
0,HEnc) (2)

P(rn|R<n,Q; θ) = Softmax(Proj(hn)) (3)

where hn is the n-th hidden representation of
HDec. Proj() and Softmax() are two transfor-
mation functions in the output layer of the de-
coder (Vaswani et al., 2017).

3.2 Constrained Decoding
Neural language generation approaches are known
to hallucinate content, resulting in generated text
that conveys information that does not appear in
the input. For example, if a user has a request “play
broadway girls”, the model with free-style gener-
ation can generate a rewrite “play broadway girls
by morgan wade”. This is factually wrong since
“morgan wade” never sings the song “broadway
girls”. This is because general generative models
leverage the beam search over the entire vocabulary
and thus there is a chance of generating fluent but

factually incorrect sentences. Thus, the inability to
effectively control the generated text has become
one of the biggest obstacles for adopting generative
models for query rewriting in conversational AI. In
this work, we propose to use constrained decoding
in the generative models to reduce the potential bad
rewrites.

Beam search has been widely used in Seq2Seq
models during inference to improve the search qual-
ity. The standard beam search consists of selecting
the top B hypotheses with the highest log proba-
bility S(r̂t, r̂<t|Q) = S(r̂<t|Q)+logP (r̂t|r̂<t, Q)
at each time step t, where r̂t denotes the token in
the generated hypothesis. Allowing to generate any
token from the vocabulary at every decoding step
might lead the model to generate output strings
that are not valid (i.e., bad rewrite). Hence, we
resort to constrained beam search, forcing to only
decode valid rewrites from a predefined candidate
set. We define our constraint in terms of a prefix
tree T , where nodes are tokens from the vocabu-
lary. For each node t ∈ T , its children indicate all
the allowed continuations from the prefix, which
is defined as traversing the trie from the root to t.
More formally, when decoding the token rt at time
step t, the constrained probability distribution is
calculated as:

P̃ =

{
P (r̂t = r|r̂<t, Q), if r ∈ suffixT (r̂<t)

0, otherwise
487

Figure 2: A snapshot of the utterance trie we construct
based on the global index. When the model has gen-
erated a sequence “[BOS] play staring at” during the
decoding process, in the next step, using the pre-defined
trie, the model is only allowed to generate either “the”
or “it”. Then, if the model generates “the” next, it is
only allowed to generate one of the three words “sun”,
“moon” or “sky” in the step after it.

where we remove all the tokens r that are not a
suffix of the already generated sequence r̂<t in the
trie. In this way, we can ensure that the model
is only allowed to generate the rewrites from the
predefined candidates set.1

In the trie shown in Figure 2, each path from the
root node to the leaf node (e.g., [BOS] → play →
staring → at → it → [EOS]) represents an utter-
ance that we allow the model to generate. “[BOS]”
is the special token indicating the beginning of a
sequence. Similarly, “[EOS]” denotes the end of a
sequence.

3.3 Global and Personalized Query Rewriting

Constrained generation with the predefined decod-
ing space can not only reduce the risks, but also
offer flexibility to conduct rewrite with utterance
sets predefined at different granularities. In this
section, we introduce how to conduct the global
and personalized query rewriting with CGF.

Global Query Rewriting Global query rewriting
means that the rewrite for a request is applicable
for all the users. For example, for a query “tv to
input three”, the ideal rewrite for this query is “turn
tv to h. d. m. i. three”, which is applicable to all the
users who might say this request. In the proposed

1Note that we mask the probabilities of the invalid tokens
and do not re-normalize the probability over the vocabulary.
We found it is more effective this way.

CGF, we pre-define the global constrained decod-
ing space to include all the rewrite candidates that
the model is allowed to generate. To achieve this,
inspired by the approach to construct the global
index in Fan et al. (2021), we build the global trie
that provides rewrite candidates extracted from all
the users’ interactions. The global trie is generated
from the aggregated, anonymized historical inter-
actions between the users and the agent within a
period of time (e.g., 30 days). In addition, after col-
lecting all the user historical interactions, we rely
on a defect detection model (Gupta et al., 2021) to
filter out the defective utterances. Note that since
constrained decoding with the trie doesn’t need to
store dense vectors of the index, we can reduce
the memory footprint greatly and thus potentially
enlarge the trie comparing to the index of search-
based models in real online systems.

Personalized Query Rewriting A crucial nature
of query rewriting is that often it needs to reflect
personal preference or personalized error types to
recover from the defect (Cho et al., 2021). For
example, for the same defective request “turn on
the moon”, the intended request for user A may
be “turn on the moonlight sonata”, whereas user
B might want to “turn on the moon lamp”. Thus,
the global query rewriting described above can not
handle such cases. It is necessary to have a per-
sonalized query rewriting system to fill this gap.
The vanilla Seq2Seq models are not able to per-
form personalized generation naturally. In contrast,
our proposed CGF can allow the generation-based
models to perform personalized query rewriting by
using a personalized constrained decoding space
for each user. For a request coming from a spe-
cific user, the model is only allowed to generate a
rewrite from the pre-defined personalized decoding
space. We follow Cho et al. (2021) to build the
constrained decoding space for each user, leverag-
ing their individual interaction history. The utter-
ances included in the constrained decoding space
(i.e., trie) reflect satisfied experiences for each user
within the past 30 days. In this work, we utilize
the model trained with the global training data and
apply the personalized trie on it for personalized
rewriting.

488

4 Offline Experiments

4.1 Data

We train our proposed method with weak-labeled
data annotated by a model (Machine-Annotated).
Specifically, we first leverage a defect detection
model (Gupta et al., 2021) to find two consecu-
tive deidentified user utterances, where the first
turn was defect, but the second turn was success-
ful. Then, we further filter out consecutive ut-
terances with a time gap larger than 35 seconds
and edit distance larger than 5. For evaluation,
we curated human-annotated test data (Human-
Annotated). For both global and personalized test
sets, we make sure the target rewrites are in the
global/personalized constrained decoding space.
Table 1 gives the statistics of the data set. Note
that all the data has been de-identified.

Data Type Machine Human

Train Valid Test

Global QR 6.5m 0.4m 6k
Personalized QR 6.5m 0.4m 5k

Table 1: Statistics of the query rewriting data sets. “Ma-
chine” denotes the Machine-Annotated data. “Human”
denotes the Human-Annotated data.

4.2 Model Setup

In this work, we fine-tune the pre-trained BART
model (Lewis et al., 2020). We compare our pro-
posed model with several baselines. For global
query rewriting task, we have two baselines: 1)
DPR (Karpukhin et al., 2020): we follow a re-
cent retrieval model DPR to train a dual BERT
model. 2) UFS-QR (Fan et al., 2021): we im-
plement the search-based approach UFS-QR that
contains a retrieval layer and ranking layer. For per-
sonalized query rewriting, we have Personalized
UFS-QR (Cho et al., 2021) and DPR as the base-
lines. Personalized UFS-QR extends the UFS-QR
by incorporating the personalized features into the
ranking model and index construction. In addition,
we also compare with the CGF model that uses
the global trie. More details of model training fro
the CGF and baselines training can be found in
Appendix A.1. We follow Fan et al. (2021) to
build the global trie, which contains 27M unique
utterances, and Cho et al. (2021) to build the per-
sonalized trie. On memory (disk space) footprint,
the global trie we built is 856M, in contrast, the

System Precision Trigger Rate

DPR 0.0 0.0
UFS-QR +10.59% -13.22%

CGF +36.62% +275.23%

Ablations

CGF w/o CE +34.43% +272.34%
CGF w/o CD +34.97% +274.02%
CGF w/o both +32.74% +266.17%

Table 2: Global query rewriting evaluation. We compare
our proposed CGF with the existing search-based query
rewriting systems on human annotated test sets. “CE”
denotes context-enhanced encoding. “CD” denotes the
constrained decoding. All the numbers are relative dif-
ferences with respect to the baseline: “DPR”.

built FAISS index is 36G for UFS-QR and 89G for
DPR with the same utterances.

4.3 Evaluation Metrics
For evaluation, we use utterance level precision
and trigger rate. Precision denotes how often the
triggered rewrite matches the correct rewrite. The
trigger rate is the fraction of instances for which
the model makes a prediction with the final beam
score above a predefined threshold2. We set the
threshold to -0.2 for our proposed CGF models.

4.4 Global Query Rewriting Results
Table 2 shows the CGF main results with ablations
on the two human-annotated test sets. CGF with
context-enhanced encoding and constrained decod-
ing achieves the best performance on precision and
trigger rate on the two test sets. Our approach out-
performs the search-based UFS-QR system and
retrieval system DPR by more than 14% and 21%
on precision respectively. Moreover, the proposed
approach can confidently trigger more cases.

Table 2 also lists the ablation study results for
the global query rewriting task using CGF. “w/o
both” denotes the CGF without context-enhanced
encoding and constrained decoding, in which the
model takes only the query as the encoder input and
conduct the unconstrained generation. In particular,
although we see that the overall performance of the
“w/o CD” model is not bad, it still suffers from
hallucinations. Examples with factually incorrect
generation can be found in Appendix A.3 Table 5.
It is clear that using context-enhanced encoding and

2The final beam score is formalized as log(Pθ(y|x)) =
ΠN

i=1pθ(yi|y<i, x), where θ is the model parameters and x is
the model input.

489

System Precision Trigger Rate

CGF (Global trie) 0.0 0.0
DPR (Personalized index) +16.03% -51.85%
Personalized UFS-QR +16.61% +15.69%

CGF (Personalized trie) +19.33% +17.68%

Table 3: Personalized query rewriting evaluation. All
the numbers are relative differences with respect to the
baseline: “CGF (Global trie)”.

constrained decoding proved useful. Combining
them together is better, resulting in higher precision
and at the same time higher trigger rate.

4.5 Personalized Query Rewriting Results
Results for the personalized query rewriting on the
Human-Annotated test set using our proposed CGF
are in Table 3. We use the same trained model as
the global query rewriting task. The only difference
is that during inference, the constrained decoding
space is changed to the personalized one based on
each user’s historical interactions and thus varies
across users. As can be seen, CGF outperforms the
CGF global model (i.e., Global trie). Also, it out-
performs search-based Personalized UFS-QR and
DPR respectively by 2.7% and 3.3% on precision,
with a higher trigger rate.

5 Online Experiments

5.1 Deployment
In the online system, we run the global and per-
sonalized CGF models in parallel. When both
the global and personalized components return a
rewrite candidate, we prioritize the results from the
personalized model over the global one to support
any possible personalization of QR. No rewrite will
be output from the system if neither model man-
ages to generate a rewrite.

5.2 Online Results
To investigate the effectiveness of the introduced
techniques, we leverage the proposed model CGF
to generate the rewrites and deploy them into the
online environment. We compare it with the no-
CGF rewrites within the English speaking users
environment. The data was collected for more than
one week over a significant percentage of traffic via
the A/B testing framework. We use one primary
metric to evaluate the performance of our proposed
CGF approach during A/B: Defect Rate. It denotes
the total number of rewritten utterances that are

defective divided by the total number of rewritten
utterances. We leverage the defect detection model
proposed by Gupta et al. (2021) to measure if an
utterance is defective.

From A/B results, we observed significant3 rel-
ative reduction of defect rate: 28.97% and 1 mil-
lion of new rewrites generated by the proposed
approach per week. Table 4 shows the cases where
the original requests had unsatisfying responses
from the agent and after the rewrite, the friction
was removed with satisfying responses. For exam-
ple, due to an ASR error, the agent response to the
original request “how old is tommy in it” cannot
fulfill the user’s need. Even without context infor-
mation, i.e., when the request is the first turn, the
CGF can successfully rewrite it, yielding the right
response from the agent. More online examples
can be found in Table 4.

5.3 Limitations

Trie Coverage Although we have used 27M
unique utterances in the global trie and 30 day’s
non-defective turns for each user for constrained
decoding, the proposed system cannot handle the
cold start (e.g., a recent released song) or out-of-
trie rewrite cases (the rewrite for the request is not
in the trie). To mitigate this, we plan to update
the global trie weekly and personalized trie daily.
Also we will work on constraining a part of utter-
ance generation (i.e., entity) instead of the entire
utterance to enlarge the decoding space.

Latency Generation-based models always suffer
from the latency issue due to its autoregressive
generation process. In the CGF deployment, we
changed the model to ONNX4 version and speed
up the inference by 30.6%. However, CGF is still
1.5 times slower than the search-based system (Fan
et al., 2021). Considering this, we will explore
the non-autoregressive approach and related model
optimization approaches like distillation, pruning,
etc.

6 Conclusion

In this work, we propose CGF, a novel paradigm for
query rewriting: generate target rewrite autoregres-
sively with context-enhanced encoding and con-
strained decoding. CGF is a general framework for
different query rewriting purposes where one can

3p-value<0.0001
4https://github.com/onnx/onnx

490

Original request (w/o context): Agent response (before rewrite):
USER: how old is tommy in it Here’s what I found from the web: Defect Reduction:

A 24-year-old man whose... 50.20%
CGF rewrite: Agent response (after rewrite):
how old is tommyinnit TommyInnit is 17 years old.

Original request (w/o context): Agent response (before rewrite):
USER: play night talk by drake I couldn’t find night talk Defect Reduction:
CGF rewrite: Agent response (after rewrite):
play knife talk by drake Here’s Knife Talk , by Drake (feat. 41.52%

21 Savage, Project Pat) , on Amazon Music.

Original request (w/ context): Agent response (before rewrite):
USER: play little yancy
AGENT: Lil’ Fancy from Apple Music.y Sorry, I’m having trouble finding the song. Defect Reduction:
USER: play little yankees praise part 22.71%
CGF rewrite: Agent response (after rewrite):
play little yancy praise party Here is little yancy praise party.

Table 4: Online Performance of CGF with Qualitative Examples

freely define the decoding space (e.g., global, per-
sonalized or domain-specific space). Both offline
and online experiments show that our approach con-
sistently and significantly improves query rewriting
performance.

References

Zheng Chen, Xing Fan, and Yuan Ling. 2020. Pre-
training for query rewriting in a spoken language un-
derstanding system. In ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 7969–7973. IEEE.

Eunah Cho, Ziyan Jiang, Jie Hao, Zheng Chen, Saurabh
Gupta, Xing Fan, and Chenlei Guo. 2021. Personal-
ized search-based query rewrite system for conver-
sational ai. In Proceedings of the 3rd Workshop on
Natural Language Processing for Conversational AI,
pages 179–188.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Xing Fan, Eunah Cho, Xiaojiang Huang, and Chenlei
Guo. 2021. Search based self-learning query rewrite
system in conversational ai. In 2nd International
Workshop on Data-Efficient Machine Learning (De-
MaL).

Saurabh Gupta, Xing Fan, Derek Liu, Benjamin Yao,
Yuan Ling, Kun Zhou, Tuan-Hung Pham, and Chen-
lei Guo. 2021. Robertaiq: An efficient framework
for automatic interaction quality estimation of dia-
logue systems. In 2nd International Workshop on
Data-Efficient Machine Learning (DeMaL).

Jie Hao, Linfeng Song, Liwei Wang, Kun Xu, Zhaopeng
Tu, and Dong Yu. 2021. RAST: Domain-robust dia-
logue rewriting as sequence tagging. In EMNLP.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. ACL.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In ACL.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In EMNLP.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2020. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
In ACL.

Akash Kumar Mohankumar, Nikit Begwani, and Amit
Singh. 2021. Diversity driven query rewriting in
search advertising. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 3423–3431.

Pragaash Ponnusamy, Alireza Roshan Ghias, Chenlei
Guo, and Ruhi Sarikaya. 2019. Feedback-based
self-learning in large-scale conversational ai agents.
arXiv preprint arXiv:1911.02557.

491

Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, and
Lambert Mathias. 2019. Scaling multi-domain di-
alogue state tracking via query reformulation. In
NAACL.

Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu,
and Raviteja Anantha. 2020. Question rewriting for
conversational question answering. arXiv preprint
arXiv:2004.14652.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In NIPS.

Liang Wang, Wei Zhao, Ruoyu Jia, Sujian Li, and
Jingming Liu. 2019. Denoising based sequence-
to-sequence pre-training for text generation. arXiv
preprint arXiv:1908.08206.

Zhuoyi Wang, Saurabh Gupta, Jie Hao, Xing Fan,
Dingcheng Li, Alexander Hanbo Li, and Chenlei
Guo. 2021. Contextual rephrase detection for reduc-
ing friction in dialogue systems. In EMNLP.

Xianchao Wu, Ander Martinez, and Momo Klyen. 2018.
Dialog generation using multi-turn reasoning neural
networks. In NAACL.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In NAACL.

A Appendix

A.1 Model Set up

For CGF, we use a batch size of 2048 tokens,
dropout rate of 0.1 and adam optimizer. The learn-
ing rate is 3E-5 and linearly warms up over the
first 5% steps, then decreases proportionally to the
inverse square root of the step number. All the
models are trained on eight NVIDIA Tesla V100
GPU.

For the DPR baseline on global rewriting task,
we follow Karpukhin et al. (2020) to train the
dual BERT model with machine-annotated train-
ing set and in-batch negatives. During the infer-
ence, for each user request, we use FAISS (Johnson
et al., 2019) search and return top K (K=1 in this
work) relevant rewrites from a global index, which
contains 27M unique requests as same as global
trie. For the persoanlized rewriting task, similarly,
the DPR will return a rewrite from the user’s in-
dex, which contains 30 day’s non-defective user
histroical utterances as same as personalized trie.

(a) Precision (b) Trigger Rate

Figure 3: Global query rewriting evaluation on the first
turn and not first turn subsets. “CGF w/o context” de-
notes the CGF without context-enhanced encoding.

A.2 Effect of Context-enhanced Modeling
We study the effect of the context-enhanced mod-
eling in this subsection. As in some of test cases,
there are not previous context available and the
model will rewrite the first turn of the multi-turn
dialogue session. We investigate if the proposed
model is robust and effective for both of such cases.
Thus, we split the global test set into the with pre-
vious context (“First turn”) and without previous
context cases (“Not first turn”).

As shown in the Figure 3, the CGF gets sig-
nificant improvement for both precision and trig-
ger rate on the “Not first turn” test set compar-
ing to CGF without context-enhanced encoding,
which demonstrates the effect of the context infor-
mation during the model training. Moreover, on
the “First turn” test set, surprisingly, when there is
no previous context for the CGF model, the perfor-
mance only decreases slightly. This suggests that
the model is good at generalization and robust for
various test cases in the actual scenario.

A.3 Case Study
We present several representative cases so that we
can further understand the effect of the context-
enhanced encoding and constrained decoding in
CGF. As shown in Table 5, the first example illus-
trates the cases when CGF w/o context-enhanced
encoding gives a rewrite that changes the semantic
meanings of the source request (“what kind of” ->
“what is”) and is not faithful. However, with consid-
eration of previous context information, the CGF
is able to understand the user intent and provide
the accurate rewrite. The second case corresponds
to the situation of carrying over an correct entity
from context and replacing the wrong entity in
the current utterance, while as shown in the table,
this is not hard for our context-enhanced encoding

492

Dialog & Reference CGF CGF w/o CD CGF w/o CE

USER: what time is sunset tonight
AGENT: sunset, in greenacres, florida,
on thursday, october 21 will be 6:48pm what time is sunset what time is sunset what is sunset tonight
USER: what kind of sunset tonight tonight in willimantic tonight in willimantic in willimantic
in willimantic connecticut connecticut connecticut connecticut
Reference: what time is sunset
tonight in willimantic connecticut

USER: play little yancy
AGENT: Lil’ Fancy from Apple Music.y play little yancy play little yancy play little yankees
USER: play little yankees praise part praise party praise party praise party music
Reference: play little yancy praise party

USER: play in jesus name by katie nicole play in jesus name play in jesus name play in jesus name
Reference: play in jesus name by katy nichole by katy nichole by kayla nicole by katy nichole

Table 5: Rewrite examples from offline experiments. In the dialog session, the last turn from the user is the current
request which is needed to be rewritten by the model. “CGF w/o CD” denotes the model CGF without constrained
decoding, “CGF w/o CE” denotes the CGF without context-enhanced encoding.

models. However, without considering the con-
text information, the model sometimes fails. The
third case shows that without constrained decod-
ing, the CGF has a factual inconsistency generation
(“kayla nicole” is an artist but never sung “in jesus
name”). This is a common situation for generation-
based models, especially on unseen data samples.
Conversely, this situation rarely happens with con-
strained decoding, as the generation is based on the
predefined constrained decoding space and we will
never have such factual inconsistency generation.

493

Proceedings of EMNLP 2022 Industry Track, pages 494–501
December 9–11, 2020. ©2022 Association for Computational Linguistics

Entity-level Sentiment Analysis in Contact Center Telephone Conversations

Xue-Yong Fu, Cheng Chen, Md Tahmid Rahman Laskar,
Shayna Gardiner, Pooja Hiranandani, Shashi Bhushan TN

Dialpad Canada Inc.
Vancouver, BC, Canada

{xue-yong,cchen,tahmid.rahman}@dialpad.com
{sgardiner,phiranandani,sbhushan}@dialpad.com

Abstract

Entity-level sentiment analysis predicts the sen-
timent about entities mentioned in a given text.
It is very useful in a business context to un-
derstand user emotions towards certain entities,
such as products or companies. In this paper,
we demonstrate how we developed an entity-
level sentiment analysis system that analyzes
English telephone conversation transcripts in
contact centers to provide business insight. We
present two approaches, one entirely based on
the transformer-based DistilBERT model, and
another that uses a convolutional neural net-
work supplemented with some heuristic rules.

1 Introduction

Businesses that provide Contact Center as a Ser-
vice (CCaaS) often leverage Artificial Intelligence
(AI) technologies to transcribe telephone conver-
sations and generate aggregated insights reports
for contact centers across various industry verti-
cals. Customers occasionally make evaluative com-
ments about specific products or companies during
a customer support call to a contact center. These
comments provide valuable competitive insights to
the business, e.g. positive comments may provide
information useful to a marketing department as it
formulates an advertising campaign while negative
comments may provide valuable insights that can
be used to improve a product or a service. In such
scenarios, building a system that can identify user
sentiments towards entities like product or compa-
nies could be useful.

Though Aspect-Based Sentiment Analysis
(ABSA) (Zhou et al., 2019, 2020) that aims to ex-
tract the user sentiment expressed towards a spe-
cific aspect associated with a given target could
be a possible solution to solve such problems, it
should be noted that ABSA has a key limitation
in this regard. For example, in tasks like competi-
tor analysis where the objective is to understand
the overall user sentiment within a certain period

of time on specific products or general company
services, ABSA techniques could not be useful as
they provide more fine-grained opinions towards
predefined aspects (e.g. features of a product, ease
of use of a software, or aspects of restaurant experi-
ence) instead of providing a generic user sentiment
towards a specific entity (Zhou et al., 2019).

While building the Entity-level Sentiment Anal-
ysis (ELSA) system for real-world contact center
use-cases, we observe several key challenges. First
of all, to the best of our knowledge, there are no ex-
isting public datasets available for the entity-level
sentiment analysis task. Meanwhile, this task be-
comes more challenging when the requirement is
to use a dataset constructing from telephone con-
versations since constructing a dataset from speech
transcripts generated from telephone conversations
is non-trivial as telephone transcripts are generated
by automatic speech recognition (ASR) systems
that have their own unique characteristics. For in-
stance, an ASR system may have mistranscription
errors as well as linguistic disfluencies (e.g. filler
words) (Fu et al., 2021) that usually occur in a
conversational speech dataset (Malik et al., 2021).

The factors mentioned above make the imple-
mentation of an entity-level sentiment analysis
model very challenging to detect user opinions to-
wards entities that appear in contact center calls. In
this paper, we address the existing limitations be-
hind developing an entity-sentiment model for com-
mercial scenarios in the domain of business tele-
phone conversation data in contact centers. Since
there is no suitable publicly available dataset for
the entity-level sentiment analysis task, we briefly
describe how we sampled and annotated the data
for this task. We then propose two approaches
that leverage neural models for this task (i) one
is based on the DistilBERT (Sanh et al., 2019)
model in which we modify its architecture such
that the model can also be utilized to extract the
opinion term(s) while detecting the sentiment po-

494

larity towards a named entity; (ii) while the other
approach uses a convolutional neural network (dos
Santos and Gatti, 2014) supplemented with some
pre-defined heuristic rules. We compare the ef-
fectiveness of both approaches through extensive
experiments and discuss our findings to provide
valuable insights for future developments of ELSA
models for real world commercial scenarios.

2 Related Work

Since the entity-level sentiment analysis task is
closely related to aspect-level sentiment analysis, in
this section, we first briefly review the aspect-level
sentiment analysis task followed by the entity-level
sentiment analysis task in order to clarify the dis-
tinction between these two tasks while discussing
our rationale behind developing an entity-level sen-
timent analysis model for contact centers.

2.1 Aspect-Based Sentiment Analysis (ABSA)

ABSA aims to classify the sentiment polarity of
aspects of certain objects. Many previous studies
are focused on this research (Sun et al., 2019; Tang
et al., 2016; He et al., 2018; Zhao et al., 2020; Zhou
et al., 2019). A more fine-grained related task is
aspect sentiment triplet extraction (ASTE) (Peng
et al., 2020; Xu et al., 2020), which extracts a triplet
– aspect term, opinion term and sentiment – from
the input. Detection of aspects in both ABSA or
ASTE often relies on implicit lexical or semantic
signs, for instance, the food is too spicy suggests
that this comment is about the taste aspect. This
is different from the entity recognition task where
the goal is to detect the named entities in a given
utterance based on the overall context.

2.2 Entity-level Sentiment Analysis (ELSA)

ELSA aims to predict the sentiment of named enti-
ties in a given text input (Steinberger et al., 2011;
Saif et al., 2014). These named entities are usu-
ally application dependent. One recent work on
ELSA is the work of Luo and Mu (2022), where
they studied entity sentiment in news documents.
Another prominent work on ELSA is the work of
Ding et al. (2018), where an entity-level sentiment
analysis tool was proposed for Github issue com-
ments. Contrary to the above studies that focused
on typed text, our focus is on noisy textual data
(i.e., speech transcripts). Moreover, our proposed
models can infer both entity sentiment and corre-
sponding opinion terms for a better analysis of user

sentiments towards products or companies in busi-
ness telephone conversations in contact centers.

3 Task Description

Let us assume that we have an utterance U =
w1, w2, ..., wn containing n words. The goal of
the ELSA task is to identify m opinion words
OW = ow1, ow2, ..., owm, (where m < n), and
classify the sentiment of the identified opinion
words towards the target entity e in the given utter-
ance. In Table 1, we show some examples of the
ELSA task to detect user sentiments towards prod-
ucts and organization type entities. In the first two
examples, the customer is directly expressing posi-
tive sentiment about the named entity. For instance,
(i) they say “I love it” indicating “Google” in con-
text, or (ii) they are “very impressed” with “MAC”.
In the third and fourth examples, customers are
expressing negative sentiment about a product or
facet associated with the company, e.g., “He has
a hard time finding a good yogurt from Walmart”
is a comment about the quality of Walmart’s ser-
vice, not a comment about yogurt. Similarly, in the
fourth example, difficulty navigating the Instacart
app is indirectly an indication of negative sentiment
concerning Instacart.

4 Dataset Construction

As noted earlier, there is no publicly available
dataset for the ELSA task. We therefore had to
create and annotate our own dataset. The first ma-
jor issue that we observed while constructing a
dataset for ELSA is that the entity-level sentiment
events in our telephone transcripts are very infre-
quent. Hence, random data sampling techniques
might yield an imbalanced dataset where most ut-
terances would not have any positive or negative
sentiments towards an entity. We therefore used
two pre-existing models — a named entity recog-
nition (NER) model based on DistilBERT (Sanh
et al., 2019) that was trained to identify Organiza-
tion and Product type entities and a convolutional
neural network (CNN) (Krizhevsky et al., 2012;
dos Santos and Gatti, 2014; Albawi et al., 2017)
sentiment analysis model — to sample 13000 ut-
terances that contained at least one named entity
and one positive or negative sentiment predicted
by these models. To balance the dataset, we sam-
pled an additional 10000 utterances containing at
least one entity and having no polarized sentiments
(i.e., only neutral sentiment). The resulting 23000

495

I work at Google and I love it a lot.
She’s very impressed how MAC works so well.

He has hard time finding a good yogurt from Walmart.
It’s quite difficult to navigate the mobile app of Instacart.

Table 1: Examples for entity-level sentiment analysis. Words in color blue are target named entities. Words in color
teal are positive opinion words. Words in color purple are negative opinion words.

utterances were manually annotated by indepen-
dent annotators to determine the positive, neutral,
or negative sentiment toward the target entity. The
annotators also identified the opinion terms in the
utterances.

5 Our Proposed Models

For performance evaluation, we propose two ap-
proaches: (i) DistilBERT-based Model, and (ii)
CNN-based Model with Heuristics Rules. Below,
we present our proposed approaches.

5.1 DistilBERT-based Model
For this approach, we leverage the DistilBERT
model since this is a very lightweight model that
does not require much computing power in produc-
tion environments (Sanh et al., 2019). Below, we
describe how we utilize this model for ELSA.

NER tagging: Given an utterance as input, we
first run an NER model to determine if there is at
least one entity (product or organization) detected.
Our NER model is based on DistilBERT that is
trained over business conversation data collected
from call centers. During the training stage, we
use the cross entropy (CE) loss as defined in Equa-
tion 1:

LCE = − 1

N

N∑

n=1

log
eŷn,yn

∑C
c=1 e

ŷn,c
(1)

Here, N is the number of samples in a batch, and
C denotes the number of classes, ŷn,c is the logit
of the c-th class in the n-th example, and ŷn,yn is
the logit of the gold class in the n-th example.

Context Representation: We insert a special tag,
NE, before any named entities detected in an
utterance. This helps the model to identify which
spans belong to the entity. For example, if the raw
input is “I really don’t like using Snapchat”, we
reformulated the input as "I really don’t like using
NE Snapchat". Then, we send the pre-processed
input to our entity sentiment detection model that
we describe below.

Entity Sentiment Detection: Our entity senti-
ment detection model is also based on DistilBERT.
However, for this task, we train DistilBERT over
business telephone conversation data for a different
task: the sentiment classification task. Meanwhile,
our entity sentiment detection model can also ex-
tract the opinion word(s) in a given utterance. This
is done by adding an additional prediction layer on
top of the DistilBERT model to identify the opin-
ion words. During the training phase, the model is
fine-tuned on our entity sentiment dataset to pre-
dict the polarity of the opinion terms for a given
utterance. If the target entity’s sentiment is positive
or negative, the model will assign respective tags
(POS for positive and NEG for negative) to the
opinion token(s), while the remaining tokens will
be assigned to the O tag.

Transfer Learning: To improve model perfor-
mance, we introduce a transfer learning technique
for our entity sentiment detection model, for which
we first fine-tune the DistilBERT model for the sen-
tence classification task (i.e., sentiment analysis) on
the Stanford Sentiment Treebank (SST) dataset that
contains 11, 855 training examples. The assump-
tion is that if a model is fine-tuned on a similar
task, it is expected to perform better on related
downstream tasks (Laskar et al., 2022c; Garg et al.,
2020). Although the SST dataset is about predict-
ing the general sentiment of a given text sequence,
it requires the model to learn what words are asso-
ciated with positive sentiments and what are associ-
ated with negative sentiment, which is essential for
our task. The DistilBERT model trained on the SST
dataset is then fine-tuned again on the processed
input (pre-processed by using the _NE_ tag ob-
tained from our NER model) in the contact center
conversation dataset. As mentioned earlier, in this
stage of fine-tuning, the entity sentiment model can
also extract the opinion word(s) via utilizing the
additional prediction layer that we added on top of
DistilBERT.

An overview of our proposed DistilBERT-based
approach is shown in Figure 1.

496

Figure 1: An overview of our proposed DistilBERT-based approach: (a) first, we do fine-tuning on the SST dataset
for the generic sentiment analysis task, and (b) then, fine-tune on the in-domain Entity Sentiment dataset for entity
level opinion extraction. Here, in the output layer, 1 denotes positive while 0 denotes negative sentiment.

5.2 CNN-based Sentiment Model
Supplemented with Heuristic Rules

For this model, we employ a two-step approach.
We first run a general sentiment analysis model
that classifies the sentiment of a given utterance
and also extracts the keywords that cause that senti-
ment (if the sentiment is positive or negative). We
treat these sentiment keywords as opinion word
candidates. Then we employ a set of linguistic
heuristics that identify the opinion words that are
associated with the entities mentioned in the input.

The sentiment analysis model is a multiclass,
CNN-based classification model. We choose CNN
here due to its effectiveness in related tasks (e.g.,
ABSA task) (Wang et al., 2021). However, for
ELSA, we add an explainability layer on top of
CNN that is tasked with explaining predictions.
The explainability technique that we leverage is
called Integrated Gradients, adopted from (Sun-
dararajan et al., 2017). After a sentiment score
is predicted by the model, the explainability layer
emits words that are highly associated with the pre-
dicted sentiment. Note that we apply some heuris-
tics to select the emitted words as candidates for
opinion words.

Heuristics: For the extraction of opinion words,
we utilize heuristics based on phrase structure types
that are most likely to contain entity sentiment. We
divide these phrase types into three categories to
find which part of speech contains the potential
opinion word: verb-based, adjective-based, and
noun-based. Table 2 illustrates the possible syn-
tactic patterns captured by these heuristics, all of
which also allow for optional modifiers such as in-
tensifiers (e.g. really, very, so), complementizers

(that, which) or stacked adjectives. Some example
phrases that were captured include: I’m so happy
that Google made this, Android sucks, that was
awesome of Netflix to do, Netflix is garbage, my
hatred of LaTeX, classic LaTeX awesomeness, etc.

6 Experiment

In this section, we present the training parameters,
evaluation metrics, and the experimental results.
In our experiments, we use the following three
models:

• DistilBERT: This model does not leverage the
SST dataset as the first stage of fine-tuning.
Instead, it is fine-tuned only on our ELSA
dataset.

• DistilBERT + SST: This model is initially
fine-tuned on the SST dataset and then fine-
tuned on our ELSA dataset.

• CNN + Heuristics: This is the model that
leverages CNN and supplemented with some
heuristics rules.

6.1 Training Parameters

For the DistilBERT model, we set the batch size
to 32, learning rate to 5× 10−5, and employ early
stopping with patience set to 5. The pretrained
model is based on the HuggingFace Transformer
(Wolf et al., 2020). While for the CNN model,
we use 300 dimensional fastText embeddings (Bo-
janowski et al., 2016; Santos et al., 2017), global
max pooling is utilized in the convolational layer
with filter sizes: 2, 3, 4, 5, 6. The fully connected
layer is 128 dimensional.

497

Verb-Based Adjective-Based Noun-Based
sentiment verb sentiment adjective entity

+ entity + entity + sentiment noun
sentiment verb + sentiment adjective sentiment noun

+ preposition + of /for + entity preposition
+ entity + entity
entity + entity + aux verb

sentiment verb sentiment noun

Table 2: Heuristic Rules to Extract Opinion Words

Models Precision Recall F1
Ent OP Ent Op Ent Op

DistilBERT 74.43 59.99 73.77 69.44 73.70 64.35
DistilBERT + SST 74.83 68.21 74.69 63.02 74.72 65.48
CNN + Heuristics 77.48 97.65 58.23 16.78 50.07 28.64

Table 3: Experimental results for the Entity Level Sentiment (Ent) and Opinion Word Extraction (OP) tasks.

6.2 Evaluation Metrics

To evaluate entity sentiment classification and opin-
ion word extraction, we define two kinds of evalu-
ation metric. For polarity classification, we calcu-
late precision, recall and F1 score for three senti-
ment categories: positive, negative and neutral. We
then calculate the weighted value of these (support-
based). For opinion word extraction, we evaluate it
using the metrics that are usually used for named
entity recognition (Li et al., 2020) and calculate
precision, recall and F1 score for opinion words.
The evaluation was done in a sample of 175 an-
notated utterances that were reviewed by another
group of annotators.

6.3 Results

From Table 3, we find that in terms of the F1
metric, both variations of DistilBERT – (Vanilla
DistilBERT and DistilBERT + SST) – outper-
form the CNN + Heuristics model by a huge mar-
gin. More specifically, DistilBERT + SST outper-
forms the CNN + Heuristics model by 15.75% of
the F1 score. Comparing DistilBERT and Distil-
BERT + SST, we can see the effect of SST pre-
training, which brings the F1 score up from 73.7%
to 74.72%, with an increase of 1.38%. We also find
that the CNN + Heuristics model obtains impres-
sive precision score. This is because the heuristic
rules used in the CNN + Heuristics model were
developed to emphasize precision, but they do not
handle linguistic variation well, resulting in poor
Recall and F1 scores.

For opinion word extraction, which is noted as
OP, the performance gap between the DistilBERT
model and the CNN + Heuristics model is even
larger. As shown in Table 3, DistilBERT + SST

outperforms the CNN + Heuristics by 38.48% F1
score. This is mainly because the CNN + Heuris-
tics has very poor performance in recall: only 16%.
Although the recall of DistilBERT + SST is lower
than DistilBERT, its F1 score is still 1.07% higher
than its counterpart.

Robustness Test: The overall metrics can’t iden-
tify if the performance of a model is robust in differ-
ent situations. Thus, we investigate if our proposed
model is robust against various kinds of input texts.
For this purpose, we separate the test data into dif-
ferent sub-populations by the number of tokens and
the number of entities. We then evaluate our mod-
els on sub-populations to see how they perform.
Below, we define these sub-populations.

(i) 1 entity: input text has only one target entity.

(ii) > 1 entity: input text has more than one
target entity.

(iii) < 8 tokens: input text with less than eight
tokens.

(iv) > 45 tokens: input with more than forty five
tokens.

Table 4 contains the results of our proposed mod-
els in different data slices. We find that both models
perform poorly when the input is long (> 46 tokens)
compared to when the input is short (< 8 tokens).
This could be because it is much harder to model
long term dependencies when the sequence length
is too long.

We also find that the DistilBERT + SST model
is more sensitive to the number of target entities in
the input compared to the CNN + Heuristics model.
Its F1 score drops by 7.16% when the number of
target entities increases from one to more than one.

498

Model Precision Recall F1
CNN + Heuristics 97.65 16.78 28.64

CNN + Heuristics (< 8 tokens) 100 38.89 56
CNN + Heuristics (> 45 tokens) 100 8.16 14.99
CNN + Heuristics (= 1 entity) 97.54 16.86 28.75
CNN + Heuristics (> 1 entity) 100 15.56 26.72

DistilBERT + SST 68.21 63.02 65.48
DistilBERT + SST (< 8 tokens) 66.9 79.46 72.46

DistilBERT + SST (> 45 tokens) 62.18 26.32 36.92
DistilBERT + SST (= 1 entity) 68.28 63.67 65.87
DistilBERT + SST (> 1 entity) 68 52.94 58.71

Table 4: Robustness Report on the Opinion Word Extraction task.

7 Commercial Application

We have deployed the DistilBERT + SST model in
our production system to generate entity sentiment
data for contact centers as it has better accuracy
than the CNN + Heuristics model. Due to the
small model size and efficient inference of Distil-
BERT, each model instance is assigned 1 CPU and
1GB memory. Once there are enough entity-level
sentiment predictions, there is a dedicated pipeline
to aggregate entity sentiment in different granular-
ity for each customer.

There are many use cases of the aggregated in-
sights of entity sentiment. Contact center managers
can use this information to improve contact center
efficiency by investigating why customers are not
happy with certain products (e.g., itelephone 13
Pro Max) and develop desired responses when the
customer is complaining about it, so that the agents
can handle the difficult situation more efficiently.
The collected negative feedback can be used to in-
form the product team how to improve the products.
The insights can also be used to conduct compar-
isons between several products or companies and
help with competitor analysis.

8 Conclusion

In this paper, we described the creation of a task-
specific dataset and a new model that extracts opin-
ion words while performing entity sentiment po-
larity detection. The resulting DistilBERT-based
model is currently deployed as a commercial ap-
plication for entity-level sentiment analysis for En-
glish contact center conversations. In the future, we
will investigate how to extend our proposed meth-
ods to other applications (Laskar et al., 2022a,b)
of the entity recognition task (Fu et al., 2022) in
telephone transcripts and explore how to improve
model performance on utterances that contain more
than one entity.

Limitations

As our entity sentiment models are trained on En-
glish business telephone conversations, they might
not be suitable to be used in other domains, types
of inputs (i.e written text), or languages. The NER
component of DistilBERT based model has some
limitations while detecting product and organiza-
tion type entities. It is more biased towards detect-
ing the entities that appear more frequently in the
training data and misses rare entities. This could
impact the overall performance of the model.

Ethics Statement

This data in this research is comprised of individual
sentences that do not contain sensitive, personal,
or identifying information. The entity sentiment
model deployed in production is not used to attach
any sentiment to people, only to non-human enti-
ties. Each machine-sampled utterance is labelled
by annotators before the utterance is used as part of
the training dataset. While annotator demographics
are unknown and therefore may introduce poten-
tial bias in the labelled dataset, the annotators are
required to pass a screening test before complet-
ing any labels used in these experiments, thereby
mitigating this unknown to some extent. We paid
adequate compensation to the annotators. Future
work should nonetheless strive to improve training
data further in this regard.

ACKNOWLEDGEMENTS

We would like to thank Simon Corston-Oliver for
his helpful and detailed feedback on the paper. We
also thank the reviewers for their excellent review
comments that helped us improving the paper.

499

References

Saad Albawi, Tareq Abed Mohammed, and Saad Al-
Zawi. 2017. Understanding of a convolutional neural
network. In 2017 international conference on engi-
neering and technology (ICET), pages 1–6. Ieee.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. arxiv 2016. arXiv preprint
arXiv:1607.04606.

Jin Ding, Hailong Sun, Xu Wang, and Xudong Liu.
2018. Entity-level sentiment analysis of issue com-
ments. In Proceedings of the 3rd International Work-
shop on Emotion Awareness in Software Engineering,
SEmotion@ICSE 2018, Gothenburg, Sweden, June 2,
2018, pages 7–13. ACM.

Cícero Nogueira dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In COLING 2014, 25th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
August 23-29, 2014, Dublin, Ireland, pages 69–78.
ACL.

Xue-Yong Fu, Cheng Chen, Md Tahmid Rahman Laskar,
Shashi Bhushan, and Simon Corston-Oliver. 2021.
Improving punctuation restoration for speech tran-
scripts via external data. In Proceedings of the Sev-
enth Workshop on Noisy User-generated Text (W-
NUT 2021), pages 168–174.

Xue-Yong Fu, Cheng Chen, Md Tahmid Rahman Laskar,
Shashi Bhushan Tn, and Simon Corston-Oliver. 2022.
An effective, performant named entity recognition
system for noisy business telephone conversation
transcripts. In Proceedings of the Eighth Workshop
on Noisy User-generated Text (W-NUT 2022), pages
96–100.

Siddhant Garg, Thuy Vu, and Alessandro Moschitti.
2020. Tanda: Transfer and adapt pre-trained trans-
former models for answer sentence selection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7780–7788.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018. Effective attention modeling for
aspect-level sentiment classification. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, COLING 2018, Santa Fe, New
Mexico, USA, August 20-26, 2018, pages 1121–1131.
Association for Computational Linguistics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural
Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Sys-
tems 2012, Lake Tahoe, Nevada, United States, pages
1106–1114.

Md Tahmid Rahman Laskar, Cheng Chen, Jonathan
Johnston, Xue-Yong Fu, Shashi Bhushan TN, and Si-
mon Corston-Oliver. 2022a. An auto encoder-based
dimensionality reduction technique for efficient en-
tity linking in business phone conversations. In Pro-
ceedings of the 45th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 3363–3367.

Md Tahmid Rahman Laskar, Cheng Chen, Aliak-
sandr Martsinovich, Jonathan Johnston, Xue-Yong
Fu, Shashi Bhushan Tn, and Simon Corston-Oliver.
2022b. BLINK with Elasticsearch for efficient entity
linking in business conversations. In Proceedings of
the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies: Industry Track, pages
344–352, Hybrid: Seattle, Washington + Online. As-
sociation for Computational Linguistics.

Md Tahmid Rahman Laskar, Enamul Hoque, and
Jimmy Xiangji Huang. 2022c. Domain adaptation
with pre-trained transformers for query-focused ab-
stractive text summarization. Computational Linguis-
tics, 48(2):279–320.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering, 34(1):50–70.

Manman Luo and Xiangming Mu. 2022. Entity senti-
ment analysis in the news: A case study based on
negative sentiment smoothing model (nssm). Inter-
national Journal of Information Management Data
Insights, 2(1):100060.

Mishaim Malik, Muhammad Kamran Malik, Khawar
Mehmood, and Imran Makhdoom. 2021. Automatic
speech recognition: a survey. Multimedia Tools and
Applications, 80(6):9411–9457.

Haiyun Peng, Lu Xu, Lidong Bing, Fei Huang, Wei Lu,
and Luo Si. 2020. Knowing what, how and why: A
near complete solution for aspect-based sentiment
analysis. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8600–8607. AAAI
Press.

Hassan Saif, Yulan He, Miriam Fernandez, and Harith
Alani. 2014. Semantic patterns for sentiment analysis
of twitter. In International Semantic Web Conference,
pages 324–340. Springer.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Igor Santos, Nadia Nedjah, and Luiza
de Macedo Mourelle. 2017. Sentiment analy-
sis using convolutional neural network with fasttext
embeddings. In 2017 IEEE Latin American confer-
ence on computational intelligence (LA-CCI), pages
1–5. IEEE.

500

Josef Steinberger, Polina Lenkova, Mijail Kabadjov,
Ralf Steinberger, and Erik Van der Goot. 2011. Mul-
tilingual entity-centered sentiment analysis evaluated
by parallel corpora. In Proceedings of the Interna-
tional Conference Recent Advances in Natural Lan-
guage Processing 2011, pages 770–775.

Chi Sun, Luyao Huang, and Xipeng Qiu. 2019. Uti-
lizing BERT for aspect-based sentiment analysis via
constructing auxiliary sentence. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 380–385, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 3319–3328. PMLR.

Duyu Tang, Bing Qin, and Ting Liu. 2016. Aspect
level sentiment classification with deep memory net-
work. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4,
2016, pages 214–224. The Association for Computa-
tional Linguistics.

Xinyi Wang, Feng Li, Zequn Zhang, Guangluan Xu,
Jingyuan Zhang, and Xian Sun. 2021. A unified
position-aware convolutional neural network for as-
pect based sentiment analysis. Neurocomputing,
450:91–103.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November
16-20, 2020, pages 38–45. Association for Computa-
tional Linguistics.

Lu Xu, Hao Li, Wei Lu, and Lidong Bing. 2020.
Position-aware tagging for aspect sentiment triplet
extraction. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
2339–2349. Association for Computational Linguis-
tics.

Fei Zhao, Zhen Wu, and Xinyu Dai. 2020. Attention
transfer network for aspect-level sentiment classifica-
tion. In Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 811–821,

Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Jie Zhou, Jimmy Xiangji Huang, Qin Chen, Qinmin Vi-
vian Hu, Tingting Wang, and Liang He. 2019. Deep
learning for aspect-level sentiment classification: sur-
vey, vision, and challenges. IEEE access, 7:78454–
78483.

Jie Zhou, Jimmy Xiangji Huang, Qinmin Vivian Hu,
and Liang He. 2020. SK-GCN: modeling syntax
and knowledge via graph convolutional network for
aspect-level sentiment classification. Knowl. Based
Syst., 205:106292.

501

Proceedings of EMNLP 2022 Industry Track, pages 502–511
December 9–11, 2020. ©2022 Association for Computational Linguistics

QUILL: Query Intent with Large Language Models using Retrieval
Augmentation and Multi-stage Distillation

Krishna Srinivasan∗

Google Research
krishnaps@google.com

Karthik Raman∗

Google Research
karthikraman@google.com

Anupam Samanta
Google

anupamsamanta@google.com

Lingrui Liao
Google

lingrui@google.com

Luca Bertelli
Google

lbertelli@google.com

Mike Bendersky
Google Research

bemike@google.com

Abstract

Large Language Models (LLMs) have shown
impressive results on a variety of text under-
standing tasks. Search queries though pose
a unique challenge, given their short-length
and lack of nuance or context. Complicated
feature engineering efforts do not always lead
to downstream improvements as their perfor-
mance benefits may be offset by increased
complexity of knowledge distillation. Thus,
in this paper we make the following contribu-
tions: (1) We demonstrate that Retrieval Aug-
mentation of queries provides LLMs with valu-
able additional context enabling improved un-
derstanding. While Retrieval Augmentation
typically increases latency of LMs (thus hurt-
ing distillation efficacy), (2) we provide a prac-
tical and effective way of distilling Retrieval
Augmentation LLMs. Specifically, we use a
novel two-stage distillation approach that al-
lows us to carry over the gains of retrieval
augmentation, without suffering the increased
compute typically associated with it. (3) We
demonstrate the benefits of the proposed ap-
proach (QUILL) on a billion-scale, real-world
query understanding system resulting in huge
gains. Via extensive experiments, including
on public benchmarks, we believe this work
offers a recipe for practical use of retrieval-
augmented query understanding.

1 Introduction

The recent advent of billion+ parameter Large Lan-
guage Models (LLMs) – such as T5 (Raffel et al.,
2019), mT5 (Xue et al., 2021), GPT-3 (Brown et al.,
2020) and most recently PaLM (Chowdhery et al.,
2022) – has disrupted many language understand-
ing tasks – with new benchmarks set or eclipsed
routinely by these Transformer models and their
variants.

Queries – especially keyword search ones –
present a unique challenge though. Their short

∗ Corresponding Authors

length, inherent ambiguity and lack of grammar
mean query understanding tasks typically require
more memorization and world knowledge than
other NLP tasks (Broder et al., 2007). Conse-
quently, despite LLMs leading performance on lan-
guage and query understanding tasks – like intent
classification, query parsing and relevance predic-
tion – there is significant room for further improve-
ment.

In this paper we leverage Retrieval-
Augmentation to provide LLMs more context
and grounding for search queries. We show that
the titles and URLs of documents retrieved for
the query, greatly help improve LLMs query
understanding capabilities. While different
retrieval augmentation models exist, we show that
even simple concatenation of these titles / urls with
the query can help improve LLM performance
considerably.

However, the use of retrieval augmentation leads
to a new challenge: Increased complexity of LLM
inference. More specifically, the quadratic com-
plexity of self-attention in Transformer models
means that the latency of LLMs blows up given
these (often 10x+) longer input sequences. This
presents a significant problem as LLMs are imprac-
tical for online use and thus need to be distilled
into smaller, more efficient models to be served
online. However knowledge distillation (Gou et al.,
2021) into these student models requires a lot of
distillation data annotated by these LLMs – which
may not be feasible for these retrieval augmented
models.

Thus as a remedy we introduce a new two-stage
distillation approach. In the first stage of this ap-
proach we distill the retrieval-augmented (long in-
put) LLM (the Professor) into a non-retrieval aug-
mented (short input) LLM (the Teacher) using a
small distillation set. This second LLM Teacher is
in turn distilled into the final Student using a large
set.

502

Via extensive experiments on a large-scale, real-
world problem and data we demonstrate that the re-
sulting QUILL system provides for an efficient and
effective way of retaining the performance gains of
retrieval augmented LLMs on query understanding
tasks.

2 Related Work

Large language models (LLMs) such as mT5 (Xue
et al., 2021) demonstrated significant performance
improvements on a variety of natural language un-
derstanding (NLU) tasks. Specifically in the con-
text of query understanding, researchers found that
(a) model size significantly effects the quality of
the resulting models (Nogueira et al., 2019; Han
et al., 2020), and (b) using additional context in the
form of query-associated documents is crucial to
the model performance due to the paucity of con-
text available in the query itself (Nogueira and Lin,
2019; Zhang et al., 2020). Retrieval augmentation
of the query with the search results retrieved by
it is a proven way to incorporate such context in
LLM training for NLU tasks, as has been shown re-
cently by models such as RAG (Lewis et al., 2020),
REALM (Guu et al., 2020), and RETRO (Borgeaud
et al., 2022).

In this paper, we leverage this insight to improve
performance of query intent prediction (Broder,
2002) — a crucial query understanding task that
is at the heart of modern search engines – using
LLMs. Prior work by Broder et al. (2007) found
importance of retrieval augmentation using statisti-
cal methods for this task. Statistical retrieval aug-
mentation has also been found critical for other
query understanding tasks including query expan-
sion (Broder et al., 2008; Diaz and Metzler, 2006)
and query tagging (Wang, 2020). We demonstrate
similar benefits when using retrieval-augmented
LLMs as well.

We also leverage Knowledge Distillation (Hin-
ton et al., 2015; Mirzadeh et al., 2020; Gou et al.,
2021) techniques to create a Student model that
retains the LLMs gains.

3 Query Intent Understanding

While the techniques described in this paper could
be applied to any query understanding task, for
the sake of brevity we focus on the task of query
intent classification. Query intent (QI) classifica-
tion is a classical IR task studied for over two
decades (Kang and Kim, 2003; Baeza-Yates et al.,

Data Train Val Test Unlabeled
Orcas-I 1.28M 1K 1K 10.3M
EComm 36K 4K 4K 128M

Table 1: Statistics of datasets used.

2006; Jansen et al., 2008; Kathuria et al., 2010;
Lewandowski et al., 2012; Figueroa, 2015; Mohas-
seb et al., 2019). This task is particularly important
in practice, as it is at the top of the search funnel,
and the entire search engine behavior may vary
based on the predicted query intent. Given the cen-
trality of this task on overall retrieval, models for
this task need to be both fast (i.e., low latency) and
high efficacy. Thus even a single percentage point
quality gain on the QI task can be considered a
major accomplishment.

In this paper we tackle the QI task using LLMs.
In particular we use two datasets in our study whose
details are provided in Table 1:

• EComm: Our main dataset will be a real-
world dataset. Cast as a binary classification
problem, this task involves identifying queries
with a specific intent – where the required
intent is similar to the transactional intent of
the Broder taxonomy (Broder, 2002) in the
context of e-commerce. As common in real-
world applications, the human labeled data is
accompanied by a large unlabeled set – that is
used for knowledge distillation.

• Orcas-I: The largest publicly available query
intent dataset is ORCAS-I (Alexander et al.,
2022). This comprises queries of the ORCAS
dataset (Craswell et al., 2020) labeled with
one of 5 intent classes. Note that while the
test set is human-labeled, the training set la-
bels are weak labels as detailed in ORCAS-I
(Alexander et al., 2022) paper’s Methodology
section.

4 QUILL Methodology

The keyword nature of queries and lack of context
make the QI task (like other query understanding
tasks) challenging for LLMs. Thus we propose
QUILL as a solution. As seen in Figure 1, QUILL
consists of two stages: (a) Retrieval Augmented
LLM training, (b) Multi-Stage Distillation into effi-
cient student.

Retrieval Augmented (RA) LLM: The key in-
sight here is that titles / urls of related documents

503

Figure 1: QUILL Architecture : Retrieval Augmentation and Multi-stage Distillation.

Feature EComm Orcas-I
Median 99% Median 99%

Query 5 18 5 10
ExpandTerms 17 28 N/A N/A
(Up to) 10 Titles 157 245 13 104
(Up to) 10 URLs 159 304 39 238

Table 2: mT5 sequence lengths by features.

could provide valuable context to help understand
the intent of the query. For example, it may not be
immediately apparent what a query like ua 1234
may mean. However, via the retrieved documents
we can understand that the query is seeking infor-
mation about a United Airlines flight.

While there are multiple ways of augmenting
the input via retrieved documents (example: the
Fusion-in-Decoder architecture (Izacard and Grave,
2020)), we chose to study the most straightforward
and popular approach of concatenating the titles
/ urls of the retrieved top-k documents with the
original query as the input to our LLM. As shown
empirically (Sec 5), this model outperforms all
baselines – demonstrating the value of additional
context.

Multi-stage distillation: The drawback of RA
is the additional sequence length of the input. As
seen from Table 2, augmenting a query with (upto)
10 titles and urls increases the sequence length
by an order of magnitude. Consequently, this
makes distillation far more challenging given the
quadratic complexity of sequence length (due to
self-attention) in transformer models. This leaves

us in a dichotomy between a more effective model
with a much smaller distillation set, vs. a lower per-
forming model with a larger distillation set. Given
a large distillation set is required for training an
effective student, this leaves us at risk of not being
able to benefit from RA, given that a very large
dataset with RA will incur very long and impracti-
cal inference times.

To get the best of both worlds we propose a two-
stage distillation approach. In the first stage we
distill the Professor RA LLM into a Teacher LLM
without RA. The Teacher model uses ExpandTerms
which provide additional context to the queries.
While this may not be as expressive as retrieval
augmentation, this provides a good compromise of
greatly reducing sequence length while giving up
only a little in performance. We do so by using
a small subset of the unlabeled data. As shown
empirically, a LLM teacher trained in this manner
performs significantly better than a non-RA LLM
trained directly on the human data, while at the
same time allowing us to efficient distillation.

In the second stage we use the Teacher LLM to
annotate the entire unlabeled dataset. This is in
turn used to train the final Student model that will
be used in practice.

5 Experiments and Results

Experimental Setup: Our experiments were all
conducted using the mT5 (Xue et al., 2021) check-
points. We validate performance across three learn-
ing rates (1e-3, 1e-4, 5e-5) – selecting the best
checkpoint using the validation set loss. For mod-

504

els trained from the provided training sets, we used
a batch size of 64 in our experiments and trained
for 4K steps (EComm) / 20K steps (Orcas-I).

For distilled models, we used a batch size of 128
for Teacher models and 1024 for Student models.
We use different batch sizes because of the model
architectures, mT5 for the Teacher vs a BERT-
based model for the Student. In both cases, we
trained for 1 epoch, unless mentioned otherwise.
We only use the encoder of the mT5 model with
an additional layer added on top to predict the clas-
sification scores. The Professor, the Teacher and
the Student fine-tuning experiments are all set up
as a query intent classification task. Given that the
Teacher and Student models are trained on millions
of examples and this itself is a time and resource
intensive step, we restrict our experiments to only
one epoch. We demonstrate performance gains
even with one epoch via the techniques elaborated
in this paper.

We studied the effect of distillation data size, for
both stages of distillation. For the EComm dataset,
we used an in-house retriever to find related doc-
uments. For Orcas-I, we use the provided docids
(aggregated at per-query level) for retrieval aug-
mentation. Unless specified, we use (upto) the top-
10 results for retrieval augmentation1. Sequence
length for models are based on the training set
and features (set to 99%-percentile of sequence
lengths).

Students and Features: Our experiments
demonstrate results for a fast, efficient 4-layer trans-
former student architecture, with hidden dimension-
ality of 256. We default to using the query as the
only feature in the student for simplicity. To com-
pare against query expansion techniques, we used a
sophisticated in-house memorization-based query
expansion model in our Professor / Teacher experi-
ments on EComm. This expansion model – which
we refer to as ExpandTerms – provides a list of
related terms for a given query, which are concate-
nated with the query (and identifiers for start / end
of each feature).

Metrics: To compare performance of differ-
ent models we use two metrics: MicroF1 and
MacroF1 for Orcas-I, and AUC-PR and AUC-
ROC for EComm. For EComm, we only report

1For Orcas-I, nearly 2/3rd of the queries only have a single
provided result, while some have upwards of 2000 results,
which is why the lengths for RA features on Orcas-I in Table 2
are smaller. The 10 results augmented are randomly chosen if
more exist.

Model Size ROC PR
query Base 0.0% 0.0%
+ RA (titles, urls) Base +4.3% +4.6%
query XL +2.7% +3.1%
+ RA (titles, urls) XL +6.3% +6.7%
query XXL +3.0% +3.3%
+ RA (titles, urls) XXL +6.4% +6.9%

Table 3: Results demonstrating the benefit of Retrieval
Augmentation (RA) across all model sizes.

EComm ROC PR
query 0.0% 0.0%
+ Terms +2.6% +1.9%
+ RA (titles) +4.8% +4.8%
+ RA (titles) + Terms +5.1% +5.2%
+ RA (urls) +5.3% +5.7%

Table 4: Analysis of the impact of different features
(using Base-sized models) for the EComm dataset. Ex-
pandTerms abbreviated as Terms.

performance of models relative to the mT5 query-
only Base-sized model2.

5.1 Effect of Retrieval Augmentation

While the use of retrieval augmentation (RA) has
been known to improve query classification per-
formance (Broder et al., 2007), the benefit of RA
is unclear in the age of LLMs. Thus, we start by
evaluating the first stage of QUILL i.e., the RA
model. As seen in Table 3, RA improves perfor-
mance significantly across all model sizes includ-
ing the billion-parameter+ XL and XXL models.
In fact the gains from RA on the Base-sized model
exceed the gains obtained by increasing model size
of a query-only model to XXL. Given the gains ob-
served across all models sizes, we use Base-sized
models in the rest of the paper to simplify experi-
mentation.

2For a sense of scale, each 0.5% point increase in metrics
on EComm is considered a significant gain.

EComm ROC PR
Orcas-I MicF1 MacF1
query 69.8 69.75
+ RA (titles) +6.3% +5.1%
+ RA (urls) +8.2% +6.2%
+ RA (titles+urls) +9.0% +7.2%

Table 5: Analysis of the impact of different features
(using Base-sized models) for the Orcas-I dataset.

505

EComm ROC PR
Baseline Teacher

+2.6% +1.9%
(Finetuned on Training Set)

QUILL Teacher
+3.3% +2.8%

(2M Prof Distilled Set)
QUILL Teacher (4M) +3.4% +2.9%
QUILL Teacher (8M) +3.5% +2.9%

QUILL Professor +5.3% +5.7%

Table 6: Comparison of different Teacher models
trained directly or via Professor-distillation for the
EComm dataset.

A natural question that may arise though is how
do these gains from RA compare to those obtained
by powerful query expansion techniques. Thus, we
performed an in-depth ablation of features for the
EComm dataset (on a Base-sized model for ease
of experimentation) as seen in Table 4 and for the
Orcas-I dataset as seen in Table 5. These results
clearly demonstrate the potency of powerful query
expansion models (i.e., ExpandTerms) – as evi-
denced by the large ∼2% gains over query-only
models. However, we find that RA adds even more
value over these highly sophisticated expansion
models with an a nearly 5+% increase in perfor-
mance. Furthermore, we find that RA techniques
can still be combined with query expansion for
further gains.

The improvements on RA for Orcas-I (seen in
Table 5) are even more substantial, with a nearly
9% improvement over the query-only baseline, via
the use of the titles and urls of related documents.
Interestingly, among RA features we find that urls
tend to perform slightly better than titles on both
datasets. We believe this to be because titles can
have a higher variance of informativeness – with
both highly verbose and very short titles commonly
seen. Hence, given the simplicity and consistency
of urls, we chose to use RA(urls) for subsequent
experiments as the Professor model.

5.2 Distilling gains from RA
We next focus on the second stage of QUILL: Dis-
tilling the RA model. Typically larger amounts of
distillation data lead to better performance. How-
ever, given the increased sequence length of RA
models and the cost of retrieval augmentation itself,
annotating large distillation sets is highly challeng-
ing. Thus to capture such practical trade-offs, we

Orcas-I MicF1 MacF1
Baseline Teacher

69.8 69.75
(Finetuned on Training Set)

QUILL Teacher +1.1% +0.8%
(2M Prof Distilled Set)

Table 7: Comparison of different Teacher models
trained directly or via Professor-distillation for the
Orcas-I dataset.

only used a small subset of the unlabeled data for
the QUILL Professor to Teacher distillation. In
particular, we used 4M examples for EComm (i.e.,
3.1% of unlabeled data) and 2M for Orcas-I (19%)
for this first stage of distillation – to represent a set
that is small enough set to be practical, but large
enough to learn from. However, we do share results
for varying this size to understand its importance.

QUILL Teacher models were thus trained by dis-
tilling the RA(urls) Professor models. Our Teacher
models had the same capacity and architecture (i.e.,
mT5-Base as the Professor3 – except it does not use
RA (features).

As a realistic and competitive baseline, we chose
a Baseline Teacher that resembles the QUILL
Teacher in all aspects bar one – the data they are
trained on. Specifically, the Baseline Teacher is
directly trained from the gold-labeled training data,
unlike the QUILL teacher. We believe this is rep-
resentative of practical applications today, where
LLMs are trained directly on gold-labeled sets
(before being distilled into the final student mod-
els). To further challenge QUILL, we leverage the
powerful ExpandTerms features (for the EComm
dataset) in our Teacher models – both Baseline and
QUILL. We believe this provides a more challeng-
ing but realistic evaluation setup, since many base-
line models in use today avail of powerful features
(along with the query).

As seen from the results in Table 6 and Table 7,
we find the QUILL Teachers provide a signifi-
cant performance improvement over the Baseline
Teacher, despite having never directly seen the gold
label data. On EComm, despite using an enhanced
(realistic) baseline, QUILL teachers are ∼1% bet-
ter on all metrics. We find a similar gap on Orcas-I
despite the Teacher there being trained on only 2M
examples (just 1.5x the training set size). Put dif-
ferently, we now have trained our non-retrieval aug-

3We observed similar trends even if the Teacher had less
capacity than the Professor.

506

Model (# Distillation) ROC PR
No Distillation Student -6.3% -7.3%
Baseline Student -0.9% -1.6%
QUILL Student +2.0% +1.5%
QUILL 1-Stage Student(4M) +0.4% -0.2%
QUILL 1-Stage Student(32M) +1.1% +0.6%

Table 8: Performance of the different student mod-
els trained from different teachers and using differing
amounts of distillation data (on EComm).

mented language model to benefit from the gains
of retrieval augmentation. Even though the stu-
dent model does not have Retrieval Augmentation,
because of the Teacher model’s performance im-
provement, it is possible to annotate a considerably
large number of training examples. We observe the
Student models to close the gap (compared to the
Teacher) given larger training datasets.

To test the robustness of QUILL teachers we also
varied the amount of distillation data used – halv-
ing or doubling it. While there still exist distillation
gaps to the professor (which can be narrowed via
more distillation data) on both datasets, our pro-
posed approach works well even when using small
amounts of distillation data – which in turn allows
us to save significant compute.

Query Example URL W/L
bengals sports.yahoo.com/

nfl/teams/cin/
3

pah com-
pounds

en.wikipedia.org/
wiki/Polycyclic_aro
matic_hydrocarbon

3

launch tech
usa

launchtechusa.com/ 3

noun univer-
sity

en.wikipedia.org/
wiki/Noun

7

airbed uk www.airbnb.co.uk/ 7

Table 9: Wins/losses examples on Orcas-I.

5.3 Final student training
So far, we have shown that QUILL can learn a bet-
ter (non-RA) teacher. However, an important ques-
tion remains unanswered: Can these Teacher gains
be translated to the final student model? In particu-
lar, we postulate that the predictions of the QUILL
Teacher may be more robust and easier to learn
(for student models) than those of the Baseline. To
verify this hypothesis we compared 4 fast student

models (4-layer encoder-only models), with the
only difference being the data they were trained on:

• No Distillation Student: This is the simple
solution of directly training the Student using
the labeled data.

• Baseline Student: This is the current stan-
dard involving distilling the Baseline Teacher
model using the full unlabeled set.

• QUILL Student: This is the proposed solution
involving distilling the QUILL Teacher model
using the full unlabeled set.

• QUILL 1-Stage Student: Rather than the two
stage distillation approach, this student is di-
rectly distilled from the Professor using a sub-
set of the unlabeled data.

As seen from Table 8, all QUILL-based students
significantly outperform the Baseline Student. In
particular our proposed 2-stage approach leads to
a ∼3 point gain on both metrics. This is notable
in that the gap between QUILL and Baseline stu-
dents is even higher than the Teachers – which we
attribute to the QUILL Teacher labels being more
robust.

Comparing different QUILL students, we find
that there is a notable performance gain by first dis-
tilling into a non-RA teacher, before distilling into
the final student. While 1-stage distillation perfor-
mance improves as more data is used, even when
1/4th of all unlabeled data is retrieval-augmented
and annotated by the Professor for direct distil-
lation, it still falls short of the 2-stage approach.
Together, these results show: (1) QUILL students
outperform the current state-of-the-art significantly,
and (2) QUILL benefits from the 2 stage distillation
of Professor to Teacher to final student.

5.4 Examples of Wins/Losses from RA
While the previous sections focused on demon-
strating the efficacy (and efficiency) of QUILL,
we wanted to also understand why and where are
some of these gains from RA stem from. To do so
we used the test-set of Orcas-I and sampled illus-
trative examples of wins / losses (Table 9) between
the baseline and the retrieval-augmented professor
models. One common win pattern we found for
RA models is when the query is unclear, or uses
technical terms / abbreviations. In these cases, the
augmented urls / titles help provide additional con-
text for the language model to understand what the

507

query is about. On the flip side, we also found
the biggest loss pattern to be when retrieval was
inaccurate, which in turn misled the model regard-
ing the query intent. For example, we found our
retriever returned wikipedia results more often than
it should, which mislead the model to believe the
query had Factual intent.

6 Future Work

While we studied the problem of query intent clas-
sification in this paper, the approach proposed in
our paper is general and could be applied to any
query understanding task. Following our approach,
could enable myriad query understanding tasks use
retrieval augmentation in a practically realistic and
efficient manner. We leave this to future work
though. We should also note that our experiments
reveal non-trivial distillation gaps in both stages
of distillation, which we believe is another open
opportunity for future improvements.

7 Conclusion

This paper provides a practical recipe for combin-
ing Retrieval Augmentation and Large Language
Models. In particular, we proposed QUILL as an
approach to tackle the problem of query intent clas-
sification. Our empirical study demonstrates con-
clusively that Retrieval Augmentation can provide
significant value over existing approaches. Fur-
thermore we show that via our two-stage distilla-
tion approach, that QUILL not only learns better
performing, more robust teachers, but also leads
to even bigger gains when distilled into fast, real-
world capable production student models.

8 Acknowledgements

We sincerely thank Jiecao Chen, William Den-
nis Kunz, Austin Tarango, Lee Gardner, Yang
Zhang, Constance Wang, Derya Ozkan, Nitin
Nalin, Raphael Hoffmann, Iftekhar Naim, Sid-
dhartha Brahma, Siamak Shakeri, Hongkun Yu,
John Nham, Ming-Wei Chang, Marc Najork,
Corinna Cortes and many others for their insight-
ful feedback and help. We also thank the EMNLP
Reviewers for their thorough review, feedback and
suggestions.

508

Limitations

This paper focuses on efficient and effective way
of improving query intent classification using Re-
trieval Augmentation (RA) and Multi-stage distil-
lation. While we have made the best attempts to
ensure a robust and efficient method, we would be
remiss to not point out some key limitations of our
work:

• Quality of Retrieval: A key reason for the
gains seen in this paper is the use of Retrieval
Augmentation. This additional context pro-
vided in the form of result titles / URLs are
helpful, but are dependent on the quality of
the retrieval system. While we did not get a
chance to explore the dependence of perfor-
mance gains on retrieval quality, we plan to
explore this in future work.

• Dependency of Retrieval: While our ap-
proach provides for a practical and low-
compute way of incorporating retrieval aug-
mentation, it still does add some compute (to
augment the datasets) and system complexity.
While we considered this trade-off well worth
it in our use case, this may depend on specific
settings.

• Retrieval-Augmentation techniques: As
discussed in Section 4, we used a simple
concatenation based retrieval augmentation.
However, there do exist more sophisticated
techniques for retrieval augmentation. For ex-
ample, models built on a Fusion-in-Decoder
(Izacard and Grave, 2020) backbone have
demonstrated great performance (Hofstätter
et al., 2022b; Izacard et al., 2022) and im-
proved efficiency (Hofstätter et al., 2022a).
We believe that these more sophisticated
retrieval-augmentation technique may bring
further improvements in our system and leave
this for future work to follow up on.

• Datasets: The lack of large public query sets
means that we were very limited in terms of
what public benchmarks we could study this
problem on. While ORCAS-I is the largest
such available set, they lack many alternatives
that are large enough to study the effects of dis-
tillation. In the future though, we hope to use
the (somewhat related) problem of question-
answering where larger datasets (with large

enough unlabeled data) exist for a more thor-
ough study.

• Distillation gaps: Our results also clearly
demonstrate large distillation gaps in both
stages. While there have been innovative tech-
niques proposed to improve distillation perfor-
mance, we intentionally chose to keep things
simple as those approaches are largely com-
plementary to the problem we study in this
work.

• Limited "Large" Model Experiments:
While our work is intended for and positioned
in the context of "Large" Language Mod-
els, we realize that our most common model
choice (mT5-Base), may not be the most rep-
resentative model in that category. This was
an intentional choice on our end as we hoped
doing so would make the work more relevant
to use cases and applications with more lim-
ited compute. For practitioners interested in
models with tens of billions of parameters,
we refer them to our analysis of mT5-XXL
sized models in Table 3, that demonstrates the
viability of our approach on models of that
scale.

Ethics Statement

In this paper, we used only publicly available Lan-
guage Model and Checkpoints that have been pre-
viously published – namely mT5.

An important consideration when working with
query datasets is data privacy. This is perhaps
the biggest reason why there do not exist many
large public query datasets. We intentionally chose
ORCAS-I for this reason, as it is constructed
from the ORCAS query set – which is widely re-
garded as a well-constructed, non-PII, sufficiently
anonymized query dataset. While the EComm
dataset used in this paper is proprietary, we should
note that it too has been scrubbed of PII and aims
to follow the same (if not higher) data privacy prin-
ciples. Our data (and methodology) do not contain
any information for or target any demographic or
identity characteristics.

The task we focus on – query classification –
is a general problem that benefits everyone. In
fact, it can enable better IR systems thereby bene-
fiting users who otherwise might not get answers.
Thus, we do not anticipate any biases or misuse is-
sues stemming from this. We believe that by using

509

publicly available and vetted retrieval models, the
resulting retrieval augmented models should not
create any new or further any existing biases.

In many ways a goal of our work is making
retrieval augmentation more practical and reducing
compute needs for any such applications. While
we did present results with XXL sized models, we
focused most of our experiments on the smaller,
more efficient Base-sized models so as to benefit a
wider section of our community and to reduce the
computational needs of our experiments.

References
Daria Alexander, Wojciech Kusa, and Arjen P. de Vries.

2022. ORCAS-i. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM.

Ricardo Baeza-Yates, Liliana Calderón-Benavides, and
Cristina González-Caro. 2006. The intention behind
web queries. In International symposium on string
processing and information retrieval, pages 98–109.
Springer.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International Conference on Ma-
chine Learning, pages 2206–2240. PMLR.

Andrei Broder. 2002. A taxonomy of web search. In
ACM Sigir forum, volume 36, pages 3–10. ACM
New York, NY, USA.

Andrei Z. Broder, Peter Ciccolo, Marcus Fontoura,
Evgeniy Gabrilovich, Vanja Josifovski, and Lance
Riedel. 2008. Search advertising using web rele-
vance feedback. In Proceedings of the 17th ACM
Conference on Information and Knowledge Manage-
ment, CIKM ’08, page 1013–1022, New York, NY,
USA. Association for Computing Machinery.

Andrei Z Broder, Marcus Fontoura, Evgeniy
Gabrilovich, Amruta Joshi, Vanja Josifovski,
and Tong Zhang. 2007. Robust classification of rare
queries using web knowledge. In Proceedings of
the 30th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 231–238.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,

Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Nick Craswell, Daniel Campos, Bhaskar Mitra, Em-
ine Yilmaz, and Bodo Billerbeck. 2020. Orcas: 20
million clicked query-document pairs for analyzing
search. In Proceedings of the 29th ACM Interna-
tional Conference on Information Knowledge Man-
agement, CIKM ’20, page 2983–2989, New York,
NY, USA. Association for Computing Machinery.

Fernando Diaz and Donald Metzler. 2006. Improving
the estimation of relevance models using large exter-
nal corpora. In Proceedings of the 29th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 154–
161.

Alejandro Figueroa. 2015. Exploring effective features
for recognizing the user intent behind web queries.
Computers in Industry, 68:162–169.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A
survey. International Journal of Computer Vision,
129(6):1789–1819.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pa-
supat, and Mingwei Chang. 2020. Retrieval aug-
mented language model pre-training. In Inter-
national Conference on Machine Learning, pages
3929–3938. PMLR.

Shuguang Han, Xuanhui Wang, Mike Bendersky, and
Marc Najork. 2020. Learning-to-rank with bert in
tf-ranking. arXiv preprint arXiv:2004.08476.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Sebastian Hofstätter, Jiecao Chen, Karthik Raman, and
Hamed Zamani. 2022a. Fid-light: Efficient and ef-
fective retrieval-augmented text generation. arXiv
preprint arXiv:2209.14290.

Sebastian Hofstätter, Jiecao Chen, Karthik Raman,
and Hamed Zamani. 2022b. Multi-task retrieval-
augmented text generation with relevance sampling.
arXiv preprint arXiv:2207.03030.

Gautier Izacard and Edouard Grave. 2020. Lever-
aging passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Few-shot learning with re-
trieval augmented language models. arXiv preprint
arXiv:2208.03299.

510

Bernard J Jansen, Danielle L Booth, and Amanda
Spink. 2008. Determining the informational, navi-
gational, and transactional intent of web queries. In-
formation Processing & Management, 44(3):1251–
1266.

In-Ho Kang and GilChang Kim. 2003. Query type clas-
sification for web document retrieval. In Proceed-
ings of the 26th annual international ACM SIGIR
conference on Research and development in infor-
maion retrieval, pages 64–71.

Ashish Kathuria, Bernard J Jansen, Carolyn Hafernik,
and Amanda Spink. 2010. Classifying the user in-
tent of web queries using k-means clustering. Inter-
net Research.

Dirk Lewandowski, Jessica Drechsler, and Sonja
Von Mach. 2012. Deriving query intents from
web search engine queries. Journal of the Ameri-
can Society for Information Science and Technology,
63(9):1773–1788.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distil-
lation via teacher assistant. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 34, pages 5191–5198.

Alaa Mohasseb, Mohamed Bader-El-Den, and Mihaela
Cocea. 2019. A customised grammar framework for
query classification. Expert Systems with Applica-
tions, 135:164–180.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to doctttttquery. Online preprint, 6.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Xuanhui Wang. 2020. Query Segmentation and Tag-
ging, pages 43–67. Springer International Publish-
ing, Cham.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 483–498, Online. Association for Computa-
tional Linguistics.

Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan,
and Xueqi Cheng. 2020. Query understanding via
intent description generation. In Proceedings of the
29th ACM International Conference on Information
amp; Knowledge Management, CIKM ’20, page
1823–1832, New York, NY, USA. Association for
Computing Machinery.

511

Proceedings of EMNLP 2022 Industry Track, pages 512–521
December 9–11, 2020. ©2022 Association for Computational Linguistics

Distinguish Sense from Nonsense:
Out-of-Scope Detection for Virtual Assistants

Cheng Qian†, Haode Qi†, Gengyu Wang† Ladislav Kunc†, Saloni Potdar‡
†IBM Watson, ‡Apple Inc.

{cheng.qian, haode.qi, gengyu, lada}@ibm.com, s_potdar@apple.com

Abstract

Out of Scope (OOS) detection in Conversa-
tional AI solutions enables a chatbot to handle
a conversation gracefully when it is unable to
make sense of the end-user query. Accurately
tagging a query as out-of-domain is particu-
larly hard in scenarios when the chatbot is not
equipped to handle a topic which has semantic
overlap with an existing topic it is trained on.
We propose a simple yet effective OOS detec-
tion method that outperforms standard OOS de-
tection methods in a real-world deployment of
virtual assistants. We discuss the various design
and deployment considerations for a cloud plat-
form solution to train virtual assistants and de-
ploy them at scale. Additionally, we propose a
collection of datasets that replicates real-world
scenarios and show comprehensive results in
various settings using both offline and online
evaluation metrics.

1 Introduction

In the context of task-oriented dialog, Out of Scope
(OOS) detection is the problem of identifying end-
user queries that are beyond the scope of a chatbot.
While this problem is generally studied under the
umbrella of “out of domain” detection in machine
learning, we show that unique challenges arise in
real-world applications. We study this problem in
the context of our enterprise virtual assistant (VA)
platform which is used by 10,000+ customers to de-
sign chatbots. In this setting, the natural language
understanding models comprising of In Scope (IS)
and OOS detection modules, need to determine
whether an input query belongs to a set of pre-
defined intents or if it is out of scope for the chat-
bot.

Real-world success of OOS systems often in-
volves measuring how good they are at contain-
ment, i.e., the user queries are resolved and con-
tained by the chatbot while minimizing human in-
terventions. Since containment rate can be only
observed after launching the VA online, offline

metrics such as IS accuracy and OOS accuracy are
needed while designing and developing the models.

The average designer using an enterprise VA
platform is not a machine learning expert. This
leads to a variety of challenges in the provided
user data, which constitutes the need for robust
algorithms. Firstly, end-users often provide data
that is heavily imbalanced or noisy for both IS and
OOS detection.

While designing VA for enterprise use-cases,
IS and OOS examples often naturally belong to
the same domain. Such OOS samples are called
In Domain OOS (ID-OOS) as opposed to Out-of-
Domain OOS (OOD-OOS) which are relatively eas-
ier OOS samples from a different domain (Zhang
et al. (2022)). Designers expect the VA to detect
these relevant but unsupported topics (ID-OOS)
even though it has high semantic overlap with IS
examples. Finally, while entities defined by the
designer play an important role for a real-world
VA, they are often ignored in academic OOS set-
tings. We show that entities must be modeled in
conjunction with IS and OOS classification.

In this paper, we discuss the challenges of de-
signing a real-world OOS detection system in depth
and common approaches taken to design such a sys-
tem. We propose a simple but effective algorithmic
modification for OOS detection in a real-world de-
ployed system. This system models entities, intent
and OOS classification jointly and addresses the
challenges around data. We propose a comprehen-
sive benchmark based on public datasets and show
that our method outperforms standard approaches
while being simple to deploy and maintain.

2 Challenges

2.1 Metrics

Containment and Disambiguation For busi-
nesses, the key performance index (KPI) metric
is typically different from the common machine
learning metrics used to test the performance of

512

the algorithm. Businesses use containment rate to
measure chatbot performance - the portion of con-
versations not handed off or escalated to a human
agent for quality reasons. Among offline evaluation
metrics, IS performance provides the best estimate
for containment rate. Disambiguation is a mecha-
nism to increase containment by asking end-users
clarification questions and providing more than one
relevant intent. This has to be counter-balanced
with high OOS performance so that we don’t pro-
vide a set of predictions in the form of IS classes
for an OOS query. This is essential to appear "in-
telligent" and handle conversations gracefully.
In Domain Out of Scope Detection refers to de-
tecting OOS samples with high semantic overlap
with IS examples in the same domain (ID-OOS).
ID-OOS queries are often harder to detect than the
easier Out of Domain OOS (OD-OOS) samples.
The algorithm should be able to identify ID-OOS
and also generalize well to unseen OOD-OOS.

2.2 Data Considerations

The average designer of an enterprise VA platform
doesn’t need to have ML background, hence the
expectations of labeled data are very different from
an ML expert end-user.
Class Imbalance is often extreme in data provided
by VA designer, with some intent classes having
more number of examples than others.
Data-scarce scenarios Labeling data is often ex-
pensive for enterprises who desire good perfor-
mance with very few labelled examples per class,
and often no OOS labeled data.
Noisy data Unlike public datasets, enterprise
datasets have semantically similar intents due to
overlap in business use cases. Additionally, real-
world end-user input queries to VAs usually contain
spelling errors, intentionally repeated characters,
emojis, and slang. Proper normalization is required
to improve robustness of OOS algorithms.

2.3 Computational Efficiency

While developing the OOS detection algorithm for
an enterprise VA platform, we need to strike a good
trade-off between cost of serving the model and
performance of the model. Based on our experi-
ence, VA platforms are expected to handle training
sets of more than 10k training examples and more
than 1000 classes.
Model size & memory: There are over 100,000
customer-specific models deployed in production
and each chatbot serves millions of queries per

month. Hence low maintenance, training and infer-
ence costs can increase profitability.
Training time: Designers typically make changes
in an iterative fashion, designing the VA through
trial and error. For an interactive experience in the
product, the OOS detection component needs to
train in 1 minute (Qi et al. (2020)).
Inference time: During the inference, each query
passes through all the natural language understand-
ing (NLU) components - IS classification, OOS de-
tection, entity recognition and spellchecking, and
needs to provide the predictions in 10 milliseconds.

2.4 Entities and OOS Detection
Entities are designed to represent nouns from end-
user inputs and are crucial for VAs to respond ac-
cordingly and haven’t been studied extensively in
OOS detection.
Terminologies Designers can define entities with
special terminologies that are out of vocabulary of
any other public or private corpus. This requires
OOS detection methods to differentiate such termi-
nologies from gibberish sentences.
Synonyms The OOS detection algorithm is ex-
pected to produce similar detection scores across
the multitudes of synonyms of the same entity.
Numeric Values System entities like date, number,
time etc. are pre-configured in a VA to cover a
wide range of concepts. However, there is no one-
size-fits-all solutions for system entities. E.g., the
system entity "11" can be a part of domain specific
terminology "operating system Windows 11". The
OOS detection algorithm needs to be aware of these
system entity values and decide the relevance of
the sentence based on the context.

We introduce several potential solutions for han-
dling entities in OOS detection and analyze their
advantages and disadvantages.
Concatenation of all entity synonyms In the con-
text of Binary OOS detection, we add one synthetic
IS example in to the training data by concatenating
all entity synonyms provided for a chatbot. Context
independent features such as uni-grams, bi-grams
and mean/max pooling of word-embeddings will
help recognizing these entities as IS at the runtime.
This simple approach works well empirically but
has the disadvantage of ignoring the context and
semantic meaning.
Synonyms and Entity proxies in intent templates
In enterprise VA, an entity can be defined with mul-
tiple synonyms. In our product, we support entity
proxies, which is a definition of a certain entity
and its associated synonyms that are considered

513

equal. This greatly simplifies training data defini-
tion at the cost of potential instability at runtime:
our intent detection and OOS algorithm should re-
turn the same confidence and same predicted label
if one synonym is replaced by another. For the
example in Table 3, if "cell phone" is defined as
an entity proxy, VA designer only references the
symbol "cell phone" in training examples, and at
runtime "i want an iphone 11" gets the exact same
prediction as "i want an iphone xr".

3 OOS Detection Algorithms

OOS detection algorithms can be broadly classified
into single-stage and multi-stage.
3.1 Single-stage OOS
All the IS classes and optionally the OOS class are
used together train a single model to determine if
the incoming query belongs to one of the IS intents
or is OOS.
Multiclass Classification In this approach, the al-
gorithm treats the OOS examples as an additional
class as explored in (Zhan et al. (2021), Choi et al.
(2021)), alongside the IS classes to train a multi-
class classification model for both IS intent detec-
tion and OOS detection.1 This approach trains a
single algorithm for both OOS detection and IS
detection tasks. In practice, this approach is sus-
ceptible to over-fitting to the provided OOS exam-
ples and might not generalize well to unseen OOS
queries. Additionally, it can fail in the presence of
severe class-imbalance.
In-scope Classification utilizing output distri-
bution This type of methods trains a classifier on
IS data which outputs a probability vector with
low maximum probability or high entropy for an
OOS input, as explored in Lewis and Gale (1994),
Hendrycks and Gimpel (2016), Lee et al. (2018a),
Yilmaz and Toraman (2022). These methods train
a single model for IS detection and applies a thresh-
old on output probability distribution statistics
(such as max and entropy) for OOS detection. How-
ever, in practice, training data typically has seman-
tically overlapped intents which will mislead the
system and increase unnecessary human agent in-
tervention as shown in Table 1.

3.2 Multi-stage OOS
Multi-stage OOS method uses a binary classifier to
determine if a query is IS or OOS in the first stage.

1https://docs.microsoft.com/en-us/azure/
cognitive-services/luis/concepts/intents#
none-intent

In the subsequent stages we determine which of the
IS intent is the closest match.
Binary Classification (IS/OOS): A binary clas-
sifier is trained using the IS examples and OOS
examples as explored in Tax and Duin (1999). The
classification result is used to determine if end-user
query is OOS or ID. In case there are no OOS
training examples, the binary OOS classifier can
be replaced with an one-class classifier or other un-
supervised methods. Another solution for the lack
of OOS training data is synthetic OOS training
examples, refer to Section 4 for more discussion.
In-scope Classification plus unsupervised meth-
ods on internal (hidden state) representation
trains a classifier based on IS training examples,
and utilizes internal representation (for example,
concatenation of hidden states from several lay-
ers of a neural network) of the IS classifier for an
unsupervised OOS detection algorithm, like au-
toencoder with reconstruction loss, distance based
approach (Wu et al., 2022), (Shen et al., 2021), and
density based approach (Lin and Xu, 2019).

3.3 Our Approach
We show a simple modification to the multi-stage
OOS to improve the performance of the system and
alleviate problems with the other approaches men-
tioned previously. Our approach Binary Classifi-
cation(In Scope/OOS) discounting on In Scope
scores treats OOS classification as a binary clas-
sification problem like the previous formulation.
However, the binary classification score of the OOS
detection algorithm is used to discount the IS classi-
fication score to determine the final IS score (more
details to follow). In case no training OOS ex-
amples are available our OOS detection algorithm
becomes one-class classification. This formulation
is related to calibration (Kamath et al., 2020) that
trains a new model to reject inputs when the model
is over-confident. However, our approach applies
the OOS output as discounting factor instead of
binary score leading to better performance in the
context of enterprise VA as shown in Table 4.

In terms of the OOS classification component,
we implement a distance based approach based on
sentence embedding of both IS and OOS training
examples (if labeled). At training time, we first
apply the trick described in Section 2.4 to prepro-
cess entities among other text normalization steps,
then query the sentence embeddings from a sen-
tence encoder. For each IS example, we store the
linear combination of its sentence embedding and
the mean embedding of its corresponding intent

514

class in an approximate nearest neighbor(ANN)
search index. If there are OOS training examples,
we store their sentence embeddings in the same
ANN search index. At runtime, a query is pre-
processed the same way as training examples, the
cosine distance to the nearest neighbor will be used
as OOS score to discount the output from the IS
classifier. If the nearest neighbor is OOS, we add
an additional constant to the corresponding nearest
distance, to discount the confidence more. The dis-
counting step uses the OOS score cos_dist and IS
classifier output confidence conf, we apply the for-
mula below to produce the final output confidence
vector final_conf as follows:

final_conf = (1− f(max(cos_dist, 0))) · conf (1)

f(x) =

{
x x ≥ 0.5

sigmoid(a · (x− 0.5)) otherwise
(2)

, where a is a constant that can be tuned for differ-
ent applications. The motivation for Formula 2 is to
reduce the amount of discounting on IS confidence
(comparing to a linear discounting function), when
OOS classifier predicts a low cosine distance (thus
high similarity) for an utterance.

Typically, a fixed threshold T on the final output
confidences is used in real world applications to
determine whether an input utterance is predicted
as IS or OOS: a new input is deemed OOS if its final
output confidence is less than T. Theoretically, this
threshold is not critical to machine learning metrics,
especially threshold independent metrics. Even
for threshold dependent metrics, this threshold can
always be tuned in accordance with the scale of
final output confidence to achieve the same results.
However in practice, as a commercial VA platform,
a fixed threshold reduces the maintenance cost of
a chatbot and only a small fraction of the chatbot
designers will try to tune the threshold. In our
product, 0.2 threshold is set as the default value.

3.4 Benchmark Dataset

We collect 8 intent classification datasets to compre-
hensively evaluate the methods mentioned above re-
garding the challenges, including IS classification,
OOS detection, and scalability. The 8 datasets in-
clude ATIS (Hemphill et al., 1990), BANKING77
(Casanueva et al., 2020), CLINC150 (Larson et al.,
2019), StackOverflow2, SNIPS (Coucke et al.,
2018), HAR (Liu et al., 2019), ROSTD (Gangal
et al., 2020), and HINT3 (Arora et al., 2020). A

2https://storage.googleapis.com/download.
tensorflow.org/data/stack_overflow_16k.tar.gz

Query Intent

I need assistance with my
retirement account retirement account

I need to talk to a agent about
my retirement account agent

Table 1: The two queries shown are semantically over-
lapped. For the query "I need to talk to a assistant about
my retirement account", the correct intent should be
"agent" but one can expect "retirement account" and
"agent" having similar probability. For approaches that
rely on probability vector to detect OOS input, these
examples can mislead them to treat valid IS queries as
OOS.

summary of dataset statistics after preprocessing is
provided in Table 2.

To evaluate methods’ performance on ID-OOS
detection, we ensure all datasets contain ID-OOS
examples. For datasets that only contain IS exam-
ples, we randomly choose a number of IS intents
and treat them as OOS so that the number of ex-
amples in these intents are about 25% of the whole
training dataset. The full list of chosen intents for
each dataset are listed in Appendix A.1.

We reorganize some of the datasets as follows.
CLINC150 includes 2 domains, banking and credit
card, we evaluate them separately along with the
full set. For StackOverflow, 10% examples in train-
ing set is stratified splited as dev set. For HAR,
we remove examples with missing ’answer’, and
stratified split remaining examples into train, dev,
and test set with a 80, 10, and 10 percentage. Dif-
ferent from other selected datasets, ROSTD con-
tains 4,000 OOS examples. ROSTD-coarse is the
version that only keep higher hierarchical intent
types. Examples in “reminder” intent type from
original ROSTD-coarse are treated as ID-OOS.
HINT3 consists of 3 domains, including SOFMat-
tress, Curekart and Powerplay11, so we evaluate
them separately. 10% of training examples in each
of HINT3 datasets is stratified split as dev set.

3.5 Evaluation metrics

Based on current literature, there are 2 types of
commonly used metrics for OOS detection.

Threshold dependent metrics are metrics cal-
culated with predicted labels e.g. accuracy. These
metrics compare the probability score against a
threshold to determine whether a query is consid-
ered OOS or not. Also threshold dependent metrics
encourage joint evaluation of intent detection and
OOS detection that are more suitable under the

515

Dataset Train Dev Test
IS ID-OOS OOD-OOS IS ID-OOS OOD-OOS IS ID-OOS OOD-OOS

CLINC150-FULL 11300 3700 100 2260 740 100 3390 1110 1000
CLINC150-BANKING 400 100 0 400 100 600 400 100 1350
CLINC150-CREDIT 400 100 0 400 100 600 400 100 1350
ATIS 4053 425 0 458 42 0 812 81 0
BANKING77 6533 2089 0 1160 380 0 2320 760 0
Stack Overflow 5400 1800 0 600 200 0 6000 2000 0
SNIPS 9371 3713 0 500 200 0 500 200 0
ROSTD 23621 6900 0 3238 943 1500 6661 1960 3090
ROSTD-coarse 23621 6900 0 3238 943 1500 6661 1960 3090
HAR 15893 4592 0 1986 575 0 1985 576 0
HINT3 (SOFMattress) 229 66 0 26 7 0 158 73 166
HINT3 (Powerplay11) 317 102 0 38 14 0 244 31 708
HINT3 (Curekart) 415 125 0 45 15 0 390 62 539

Table 2: Dataset Statistics. We preprocess all datasets (details in A.1) and numbers reflect their sizes.

context of VA. Following the literature (Wu et al.
(2022), Zhou et al. (2022), Zeng et al. (2021)), the
threshold dependent metrics are listed here:

Overall Accuracy is the percentage of examples
being correctly classified. For an IS query, it’s
predicted correctly if and only if the predicted IS
label is correct and the query is predicted as IS.
For an OOS query, it should be predicted as OOS
to make a correct prediction. IS Accuracy is the
percentage of correctly predicted IS examples out
of all IS examples. IS F1 is the macro averaged
F1 scores across all IS intents. OOS F1 is the F1
score for OOS examples.

Threshold independent metrics are metrics cal-
culated with a vector of scores each of which mea-
sures how confident or likely an OOS algorithm
considers a query irrelevant. Such a score is often a
number between 0 and 1 where 1 represents IS and
0 represents OOS. This paper follows the literature
(Shen et al. (2021), Ryu et al. (2018), Liang et al.
(2017), Lee et al. (2018b)) and defines IS as the
positive class and OOS as the negative class. We
use the metrics for evaluating OOS detection per-
formance: FPRN, where N is an integer between
0 and 100, is the false positive rate(FPR) when
the true positive rate(TPR) is at least N%. A false
positive is an OOS example predicted as IND. We
use FPR90 and FPR95. AUROC is the area under
the Receive Operating Characteristic curve, which
measures TPR against FPR at different thresholds.
AUPR_IN and AUPR_OUT are metrics measur-
ing area under the precision-recall curve, when IS
and OOS are considered as the positive class, re-
spectively.

Training Example
Can I buy a cell phone ?

Training Entities
entity: cell phone
synomyms: iphone, samsung, galaxy, iphone XR, iphone 11, etc..

Inference Queries
A galaxy is a huge collection of gas, dust, stars and their solar systems.
what is the latest model of galaxy s series?

Table 3: VA designer defines the entity "cell phone" with
synonyms. The 1st query contains the word "galaxy"
but it is OOD-OOS. The 2nd with "galaxy" is ID-OOS.

3.6 Experiments and Results

We conduct experiment on the benchmark datasets
to compare different OOS problem formulations
listed in Section 3 (Our discounting approach, Bi-
nary Classification (IS/OOS), Multiclass Classifi-
cation3 , and IS Classification utilizing output dis-
tribution). As a comparison for the OOS problem
formulation only, we keep the IS classification algo-
rithm and OOS algorithm same as our production
setup across the 4 formulations, without focusing
on the exact choice or implementation of the IS and
OOS algorithms. For the discounting method, we
use our production intent detection and OOS detec-
tion as is. For multi-class classification method, we
consider OOS examples as an additional IS intent.
For the IS Classification utilizing output distribu-
tion formulation, we train an IS classifier with IS
training examples and take the max of output con-
fidence vector as the OOS score.
Offline Evaluation Table 4 reports the simple av-
erage of metrics across all our benchmark datasets.

3Threshold independent metrics for Multiclass classifica-
tion is omitted, as our IS classifier outputs confidence vectors
(which do not sum up to 1) instead of predicted probability,
thus it involves no such component as OOS scores.

516

Method Overall Acc. IS Acc. IS F1 OOS F1 OOS recall FPR90 FPR95 AUROC AUPR_IN AUPR_OUT

Binary 82.45 86.92 77.87 76.84 74.18 22.76 30.29 91.70 91.21 88.16
Multiclass 74.34 90.36 72.81 74.08 64.84 - - - - -
IS clf + Max 79.17 85.93 77.99 70.02 65.15 32.66 44.45 87.53 87.15 80.27
Discounting (Our Approach) 84.70 86.43 79.71 80.63 79.31 20.07 27.20 92.64 91.07 89.90

Table 4: Performance on all datasets This table compares the discounting method against binary classification,
multiclass classification, the IS classifier + max confidence on the full test sets.

Method Overall Acc. IS Acc. IS F1 OOS F1 OOS recall FPR90 FPR95 AUROC AUPR_IN AUPR_OUT

Binary 53.45 72.70 47.97 45.26 38.40 59.24 78.80 81.37 72.07 86.98
Multiclass 52.97 74.65 49.44 56.15 41.15
IS clf + Max 54.36 75.13 53.46 57.90 43.66 56.38 73.74 76.97 60.33 86.01
Discounting (Our Approach) 61.46 69.38 51.79 60.05 54.94 50.84 71.02 82.83 69.32 88.97

Table 5: Performance on HINT3 This table compares the discounting method against the Multiclass classification
method, the binary classification method, the IS classifier + max confidence on the full test sets.

The discounting approach achieves better perfor-
mance across most metrics. We report the average
metrics in Table 5 on the subset of the 3 HINT3
datasets, which are designed to represent real world
imbalanced datasets.

Table 6 compares the Multi-Class formulation
against our formulation on all datasets. Our ap-
proach performs on par on ID-OOS but general-
ize better to OOD-OOS. In real world application,
limited ID-OOS is provided by customer during
training but the algorithm is expected to perform
well on both categories without overfitting.

Method Test set Overall Acc. IS Acc. IS F1 OOS F1 OOS recall

K+1 Classes IND+ID-OOS 90.65 90.36 86.46 90.82 92.76
discounting IND+ID-OOS 86.14 88.04 84.62 76.25 80.81
K+1 Classes IND+OOD-OOS 60.28 89.41 65.07 46.60 32.69
discounting IND+OOD-OOS 78.31 85.72 76.71 74.36 71.43
K+1 Classes IND+both OOS types 74.34 90.36 72.81 74.08 64.84
discounting IND+both OOS types 84.70 86.43 79.71 80.63 79.31

Table 6: Performance on various test sets We compare
the discounting method against the Multiclass classifica-
tion method on 3 versions of test sets: IS + ID-OOS, IS +
OOD-OOS (average across the datasets with OOD-OOS
test examples), IS + both types of OOS examples.

Online Evaluation During real-world deployment
of this algorithm, we conducted additional online
evaluation by analyzing the output distribution
change on real production traffic because chatbot
designers typically rely on output confidence scores
to make business decisions eg. jumping to a node in
the dialog tree, handing off to human agents or ask-
ing a follow-up question. Therefore, we deployed
the proposed OOS algorithm in production and
monitored different statistics on 10% of randomly
selected real traffic for months before surfacing it to
end-users. We observed that more than 85% of live
traffic queries will have a less than 10% change in
top confidence after the change in OOS algorithms

(Full distribution shown in Figure 1 in Appendix).
For enterprise customers with complex dialog con-
ditions, a new algorithm that does not disrupt the
normal workflow is critical for adoption.
Computational Efficiency and Scalability Our
product has a training set size limit of 25k IS and
OOS training examples each and 2k IS classes.
Based on this maximum training set size setting,
the maximum model size for OOS detection is less
150MB based on offline testing. Based on online
testing, the 99 percentiles for training time and
model size of our OOS algorithm are within 30
seconds and 70MB, respectively.

4 Conclusion

The paper presents a novel Out of Scope (OOS)
detection component in a task-oriented dialog sys-
tem. It allows the assistant to recognize user input
that is not designed to be answered by the assis-
tant and need to be handed off to a human agent.
For business, a well designed Out of Scope detec-
tion system can improve customer satisfaction, user
engagement, lead generation and saves cost. On
one hand, business wants the assistant to hand off
quickly when a user input is Out of Scope. On the
other hand, unnecessary hand off could increase
human intervention and reduce the value of VA. We
design an OOS detection system that overcomes a
multitude of real-world challenges, and deploy it
in production. 4 We list out the lessons learned and
both offline and online evaluation techniques for
designing a robust, efficient and scalable system
for enterprise VA platform.

4https://cloud.ibm.com/docs/assistant?
topic=assistant-irrelevance-detection,
https://cloud.ibm.com/docs/assistant?topic=
assistant-release-notes#assistant-jun162022

517

Limitations

Extensive benchmarking for other languages is out-
of-scope for this work, but we have extended the
approach to many European languages in the prod-
uct with similar gains in performance (Wang et al.,
2022). Code switching isn’t evaluated in this work,
but it is commonly observed in chatbots deployed
in the wild.

We have not discussed synthetic OOS examples.
Despite its demonstrated effectiveness, they need
caution in real world production system from a
robustness perspective: it’s possible to introduce
spurious correlation by generated synthetic data.

References
Gaurav Arora, Chirag Jain, Manas Chaturvedi, and Kru-

pal Modi. 2020. Hint3: Raising the bar for intent de-
tection in the wild. arXiv preprint arXiv:2009.13833.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020. Ef-
ficient intent detection with dual sentence en-
coders. In Proceedings of the 2nd Workshop
on NLP for ConvAI - ACL 2020. Data avail-
able at https://github.com/PolyAI-LDN/task-specific-
datasets.

DongHyun Choi, Myeongcheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2021. Outflip: Generating
out-of-domain samples for unknown intent detection
with natural language attack. CoRR, abs/2105.05601.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. CoRR, abs/1805.10190.

Varun Gangal, Abhinav Arora, Arash Einolghozati, and
Sonal Gupta. 2020. Likelihood ratios and genera-
tive classifiers for unsupervised out-of-domain de-
tection in task oriented dialog. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7764–7771.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1990. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

Dan Hendrycks and Kevin Gimpel. 2016. A baseline
for detecting misclassified and out-of-distribution ex-
amples in neural networks. CoRR, abs/1610.02136.

Amita Kamath, Robin Jia, and Percy Liang. 2020. Selec-
tive question answering under domain shift. CoRR,
abs/2006.09462.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An evalua-
tion dataset for intent classification and out-of-scope
prediction. arXiv preprint arXiv:1909.02027.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin.
2018a. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. In Interna-
tional Conference on Learning Representations.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.
2018b. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. In
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

David D. Lewis and William A. Gale. 1994. A sequen-
tial algorithm for training text classifiers. In SIGIR

’94, pages 3–12, London. Springer London.

Shiyu Liang, Yixuan Li, and R. Srikant. 2017. Prin-
cipled detection of out-of-distribution examples in
neural networks. CoRR, abs/1706.02690.

Ting-En Lin and Hua Xu. 2019. Deep unknown intent
detection with margin loss. CoRR, abs/1906.00434.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2019. Benchmarking natural language
understanding services for building conversational
agents. arXiv preprint arXiv:1903.05566.

Haode Qi, Lin Pan, Atin Sood, Abhishek Shah, Ladislav
Kunc, and Saloni Potdar. 2020. Benchmarking intent
detection for task-oriented dialog systems. CoRR,
abs/2012.03929.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and Gary Ge-
unbae Lee. 2018. Out-of-domain detection based on
generative adversarial network. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 714–718, Brussels,
Belgium. Association for Computational Linguistics.

Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia
Jin. 2021. Enhancing the generalization for intent
classification and out-of-domain detection in SLU.
CoRR, abs/2106.14464.

David M. J. Tax and Robert P. W. Duin. 1999. Data
domain description using support vectors. In ESANN
1999, 7th European Symposium on Artificial Neu-
ral Networks, Bruges, Belgium, April 21-23, 1999,
Proceedings, pages 251–256.

Gengyu Wang, Cheng Qian, Lin Pan, Haode Qi,
Ladislav Kunc, and Saloni Potdar. 2022. Bench-
marking language-agnostic intent classification for
virtual assistant platforms. In Proceedings of the
Workshop on Multilingual Information Access (MIA),
pages 69–76.

518

Yanan Wu, Keqing He, Yuanmeng Yan, QiXiang Gao,
Zhiyuan Zeng, Fujia Zheng, Lulu Zhao, Huixing
Jiang, Wei Wu, and Weiran Xu. 2022. Revisit
overconfidence for OOD detection: Reassigned
contrastive learning with adaptive class-dependent
threshold. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4165–4179, Seattle, United States.
Association for Computational Linguistics.

Eyup Halit Yilmaz and Cagri Toraman. 2022. D2U:
distance-to-uniform learning for out-of-scope detec-
tion. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL 2022, Seattle, WA, United States, July
10-15, 2022, pages 2093–2108. Association for Com-
putational Linguistics.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu,
Yanan Wu, Hong Xu, Huixing Jiang, and Weiran Xu.
2021. Modeling discriminative representations for
out-of-domain detection with supervised contrastive
learning. CoRR, abs/2105.14289.

Li-Ming Zhan, Haowen Liang, Bo Liu, Lu Fan, Xiao-
Ming Wu, and Albert Y. S. Lam. 2021. Out-of-scope
intent detection with self-supervision and discrimina-
tive training. CoRR, abs/2106.08616.

Jianguo Zhang, Kazuma Hashimoto, Yao Wan, Zhiwei
Liu, Ye Liu, Caiming Xiong, and Philip Yu. 2022.
Are pre-trained transformers robust in intent classi-
fication? a missing ingredient in evaluation of out-
of-scope intent detection. In Proceedings of the 4th
Workshop on NLP for Conversational AI, pages 12–
20, Dublin, Ireland. Association for Computational
Linguistics.

Yunhua Zhou, Peiju Liu, and Xipeng Qiu. 2022. KNN-
contrastive learning for out-of-domain intent classifi-
cation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 5129–5141, Dublin,
Ireland. Association for Computational Linguistics.

519

A Appendix

A.1 List of IN-OOS intents
Here we list the intents for each dataset that are
treated as IN-OOS intents in our benchmark.

Stackoverflow: python
SNIPS: SearchCreativeWork and Search-

ScreeningEvent
HAR: intents, hue_lightoff, explain, remove, ad-

dcontact, wemo_on, podcasts, createoradd, music,
praise, radio, dontcare

ROSTD: reminder/set_reminder, reminder/can-
cel_reminder, reminder/show_reminders

HINT3 SOFMattress:
SIZE_CUSTOMIZATION,
ABOUT_SOF_MATTRESS, LEAD_GEN,
COMPARISON, WARRANTY, DE-
LAY_IN_DELIVERY

HINT3 Powerplay11:
NO_EMAIL_CONFIRMATION,
TEAM_DEADLINE, FAKE_TEAMS,
CANNOT_SEE_JOINED_CONTESTS, RE-
FUND_OF_ADDED_CASH, HOW_TO_PLAY,
FEEDBACK, ACCOUNT_NOT_VERIFIED,
DEDUCTED_AMOUNT_NOT_RECEIVED,
CRITICISM, NEW_TEAM_PATTERN, OF-
FERS_AND_REFERRALS

HINT3 Curekart: EXPIRY_DATE,
CONSULT_START, CHECK_PINCODE,
ORDER_TAKING, INTERNA-
TIONAL_SHIPPING, IMMUNITY,
SIDE_EFFECT, START_OVER, POR-
TAL_ISSUE, MODES_OF_PAYMENTS, OR-
DER_QUERY, SIGN_UP, WORK_FROM_HOME

A.2 Our OOS problem formulation is
algorithm-agnostic:

We conducted the same experiment with another
OOS algorithm: autoencoder with reconstruction
loss as OOS score. The findings are similar: our
OOS formulation demonstrate advantages over oth-
ers. Detailed metrics are shown in Table 7.

A.3 Online evaluation statistics
Figure 1 shows the full distribution of differences
in top confidence between the proposed OOS algo-
rithms vs previous OOS algorithm on a percentage
of live traffic

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Distribution of difference in top confidences between 2 OOS algorithms

Figure 1: Distribution of differences in top confidence
between the proposed OOS algorithms vs previous OOS
algorithm on a percentage of live traffic

.

520

Method Overall Acc. IS Acc. IS F1 OOS F1 OOS recall FPR90 FPR95 AUROC AUPR_IN AUPR_OUT

Binary 83.25 85.09 76.68 81.70 77.16 28.24 34.78 91.47 90.37 89.27
Multiclass 74.34 90.36 72.81 74.08 64.84
IS clf + Max 79.17 85.93 77.99 70.02 65.15 32.66 44.45 87.53 87.15 80.27
Discounting (Our Approach) 84.30 85.85 77.88 83.17 79.35 19.65 25.56 93.18 92.24 91.63

Table 7: Performance metrics This table compares the discounting method against the Multiclass classification
method, the binary classification method, the IS classifier + max confidence on the full test sets, using autoencoder
as the OOS detection algorithm.

521

Proceedings of EMNLP 2022 Industry Track, pages 522–530
December 9–11, 2020. ©2022 Association for Computational Linguistics

PLATO-Ad: A Unified Advertisement Text Generation Framework with
Multi-Task Prompt Learning

Zeyang Lei∗, Chao Zhang∗, Xinchao Xu, Wenquan Wu, Zheng-Yu Niu,
Hua Wu, Haifeng Wang, Yi Yang and Shuanglong Li

Baidu Inc., Beijing, China
{leizeyang, zhangchao38, xuxinchao, wuwenquan01}@baidu.com

{niuzhengyu, wu_hua, wanghaifeng, yangyi15, lishuanglong}@baidu.com

Abstract

Online advertisement text generation aims at
generating attractive and persuasive text ads
to appeal to users clicking ads or purchas-
ing products. While pretraining-based mod-
els have achieved remarkable success in gen-
erating high-quality text ads, some challenges
remain, such as ad generation in low-resource
scenarios and training efficiency for multiple ad
tasks. In this paper, we propose a novel unified
text ad generation framework with multi-task
prompt learning, called PLATO-Ad, to tackle
these problems. Specifically, we design a three-
phase transfer learning mechanism to tackle
the low-resource ad generation problem. Fur-
thermore, we present a novel multi-task prompt
learning mechanism to efficiently utilize a sin-
gle lightweight model to solve multiple ad gen-
eration tasks without loss of performance com-
pared to training a separate model for each task.
Finally, we conduct offline and online evalua-
tions. Experiment results show that PLATO-Ad
significantly outperforms the state-of-the-art on
both offline and online metrics. PLATO-Ad
has been deployed in a leading advertising plat-
form with 3.5% CTR improvement on search
ad descriptions and 10.4% CTR improvement
on feed ad titles.

1 Introduction

In recent years, online advertising has been re-
garded as one of the most popular ways of inter-
net monetization. A captivating and persuasive
ad can greatly improve the probability of users
clicking the ads or purchasing recommended prod-
ucts (Jansen and Resnick, 2005). Thus, advertisers
usually spare no effort to improve the quality of
displayed ads. Traditionally, some advertisers may
manually design ads for high quality. However, this
approach suffers from low efficiency and high labor
costs. some other works design pre-defined tem-
plates (Fujita et al., 2010; Thomaidou et al., 2013)

∗Equal contribution.

Figure 1: Example ads in search ad and feed ad systems.

or use recurrent neural networks (RNN) (Hughes
et al., 2019) to automatically create ads. However,
these ads generated by templates are generally rigid
and not unappealing enough to users. Over 15%
ads generated by RNN are reported to be non-sense
or bad (Hughes et al., 2019), which hinders the
application of this method in real-world business
scenarios with high-quality standards.

Recently, with the remarkable success of the pre-
training plus fine-tuning paradigm, some works
utilize pretraining-based natural language genera-
tion methods to generate content-rich, diverse and
attractive ads based on large-scale corpora (Wang
et al., 2021; Zhang et al., 2021a,b). Although these
methods achieve significant success in generating
high-quality ads, they still face great challenges
when applied in real-world commercial scenarios.
Firstly, the performance of these pretraining-based
models relies heavily on large-scale high-quality
training corpora, which may be yet difficult to be
obtained in some low-resource 1 scenarios. Sec-
ondly, these work usually train a separate model
for each task respectively when applied in mul-
tiple ad tasks, e.g., ad title and description gen-
eration (Wang et al., 2021; Zhang et al., 2021a),
copywriting generation (Zhang et al., 2021b), sell-
ing point generation (Guo et al., 2021). This is
inefficient and expensive for multiple ad tasks that
require multiple copies of the model’s parameters,
with also ignoring the associations between multi-
ple ad generation tasks (Lester et al., 2021).

1Here, low resource denotes that relatively less training
data can be available .

522

To this end, we propose a novel unified text
ad generation framework with multi-task prompt
learning, called PLATO-Ad, to tackle the afore-
mentioned problems. Concretely, the model archi-
tecture of PLATO-Ad is a Transformer-based pre-
trained language model with 12 transformer blocks.
To effectively address the low-resource ad gener-
ation problem, we propose a three-phase transfer
learning mechanism to train PLATO-Ad. Specif-
ically, we first pre-train PLATO-Ad on generic-
domain text corpus to equip the model with the
ability to generate fluent natural sentences. Then,
in the second phase, we consecutively post-pretrain
PLATO-Ad on the datasets of multiple resource-
rich ad generation tasks where massive data is avail-
able and open-domain question answering (QA)
datasets, which enables the model to learn to gener-
ate ad-domain and commonsense-enriched text. Fi-
nally, we use the prompting mechanism (Liu et al.,
2021) to transfer the well-trained PLATO-Ad in
the second phase to low-resource ad generation
tasks. In this way, we can generate high-quality
ads for those low-resource ad generation scenarios
that lack a large amount of high-quality human-
written data. Furthermore, to improve training
efficiency and reduce application costs for mul-
tiple ad tasks, in the post-pretraining phase, we
propose a novel multi-task prompt learning mech-
anism by introducing task prompts and multiple
losses to better fuse multiple tasks into one single
model without loss of performance.

The main contributions are summarized as fol-
lows:

• We present a unified ad generation frame-
work with multi-task prompt learning, named
PLATO-Ad, to effectively tackle the ad gen-
eration in low-resource scenarios and train-
ing efficiency for multiple resource-rich ad
tasks. To our knowledge, this work is the first
to study low-resource ad generation with a
prompting mechanism in industrial scenarios.

• We propose a novel three-phase transfer learn-
ing mechanism to address ad generation in
low-resource settings by transferring from
generic domain text generation to resource-
rich ad domain text generation, and finally to
low-resource ad text generation.

• Furthermore, we devise a novel multi-task
prompt learning mechanism by introducing
task prompts and multiple training objectives

to efficiently fuse multiple resource-rich ad
tasks into a single lightweight model without
loss of performance.

• The offline and online experiment results
show PLATO-Ad significantly outperforms
the state-of-the-art models and can generate
high-quality ads in low-resource settings. In
the A/B test, the advertisements generated
by PLATO-Ad would bring about 3.5% CTR
improvement on search ad descriptions and
10.4% CTR improvement on feed ad titles.

2 Related Work

Previous works on text ad generation rely on de-
signing pre-defined templates to construct read-
able ad sentences (Bartz et al., 2008; Fujita et al.,
2010; Thomaidou et al., 2013). However, these
template-based ads are generally rigid and not di-
verse enough leading to unappealing to users. Af-
terward, Hughes et al. (2019) presents data-driven
methods to learn to write text ads from existing
examples. The model employs LSTMs and atten-
tion layers to encode product landing pages and
decode text ads. Moreover, REINFORCE with
baseline (Rennie et al., 2017) is leveraged to gen-
erate attractive ads that potentially have a larger
click rate. This method achieves a certain degree
of success in the automatic generation of text ads.
However, over 15% text ads it generates are labeled
as non-sense, broken, or bad, which fails to meet
the high-quality standard for production (Hughes
et al., 2019).

Recently, some work utilize pretraining-based
natural language generation methods to generate
content-rich, diverse and attractive ads based on
large-scale corpus (Wang et al., 2021; Zhang et al.,
2021a,b; Wei et al., 2022). However, these methods
require large-scale high-quality training corpus and
low training efficiency when applied to multiple ad
generation scenarios. In this paper, we propose a
unified text ad generation framework with multi-
task prompt learning to tackle ad generation prob-
lems in low-resource settings and improve training
efficiency for multiple resource-rich ad tasks.

3 Methodology

3.1 Problem Settings

Different ad generation tasks, such as ad descrip-
tion generation, ad title generation, selling point
generation and tips generation (Li et al., 2019) for

523

Task Input Text Auxiliary Attributes Output Text Low-Resource Training Phase

Dialog Gen. Context - Response ✗ Pretrain

Ad Desc. Gen. Ad Title Product Landing Page (Text) Ad Desc. ✗ Post-Pretrain
Ad Title Gen. Product Entity Product Landing Page Ad Title ✗ Post-Pretrain
Sel. Point Gen. Ad Title Product Attributes Product Selling Points ✗ Post-Pretrain
Comment Gen. Product Desc. Sentiment Polarity Comment ✗ Post-Pretrain
QA Question Keyword Answer ✗ Post-Pretrain

Commonsense-enriched Ad Desc.
Gen.

Ad Title Product Landing Page & Keyword Commonsense-rich Ad
Desc.

✓ Prompting

Tips Gen. Ad Title Focus Point & Sentiment Polarity Tips ✓ Prompting

Table 1: Description of Different Ad Generation Tasks. Here, Gen. denotes generation.

recommendation, usually contain different inputs
and outputs. To simplify description, we generalize
elements of all ad generation tasks into the follow-
ing fields: input text, auxiliary attributes and output
text. Table 1 shows inputs and outputs of different
ad generation tasks.

Formally, we refer to input text as
X = (x1, x2, ..., xn), auxiliary attributes
Aj = (aj1, a

j
2, ..., a

j
k), j = 1, 2, ..l and output text

as Y = (y1, y2, ..., ym). Here, Aj represents a
word sequence of the j-th ad attribute, n, k,m
denotes the sequence length of input text, the j-th
ad attribute and output text respectively. l denotes
the number of auxiliary attributes. xi, a

j
i , yi ∈ V

denotes a word token. V denotes the vocabulary.
The ad generation process can be defined as a
sequence-to-sequence generation task as follow:

Y ∼ p(Y |X,A)
= p(y1, y2, ..., ym|x1, x2, ...xn;A1, A2, ..., Al).

(1)
The goal of PLATO-Ad is to learn this function
p(Y |X,A).

3.2 Model Framework
3.2.1 Overview
PLATO-Ad is a transformer-based pretraining
model with a three-phase transfer learning mecha-
nism, as shown in Fig 2. Concretely, we first pre-
train PLATO-Ad on a large-scale open-domain dia-
log corpus following the setting of PLATO-2 (Bao
et al., 2021), a Chinese dialog-oriented pretrain-
ing model. The purpose of this step is to enable
PLATO-Ad to generate fluent natural sentences
and model correlation from input (context) to out-
put(response). Then, in the second phase, we con-
tinue to pretrain PLTAO-Ad on the datasets of mul-
tiple resource-rich ad generation tasks with rela-
tively massive training data available and open-
domain QA datasets, which makes PLATO-Ad
learn generating ad-domain and commonsense-
enriched texts. This step enables that PLATO-Ad

can transfer learning from generic domain text gen-
eration to ad domain text generation. Moreover, to
apply PLATO-Ad to multiple ad generation sce-
narios more efficiently, we design a multi-task
prompt learning mechanism by introducing task
prompts and multiple losses to efficiently fuse mul-
tiple tasks into a single lightweight model without
loss of performance. Finally, in the third phase, we
use task prompts to transfer well-trained PLATO-
Ad to low-resource text ad generation tasks. To
simplify the description, we call the first phase as
Generic-Domain Pretraining, the second phase as
Ad-Domain Post-Pretraining, and the third phase
as Low-Resource Prompting. We elaborate the
details of all phases in the following.

3.2.2 Generic-Domain Pretraining

We first pretrain PLATO-Ad on generic-domain
text following the settings of PLATO-2 (Bao et al.,
2021). Specifically, the pretraining dataset is
collected from public social medias, which con-
tains 1.2B (context, response) samples. Unlike
the original PLATO-2 with multi-step losses, we
train PLATO-Ad only with negative log-likelihood
(NLL) loss for fluent natural text generation.

3.2.3 Ad-Domain Post-Pretraining

Then, we post-pretrain PLATO-Ad on datasets
of multiple resource-rich ad generation tasks and
high-quality open-domain QA datasets to equip
PLATO-Ad with the ability to generate ad-domain
and commonsense-enriched text. In particular, the
post-pretraining datasets contain four real-world
resource-rich ad generation tasks, such as ad de-
scription generation, ad title generation, selling
point generation and comment generation. The con-
struction and data preprocessing of these datasets
can be found in Section A.1.

Meanwhile, to more efficiently train lightweight
PLATO-Ad for fusing multiple ad tasks, we de-
sign a multi-task prompt learning mechanism by
introducing task prompts and multiple training ob-

524

NLL Loss

Context Response

Multi-task
Losses

Phase I: Generic-Domain Pretraining Phase II: Ad-Domain Post-Pretraining Phase III: Low-Resource Prompting

Ad Desc

Resource-rich Ad Generation Tasks

Commonsense-
enriched Ad Desc

Low-Resource Ad Generation Tasks

Tips
Generation

Transformer
Blocks

Attrib
utes

Task
Prompts Input Output

Transformer
Blocks

P1 A1 In1 O1

QA

Ad Title

Comments

Selling Points

P2 A2 In2 O2

P3 A3 In3 O3

P4 A4 In4 O4

P5 A5 In5 O5

Transformer
Blocks

Task
Prompts Attributes Input

Output

P1 P2 A6 In6

P4 P5 A7 In7

Px

Ax

Inx

Ox

Task Prompt

Attributes

Input Text

Output Text

Figure 2: The architecture of our PLATO-Ad framework.

jectives. The model infrastructure is shown in Fig 2,
which consists of input representation, transformer
blocks and multi-task training objectives.

Input Representation. For each token of input
text, auxiliary attributes and output text, its repre-
sentation is the sum of the token embedding, the
type embedding and the position embedding. Type
embeddings are employed to differentiate inputs
from different parts and position embeddings are
set according to the token position in each sentence.
Two special tokens [BOS] and [EOS] are inserted at
the beginning and end of sentences for separation.
Meanwhile, to effectively integrate multiple differ-
ent tasks into one model, we add task prompts as
the part of inputs following prompt tuning (Lester
et al., 2021). Here, different tasks correspond to
different task prompts and we randomly initialize
the representation vectors of task prompts.

Multiple Training Objectives. To better train
PLATO-Ad for meeting different ad tasks, we de-
sign multiple training losses to optimize the repe-
tition problem, relevance of input and output, and
controllability in these tasks.

a) Unlikelihood Loss for Repetition. To al-
leviate the repetition problem in text generation,
especially long text generation for ad desc task,
we adopt an unlikelihood loss following (Welleck
et al., 2020). Formally, the unlikelihood loss LU

can be defined as follow.

LU = −
∑

yt∈Ct

log(1− pθ(yt|y < t,X,A)) (2)

Where yt denotes t-th output token, Ct refers to
a set of negative candidate tokens (i.e. repetitive
tokens), X and A denotes input text and attributes.

b) Relevance Loss. To improve relevance be-
tween input and output, we design a discrimina-

tive relevance loss LR to estimate the relevance
between them, which can be defined as follow.

LR =− log p(l = 1|X,Y +)

− log p(l = −1|X,Y −)
(3)

where p(l = 1) denote positive samples and p(l =
−1) denote negative samples. Positive samples are
from golden <X, Y> pairs and negative samples
are obtained by random sampling <X, Y> pairs.

c) Keyword Loss for Controllability. Some ad
generation tasks, for example, selling point gen-
eration and tip generation, expect the generated
response to contain auxiliary attributes. There-
fore, we design keyword lossLC following (Kumar
et al., 2021) to improve the token-level controlla-
bility of PLATO-Ad.

LC =
m
min
i=1

(− log p(yi = K|X,A)) (4)

where K denotes the keyword controlled to gen-
erate. Finally, we train PLATO-Ad by summing
multiple losses.

L = LN + λuLU + λrLR + λcLC (5)

where LN denotes negative log-likelihood (NLL)
loss, λu, λr, λc are model hyperparameters.

3.2.4 Low-Resource Prompting
After post-pretraining, we use prompting methods
to apply well-trained PLATO-Ad to low-resource
ad generation scenarios. Specifically, we select
two low-resource ad generation, commonsense-
enriched ad description generation (Zhang et al.,
2021a) and tips generation (Li et al., 2019), both
of which lack large-scale high-quality training

525

data. Then we achieve task-level transfer by us-
ing the combination of task prompts from resource-
rich ad tasks. In particular, the task prompt of
commonsense-enriched ad description generation
is a combination of task prompts of ad description
generation and open-domain QA tasks, as shown in
Fig 2. In this way, we will transfer common sense
from open-domain QA to ad descriptions to gener-
ate commonsense-rich ad descriptions. Similarly,
the task prompt of tips generation is a combina-
tion of task prompts of selling point generation and
comment generation, which results in generating
informative reviews for product selling points.

4 Experiments

4.1 Datasets

To our knowledge, there are no publicly available
large-scale high-quality ad-domain datasets and we
collect post-pretraining datasets from a leading ad-
vertising platform. Table 2 shows the statistics
of these datasets. More details about dataset con-
struction and data preprocessing can be found in
Appendix A.1.

Train Dev Test

Ad Desc. Gen. 10,800,000 50,000 10,000
Ad Title Gen. 4,288,167 50,000 10,000
Sel. Point Gen. 798,686 50,000 10,000
Comment Gen. 5,777,279 50,000 10,000
QA 17,859,294 50,000 10,000

Table 2: Dataset statistics.

4.2 Baselines

We select the following baselines to evaluate the
effectiveness of our model.

CHASE (Zhang et al., 2021a): It is the online
state-of-the-art model deployed on the commercial
ad systems. We follow the same model settings.

PLATO-2-FT: It directly uses the PLATO-
2 (Bao et al., 2021) model to finetune on multiple
ad datasets. We use the released parameters 2.

PLATO-Ad: It is our proposed model in this
paper with a multi-task prompting mechanism and
three-phase transfer learning. These three mod-
els have the same magnitude of parameters (about
90M), which ensures a fair comparison.

2https://github.com/PaddlePaddle/Knover/tree/
luge-dialogue

4.3 Evaluation Metrics

We use Perplexity (PPL) (Brown et al., 1992) and
Pairwise-BLEU (Shen et al., 2019) to automatically
measure the model quality and diversity of genera-
tion results. The more diverse the hypothesis set is,
the lower the Pairwise-BLEU is. Meanwhile, we
conduct a manual evaluation on 200 random sam-
ples from our test dataset. Three participants were
recruited to measure the quality of the result gener-
ated by each baseline from three perspectives, in-
cluding Readability (Read.), Relevance (Rele.), In-
formation (Info.). Each perspective is measured by
a 3-point Likert question where 0 is bad, 1 is neutral
and 2 is good. The Overall (Over.) score is the av-
erage value of the above three scores. The detailed
evaluation metrics can be found in appendix A.4.

4.4 Experimental Results on Resource-rich
Ad Generation Tasks

We conduct a set of experiments to evaluate the
effectiveness of PLATO-Ad on resource-rich ad
generation tasks. As shown in Table 3, PLATO-
Ad significantly outperforms the state-of-the-art
CHASE and PLATO-2-FT in terms of all the met-
rics. It demonstrates that PLATO-Ad can generate
more fluent (lower PPL) and more diverse (lower
Pairwise-BLEU) ads in comparison with baselines.
Meanwhile, PLATO-Ad removes multi-task losses
causes more high PPL and Pairwise-BLEU scores,
indicating the effectiveness of multi-task losses.

In addition, we conduct experiments to verify the
efficiency of the multi-task prompt learning mecha-
nism. From Table 4, we find that single lightweight
PLATO-Ad obtains better performance than multi-
ple separate models trained on different tasks. This
demonstrates the effectiveness of fusing multiple
tasks into a single model with shared parame-
ters via multi-task prompt learning mechanism.

Models PPL↓ Pairwise-BLEU↓
CHASE 8.30 47.90
PLATO-2-FT 3.29 41.93
PLATO-Ad 2.21 38.46
PLATO-Ad w/o multi losses 2.36 38.67

Table 3: Results on the test set of ad description genera-
tion. PLATO-Ad w/o multi losses denote that PLATO-
Ad removes multi-task losses. Bold scores are the best.

526

Datasets PLATO-Ad w/o Task
Prompt

PLATO-Ad

Ad Desc Gen. 2.50 2.21
Ad Title Gen. 2.81 2.65
Sel. Point Gen. 7.31 6.70
Comment Gen. 6.40 6.42
QA 3.71 3.31

Table 4: PPL on test sets of multiple ad generation tasks.
PLATO-Ad w/o Task Prompt represents that PLATO-
Ad removes the multi-task prompting mechanism and
separately trains on each corresponding ad generation
task.

4.5 Transfer Learning on Low-Resource Ad
Generation Tasks

We investigate the effectiveness of PLATO-Ad
on two low-resource 3 ad generation tasks,
commonsense-enriched ad description generation
and tips generation. We compare the manual evalu-
ation results of PLATO-2-FT (separately finetuning
on these two datasets) and PLATO-Ad Prompting
on 200 random samples of our test datasets. From
Table 5, we can see that PLATO-Ad surpasses
PLATO-2-FT on all manual metrics (especially
Info.) for these two low-resource ad generation
tasks, indicating that PLATO-Ad can generate more
relevant and commonsense-enriched ad descrip-
tions and tips. This also verifies the effectiveness
of three-phase transfer learning.

Figure 3 shows the examples generated by
PLATO-2-FT and PLATO-Ad. We can see that
PLATO-Ad generates more commonsense-rich ad
descriptions and more informative tips. We analyze
that this is because PLATO-Ad realizes the transfer
learning of multiple tasks in the post-pretraining
phase, such as transferring ad description and QA
tasks to the commonsense-enrich ad description
generation task and transferring comment gener-
ation and selling point tasks to the tip generation
task. Meanwhile, we also find that PLATO-Ad can
generate less repetitive and more controllable ads
in comparison with PLATO-2-FT.

4.6 Online A/B Test
We also conduct online A/B tests in a leading adver-
tising platform to show the superiority of PLATO-
Ad. We used 5% real-world web traffics in the
advertising platform to conduct the A/B test. We
had already gotten the permission from advertiser

3We manually evaluated only about 9.3% of ad descrip-
tions dataset (93/1000) are commonsense-enriched ad descrip-
tions and 8.6% of comment generation dataset (86/1000) are
suitable for tips generation.

Tasks Models Read. Rele. Info. Over.

Com.A. PLATO-2-FT 1.70 1.25 0.68 1.21
PLATO-Ad 1.91 1.89 1.98 1.93

Tip. PLATO-2-FT 1.96 1.68 1.62 1.75
PLATO-Ad 1.96 1.86 1.93 1.92

Table 5: Manual evaluation results on Commonsense-
enriched Ad Description Generation (Com.A.) and Tip
Generation (Tip.) tasks. The Kappa value is above 0.4,
showing modest agreement among evaluators.

Commonsense-
enriched Ad Desc

Input:孩子注意力不集中怎么办？(What if children do not pay attention?)
Attributes:雨林教育从事3-14岁少年注意力培养和逻辑培训(Rainforest Education
Corporation focuses on the attention and logic training of children aged 3-14.)

PLATO-2-FT 雨林教育,专注3-14岁少儿的注意力培养,逻辑思维训练,帮助孩子提升注意力,逻辑思维能力训
练。（Rainforest Education Corporation, focuses on the attention training and logical thinking
ability training of children aged 3-14, and helps children improve their attention, and logical
thinking ability training.）

PLATO-Ad 孩子注意力不集中,首先要培养孩子良好的生活习惯,让孩子养成早睡早起，多参加一些户外
活动，培养孩子的专注力。雨林教育专业培训3-14岁孩子注意力和逻辑，值得信赖。
(If the child is inattentive, first of all, it is necessary to cultivate the child‘s good living habits, let the
child develop to go to bed early and get up early, participate in some outdoor activities, and cultivate
the child’s concentration. Rainforest Education is a trustworthy company that professionally trains
the attention and logic for children aged 3-14.)

Tip Gen. Input:男士纯棉休闲裤,限时打折优惠(Men's cotton slacks with discount for a limited time)
Attributes: Focus Points (价格#质地 Price # Material); Sentiment Polarity (正面Positive)

PLATO-2-FT 挺不错的，应该买的人挺多的。（It‘s pretty good, and there should be a lot of people buying it.）

PLATO-Ad 这款男士休闲裤，纯棉的，穿着很舒服。同时质量也不错,男士穿上帅气又减龄,价格也很优
惠。(This pure cotton men‘s casual pant is very comfortable to wear.Meanwhile, the quality is also
good, and men wear it to look handsome and age-reducing, and the price is also very favorable.)

Figure 3: Example ads generated by PLATO-Ad and
PLATO-2-FT. PLATO-2-FT could generate repetitive
ads (green color). Compare with PLATO-2-FT, PLATO-
Ad can generate commonsense-rich ads (red color) and
more controllable ads (blue color).

to use PLATO-Ad to generate advertisement de-
scriptions/titles for this test. This online A/B test
lasts for one week. On each day there were about
1 million page views (with ad shows) for the test-
ing. We use Click-Through Rate (CTR) (Richard-
son et al., 2007) and Conversion Rate (CVR) (Lee
et al., 2012) compared with CHASE to show the
improvement of PLATO-Ad. Except for the dis-
played ad descriptions/titles, we keep other settings
the same. Table 6 demonstrates that PLATO-Ad
can bring more significant CTR and CVR improve-
ment compared with the state-of-the-art CHASE.
The details about deployed workflow can be found
in Appendix A.5.

Tasks △CTR △CVR

Search Ad Description +3.5% +1.7%
Feed Ad Title +10.4% +4.1%
Feed Selling Point +7.6% +2.3%

Table 6: Online A/B Testings on differ-
ent ad generation tasks. △CTR/CVR =
CTR/CVR of PLATO-Ad - CTR/CVR of CHASE

CTR/CVR of CHASE

4.7 Conclusion
In this paper, we propose a novel unified text
ad generation framework with multi-task prompt
learning, called PLATO-Ad, to tackle universal

527

commercial ad generation tasks. Experiments show
that PLATO-Ad can generate commonsense-rich
and relevant ads in low-resource scenarios via a
three-phase transfer learning mechanism and
improve training efficiency for multiple resource-
rich ad tasks by using a multi-task prompt learn-
ing mechanism to fuse multiple tasks into a single
lightweight model without loss of performance. In
the future, we will extend the idea of PLATO-Ad
to more real-world text generation tasks.

Ethics Statement

We make sure that we have the copyright to use
all datasets to train and deploy. Meanwhile, these
datasets do not contain any user’s private infor-
mation. In manual evaluation, we ensure that all
annotators were treated fairly. This includes but is
not limited to, compensating them fairly, ensuring
that they were able to give informed consent, and
ensuring that they were voluntary participants who
were aware of any risks of harm associated with
their participation. During A/B testing and system
deployment, all generated advertisements must be
approved by the advertiser before using. Before
online deployment, we conduct a post-processing
procedure for all generated advertisements, includ-
ing the basic correlation filtering (quality control)
and business risk control system to strictly control
the exposure risk of the displayed advertisements.
Meanwhile, for badcases or harmful contents that
are found or fed back from customers when dis-
played online, we also have an online blacklist
procedure to filter them in real time.

References
Siqi Bao, Huang He, Fan Wang, Hua Wu, Haifeng

Wang, Wenquan Wu, Zhen Guo, Zhibin Liu, and
Xinchao Xu. 2021. Plato-2: Towards building an
open-domain chatbot via curriculum learning. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 2513–2525.

Kevin Bartz, Cory Barr, and Adil Aijaz. 2008. Natural
language generation for sponsored-search advertise-
ments. In Proceedings of the 9th ACM Conference
on Electronic Commerce, pages 1–9.

Peter F Brown, Stephen A Della Pietra, Vincent J
Della Pietra, Jennifer C Lai, and Robert L Mercer.
1992. An estimate of an upper bound for the entropy
of english. Computational Linguistics, 18(1):31–40.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Atsushi Fujita, Katsuhiro Ikushima, Satoshi Sato, Ryo
Kamite, Ko Ishiyama, and Osamu Tamachi. 2010.
Automatic generation of listing ads by reusing promo-
tional texts. In Proceedings of the 12th International
Conference on Electronic Commerce: Roadmap for
the Future of Electronic Business, pages 179–188.

Xiaojie Guo, Shugen Wang, Hanqing Zhao, Shiliang
Diao, Jiajia Chen, Zhuoye Ding, Zhen He, Yun Xiao,
Bo Long, Han Yu, et al. 2021. Intelligent online sell-
ing point extraction for e-commerce recommendation.
arXiv preprint arXiv:2112.10613.

J Weston Hughes, Keng-hao Chang, and Ruofei Zhang.
2019. Generating better search engine text adver-
tisements with deep reinforcement learning. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 2269–2277.

Bernard J Jansen and Marc Resnick. 2005. Examining
searcher perceptions of and interactions with spon-
sored results. In Workshop on Sponsored Search
Auctions.

Shachi H. Kumar, Hsuan Su, Ramesh Manuvinakurike,
Saurav Sahay, and Lama Nachman. 2021. Con-
trollable response generation for assistive use-cases.
CoRR, abs/2112.02246.

Kuang-chih Lee, Burkay Orten, Ali Dasdan, and Wen-
tong Li. 2012. Estimating conversion rate in display
advertising from past erformance data. In Proceed-
ings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages
768–776.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Piji Li, Zihao Wang, Lidong Bing, and Wai Lam. 2019.
Persona-aware tips generation? In The World Wide
Web Conference, pages 1006–1016.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 7008–7024.

Matthew Richardson, Ewa Dominowska, and Robert
Ragno. 2007. Predicting clicks: estimating the click-
through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web, pages
521–530.

528

Timo Schick and Hinrich Schütze. 2020. Few-shot text
generation with pattern-exploiting training. arXiv
preprint arXiv:2012.11926.

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’Aurelio Ranzato. 2019. Mixture models for
diverse machine translation: Tricks of the trade. In
International conference on machine learning, pages
5719–5728. PMLR.

Stamatina Thomaidou, Ismini Lourentzou, Panagiotis
Katsivelis-Perakis, and Michalis Vazirgiannis. 2013.
Automated snippet generation for online advertising.
In Proceedings of the 22nd ACM international con-
ference on Information & Knowledge Management,
pages 1841–1844.

Xiting Wang, Xinwei Gu, Jie Cao, Zihua Zhao, Yulan
Yan, Bhuvan Middha, and Xing Xie. 2021. Rein-
forcing pretrained models for generating attractive
text advertisements. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 3697–3707.

Penghui Wei, Xuanhua Yang, Shaoguo Liu, Liang
Wang, and Bo Zheng. 2022. Creater: Ctr-driven
advertising text generation with controlled pre-
training and contrastive fine-tuning. arXiv preprint
arXiv:2205.08943.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In
ICLR.

Chao Zhang, Jingbo Zhou, Xiaoling Zang, Qing Xu,
Liang Yin, Xiang He, Lin Liu, Haoyi Xiong, and
Dejing Dou. 2021a. Chase: Commonsense-enriched
advertising on search engine with explicit knowledge.
In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 4352–4361.

Xueying Zhang, Yanyan Zou, Hainan Zhang, Jing Zhou,
Shiliang Diao, Jiajia Chen, Zhuoye Ding, Zhen He,
Xueqi He, Yun Xiao, et al. 2021b. Automatic prod-
uct copywriting for e-commerce. arXiv preprint
arXiv:2112.11915.

A Appendix

A.1 Post-Pretraining Datasets
We collect all post-pretraining datasets from a Chi-
nese leading advertising platform. Specifically,

• Datasets for Ad Description Generation We
collect tens of millions of <search ad title,
search ad description> pairs manually written
by advertisers from the leading advertising
platform as inputs and outputs of ad descrip-
tion task. For each pair, we match correspond-
ing product landing page with it as auxiliary
attributes.

• Datasets for Ad Title Generation For the ad
title generation task, we use product entities
as input text, corresponding product landing
pages as auxiliary attributes and feed ad titles
human-written by advertisers from a leading
advertising platform as output text.

• Datasets for Selling Point Generation We
construct selling point generation datasets
by extracting snippets related to product at-
tributes in the above ad descriptions and ad
title dataset as product selling points via pub-
lic universal information extraction tools 4.

• Datasets for Comment Generation We use
hard prompt methods (Brown et al., 2020;
Schick and Schütze, 2020) to obtain datasets
for ad comment generation. Specifically, we
use product descriptions and human-written
prompt templates (e.g., what do you think
about this product) as the context of the
PLATO-Ad model in the pretraining phase
to generate generic-domain comments (re-
sponses). We use publicly-available text sen-
timent analysis tools 5 to filter out negative
text.

• Datasets for Open-domain QA We collect
open-domain QA datasets from the Chinese
community-based question-answering web-
sites (just like Quora 6) in the leading adver-
tising platform. Here the question and answer
of each QA item are treated as input text and
output text respectively. Meanwhile, we use
publicly available named entity recognition
tools 7 to extract the entities of questions as
auxiliary keywords (Attributes).

For all collected data, we will conduct a data-
preprocess procedure, including filtering out low-
quality ones via a set of heuristic rules and publicly-
available tools (e.g., text error detection 8, sentence
length constraint, repeat word constraint and harm-
ful/abusive word vocabulary).

4https://github.com/PaddlePaddle/PaddleNLP/
tree/develop/model_zoo/uie

5https://ai.baidu.com/tech/nlp_apply/
sentiment_classify

6https://www.quora.com/
7https://ai.baidu.com/tech/nlp_basic/entity_

analysis
8https://ai.baidu.com/tech/nlp_apply/text_

corrector

529

Landing Page

Product Attributes

Keyword

PLATO-Ad

Task Prompt

Multi-task Ad Text Generation Task-level Ad Text Postprocess

Basic Quality
Evaluation

Commercial Risk
Evaluation

Task-level Ad Text Datastore

Ad Title Ad Description

Ad Selling PointAd Tips

…
…

offline

online Text-style Ad Products
Task-level
Ad Text RequestAdvertising Creative

Recommend(B-end)
Intelligent Creative
Component(C-end)

Figure 4: Deployment workflow of PLATO-Ad.

A.2 Model Settings
Our PLATO-Ad is a 93M parameter model with 12
transformer blocks and 12 attention heads, with the
embedding dimension of 768. The model structure
follows the setting of PLATO-2 (Bao et al., 2021).
According to the number of post-pretraining tasks,
we set five kinds of task prompts and the embed-
ding size of task prompt is set to be 768. we ran-
domly initialize the representation vectors of task
prompts. We train PLATO-Ad in post-pretraining
phase with the batch size of 65,536 on 8 A100
GPUs. During decoding, we adopt a topk-sampling
decoding strategy with k=5. λu, λr, λc are set to
be 1.

A.3 Automatic Evaluation
Perplexity (Brown et al., 1992) is an evaluation
metric to measure the model capacity for language
modeling which is the normalized inverse prob-
ability of the dataset. BLEU is to use n-gram
word matching to measure the similarity between
golden truth and generated text. In this paper, we
use Pairwise-BLEU (Shen et al., 2019) to mea-
sure the diversity of generation results. Specifi-
cally, Pairwise-BLEU measures similarity among
the hypotheses (multiple generated candidate re-
sults). The more diverse the hypothesis set is, the
lower the Pairwise-BLEU is.

A.4 Manual Evaluation
We conduct a manual evaluation on 200 random
samples from our test dataset. Three participants
were recruited to measure the quality of the result
generated by each baseline from three perspectives.

Each perspective is measured by a 3-point Likert
question where 0 is bad, 1 is neutral and 2 is good.

• Readability (Read.): measures how the gen-
erated ad text is smooth and grammatically
corrects.

• Relevance (Rele.): measure whether output
text is relative with input text and whether the
generated result is consistent with auxiliary
attributes.

• Information (Info.): measures how informa-
tive/knowledgable generated ad text is.

Overall (Over.): measures the overall quality of
generated ad texts, which is calculated by the aver-
age of the above three scores.

A.5 Deployment Workflow
Figure 4 shows the deployment workflow of
PLATO-Ad. We first use PLATO-Ad to generate
ads offline. Then, before online deployment, we
conduct a task-level ad text post-processing proce-
dure for all generated advertisements, including the
basic quality evaluation (quality control) and com-
mercial risk control evaluation to strictly control the
suitability of displayed advertisements. Finally we
store the filtered ads for online retrieval. Overall,
the suitability rate of ads generated by PLATO-Ad
is around 91% to 96%, which means that PLATO-
Ad can be deployed online in the industry.

Meanwhile, for badcases or harmful contents
that are found or fed back from customers when
displayed online, we also have an online blacklist
procedure to filter out them in real time.

530

Proceedings of EMNLP 2022 Industry Track, pages 531–540
December 9–11, 2020. ©2022 Association for Computational Linguistics

Dense Feature Memory Augmented Transformers for COVID-19
Vaccination Search Classification

Jai Gupta
Google Research

jaigupta@google.com

Yi Tay
Google Research

yitay@google.com

Chaitanya Kamath
Google Research

ckamath@google.com

Vinh Q. Tran
Google Research

vqtran@google.com

Donald Metzler
Google Research

metzler@google.com

Shailesh Bavadekar
Google Research

shaileshb@google.com

Mimi Sun
Google Research

mimisun@google.com

Evgeniy Gabrilovich
Google Research
gabr@acm.org

Abstract

With the devastating outbreak of COVID-19,
vaccines are one of the crucial lines of de-
fense against mass infection in this global pan-
demic. Given the protection they provide, vac-
cines are becoming mandatory in certain social
and professional settings. This paper presents
a classification model for detecting COVID-
19 vaccination related search queries, a ma-
chine learning model that is used to gener-
ate search insights for COVID-19 vaccinations.
The proposed method combines and lever-
ages advancements from modern state-of-the-
art (SOTA) natural language understanding
(NLU) techniques such as pretrained Trans-
formers with traditional dense features. We
propose a novel approach of considering dense
features as memory tokens that the model can
attend to. We show that this new model-
ing approach enables a significant improve-
ment to the Vaccine Search Insights (VSI) task,
improving a strong well-established gradient-
boosting baseline by relative +15% improve-
ment in F1 score and +14% in precision.

1 Introduction

Though COVID-19 continues to be a challenge
worldwide, vaccines have provided the much
needed hope. Countries and governments have
significantly ramped up their efforts to improve
the reach of the vaccines including booster shots.
As such, it is important to understand how users
search for vaccine related information such as vac-
cine efficacy, safety, and regional availability as
this information can be very useful to inform pol-
icy decision making, create effective public service
announcements, implement more efficient distribu-
tion of vaccines, etc. To this end, we released a pub-
lic tool for COVID-19 Vaccination Search Insights,
an interactive report that provides insights on user
searches for COVID-19 vaccinations. For an ex-
ample please see Figure 1. On the backend, this
tool performs privacy preserving classification of

user search queries and clusters them based on the
region they were issued from to present a timeline
of how these searches have changed over time. A
core task in the VSI tool is the problem of classify-
ing search query intent, and one of them is whether
users are seeking information on vaccine access,
i.e. queries related to the eligibility, availability,
and accessibility of COVID-19 vaccines.

The task is a challenging one since simply match-
ing for COVID related terms is insufficient, as
queries such as fully vaccinated travel or proof of
covid vaccination are negative classes. Hence, this
problem is nuanced and may benefit from a coali-
tion of advanced language understanding systems
and traditional search-related feature engineering
methods. As such, the problem at hand crosses
two main modalities, i.e., text and traditional dense
features. In this problem, the text features are user
search queries that are short and/or lack context.
The dense features (discussed in more detail in sec-
tion 5) are hand crafted features from recent and
past activities, previous clicks, and named entities
that play a critical role in understanding the user’s
intent. However, dense features alone fail to cap-
ture important contextual language cues, such as
those that state-of-the-art natural language under-
standing systems (Devlin et al., 2018; Raffel et al.,
2019) have been shown to handle well. We find
that both modalities are highly complementary and
it is difficult to achieve strong performance using
only a single modality.

Our Contributions The overall contributions of
this paper can be summarized as follows:

• We propose a new model and framework
for search query intent classification for our
COVID-19 Vaccination Search Insight tool.

• We propose a paradigm of exploiting the bene-
fits of text inputs through state-of-the-art NLU
models, along with traditional dense features
found in large-scale systems.

531

Figure 1: VSI tool presenting vaccination intent search query statistics segmented by location and time respectively.

• We propose a novel method of fusing
dense features with Transformers that enables
queries to retrieve from a dense memory store,
in similar spirit to a contextual key-value
store. Memory tokens here are used in sim-
ilar manner as memory-based methods de-
scribed in (Tay et al., 2020) and models such
as Set Transformer (Lee et al., 2019), Memory
Transformers (Sukhbaatar et al., 2019; Burt-
sev et al., 2020; Wu et al., 2020), and Global
Memory tokens in ETC (Ravula et al., 2020)
and BigBird (Zaheer et al., 2020). Notably,
this is the first proposal for constructing global
memory tokens using dense features.

• We conduct extensive experiments on real
production data from three geographical re-
gions. Our experiments show that the pro-
posed method significantly outperforms a
strong gradient boosting baseline by +15%
and outperforms a SOTA Transformer by
+5% on F1 score achieving very strong F1
score of over 98% on the US dataset with sim-
ilar strong performance for other regions.

2 Related Works

This section presents related works and the back-
ground for this paper.

Classification with Feature-based ML. Building
machine learned (ML) systems that operate across
dense hand-crafted features is a well-established
method. It is common to consider this class of
ML methods as tabular machine learning whereby
tree-based methods (Chen and Guestrin, 2016;
Wikipedia, 2022) are dominant1. Within the con-
text of text classifiers, feature engineering typically

1https://www.kaggle.com/shivamb/
data-science-trends-on-kaggle

leverages stemming, lemmatization, part-of-speech
tags, tf-idf vectors, entities, salient terms, and other
features that are relevant to the task at hand. It is
also popular to use semantic representations from
Glove (Pennington et al., 2014) or BERT (Devlin
et al., 2018) as input dense features to a model.

NLU with Pretrained Transformers. Transform-
ers (Ashish Vaswani, 2017), characterized by in-
terleaved self-attention and MLP blocks, have be-
come the dominant sequence model for language
processing and understanding (NLU) (Devlin et al.,
2018; Raffel et al., 2019; Brown et al., 2020). The
key idea behind self-attention is to perform token-
to-token alignment where the joint interaction of
queries and keys retrieve from a memory store
(value). To this end, it is also common for advanced
Transformer architectures to leverage global mem-
ory tokens (Zaheer et al., 2020; Lee et al., 2019;
Jaegle et al., 2021) that act as a parameter store for
the query to attend to (Tay et al., 2020). A corner-
stone of these systems is the pretraining task that
learns general purpose language representations,
which have been shown to be extremely beneficial
(Tay et al., 2021) due to the gains from transfer
learning (Pan and Yang, 2010).

Joint Learning of Textual and Dense Features.
Performing feature extraction to convert text into
dense features (e.g. TF-IDF (Salton and Buck-
ley, 1988), word2vec (Mikolov et al., 2013), etc.)
for the purpose of learning classifiers jointly with
other non-textual (numerical) dense features has
been common practice in machine learning for
some time (Kowsari et al., 2019; Macskassy et al.,
1999; Richardson et al., 2007). Previous research in
the multi-modal domain adopt a strategy of early
fusion or late fusion: joining the two modalities
(in this case textual and numerical) either in fea-
ture space early in the architecture or in seman-

532

tic/decision space late in the architecture, respec-
tively (Snoek et al., 2005). Perhaps most related to
our approach is a recent work on joint representa-
tion of text and tabular data (Yin et al., 2020; Zhu
et al., 2021) that pass a flattened representation of
a table alongside text during encoding. Our work
instead provides a method for jointly encoding text
with dense features of a more generic, unstructured
form.

COVID-19 Vaccine Search Insights. An impor-
tant distinction of Query classification from generic
text classification is that the former are significantly
shorter, and may be underspecified (He et al., 2000;
Beitzel et al., 2005). Due to this nature, some previ-
ous works in this area have augmented queries with
additional context to improve query classification
performance (Broder et al., 2007; Shen et al., 2006;
Li et al., 2008; Jiang).

Analyzing user queries and social interactions
in health settings has been well studied. Sadilek
et al. (2020) presents an analysis of user search
queries for Lyme disease forecasting. Similarly,
Sadilek et al. (2018) uses a machine-learned model
for real-time detection of foodborne illness using
web search and location data.

3 Problem Description

Given a search query q, the objective is to clas-
sify whether the query was issued with the intent
of seeking information related to vaccine access.
Notably, q is short in length and may or may not
contain all the information needed to make the cor-
rect prediction.

Additionally, each q is supplemented with nu-
merical features in the form of a dense feature vec-
tor Xf ∈ Rdfeatures , where dfeatures can be any
number of features. Details about how Xf is con-
structed for our setup is present in section 5, but in
short Xf represents the topicality scores of phrases
related to the query with dfeatures being 60k. How-
ever, it is important to note that all methods de-
scribed in this paper are agnostic to the source of
Xf and can be applied to any vector of numerical
features.

4 VSI Transformer

This section describes the proposed method.

4.1 Pretrained Transformer Encoder

The main backbone of the proposed architecture
is a Transformer (Ashish Vaswani, 2017) encoder.

We leverage the state-of-the-art T5 (Raffel et al.,
2019) model as a starting point. Since T5 is a
seq2seq model, we only utilize the T5 encoder as
the Transformer model and discard the decoder
of the pretrained model for our classification task.
This is done by pooling the output of the encoder
stack followed by a dense classification layer.

4.2 Input formulation
Given a query q, the input to the model is a discrete
integer sequence representing the tokens (Google,
2021) of q, i.e., X` where ` is the number of tokens
in the query from the subword vocabulary V . The
input sequence is selected from an embedding ma-
trix of R|V |×dmodel to form a tensor of R`×dmodel .

4.3 Dense Feature Memory
For each input-target example, the input to the
Dense Feature Memory module is a dense feature
Xf ∈ Rdfeatures . Given this dense feature of di-
mensions dfeatures, we transform it into memory
tokens of dimension dmodel via:

Mi = ReLU(WiXf + bi)

where Wi ∈ Rdfeatures×dmodel and Mi is the i-th
memory token. We consider the number of mem-
ory tokens to be a hyperparameter. To this end,
we then concatenate [M1; · · ·MNmemory] to the in-
put query sequence X ∈ R`×dmodel . Along with
the input query, we also pass in dense features cor-
responding to the query to the main body of the
network. We note that memory tokens participate
in the rest of the computation in a similar spirit to
query tokens, i.e., they go through the same MLP
and self-attention layers. The dense features are of
dfeatures dimensions and are passed into the dense
memory module. The dense features used in our
setup is explained in section 5.

4.4 Attention Blocks: Querying & Retrieving
from Dense Feature Memory Tokens

The dense feature memory token is appended to the
input sequence and participates in the self-attention
mechanism of the Transformer model. Concretely,
the QK matrix of the Transformer can be now writ-
ten as:

A`,h = Softmax([Q`,h;m`,h][K`,h;m`,h]
>
`,h)

Y`,h = A`,h[V`,h; v`,hm`,h]

where Y`,h is the h-th head of the output at layer
`, Q,K, V are the standard transformations of the

533

query input sequence, and m`,h is the dense feature
memory token for layer `. Since Q and V are both
augmented with dense features, this provides an
opportunity for both the dense features to align
with query tokens and vice versa.

4.5 Output layer and Optimization
The final output layer of the Transformer stack is
then passed into a pooling and MLP layer.

Yout =MLP (ψ(YL)) (1)

where ψ(.) is a pooling operator that maps
Rn×dmodel → Rdmodel . Our MLP (.) function
maps Rdmodel → RNclass to the number of classes.
Our model then optimizes the Softmax cross en-
tropy loss between the true classes and the pre-
dicted values. L =

∑L∑n
i=1 yi log(πi) + (1 −

yi) log(1− πi), where πi is the prediction of class
i and yi is the ground truth label of the class i.

5 COVID-19 Vaccine Access Dataset

Due to the novel nature of COVID-19, no previ-
ous datasets exist to accurately learn a model for
the purpose of vaccine access query classification.
Thus, in this section we outline the process we used
to create this dataset.

Collection. To collect a dataset of queries to be
labeled for vaccine access, we sample anonymized
queries from real search traffic. Since a small mi-
nority of our search queries are for COVID-19 vac-
cination topics, we leveraged Google’s Knowledge
Graph entities to find queries that included high
confidence positives, potential positives, and close
negatives. For example, for high precision candi-
dates we sample top and random queries associated
with the entity “COVID-19 Vaccination”, while
for high recall low precision candidates, we sam-
ple queries that are only associated with the entity
“COVID-19” or with “Vaccination”.

Labeling. To label this dataset for the specific
purpose of vaccine access, we rely on a large pool
of search quality raters who have deep experience
with how health-related information needs are re-
flected in search queries. These raters were un-
known to and independent of the developers of the
classifiers. Each query is rated by three indepen-
dent raters.

Label Expansion. We expand our dataset using
label propagation to queries that are very similar to
labeled queries. We include examples of positive
and negative vaccine access queries in Table 5.

Dense Feature Augmentation. We augment our
dataset by supplementing each query using dense
features. To generate these dense features we use a
combination of (1) entities mentioned in the query
via a proprietary library analogous to Google Cloud
Entity Analysis (goo, 2019) and (2) related search
queries determined by a proprietary algorithm. We
pool these two sources and use the 60,000 most
common words and phrases to create a dense fea-
ture representation with dimension 60,000. At each
dimension, we assign a relevance score for the
phrase. For mentioned entities, this is analogous
to salience in the Google Cloud Entity Analysis
API. Table 6 shows some of the top features that
are generated for each classification split.

6 Experiments

Below, we dive into experiment setups and results.

6.1 Baselines

We compare our proposed approach with three com-
petitive baselines. The choice of baselines serves
two primary purposes, i.e., (1) to show our method
is competitive against well-established methods,
and (2) to confirm certain scientific hypothesis by
ablation-like studies. Please see Section A.1 in
the Appendix for further implementation details on
how we configure and train our models.

Adaboost A technique used to create an ensem-
ble of weak learners that begins by fitting an esti-
mator on the original dataset and then repeatedly
fits additional estimators focusing more on exam-
ples that are misclassified by the combination of all
the existing set of estimators. Mathematically, the
ensembled AdaBoost classifer can be represented
as: FN (x) =

∑N
n=1 fn(x) which consists of N

weak learners (fn(x)) that are combined to create
the ensemble model FN (x).

Query-only Transformer This baseline, simply
a VSI Transformer without any dense features, is
added to evaluate the upper bound of a language
only state-of-the-art classifier.

Late Fusion Transformer This is an ablative
baseline for the VSI Transformer. Instead of em-
ploying dense feature memory, we combine the
dense features with the Transformer output at the
final layers. Hence, we call this baseline Late Fu-
sion, representing how the fusion of modalities is
done at the final stages. Concretely, we concatenate
the dense features to the pooled output from the
transformer layer stack and then add a few layers

534

of MLP before adding the classification head. See
figure 2 for setup details.

6.2 Results & Analysis

Table 2 presents the F1 and precision metrics from
the vaccine intent classification tasks. VSI Trans-
former outperforms Adaboost models by relative
+15.1% gain on the US locale, +17.7% gain on
the CA locale, and +7.6% gain on the GB locale
on F1 metric. The gains against traditionally strong
ML models are substantial and compelling. When
compared with NLU-only approaches (e.g., query-
only Transformer), VSI Transformer again strongly
outperforms the baseline. Finally, there are modest
(but consistently strong) gains against the best and
strongest baseline considered of up to +2.1% F1
score.

6.2.1 Importance of Text and Dense Features
We study text-only NLU models and feature-only
state-of-the-art ML based Adaboost models. Gener-
ally, it is not clear if NLU-only models outperform
Adaboost models (or vice versa). Both modalities
have their fair share of wins and loses across the
three datasets and six metrics. To this end, we find
that the well-established version of combining text
and dense feature to outperform both Adaboost
and the Query-only Transformer, signifying the im-
portance of having both modalities for building a
successful model.

6.2.2 Dense Feature Memory vs Late Fusion
Late fusion is a well-established way to combine
end-to-end deep learning with real world tabular
features (Severyn and Moschitti, 2015; Tay et al.,
2017). Our results show that, while the Trans-
former with Late Fusion performs the best out of
all baselines, the VSI Transformer still comfortably
outperforms the Late fusion method , whereby we
show that our proposed integration is more effec-
tive. In regards to the problem space and domain,
this also seems to imply that a deeper fusion of text
and dense features can be key in obtaining better
model quality.

6.2.3 Increasing depth of MLP network
The experiments described above used a single
layer in the MLP networks in both the architec-
tures present in Figure 2. Adding a single layer
means that we have almost the same number of ad-
ditional parameters added in both the architectures
for a fair comparison.

In this ablation, we study the impact of using
multiple layers in the MLP network. Note the each
of these layers have a dimension size of 768 and
use GeLU activation function. We see a consistent
increase in performance as we increase the number
of layers in the MLP network. This increase is
more prominent in the Late Fusion architecture
which starts to catch up (at the cost of increasing the
depth of the model) but still performs worse than
the VSI Transformer indicating that for the same
number of model parameters, VSI Transformer is
a better architecture.

6.2.4 Using multiple memory tokens
Table 3 presents the results on increasing the num-
ber of memory tokens (Nmemory) to up to 4 tokens.
Though intuitively, it might seem that the perfor-
mance will improve, experiments show that the
correlation is not that straightforward.

The metrics seem to improve slightly but there
is a consistent degradation observed with the F1
metric as we increase Nmemory to 4 tokens. When
increasing Nmemory from 3 to 4 tokens, all three
regions show a degradation. Given the sequence
length is constant, our hypothesis is that as we
increase the number of memory tokens allocated
to the dense features, we are using up tokens that
could have otherwise been allocated to the query
text. This reduces the length of query that can be
seen by the model for large queries thereby impact-
ing the overall performance of the model. Hence,
in general, a single memory token might be suf-
ficient, but the optimal number might differ from
task to task.

6.2.5 Analyzing improvement patterns
Given the improvement in metrics, we looked at
some of the examples where VSI Transformer
model provides large gains over a query only model.
An example pattern is "covid vaccine" followed by
some noun. If the noun represents a location, the
intent is to search for vaccine availability in that
region. The query only Transformer model can
only guess whether this represents a location un-
less it can recall from locations memoized during
pretraining. Given that VSI transformer also uses
dense features, it has additional signals that provide
information like whether the query includes a loca-
tion by sources like Google Cloud Entity analysis.
Hence, using this additional signal, the model is
able to cut down on a lot of false positives of this
pattern.

535

Model Input Features US CA GB
Query-only Transformer Q only 0.9395 / 0.9060 0.8715 / 0.8059 0.8896 / 0.8159
AdaBoost 20 estimators DF only 0.8288 / 0.8399 0.7830 / 0.7918 0.8909 / 0.9019
AdaBoost 50 estimators DF only 0.8570 / 0.8598 0.8315 / 0.8678 0.9132 / 0.9128
Transformer Late Fusion Q + DF 0.9780 / 0.9698 0.9585 / 0.9289 0.9719 / 0.9519
VSI Transformer Q + DF 0.9868 / 0.9809 0.9784 / 0.9655 0.9824 / 0.9730
% Improvement (vs Query-only) - +5.0% / 8.3% +12.3% / +19.8% +10.4% / +19.3%
% Improvement (vs Adaboost) - +15.1% / +14.1% +17.7% / +11.3% +7.6% / +6.6%
% Improvement (vs best) - +0.8% / +1.1% +2.1% / +3.9% +1.1% / +2.2%

Table 1: F1 and Precision metrics on COVID-19 vaccination access search intent prediction. VSI Transformer
outperforms best Transformer baseline by +0.8% to +2.1% and Adaboost by up to +17.7% F1 score.

Figure 2: Depiction of adding transformed dense features to Transformer based models for a sample query. Ar-
chitecture on the left depicts late fusion of the dense features to the query embeddings while the one on the right
depicts addition of dense features to the query embeddings as a single memory token. Assumes that both the
models have sequence length of 8 and the tokenizer produces one token for every word.

Model N` US CA GB
Late Fusion 1 0.9780 0.9585 0.9719
Late Fusion 2 0.9827 0.9690 0.9817
Late Fusion 3 0.9846 0.9788 0.9822
VSI 1 0.9868 0.9784 0.9824
VSI 2 0.9870 0.9785 0.9840
VSI 3 0.9872 0.9789 0.9848

Table 2: Impact of increasing the number of layers (N`)
of the MLP networks on F1.

6.2.6 Using smaller Transformer models

The above experiments are performed with T5 1.1
Base model, but models of this size are often pro-
hibitive for online applications due to their resource
requirements and latency where smaller and shal-
lower models are preferred. But shallower models
tend not to perform as good and One possible rea-
son is that shallower models are limited in their
capability to extract complex features.

Nmemory US CA GB
0 0.9395 0.8715 0.8896
1 0.9868 0.9784 0.9824
2 0.9875 0.9784 0.9850
3 0.9871 0.9788 0.9849
4 0.9853 0.9785 0.9839

Table 3: Trend of F1 metric on increasing the number
of chosen memory tokensNmemory in VSI transformer
architecture.

Given that dense features can provide complex
features as inputs to the model in a preprocessed
format, using dense features can provide a large
boost in quality for shallow models. Additionally,
such features can provide exclusive information
that is not available in the text features (query).
Hence, we performed an ablation study on useful-
ness of dense features on the model size.

536

Table 4 presents results on running the same ex-
periments as above, but using T5 1.1 Small instead
of the Base model. Overall, we see larger relative
improvements compared to the Base model. For ex-
ample, the VSI Transformer Small model has a rel-
ative F1 gain of 6.0% and precision gain of 10.4%
over query-only Transformer Small model, much
higher than the relative F1 gain of 5% and precision
gain of 8.3% observed with the Base model.

Model Small Base
Query-only 0.9308 / 0.8866 0.9395 / 0.9060
Late Fusion 0.9539/0.9336 0.9780 / 0.9698
% Imp. (vs Query-only) +2.5%/+5.3% +4.1% / 7.0%
VSI Transformer 0.9862/0.9788 0.9868 / 0.9809
% Imp. (vs Query-only) +6.0%/+10.4% +5.0% / 8.3%

Table 4: Comparison of F1 and precision metric be-
tween T5 1.1 small and base models on US dataset.

Even through shallow, the VSI Transformer’s
architecture is able to make better use of the atten-
tion layers for the dense features leading to pretty
high boost even over the Late Fusion architecture,
affirming that it is a better architecture for shallow
models as well.

7 Limitations

Though we have shown that just one memory to-
ken is sufficient, assigning tokens to dense features
means less number of tokens are available in the
sequence for the text input. Another limitation is
the use of locale specific vocabularies for dense fea-
tures for each regional dataset as present in table 5,
but that is not a limitation of the VSI Transformer
but instead how the dense features are generated.

8 Conclusion

This paper presented an important task of classi-
fying search queries with COVID-19 vaccination
access intent. With an extensive set of experiments
and comparing with strong baselines, we presented
VSI Transformer, a novel and generic approach that
consistently and strongly outperforms all existing
baselines that operate on either of the two modali-
ties, or late fusion of the modalities. With an abla-
tion study on model size, we show that for online
applications where shallower models need to be
deployed primarily due to latency constraints, mak-
ing use of dense features can help bridge the gap in
performance compared to deeper models. Future
work in this direction can help further understand
how to choose the optimal number of memory to-

kens, and explore more architectures to efficiently
combine sequential and dense features.

Ethics Statement

In our ongoing fight against the COVID-19 pan-
demic, understanding whether search queries ex-
hibit an intent to seek vaccine access is an im-
portant problem to study to be able to collect
search statistics about COVID-19 vaccination ef-
forts. These statistics are made public via an online
website, an interactive report that is accessible by
anyone. All data used to train these models are
anonymized and sampled, and labeled by a large
pool of search quality raters who are trained to
assess health-related information needs in search
queries. These raters are unknown to and indepen-
dent from the developers of the classifiers. This
dataset is not made public or used in any other
context.

References

2019. Google Cloud natural language api
basics. "https://cloud.google.com/
natural-language/docs/basics#entity_
analysis.

Niki Parmar Jakob Uszkoreit Llion Jones Aidan
N. Gomez Lukasz Kaiser Illia Polosukhin
Ashish Vaswani, Noam Shazeer. 2017. Atten-
tion is all you need. 31st Conference on Neural
Information Processing Systems (NIPS).

Steven M. Beitzel, Eric C. Jensen, Ophir Frieder,
David A. Grossman, David D. Lewis, Abdur Chowd-
hury, and Aleksander Kolcz. 2005. Automatic
web query classification using labeled and unlabeled
training data. In SIGIR ’05.

Andrei Z. Broder, Marcus Fontoura, Evgeniy
Gabrilovich, Amruta Joshi, Vanja Josifovski,
and Tong Zhang. 2007. Robust classification of rare
queries using web knowledge. In Proceedings of the
30th Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval, SIGIR ’07, page 231–238, New York, NY,
USA. Association for Computing Machinery.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mikhail S. Burtsev, Yuri Kuratov, Anton Peganov, and
Grigory V. Sapunov. 2020. Memory transformer.

537

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pages 785–794.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Github Google. 2021. Sentencepiece Tokenizer.

Daqing He, Daqing, Göker, and Ayse Goker. 2000. De-
tecting session boundaries from web user logs.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste
Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock,
Evan Shelhamer, et al. 2021. Perceiver io: A general
architecture for structured inputs & outputs. arXiv
preprint arXiv:2107.14795.

Daxin Jiang () and Jian-Tao Sun. 2009. Context-aware
query classification. In SIGIR’ 09, The 32nd Annual
ACM SIGIR Conference. Association for Computing
Machinery, Inc.

Kowsari, Jafari Meimandi, Heidarysafa, Mendu,
Barnes, and Brown. 2019. Text classification algo-
rithms: A survey. Information, 10(4):150.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2019.
Set transformer: A framework for attention-based
permutation-invariant neural networks. In Inter-
national Conference on Machine Learning, pages
3744–3753. PMLR.

Xiao Li, Ye-Yi Wang, and Alex Acero. 2008. Learning
query intent from regularized click graphs. In Pro-
ceedings of the 31st Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’08, page 339–346, New
York, NY, USA. Association for Computing Machin-
ery.

Sofus Macskassy, Aynur Dayanik, Haym Hirsh, and
Morrocroft Ii. 1999. Emailvalet: Learning user pref-
erences for wireless email.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Anirudh Ravula, Chris Alberti, Joshua Ainslie,
Li Yang, Philip Minh Pham, Qifan Wang, Santiago
Ontanon, Sumit Kumar Sanghai, Vaclav Cvicek, and
Zach Fisher. 2020. Etc: Encoding long and struc-
tured inputs in transformers. In 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2020).

Matthew Richardson, Ewa Dominowska, and Robert
Ragno. 2007. Predicting clicks: Estimating the
click-through rate for new ads. In Proceedings of the
16th International Conference on World Wide Web,
WWW ’07, page 521–530, New York, NY, USA. As-
sociation for Computing Machinery.

Adam Sadilek, Stephanie Caty, Lauren DiPrete,
Raed Mansour, Tom Schenk, Mark Bergtholdt,
Ashish Kumar Jha, Prem Ramaswami, and Evgeniy
Gabrilovich. 2018. Machine-learned epidemiology:
real-time detection of foodborne illness at scale.
NPJ Digital Medicine, 1.

Adam Sadilek, Yulin Hswen, Shailesh Bavadekar,
Tomer Shekel, John Brownstein, and Evgeniy
Gabrilovich. 2020. Lymelight: forecasting lyme
disease risk using web search data. npj Digital
Medicine.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation Processing Management, 24(5):513–523.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th in-
ternational ACM SIGIR conference on research and
development in information retrieval, pages 373–
382.

Noam Shazeer. 2020. Glu variants improve trans-
former. arXiv preprint arXiv:2002.05202.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning
for supercomputers. Advances in neural information
processing systems, 31.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen.
2006. Building bridges for web query classifica-
tion. In Proceedings of the 29th Annual Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’06,
page 131–138, New York, NY, USA. Association for
Computing Machinery.

538

Cees G. M. Snoek, Marcel Worring, and Arnold W. M.
Smeulders. 2005. Early versus late fusion in seman-
tic video analysis. In Proceedings of the 13th An-
nual ACM International Conference on Multimedia,
MULTIMEDIA ’05, page 399–402, New York, NY,
USA. Association for Computing Machinery.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume
Lample, Herve Jegou, and Armand Joulin. 2019.
Augmenting self-attention with persistent memory.
arXiv preprint arXiv:1907.01470.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732.

Yi Tay, Mostafa Dehghani, Jai Gupta, Dara Bahri,
Vamsi Aribandi, Zhen Qin, and Donald Met-
zler. 2021. Are pre-trained convolutions better
than pre-trained transformers? arXiv preprint
arXiv:2105.03322.

Yi Tay, Minh C Phan, Luu Anh Tuan, and Siu Che-
ung Hui. 2017. Learning to rank question answer
pairs with holographic dual lstm architecture. In
Proceedings of the 40th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 695–704.

Wikipedia. 2022. AdaBoost.

Qingyang Wu, Zhenzhong Lan, Jing Gu, and Zhou Yu.
2020. Memformer: The memory-augmented trans-
former.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8413–
8426, Online. Association for Computational Lin-
guistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33:17283–17297.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. TAT-QA: A question answer-
ing benchmark on a hybrid of tabular and textual
content in finance. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3277–3287, Online. Associa-
tion for Computational Linguistics.

A Appendix

A.1 Implementation Details
The VSI Transformer is implemented in Mesh Ten-
sorflow (Shazeer et al., 2018), a Tensorflow-like

API that supports distributed model parallelism.
We initialize our model with the T5.1.1 Base check-
point, comprised of 12 encoder layers, dmodel size
of 768, dff of 2048. The model uses GEGLU-
based feed-forward layers as described in (Shazeer,
2020). The model has 12 heads. The overall num-
ber of non-embedding parameters is approximately
100M parameters. The model also utilizes the stan-
dard 32K SentencePiece that was trained on the C4
corpus. Our model is trained with 16 TPUv3 chips.
We finetune all models using a sequence length of
32 subword tokens using the Adafactor optimizer
(Shazeer and Stern, 2018). The learning rate is a
constant learning rate of 10−3 and the batch size is
128.

A.2 Top Search Queries
Figure 3 presents a view of the tool listing top
search queries associated with vaccination intent.

Figure 3: VSI tool presenting top search queries with
vaccination intent

A.3 Sample Queries
Table 5 presents a sample of some positive and
negative queries for vaccine acces present in our
dataset. The examples in the tabe shows how nu-
anced the problem is and why simply looking for
termsatches didn’t perform as good and a more
sophisticated approach was needed.

A.4 Dense Feature Vocabulary
As mention in section 5, the dataset consists of
dense features created from a vocabulary of 60,000
phrases. Table 6 presents a list of top phrases
present in the vocabulary of each of the 3 regions.

539

Class Examples

Positive

covid vaccine appointment
where can i get covid vaccine
book covid jab
walk-in covid vaccine near me
nhs book covid vaccine

Negative

covid stats by country
covid vaccine effectiveness
fully vaccinated travel
proof of covid vaccination
how long does the vaccine last

Table 5: Examples of positive and negative COVID-19
vaccine access queries.

Category Top Features

Vaccination
access (US)

pharmacy, pfizer, vaccine appointment,
appointment, pharmacies, moderna,
dose, appointments, pfizer vaccine, cvs,
walgreens, second dose, vaccine ap-
pointments, cvs pharmacy, doses, shot,
cvs covid, walgreens pharmacy, vaccine
eligibility, moderna vaccine

Vaccination
access (GB)

appointment, appointments, book, book-
ing, vaccination centre, clinic, vaccina-
tion centres, vaccine appointment, clin-
ics, nhs uk, nhs, coronavirus covid, walk
in, coronavirus vaccination, covid vacci-
nation, vaccination clinic, vaccine clinic,
centres, vaccination appointment, vac-
cine centre, centre, book covid, pfizer,
astrazeneca

Vaccination
access (CA)

clinic, appointment, clinics, vaccine
clinic, vaccine appointment, vaccination
clinic, pharmacy, appointments, book,
booking, pharmacies, registration, pfizer,
drug mart, vaccination center, walk in,
vaccination appointment, vaccination
clinics, vaccine pop up

Table 6: Top features associated with a query in the
dense feature vector, for each split.

540

Proceedings of EMNLP 2022 Industry Track, pages 541–549
December 9–11, 2020. ©2022 Association for Computational Linguistics

Full-Stack Information Extraction System for
Cybersecurity Intelligence

Youngja Park and Taesung Lee
IBM T. J. Watson Research

Yorktown Heights, NY 10598, USA
young_park@us.ibm.com, taesung.lee@ibm.com

Abstract

Due to rapidly growing cyber-attacks and
security vulnerabilities, many reports on
cyber-threat intelligence (CTI) are being
published daily. While these reports can
help security analysts to understand on-
going cyber threats, the overwhelming
amount of information makes it difficult to
digest the information in a timely manner.
This paper presents, SecIE, an industrial-
strength full-stack information extraction
(IE) system for the security domain. SecIE
can extract a large number of security en-
tities, relations and the temporal informa-
tion of the relations, which is critical for
cyberthreat investigations. Our evaluation
with 133 labeled threat reports containing
108,021 tokens shows that SecIE achieves
over 92% F1-score for entity extraction and
about 70% F1-score for relation extraction.
We also showcase how SecIE can be used
for downstream security applications.

1 Introduction
A rapid increase in cyberattacks, both in

number and attack techniques, poses enormous
challenges to security analysts. Much of the
information on new threats often appear first
in unstructured reports such as blogs and news
articles. To quickly respond to the on-going
attacks, it is critical to digest the information
about new threats in a short period of time.
However, it is very difficult to find relevant
information from CTI reports, particularly be-
cause cyber-attacks involve many different en-
tities, including the attacker, victim (e.g., com-
panies/industries), tools (e.g., malware) indica-
tors of compromise (IOCs, e.g., file names and
IP addresses), and various relations, some of
which may be unknown to the security experts.

We present a large-scale full-stack IE sys-
tem designed for the cybersecurity domain.
SecIE can extract 26 entity types, 20 fixed rela-

Figure 1: A CTI report and the security entities
and relation extracted by SecIE

tion types and various Open IE relations, and
the time information of the relations, which is
very critical in cybersecurity. Figure 1 shows
a snippet of a CTI report1 and the IE re-
sults from SecIE. The entity extraction model
detects mentions of Malware and ThreatAc-
tor from the text. The coreference resolution
model recognizes that ‘the new ransomware’
refers to Trojan-Ransom.Win32.Xpan and ‘a
gang’ refers to TeamXRat. Finally, the relation
extraction module produces a relation tuple,
<Trojan-Ransom.Win32.Xpan, developed_by,
TeamXRat>, from “the new ransomware was
developed by a gang”.

While there have been efforts to apply NLP
and IE to the cybersecurity domain (Joshi et al.,
2013; Lal, 2013; Jones et al., 2015; Bridges
et al., 2017; Liao et al., 2016; Husari et al.,
2017; Pingle et al., 2019; Yi et al., 2020), they
target on a specific sub-area of cybersecurity,
mostly on extracting IOCs or vulnerabilities,
or a component (either entity extraction or
relation classification) in the IE process. To
our knowledge, our system is the largest end-
to-end IE system for the cybersecurity domain
supporting a large number of security entity
and relation types.

Most existing IE systems apply supervised
(deep) learning methods relying on a large

1https://www.cyberdefensemagazine.com/
teamxrat-spreads-ransomware-via-rdp-brute-force-attacks/

541

amount of high-quality labeled data. Unlike
the general domain types, labeling fine-grained
security entities and relations requires deep
domain knowledge, and, thus it is much more
difficult to produce a high-quality training data
for the security domain. As an anecdote, 3 an-
notators (1 security expert and 2 professional
annotators with many years’ experience) work-
ing full-time for 5 months could produce only
133 annotated documents, which are far from
enough to train supervised models for our need.
Thus, SecIE applies unsupervised NLP tech-
nologies. We develop tehcniques to handle id-
iosyncrasies in security terms and and take into
account the structural characteristics found in
many CTI reports. This domain customization
allows SecIE highly accurate, achieving over
92% F1 for entity extraction and 70% F1 for
relation extraction.

2 Methodology

We employ a pipeline architecture as shown
in Figure 2, consisting of document parsing; lin-
guistic analysis; entity extraction; coreference
resolution; topic entity detection; relation ex-
traction; and relation time assignment. Input

Figure 2: High-level System Architecture

documents are processed sequentially, where
the document content and all the results from
the previous components are passed as input to
the next component. However, the system can
process multiple documents in parallel yielding
a high throughput.

2.1 Document Pre-processing
Document Parsing: This component per-
forms text content extraction and document
structure detection. We use Apache Tika2 to
extract the file content and structural informa-
tion such as titles, hyperlinks, tables, and list
structures from the input files. The extracted
structures are stored as annotations over the

2https://tika.apache.org

document content and passed to the subsequent
components along with the content.

Linguistic Analysis: This component per-
forms sentence boundary detection, part-of-
speech (POS) tagging and dependency parsing.
We use SyntaxNet (Andor et al., 2016) for POS
tagging and dependency parsing. It was trained
with general domain documents and often fails
to parse security sentences correctly, because
some security entities include many tokens and
punctuation marks internally (e.g., some URLs
have over 100 tokens). To improve the parsing
accuracy, we first detect entity mentions and
pass the entire entity mention as a noun token
to the parser. Figure 3 shows a sample sen-
tence and the parsing results when all tokens
are passed to the parser individually and when
entity mentions are passed as a token.

(a) Parsing with individual tokens

(b) Parsing with entities as tokens

Figure 3: Improved sentence parsing through do-
main customization

2.2 Entity Extraction
We identified the 26 fine-grained entity types

related to malware, IoCs, and security vulner-
ability. The types are determined based on
the STIX standard3 which defines 9 key secu-
rity concepts and their relationships. The full
list of our entity types are shown in Figure 6
in Appendix. We provide a type inheritance
as shown in Figure 6, allowing applications to
consume the entity types at different levels.

Pattern-based Method is used for entity
types with well-defined patterns such as IPAd-
dress and EmailAddress. We note that many
CTI reports, especially those published online,
often use obfuscated forms for malware IOCs,
such as ‘X.Y.177.245’,‘82(dot)103(dot)137(dot)
14’,‘BLOCKED.BLOCKED.172.196’,and‘x0x
0.[REMOVED].com.br’. Thus, SecIE supports
many obfuscated IOC patterns, unlike other
existing tools.

3https://oasis-open.github.io/cti-documentation/

542

Dictionary-based Method is used when
a reputable list of terms belonging to a cer-
tain entity type exists. In the cybersecurity
domain, previously known Campaign, Malware
and ThreatActor cases are well documented.
In these cases, we match the dictionary terms
with the noun phrases. However, this dictionary
matching method can extract only previously
known samples. We address this problem using
the lexico-syntactic pattern matching method
to extract new mentions.

Lexico-Syntactic Pattern-based Method
Inspired by the findings in (Hearst, 1992), we
apply the following syntactic patterns to extract
security entities: (1) NP (, NP)* BE NP; (2)
NP, CALLED NP; (3) NP such as NP (, NP)*
(4) NP including NP (, NP)*; (5) NP a.k.a
| ((which|that)? (BE)? (also)? CALLED as)
NP. Here, NP stands for a noun phrase, BE
represents the be-verbs (e.g., ‘is’), and CALLED
includes ‘dubbed’, ‘called’, ‘named’, ‘known’,
‘referred’, and ‘termed’.

To discover new mentions, we first check if
the entity type of an NP in these syntactic pat-
terns is determined. Then, we label the remain-
ing NPs to the same entity type. If the types
of multiple NPs are determined, they should be
the same type or have a super-subtype relation.
We also use a predefined set of cue words to de-
tect new mentions for Campaign and Malware,
and ThreatActor (Table 6 in Appendix). If a
cue word matches with NP or NP’s headword,
we classify the other NPs to the same entity
type as the cue word. Table 1 shows sample sen-
tences where ‘WannaCry’, ‘Wcrypt’, ‘WCRY’,
‘WannaCrypt’ are extracted as Malware even
though the mentions were unknown.

1) WannaCry is a ransomware worm that spread rapidly ...
2) A new ransomware dubbed "WannaCry" is ...
3) The WannaCry ransomware has been very active since ...
5) WannaCry, also known as Wcrypt, WCRY, WannaCrypt

Table 1: Examples of new mention extraction. The
numbers indicate the rule used to determine the
entity type.

Classification-based Extraction AvSigna-
ture mentions do not conform to particu-
lar patterns making regex-based method in-
effective (e.g., ‘ADWARE/Agent.imv’, ‘Trojan-
Ransom.Win32.Xpan’). Further, the number of
AvSignature instances is very large (millions),

making the dictionary method inefficient. How-
ever, they have distinct word shapes which are
very different from regular words, and it is easy
to collect many examples from public sources.
We collected 660,000 AvSignature names from
VirusTotal as the positive sample and added
470,000 words randomly chosen from CTI re-
ports as the negative sample. We then trained
a Logistic Regression model using character
n-gram and word shape features (e.g., upper-
case/lowercase letters, digits and symbols).

2.3 Coreference Resolution
We categorize coreferences into two types

based on the search range for the referent.

Within-sentence Coreference appears in
certain syntactic structures that connect two
noun phrases, such as appositives, relative pro-
nouns (e.g., ‘which’), or certain phrases such as
“<nominative noun> [,] CALLED [as] <proper
noun>”. When the proper noun belongs to a
security entity, we resolve the nominative noun
or pronoun to the proper noun. Figure 1 shows
two examples of witin-sentence coreferences:
“a new strain of ransomware, called Trojan-
Ransom.Win32.Xpan” and “a gang called
TeamXRat”. We resolve “a new strain of
ransomware” to “Trojan-Ransom.Win32.Xpan”
and “a gang” to “TeamXRat”.

Cross-sentence Coreference Syntactic
analysis alone cannot connect two mentions
together when they appear in different sen-
tences. We use a document structure-based
sentence embedding model proposed in (Lee
and Park, 2019), which generates semantic rep-
resentations for sentences using BERT (Devlin
et al., 2019; Joshi et al., 2019). If a sentence
contains a nominative or pronoun mention
(e.g., ‘the malware’), we identify semantically
related sentences for the sentence based on the
sentence embeddings and find its referent from
the proper nouns in the related sentences. We
replace the nominative or pronoun mention
with each of the candidates, calculate the
likelihood of the candidate in the sentence,
and choose the candidate with the highest
likelihood as the referent.

2.4 Topic Entity Detection
Most CTI reports provide a deep analysis on

a particular malware or campaign. We call the
focus of a CTI report the topic entity. Many

543

CTI reports are very succinct, often simply pro-
viding the list of related entities, such as IOCs,
without contextual connection to the topic en-
tity. These related entities provide critical intel-
ligence about the topic entity, and connecting
them with the corresponding malware or cam-
paign is critical. We identify the topic entity of
CTI reports as follows. We first look for men-
tions of Malware, Campaign, and ThreatActor
in the first 15 sentences. When there are multi-
ple mentions of these types, we choose the topic
entity based on the following factors: (1) the
position of the sentence (likely to appear early
in the article); (2) if the mention is a singular
or plural (tend to be singular); (3) the syntactic
role of the mention in the sentence (likely the
subject or the object); (4) the occurrence count
of the mention in the article (likely to appear
many times).

2.5 Relation Extraction
Similarly to entity extraction, we apply sev-

eral different techniques for relation extraction.

OpenIE Relation Extraction discovers re-
lations from certain syntactic structures (Angeli
et al., 2015; Banko et al., 2007; Soderland et al.,
2010; Fader et al., 2011; Mausam et al., 2012;
Roy et al., 2019). Many security relations in-
volve actions (e.g., download, connect, etc.).
Thus, we focus on the three syntactic struc-
tures containing a verb phrase and two noun
phrases: <NP(subj)-VP-NP(obj)>, <NP-VP-
pp-NP>, and <VP-NP-pp-NP>, where pp is a
preposition. We find these syntactic structures
in sentences, and, if both NP arguments are
security entity mentions, we extract a relation
by associating the NPs with the VP as the rela-
tion type. Table 2 shows examples of semantic
relations extracted using this method.

Cooccurrence-based Relation Extraction
While the OpenIE relations provide useful se-
mantic relations, extracting relations only from
the three structures can miss other relevant
relations. We generate relations if two security
entities co-occur in a sentence but are not con-
nected by an OpenIE relation. The assumption
is that if the two entities frequently appear to-
gether in the same sentence, they should be
of interest to security analysts. We produce
cooccurrence-based relations between the five
main security entities: Campaign, Indicator,

Malware, ThreatActor and Vulnerability and as-
sign a generic relation type (‘related’). Table 3
shows sample co-occurrence-based relations.

Relations with Topic Entity As discussed
above, many threat reports describe informa-
tion about a particular security event or entity,
and other entities in the document provide in-
sights on the topic entity. In this work, if the
entities in a list are not included in any other re-
lations, we connect them to the topic entity via
a relation type denoted as related+EntityType
(e.g., relatedHash).

2.6 Temporal Information Extraction

Threat intelligence is time sensitive, and
knowing when a security event has occurred
is critical. Time information can be expressed
in multiple ways, including point-in-time (e.g.,
“2016-05-25”), relative time (e.g., “last year”),
time range (e.g., “2016–2017”), and embedded
time (e.g., “CVE-2017-3018”). SecIE extracts
these time expressions and normalize them to
the timestamp. For relative time expressions,
we infer their point-in-time based on an anchor
time, which can be an absolute time expression
in nearby sentences. If there are no point-in-
time expressions in the document, we use the
file’s last modified time or the publication date
as the anchor time. Then, we use the following
priority orders to determine which temporal in-
formation gets assigned to a relation: (1) time
in the same dependency construct; (2) time in
the same sentence (3) time in the previous sen-
tences; (4) the document’s last modified time;
and (5) The document’s published time Fig-
ure 7 in Appendix shows a sample threat report
and the output of SecIE including the entity,
relation, and time information.

3 Performance Evaluation

To evaluate our system, we manually labeled
133 CTI reports, which contain 6,438 sentences
and 108,021 tokens. The documents were la-
beled by 3 full time annotators over 5 months.
To ensure the quality of the labeled data, we
kept only the labels agreed by all 3 annota-
tors, resulting in 3,295 entity and 1,216 rela-
tion mentions. More detailed statistics of the
annotations are shown in Table 7 and Table 8
in Appendix.

544

Extracted Relation Input Sentence

<Locky, spread_through, Necurs botnet> Locky ransomware is again being spread through the Necurs botnet.
<zhCat, listen_on, port 1000>
<zhCat, listen_on, 192.168.116.128>

If the attackers set up a zhCat instance listening on port 1000 on 192.168.116.128 ...

<Shamoon, deloyed_on, Saudi Aramco> the Iranians deployed the Shamoon malware on Saudi Aramco, ...

Table 2: Examples of OpenIE relation extraction
Extracted Relation Input Sentence

<Dyre variants, related, win32k.sys> New Dyre variants exploiting CVE-2015-0057, a use-after-free vulnerability
in the win32k.sys component

<KaiXin EK, related, 125.77.31.181>
<KaiXin EK, related, otc.szmshc.com:12113>

125.77.31.181 port 12113 – otc.szmshc.com:12113 – KaiXin EK

Table 3: Examples of occurrence-based relation extraction

3.1 Entity Extraction Results
Table 4 shows the performance of our entity

extraction (see Table 9 and Table 10 in Ap-
pendix for the performance for all entity types).
The evaluation is performed by measuring the
mention-level precision (P), recall (R) and F1
scores over all entity types. SecIEall reports
the performance for all 133 reports, showing
that SecIE achieves a very high F1 score with
a good balance between precision and recall.

Further, we compare SecIE with a deep learn-
ing model to illustrate the challenges for ap-
plying supervsied learning methods for cyber-
security data. We split the 133 labeled docu-
ments into train (80%), validation (10%) and
test (10%) datsets, consisting of 106, 14 and 13
documents respecitively, and trained a BERT
model as described in (Devlin et al., 2019). The
results (small) validate that SecIE significantly
outperforms the BERT model.

Model Precision Recall F1

SecIEall 95.1 89.4 92.2

SecIEsmall 89.8 84.7 87.2
BERTsmall 83.3 70.3 76.2

Table 4: Performance of entity extraction models.
all denotes the 133 labeled documents, and small
denotes the 13 test dataset.

3.2 Relation Extraction Results
We measure the performance of relation ex-

traction using four different settings.
• ExactMatch: An extracted relation and the

ground truth must have the same entity
spans, entity types and the relation type.

• -eType: The condition for the entity type
match is removed from ExactMatch. This is
mainly because Malware and Campaigin are
often interchangeably used.

• -rType: The condition for the relation type
match is removed from ExactMatch.

• -eType-rType: Both the entity type and the
relation type can be different.

Further, we evaluate the performance of rela-
tion extraction with and without co-reference
resolution to show the effectiveness of the co-
reference resolution step. Table 5 shows the
evaluation results demonstrating SecIE’s ef-
fectiveness. It produces over 70% precision
across all settings, and co-reference resolution
improves the performance, especially the recall.

Without Coref. With Coref.

P R F1 P R F1

ExactMatch 70.5 65.0 67.6 70.1 65.5 67.7
-eType 72.7 66.9 69.7 72.6 67.8 70.2
-rType 72.9 65.6 69.1 72.3 66.0 69.0

-eType-rType 75.9 67.8 71.6 75.7 68.8 72.1

Table 5: Relation extraction performance using dif-
ferent matching strategies and coreference settings.

4 Security Applications
We demonstrate how SecIE can provide ad-

ditional insights on security incidents.

4.1 Malware Analysis
SecIE can be used to build a knowledge graph

(KG) on malware from text. Figure 4 shows
an input document about WannaCry4 and the
output KG. As we can see, SecIE extracted all
of the security entities and connected them to
the topic entity (new variant of WannaCry).

4.2 Inconsistency in CVEs
The NVD (national vulnerability database)

provides information about known security vul-
nerabilities including the descriptions and asso-

4https://www.cybereason.com/cybereason-reveals-
a-new-variant-of-wannacry-ransomware/

545

Figure 4: A KG built by SecIE from a report about the WannaCry ransomware

ciated metadata generated by domain experts.
Even though the metadata was carefully cu-
rated by human, it can still contain errors.
In particular, the affected software and the
versions mentioned in the textual description
and metadata can be different as shown in Fig-
ure 5. These inconsistencies can cause a harm,
as many security applications rely on the meta-
data to identify vulnerable products in their
environemnt.

Figure 5: Example of inconsistent CVE

We match the mentions of Application ex-
tracted from the description and the CPE en-
tries in the metadata using simple matching
rules. Since an application can be referred by
several synonyms (e.g., Microsoft Office vs. Of-
fice), we apply a loose matching for application
names. The versions can be represented as an
exact version (e.g., 4.05), a range (e.g., ‘before
10.3’), or wildcard symbols (e.g., 4.x or 4.*), so
we match the versions accordongly.

We randomly selected 168 CVE records and
manually checked the inconsistency check re-
sults. This technique detected 26 potential
inconsistencies, and 6 of them were confirmed
to be inconsistent. This demonstrates that our
tool can be used to find potentially errorneous
CVE records and help to improve the quality
of the CVE database.

5 Related Work

There have been a few efforts to apply IE to
the cybersecurity domain. Most existing works
focus on entity extraction for a small number of

security entities (mainly, IOCs and Vulnerabili-
ties) from certain security text (mainly, CVEs
and Tweets). Joshi et al. (Joshi et al., 2013)
present a system that produces linked data
from CVE records. This system can extract
6 entity types commonly found in CVEs and
link the extracted instances to DBPedia entries.
(Sabottke et al., 2015) proposes a Twitter-based
exploit detector, which collects tweets mention-
ing vulnerabilities. This tool uses a simple
keyword matching and monitors occurrences of
the “CVE” keywords and IDs in tweets. Liao et
al. (Liao et al., 2016) presents a system (iACE)
for fully automated IOC extraction. iACE de-
tects file name, IP address, and URL using reg-
ular expressions. TTPDrill (Husari et al., 2017)
extracts threat actions (i.e., TTP) from secu-
rity reports and map them to a threat action
ontology from ATT&CK and CAPEC. This
tool detects threat actions from the SVO depen-
dency structure, where the subject is a malware
instance. (Yi et al., 2020) presents an NER tool
for the cybersecurity domain, which is similar
to our entity extraction component. They apply
regular expressions, dictionary matching and
a CRF classifier for about 20 different entity
types and achieves about 82% F1 score.

6 Conclusion

We presented a large-scale full-stack IE sys-
tem developed for the cybersecurity domain.
Through careful design choices to handle the
idiosyncrasies in the cybersecurity data, our
system achieves high F1 scores for both entity
extraction and relation extraction. We also
demonstrated how our system can be used for
downstream applications. Our system can help
security analysts by transforming the unstruc-
tured threat reports into structured formats
which can be easily consumable by subsequent
security applications.

546

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Globally
normalized transition-based neural networks. In
ACL 2016.

Gabor Angeli, Melvin Jose Johnson Premkumar,
and Christopher D. Manning. 2015. Leveraging
linguistic structure for open domain information
extraction. In ACL 2015.

Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni.
2007. Open information extraction from the web.
In IJCAI.

Robert A. Bridges, Kelly M.T. Huffer, Corinne L.
Jones, Michael D. Iannacone, and John R.
Goodall. 2017. Cybersecurity automated infor-
mation extraction techniques: Drawbacks of cur-
rent methods, and enhanced extractors. In The
16th IEEE International Conference on Machine
Learning and Applications (ICMLA).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training
of deep bidirectional transformers for language
understanding. In NAACL-HLT 2019.

Anthony Fader, Stephen Soderland, and Oren Et-
zioni. 2011. Identifying relations for open infor-
mation extraction. In Proceedings of the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1535–1545.

Marti A. Hearst. 1992. Automatic acquisition of
hyponyms from large text corpora. In COLING
1992.

Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed,
Bill Chu, and Xi Niu. 2017. Ttpdrill: Automatic
and accurate extraction of threat actions from
unstructured text of CTI sources. In Proceedings
of the 33rd Annual Computer Security Applica-
tions Conference, pages 103–115. ACM.

Corinne L Jones, Robert A Bridges, Kelly MT
Huffer, and John R Goodall. 2015. Towards a
relation extraction framework for cyber-security
concepts. In Proceedings of the 10th Annual
Cyber and Information Security Research Con-
ference.

Arnav Joshi, Ravendar Lal, Tim Finin, and Anu-
pam Joshi. 2013. Extracting cybersecurity re-
lated linked data from text. In 2013 IEEE Sev-
enth International Conference on Semantic Com-
puting, pages 252–259. IEEE Computer Society.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference resolu-
tion: Baselines and analysis. In EMNLP 2019.

Ravendar Lal. 2013. Information Extraction of
Security related entities and concepts from un-
structured text. Master’s thesis, May.

Taesung Lee and Youngja Park. 2019. Unsu-
pervised sentence embedding using document
structure-based context. In ECML-PKDD 2019,
pages 633–647.

Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou
Li, Luyi Xing, and Raheem A. Beyah. 2016. Ac-
ing the IOC game: Toward automatic discovery
and analysis of open-source cyber threat intelli-
gence. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications
Security, pages 755–766.

Mausam, Michael Schmitz, Stephen Soderland,
Robert Bart, and Oren Etzioni. 2012. Open
language learning for information extraction. In
Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing
and Computational Natural Language Learning
(EMNLP-CoNLL), pages 523–534.

Aditya Pingle, Aritran Piplai, Sudip Mittal, Anu-
pam Joshi, James Holt, and Richard Zak. 2019.
Relext: Relation extraction using deep learning
approaches for cybersecurity knowledge graph
improvement. In Proceedings of the IEEE/ACM
International Conference on Advances in Social
Networks Analysis and Mining.

Arpita Roy, Youngja Park, Taesung Lee, and Shimei
Pan. 2019. Supervising unsupervised open infor-
mation extraction models. In EMNLP-IJCNLP
2019.

Carl Sabottke, Octavian Suciu, and Tudor Dumi-
tras. 2015. Vulnerability disclosure in the age of
social media: Exploiting twitter for predicting
real-world exploits. In 24th USENIX Security
Symposium (USENIX Security 15), pages 1041–
1056.

Stephen Soderland, Brendan Roof, Bo Qin, Shi
Xu, Mausam, and Oren Etzioni. 2010. Adapting
open information extraction to domain-specific
relations. AI Magazine, 31(3):93–102.

Feng Yi, Bo Jiang, Lu Wang, and Jianjun Wu. 2020.
Cybersecurity named entity recognition using
multi-modal ensemble learning. IEEE Access,
8:63214–63224.

547

A Appendix

A.1 Target Entity Types

Figure 6: Target entity types and the type hierarchy
in SecIE

A.2 Entity Cue Words

Entity Type Cue Words

Campaign breach, campaign, cyber attack, espi-
onage, hack, scam

Malware botnet, adware, crimeware, malware,
ransomware, payload, RAT, spyware,
trojan, virus, worm

ThreatActor APT group, attacker, cyber criminal, cy-
bercrime team, hacker, hacking group,
malicious group, threat actor

Table 6: Examples of cue words for Campaign and
Malware, and ThreatActor

A.3 Relations with Temporal
Information

Arg1 Relationship Arg2 Time

Petya spread_via EternalBlue 2017-06-27
Petya related WannaCry 2017-05-27

EternalBlue used_in WannaCry 2017-05-27
Petya relatedHash 71b6a493388e... 2017-06-27
Petya relatedHash e285b6ce0470... 2017-06-27

Figure 7: Example of relation extraction with tem-
poral information

A.4 Details of the Experimental Data

Entity Type Count

Vulnerability 805
MalwareFamily 682

TTP 540
FileName 276

URL 239
DomainName 216
AvSignature 126
ThreatActor 105

Hash 101
SecurityAdvisory 94

Campaign 43
IpAddress 40

WindowsRegistry 10
EmailAddress 8

Endpoint 7
Network 3

Total 3,295

Table 7: Distribution of Entity Types

Relation Type Count

Cooccurrence relation 588
OpenIE relations 306
relatedFileName 73
relatedMalware 65

relatedDomainName 45
related URL 35
relatedHash 26

relatedVulnerability 26
relatedThreatActor 11
relatedCampaign 10

relatedWindowRegistry 9
relatedCnC 6

relatedEndpoint 6
relatedIpAddress 6
relatedNetwork 2

relatedUserAgent 2

Total 1,216

Table 8: Distribution of Relation Types

548

A.5 Entity Extraction Performance

Entity Type P R F1

AvSignature 91.9 90.5 91.2
Campaign 75.9 95.3 84.5

DomainName 91.7 91.7 91.7
EmailAddress 85.7 75.0 80.0

Endpoint 87.5 100.0 93.3
FileName 88.1 88.4 88.2

Hash 100 100 100
IpAddress 97.5 97.5 97.5

MalwareFamily 96.0 83.7 89.4
Network 100 100 100

SecurityAdvisory 96.2 54.3 69.4
ThreatActor 100 77.1 87.1

TTP 94.4 84.3 89.0
URL 97.5 98.3 97.9

Vulnerability 97.9 98.3 98.1
WindowsRegistry 100 100 100

Average 95.1 89.4 92.2

Table 9: Performance of the entity extraction mod-
els by entity types

Entity Type BERT SecIE

AvSignature 70.59 100.00
Campaign 66.67 100.00

DomainName 93.75 100.00
EmailAddress 0.00 66.67

Endpoint - -
FileName 90.20 88.00

Hash 100.00 100.00
IpAddress 100.00 100.00

MalwareFamily 62.92 91.11
Network - -

SecurityAdvisory 96.55 98.31
ThreatActor 22.2 93.33

TTP 67.20 65.31
URL 90.91 96.30

Vulnerability 73.42 91.82
WindowsRegistry - -

Table 10: Comparison of a BERT model and SecIE
on 13 test documents

549

Proceedings of EMNLP 2022 Industry Track, pages 550–557
December 9–11, 2020. ©2022 Association for Computational Linguistics

Deploying Unified BERT Moderation Model for E-Commerce Reviews

Ravindra Nayak N
Flipkart

Bangalore, India
ravindra.n@flipkart.com

Nikesh Garera
Flipkart

Bangalore, India
nikesh.garera@flipkart.com

Abstract

Moderation of user-generated e-commerce con-
tent has become crucial due to the large and
diverse user base on the platforms. Product re-
views and ratings have become an integral part
of the shopping experience to build trust among
users. Due to the high volume of reviews gen-
erated on a vast catalog of products, manual
moderation is infeasible, making machine mod-
eration a necessity. In this work, we described
our deployed system and models for automated
moderation of user-generated content. At the
heart of our approach, we outline several re-
jection reasons for review & rating moderation
and explore a unified BERT model to moderate
them. We convey the importance of product
vertical embeddings for the relevancy of the
review for a given product and highlight the
advantages of pre-training the BERT models
with monolingual data to cope with the domain
gap in the absence of huge labelled datasets.
We observe a 4.78% F1 increase with less la-
belled data and a 2.57% increase in F1 score
on the review data compared to the publicly
available BERT-based models. Our best model
In-House-BERT-vertical sends only 5.89% of
total reviews to manual moderation and has
been deployed in production serving live traffic
for millions of users.

1 Introduction

The Internet has enabled the easy flow of informa-
tion across the globe, but it has its downside too. It
has led to increased hate speech and abusive com-
munication(Veglis, 2014). It is necessary to pre-
vent people from accessing our personal informa-
tion, as it can be used for malicious purposes. The
platforms that enable people to communicate and
convey their opinions are also responsible for pre-
venting profane content from affecting their users.
So such platforms must have strict guidelines and
strong moderation of user-generated content.

The downside of manual moderation involves
inconsistency in labelling, the inability to real-time

Figure 1: Model Architecture

moderation, lack of domain knowledge, and mul-
tilingual vocabulary. Due to the immense scale of
the data that has been ingested on such platforms,
auto-moderation becomes vital as manual modera-
tion is not economical.

The E-commerce domain accepts multi-modal
data such as text, images, and videos (Ueta et al.,
2020). It is crucial to moderate them before the
platform users consume the data. This paper mainly
concentrates on the moderation of textual review
data. Reviews and ratings build trust in the product
and help platforms promote good products (Kumar,
2017). Thus eliminating reviews that do not talk
about the product becomes necessary. The aim of
moderating reviews is not only to detect abusive
or hate speech content but also to check whether a
review follows other guidelines before posting it.
Before rejecting a review, it is necessary to predict
the reason for rejection as feedback to the users.

We have multiple reasons for rejecting a review.
These are mentioned in Table 1 along with ex-
amples. Commonly used moderation reasons in-
clude detecting profane and hate speech content
(Pavlopoulos et al., 2017; Glazkova et al., 2021).

550

Table 1: Rejection reasons with examples

Moderation Reasons Example 1 Example 2
approved Just go for the good quality !! I

am happy
Ok product but top coat was bad

Poorly formatted content ????!! Nce prdddct, mast buy !!
Irrelevant review for the product Thank you, good luck (for

“watch” vertical)
I have not used it yet, dont know..
(for “mobile” vertical)

Mismatch between user-provided
rating & sentiment of the review

Poor quality product (user gave a
rating of 5)

Most value for money product
among in ths range (user gave a
rating of 1)

Profane/abusive content Product is bull sh*t I hate you all ******
Contains Email address(es) abcd@gmail.co.in Mail me raa @ outlook.com !!
Contains HTML/CSS charac-
ter(s)

THis is good buy. Link

Contains Phone Number(s) Nine 7383 S892 Contact 92992**009 for more
info

Contains URL(s) https://docs.google.com/forms/d/e/
Please fill this form for my friend
and share

https://yotu.be/uuY Unboxing
video for the product

In our work, we introduce new rejection reasons
(Table 1) to detect poorly formatted content, and
irrelevant reviews for the product, and detect per-
sonal information like email addresses, phone num-
bers, and URLs. The mismatch between the rating
and the sentiment of the review creates confusion
in the buyer’s mind (Kumar, 2017). Hence, we pre-
dict the rating to eliminate the reviews with such a
mismatch.

We start with regex parsing and list-based match-
ing methods. These are not robust enough to cap-
ture all rejection reasons. We train a BERT (Devlin
et al., 2019) based model, which predicts the rejec-
tion reasons and the rating for the given comment.
We build a unified model which adheres to the re-
view moderation guidelines set by the platform.

Publicly available base BERT(Devlin et al.,
2019) is considered the baseline, and we try dif-
ferent architectures and configurations that help
in better moderation. We use a pre-trained In-
House-BERT model, which has been trained on
monolingual review text and product descriptions.
Pre-training helps create generic representations
and adds robustness to the model (Erhan et al.,
2010). We freeze embedding and initial 8 layers
(Lee et al., 2019) as it helps in faster training time
without degrading the model’s performance. We
use product vertical / category names as an embed-
ding to help understand the relevance of the review
for that given product. We augment data with var-

ious obfuscations and noise to make the model
robust to hard rejection reasons such as detecting
profane/abusive content. Finally, we incorporate
all these techniques to fine-tune a unified In-House-
BERT moderation model to obtain an F1 score of,
which is 2.57% improvement on the publicly avail-
able baseline models.

There are multiple scenarios where an auto-
moderation model may fail, such as significantly
morphed text, sarcastic content, or unseen data. In
such a scenario, we fall back to manual moderation
(Link et al., 2016). Our aim is not to fully eliminate
manual moderation but instead to decrease the vol-
ume of data that goes to the moderators. When the
model is not confident of its predictions, we send it
for manual checks before approving it, considering
it as the last line of defence.

Our major contributions from the work include:

1. Overview of our deployed text moderation
system for e-commerce product reviews.

2. Unified BERT model architecture combined
with deterministic approaches for moderation.

3. Demonstrating the benefits of pre-training In-
House-BERT models when labelled data is
scarce.

4. Illustrating the merits of adding product ver-
tical embeddings to relevant classification
heads.

551

5. Exhibiting the importance of using hybrid ap-
proaches with the machine and manual mod-
eration in inference setup.

2 Related work

Moderation use cases started as early as the email
era and the need increased with the rise of social-
media(Veglis, 2014). Traditionally hand-crafted
rules were used along with basic profane word list
matching. People started finding different ways to
format and morph the text to bypass these systems.
This paved the way sophisticated approaches with
machine learning algorithms like TF-IDF (Gayd-
hani et al., 2018), SVM (Veloso et al., 2007) and
deep learning algorithms (Saude et al., 2014; Bad-
jatiya et al., 2017; Korencic et al., 2021; Turki and
Roy, 2022).

Most of the research has been around detection
of profane, hate-speech and abuse detection in the
user-generated content (Pavlopoulos et al., 2017;
Caselli et al., 2020; Glazkova et al., 2021). To
the best of our knowledge, we haven’t found any
guidelines for review moderation other than detect-
ing profane content and fake reviews(Danilchenko
et al., 2022; Jindal and Liu, 2007; Rastogi and
Mehrotra, 2017). We introduce sophisticated mod-
eration guidelines for reviews and ratings in the
e-commerce domain.

Dataset creation is a huge challenge as there will
be imbalanced classes across various rejection rea-
sons. Huge datasets are available for profane and
hate speech content which can be curated from
Twitter, Reddit, and other social media texts (Qian
et al., 2019; Hee et al., 2015). These include mono-
lingual, multilingual (i Orts, 2019; Bhattacharya
et al., 2020) and code-mixed data (Bohra et al.,
2018). Emojis are an important part of express-
ing emotions and are used to spread hate. Hate-
moji(Kirk et al., 2022), is an abusive emoji dataset
that has been created adversarially.

Various BERT(Devlin et al., 2019) based ap-
proaches have been taken to detect profane and
hate speech content. HATE-BERT(Caselli et al.,
2020), is a fine-tuned BERT model on abusive con-
tent from Reddit comments. Deep-BERT (Wadud
et al., 2023), is a multilingual hate detection ap-
proach using transfer learning methods. Google
has come up with their perspective 3 API (Lees
et al., 2022) which uses a multilingual charformer
model (Tay et al., 2021) to detect hateful content
in a range of languages, domains and tasks.

Table 2: Data statistics

Dataset Sentences Sentences small-set
Train 34,080,768 16,384
Eval 172,544 2,234
Test 28,235 28,235

These models are generally prone to various
noise attacks like adding small obfuscations or
randomly changing a few characters, and its case
(Hosseini et al., 2017). Significant research has
been done to prevent adversarial attacks (Jain et al.,
2018) on these models, and approaches like adding
obfuscations and transformations to the text have
shown improvements (Lees et al., 2022). Hybrid
approaches of keeping humans in the loop along
with the auto-moderation are also explored, which
we too make use of (Link et al., 2016).

3 Proposed approach

We propose an end-to-end approach that uses a hy-
brid of deterministic and model-based approaches,
and the data flow is shown in Figure 2.

3.1 Deterministic approaches

It is helpful to have blacklisted common profane
words/phrases to do a list-based matching. We cre-
ate n-gram phrases from the reviews and match
them with our existing list of profane words, racial
slurs, religious phrases, and political content. We
maintain profane smileys, which indirectly express
hate and sexual content on the platforms. We follow
hybrid approaches of using the model and deter-
ministic approaches for profane content.

We reject reviews that contain only punctuations,
single letters, and random character sequences as
poorly formatted content. Email addresses, phone
numbers, and URLs are rejected using regex parser
matching.

3.2 Domain adaptation

In the absence of abundant labelled data, we lever-
age the unlabelled monolingual review data by us-
ing them to pre-train the model. Pre-training helps
the model understand better representation com-
pared to the publicly available BERT. To address
the domain gap, we train the BERT model from
scratch as the vocabulary is updated to handle emo-
jis and punctuations along with more relevant sub-
words in the e-commerce domain. We refer to this
model as In-House-BERT.

552

Figure 2: Dataflow of our Proposed approach

3.3 Product vertical embeddings

Product vertical information helps determine
whether the given review is relevant to the product.
The concatenation of review and vertical embed-
dings is passed to the dense layers of the classifica-
tion head to detect irrelevant reviews.

3.4 Data Augmentation

Data augmentation is necessary for making the
model robust to adversarial attacks. We augment
only those rejection reasons which demand a high
recall, i.e., profane content. We apply basic aug-
mentations such as replacing the characters, drop-
ping vowels, repeating characters, converting ran-
dom characters to uppercase and adding profane
smileys to the approved reviews. We substitute
similar-looking characters such as ‘i’ with l,!, | to
mimic the human perturbations.(Lees et al., 2022).

3.5 Rating prediction

Instead of having a sentiment detector separately,
we reuse the rating data to predict the review’s
rating. We segment the 1 to 5-star rating into 3
buckets, considering it has positive, negative, and
neutral. This is a separate classification head at-
tached to the model, which will help determine the

mismatch between the sentiment of the review and
the user-given rating.

3.6 Model architecture

We develop a unified architecture, as shown in Fig-
ure 1, which can detect the various guidelines ini-
tially set to moderate the reviews. We initially have
a BERT encoder(Devlin et al., 2019) which out-
puts a review and vertical embeddings, which are
then connected to the 3 classification heads. All
the heads contain dense layers followed by soft-
max, and they predict their respective classes. The
irrelevancy detection head will get an extra vertical
embedding as an input. We use the addition of 3
cross-entropy losses for back-propagation.

4 Experimental setup

4.1 Dataset

The user reviews contain text from different scripts
and languages. We filter out the data to extract
English text written in Roman using an in-house
language classifier, which eliminates code-mixed
data. We create a manually labelled corpus based
on our moderation guidelines. We split the review
data into train, validation, and test data, and the
statistics are given in Table 2.

553

Table 3: F1 scores of experiments across various architectures and datasets

Models Precision Recall F1 score
BERT-base 86.29 87.36 86.17
In-House-BERT 86.72 87.42 87.06
In-House-BERT-freeze 86.58 87.32 86.94
In-House-BERT-vertical 89.29 88.23 88.45
BERT-base-smallset 76.22 79.61 76.69
In-House-BERT-smallset 80.84 81.9 80.36

We create a smaller dataset of 16k training ex-
amples and name it as smallset. This dataset is
created to evaluate the benefits of pre-training on
monolingual data when there is a scarcity of la-
belled datasets. We use the same test set as before
to evaluate the models.

4.2 Preprocessing

We start with the basic preprocessing of cleaning
non-Roman characters and retaining emojis and
punctuations. Emojis and punctuations play a vi-
tal role in understanding the review’s sentiment.
We normalize the numbers to a specific format
n and nd for ordinal numbers to help mod-
els learn generic patterns. We did an empirical
analysis and found that nearly 23% of the reviews
contain spelling mistakes, formatting issues, and
repeating characters. Even though variations of
the data will make the model robust, noise-like
repetitive characters/emojis/punctuations don’t add
much value to the model; hence we remove them.

4.3 Baseline and evaluation metrics

We use publicly available bert-base-cased1 as our
baseline model for evaluation with 2 classification
heads, one for predicting the rating and another for
the rejection reasons. This model takes a vertical
name, and the text as the input and deterministic
approaches are made part of the model. Training
loss is the sum of cross-entropy across individual
classification heads. We evaluate the models with
weighted F1 scores across all the rejection reasons.
The model aims to have high rejection recall while
having high approval precision and decrease the
volume for manual moderation, calculated by the
percentage of data sent to the manual approval.

4.4 Pre-training on Monolingual data

We use product descriptions and reviews of mono-
lingual data consisting of nearly 1B tokens to pre-

1https://huggingface.co/bert-base-cased

train an In-House-BERT language model with 15%
masking probability and Next Sentence Prediction
task. We trained the model with a learning rate of
1e-5 for 2 epochs and observed the loss converge.

4.5 Fine-tuning on labelled data

We fine-tuned the In-House-BERT model by
adding 2 classification heads and trained for 2
epochs with a batch size of 512 and a learning rate
of 3e-5. We tried 2 different approaches, training
the whole network and freezing the embeddings
and initial 4 layers. As there was no significant
degradation in accuracy by freezing the weights,
we used this approach for further experiments as it
helped in reducing training time.

As vertical information is not necessary for com-
mon rejection reasons, we added one more classifi-
cation head for detecting irrelevant product reviews
by concatenating reviews and vertical embeddings
before passing them to the dense layers. Finally,
we train a unified model with the learning from dif-
ferent approaches to fine-tune a unified In-House-
BERT-vertical model with 3 classification heads
and freeze the initial few layers.

We experiment with a smaller test set to evaluate
the importance of pre-training BERT with limited
labelled data. We use similar model configurations
but train on nearly 16k training samples.

4.6 Thresholds for inference setup

For inference, we set thresholds for different re-
jection reasons. It is always better to have lesser
thresholds for stricter rejection reasons, where com-
promising on recall is not an option. So we empir-
ically set the thresholds on our evaluation set and
then use the same thresholds across all the mod-
els. If the model is not confident in surpassing the
threshold, it will be sent to manual moderation.

554

Table 4: F1 scores of experiments considering it as a binary classification problem along with Inference setup F1
scores using thresholds for better precision, and the percentage of data sent to manual moderation (lesser the better)

Models F1 score (binary) F1 score (with threshold) Manual %ge
BERT-base 91.90 89.38 6.21
In-House-BERT 92.47 89.94 5.67
In-House-BERT-vertical 93.02 90.32 5.89
BERT-base-smallset 87.93 83.34 12.1
In-House-BERT-smallset 89.37 85.49 9.02

5 Results & Discussions

In Table 3, we can observe that the domain gap
is being addressed using the pre-trained In-House-
BERT model on smaller labelled datasets, observ-
ing an uplift of 4.78% in the F1 score. However,
we don’t see any significant difference with pre-
training when abundant training data is available.
Freezing the initial few layers of the BERT model
doesn’t degrade its accuracy numbers, and this
can be used to reduce the training time by almost
40%. Product vertical embeddings play a better
role in improving the rejection reason F1 score of
individual reasons. Overall, our best model, In-
House-BERT-vertical can beat the publicly avail-
able dataset by 2.57%.

5.1 Evaluating as a 2 class problem

We observe a lot of confusion for the model be-
tween rejection reasons, such as poorly formatted
content being confused with irrelevant content. Fur-
ther analysis revealed minor issues in the manual
tagging of rejection reasons. We evaluate the model
considering it as a binary classification problem
with approved and reject labels. The results can be
found in the first column of Table 4, where we see
our best model has an F1 score of 93.02.

5.2 Impact of thresholding

It is always better to have a hybrid approach dur-
ing inference because we can send the reviews for
manual moderation when the model is not confi-
dent. Due to cost concerns and a longer turnaround
time, it is desirable to minimise the volume of data
sent to them. We set thresholds for different rejec-
tion reasons, and we observe that pre-training helps
the model to be more confident at predicting the
outputs reducing manual moderation load.

5.3 Deployment and Business Impact

The previously deployed system included rule-
based methods and fasttext models but did not

cover all the rejection reasons we introduced. Our
current deployed system also significantly reduced
the volume of manually moderated reviews from
23% to 5.89%. We have tested the system up to 10
queries per second with a P95 latency of 120 ms
on 2 core CPUs with 2 GB RAM. We run multiple
replicas to handle the volume of live review traffic.

We measure business impact based on cost reduc-
tion and revenue generation. Reducing the manual
moderation percentage led to saving millions of
dollars so far and we have also externalised moder-
ation APIs to our group companies for providing
additional revenues to the company.

6 Conclusion

Pre-training BERT on large monolingual data from
a similar distribution as fine-tuning gives similar
results if we have large enough training data. When
labelled data is scarce, we observe the advantages
of pre-training the BERT models with the monolin-
gual corpora giving a 4.78% increase in F1. Freez-
ing the embedding layer and a few of the initial lay-
ers of the In-House-BERT model helps reduce the
training time while not compromising the model’s
performance. Decoupling some of the rejection
reasons by adding extra embeddings boosts the F1
scores. Our hybrid approach achieves an F1 score
of 88.45 and sends 5.89% for manual moderation.

Limitations and Future work

As our platform supports multilingual user-
generated content, it becomes essential to support
multilingual, multi-script, and code-mixed modera-
tion. We are working on the explainability of the
model to convey the reasons for rejection and make
the model robust to various adversarial attacks and
noisy label tagging. We plan to create more data
for imbalanced datasets and focus on adding other
rejection reasons like sarcasm and opinion spam
detection.

555

Acknowledgements

We thank Sudhanshu Shekhar Singh, Shreyas
Shetty and Raviraj Joshi for their helpful insights
and suggestions on this work. We thank Sonal
Bansal, Sakshi Bhatia, Subodh Kumar, Anupam
Singh, Himanshu Agarwal, Prasad Pai, Vinay
Lodha, and Flipkart UGC Ops team for their con-
stant support. We thank Amey Patil for providing
the pre-trained In-House-BERT models.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. CoRR, abs/1706.00188.

Shiladitya Bhattacharya, Siddharth Singh, Ritesh Ku-
mar, Akanksha Bansal, Akash Bhagat, Yogesh
Dawer, Bornini Lahiri, and Atul Kr. Ojha. 2020. De-
veloping a multilingual annotated corpus of misogyny
and aggression. CoRR, abs/2003.07428.

Aditya Bohra, Deepanshu Vijay, Vinay Singh, Syed Sar-
faraz Akhtar, and Manish Shrivastava. 2018. A
dataset of hindi-english code-mixed social media
text for hate speech detection. In Proceedings of
the Second Workshop on Computational Modeling
of People’s Opinions, Personality, and Emotions in
Social Media, PEOPLES@NAACL-HTL 2018, New
Orleans, Louisiana, USA, June 6, 2018, pages 36–41.
Association for Computational Linguistics.

Tommaso Caselli, Valerio Basile, Jelena Mitrovic, and
Michael Granitzer. 2020. Hatebert: Retraining BERT
for abusive language detection in english. CoRR,
abs/2010.12472.

Kiril Danilchenko, Michael Segal, and Dan Vilenchik.
2022. Opinion spam detection: A new approach us-
ing machine learning and network-based algorithms.
In Proceedings of the Sixteenth International AAAI
Conference on Web and Social Media, ICWSM 2022,
Atlanta, Georgia, USA, June 6-9, 2022, pages 125–
134. AAAI Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Dumitru Erhan, Aaron C. Courville, Yoshua Bengio,
and Pascal Vincent. 2010. Why does unsupervised
pre-training help deep learning? In Proceedings
of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, AISTATS 2010, Chia

Laguna Resort, Sardinia, Italy, May 13-15, 2010,
volume 9 of JMLR Proceedings, pages 201–208.
JMLR.org.

Aditya Gaydhani, Vikrant Doma, Shrikant Kendre, and
Laxmi Bhagwat. 2018. Detecting hate speech and
offensive language on twitter using machine learn-
ing: An n-gram and TFIDF based approach. CoRR,
abs/1809.08651.

Anna Glazkova, Michael Kadantsev, and Maksim
Glazkov. 2021. Fine-tuning of pre-trained transform-
ers for hate, offensive, and profane content detection
in english and marathi. CoRR, abs/2110.12687.

Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie
Mennes, Bart Desmet, Guy De Pauw, Walter Daele-
mans, and Véronique Hoste. 2015. Detection and
fine-grained classification of cyberbullying events.
In Recent Advances in Natural Language Processing,
RANLP 2015, 7-9 September, 2015, Hissar, Bulgaria,
pages 672–680. RANLP 2015 Organising Committee
/ ACL.

Hossein Hosseini, Sreeram Kannan, Baosen Zhang,
and Radha Poovendran. 2017. Deceiving google’s
perspective API built for detecting toxic comments.
CoRR, abs/1702.08138.

Òscar Garibo i Orts. 2019. Multilingual detection of
hate speech against immigrants and women in twitter
at semeval-2019 task 5: Frequency analysis interpo-
lation for hate in speech detection. In Proceedings of
the 13th International Workshop on Semantic Eval-
uation, SemEval@NAACL-HLT 2019, Minneapolis,
MN, USA, June 6-7, 2019, pages 460–463. Associa-
tion for Computational Linguistics.

Edwin Jain, Stephan Brown, Jeffery Chen, Erin Neaton,
Mohammad Baidas, Ziqian Dong, Huanying Gu, and
Nabi Sertac Artan. 2018. Adversarial text generation
for google’s perspective api. In 2018 International
Conference on Computational Science and Computa-
tional Intelligence (CSCI), pages 1136–1141.

Nitin Jindal and Bing Liu. 2007. Review spam detection.
In Proceedings of the 16th International Conference
on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, pages 1189–1190. ACM.

Hannah Kirk, Bertie Vidgen, Paul Röttger, Tristan
Thrush, and Scott A. Hale. 2022. Hatemoji: A test
suite and adversarially-generated dataset for bench-
marking and detecting emoji-based hate. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL
2022, Seattle, WA, United States, July 10-15, 2022,
pages 1352–1368. Association for Computational
Linguistics.

Damir Korencic, Ipek Baris, Eugenia Fernandez, Kata-
rina Leuschel, and Eva Salido. 2021. To block or
not to block: Experiments with machine learning for
news comment moderation. In Proceedings of the

556

EACL Hackashop on News Media Content Analysis
and Automated Report Generation, EACL 2021, On-
line, April 19, 2021, pages 127–133. Association for
Computational Linguistics.

Shashank Kumar. 2017. Research on product review
analysis and spam review detection.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What
would elsa do? freezing layers during transformer
fine-tuning. CoRR, abs/1911.03090.

Alyssa Lees, Vinh Q. Tran, Yi Tay, Jeffrey Sorensen,
Jai Prakash Gupta, Donald Metzler, and Lucy Vasser-
man. 2022. A new generation of perspective API:
efficient multilingual character-level transformers.
CoRR, abs/2202.11176.

Daniel Link, Bernd Hellingrath, and Jie Ling. 2016.
A human-is-the-loop approach for semi-automated
content moderation. In 13th Proceedings of the In-
ternational Conference on Information Systems for
Crisis Response and Management, Rio de Janeiro,
Brasil, May 22-25, 2016. ISCRAM Association.

John Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2017. Deep learning for user com-
ment moderation. In Proceedings of the First Work-
shop on Abusive Language Online, ALW@ACL 2017,
Vancouver, BC, Canada, August 4, 2017, pages 25–
35. Association for Computational Linguistics.

Jing Qian, Anna Bethke, Yinyin Liu, Elizabeth M. Beld-
ing, and William Yang Wang. 2019. A benchmark
dataset for learning to intervene in online hate speech.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 4754–4763.
Association for Computational Linguistics.

Ajay Rastogi and Monica Mehrotra. 2017. Opinion
spam detection in online reviews. J. Inf. Knowl.
Manag., 16(4):1750036:1–1750036:38.

Marcos Rodrigues Saude, Marcelo de Medeiros Soares,
Henrique Gomes Basoni, Patrick Marques Ciarelli,
and Elias Oliveira. 2014. A strategy for automatic
moderation of a large data set of users comments.
In XL Latin American Computing Conference, CLEI
2014, Montevideo, Uruguay, September 15-19, 2014,
pages 1–7. IEEE.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Prakash
Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin,
Simon Baumgartner, Cong Yu, and Donald Met-
zler. 2021. Charformer: Fast character transform-
ers via gradient-based subword tokenization. CoRR,
abs/2106.12672.

Turki Turki and Sanjiban Sekhar Roy. 2022. Novel
hate speech detection using word cloud visualization
and ensemble learning coupled with count vectorizer.
Applied Sciences, 12(13).

Shunya Ueta, Suganprabu Nagaraja, and Mizuki Sango.
2020. Auto content moderation in C2C e-commerce.
In 2020 USENIX Conference on Operational Ma-
chine Learning, OpML 2020, July 28 - August 7,
2020. USENIX Association.

Andreas A. Veglis. 2014. Moderation techniques for
social media content. In Social Computing and So-
cial Media - 6th International Conference, SCSM
2014, Held as Part of HCI International 2014, Herak-
lion, Crete, Greece, June 22-27, 2014. Proceedings,
volume 8531 of Lecture Notes in Computer Science,
pages 137–148. Springer.

Adriano Veloso, Wagner Meira Jr., Tiago Alves Macam-
bira, Dorgival O. Guedes, and Hélio Marcos Paz
de Almeida. 2007. Automatic moderation of com-
ments in a large on-line journalistic environment. In
Proceedings of the First International Conference on
Weblogs and Social Media, ICWSM 2007, Boulder,
Colorado, USA, March 26-28, 2007.

Md. Anwar Hussen Wadud, Muhammad F. Mridha,
Jungpil Shin, Kamruddin Nur, and Aloke Kumar
Saha. 2023. Deep-bert: Transfer learning for clas-
sifying multilingual offensive texts on social media.
Comput. Syst. Sci. Eng., 44(2):1775–1791.

A Obfuscation techniques

Augmentation techniques are used to create more
data for profane and hate speech content by adding
multiple obfuscation techniques described in Table
5. Data augmentation certainly gives a boost to
profane content F1 scores by 18%.

Table 5: Various data augmentation techniques that we
used on an example profane word "bullshit"

Technique Augmented phrases
Replace characters with * bu**sh*t, bullsh*t
Drop vowels randomly bllsht, bullsht
Repeating characters bullllshiiiitt
Random case changing buLLshIT
Add random spaces bu llshi t, bull shit
Replace similar-looking characters bull 5h!t, bu!! śhît

557

Proceedings of EMNLP 2022 Industry Track, pages 558–569
December 9–11, 2020. ©2022 Association for Computational Linguistics

SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval

Kun Zhou1,3†, Yeyun Gong4, Xiao Liu4, Wayne Xin Zhao2,3∗, Yelong Shen5, Anlei Dong5,
Jingwen Lu5, Rangan Majumder5, Ji-Rong Wen2,3, Nan Duan4, Weizhu Chen5

1School of Information, Renmin University of China,
2Gaoling School of Artificial Intelligence, Renmin University of China,

3Beijing Key Laboratory of Big Data Management and Analysis Methods,
4Microsoft Research, 5Microsoft

Abstract

Sampling proper negatives from a large docu-
ment pool is vital to effectively train a dense
retrieval model. However, existing negative
sampling strategies suffer from the uninforma-
tive or false negative problem. In this work,
we empirically show that according to the mea-
sured relevance scores, the negatives ranked
around the positives are generally more infor-
mative and less likely to be false negatives.
Intuitively, these negatives are not too hard
(may be false negatives) or too easy (uninfor-
mative). They are the ambiguous negatives
and need more attention during training. Thus,
we propose a simple ambiguous negatives sam-
pling method, SimANS, which incorporates a
new sampling probability distribution to sample
more ambiguous negatives. Extensive experi-
ments on four public and one industry datasets
show the effectiveness of our approach. We
made the code and models publicly available in
https://github.com/microsoft/SimXNS.

1 Introduction

Dense text retrieval, which uses low-dimensional
vectors to represent queries and documents and
measure their relevance, has become a popular
topic (Karpukhin et al., 2020; Luan et al., 2021)
for both researchers and practitioners. It can im-
prove various downstream applications, e.g., web
search (Brickley et al., 2019; Qiu et al., 2022) and
question answer (Izacard and Grave, 2021). A key
challenge for training a dense text retrieval model
is how to select appropriate negatives from a large
document pool (i.e., negative sampling), as most
existing methods use a contrastive loss (Karpukhin
et al., 2020; Xiong et al., 2021) to encourage the
model to rank positive documents higher than neg-
atives. However, the commonly-used negative
sampling strategies, namely random negative sam-
pling (Luan et al., 2021; Karpukhin et al., 2020)

†† This work was done during internship at MSRA.
∗∗ Corresponding author, email: batmanfly@gmail.com.

(using random documents in the same batch) and
top-k hard negatives sampling (Xiong et al., 2021;
Zhan et al., 2021) (using an auxiliary retriever to
obtain the top-k documents), have their limitations.
Random negative sampling tends to select uninfor-
mative negatives that are rather easy to be distin-
guished from positives and fail to provide useful
information (Xiong et al., 2021), while top-k hard
negatives sampling may include false negatives (Qu
et al., 2021), degrading the model performance.

Motivated by these problems, we propose to sam-
ple the ambiguous negatives 1 that are neither too
easy (uninformative) nor too hard (potential false
negatives). Our approach is inspired by an empir-
ical observation from experiments (in §3) using
gradients to assess the impact of data instances on
deep models (Koh and Liang, 2017; Pruthi et al.,
2020): according to the measured relevance scores
using the dense retrieval model, negatives that rank
lower are mostly uninformative, as their gradient
means are close to zero; negatives that rank higher
are likely to be false negatives, as their gradient
variances are significantly higher than expected.
Both types of negatives are detrimental to the con-
vergence of deep matching models (Xiong et al.,
2021; Qu et al., 2021). Interestingly, we find that
the negatives ranked around positive examples tend
to have relatively larger gradient means and smaller
variances, indicating that they are informative and
have a lower risk of being false negatives, thus
probably being high-quality ambiguous negatives.

Based on these insights, we propose a Simple
Ambiguous Negative Sampling method, namely
SimANS, for improving deep text retrieval. Our
main idea is to design a sampling probability distri-
bution that can assign higher probabilities to the am-
biguous negatives while lower probabilities to the

1We call them ambiguous negatives following the def-
inition of ambiguous examples (Swayamdipta et al., 2020;
Meissner et al., 2021), referring to the instances that are nei-
ther too hard nor too easy to learn.

558

possible false and uninformative negatives, based
on the differences of the relevance scores between
positives and candidate negatives. We also incorpo-
rate two hyper-parameters to better adjust the peak
and density of the sampling probability distribu-
tion. Our approach is simple and flexible, which
can be easily applied to various dense retrieval mod-
els and combined with other effective techniques,
e.g., knowledge distillation (Qu et al., 2021) and
adversarial training (Zhang et al., 2021).

To validate the effectiveness of SimANS, we
conduct extensive experiments on four public
datasets and one industrial dataset collected from
Bing search logs. Experimental results show that
SimANS can improve the performance of competi-
tive baselines, including state-of-the-art methods.

2 Preliminary

Dense Text Retrieval. Given a query q, the dense
text retrieval task aims to retrieve the most relevant
top-k documents {di}ki=1 from a large candidate
pool D. To achieve it, the dual-encoder architec-
ture is widely used due to its efficiency (Reimers
and Gurevych, 2019; Karpukhin et al., 2020). It
consists of a query encoder Eq and a document
encoder Ed to map the query q and document d
into k-dimensional dense vectors hq and hd, re-
spectively. Then, the semantic relevance score of q
and d can be computed using dot product as

s(q, d) = hq · hd. (1)

Recent works mostly adopt pre-trained language
models (PLMs) (Devlin et al., 2019) as the two en-
coders, and utilize the representations of the [CLS]
token as dense vectors.

Training with Negative Sampling. The training
objective of dense text retrieval task is to pull the
representations of the query q and relevant doc-
uments D+ together (as positives), while push-
ing apart irrelevant ones D− = D \ D+ (as neg-
atives). However, the irrelevant documents are
from a large document pool, which would lead
to millions of negatives. To reduce the unreachable
training cost, negative sampling has been widely
used. Previous works either randomly sample neg-
atives (Karpukhin et al., 2020), or select the top-k
hard negatives ranked by BM25 or the dense re-
trieval model itself (Xiong et al., 2021; Qu et al.,
2021), denoted as D̃−. Then, the optimization ob-

jective can be formulated as:

θ∗ = argmin
θ

∑

q

∑

d+∈D+

∑

d−∈D̃−

L(s(q, d+), s(q, d−)),

(2)

where L(·) is the loss function.

3 Motivation Study

We first analyze the uninformative and false neg-
ative problems from the perspective of gradients.
Then, we perform an empirical study to test how
gradients of negatives change w.r.t. ranks accord-
ing to measured relevance scores using a dense
retrieval model, and find that the gradients of neg-
atives ranked near positives have relatively larger
means and smaller variances.

3.1 Analysis for Gradients of Negatives
Existing dense retrieval methods (Karpukhin et al.,
2020; Xiong et al., 2021) commonly incorporate
the binary cross entropy (BCE) loss to compute
gradients 2, where the relevance scores of a positive
and sampled negatives are usually normalized by
the softmax function. In this way, the gradients of
model parameters θ are computed by

▽θl(q, d) =

{
(sn(q, d)− 1)▽θ sn(q, d) if d ∈ D+

sn(q, d)▽θ sn(q, d) if d ∈ D−

where sn(q, d) is the normalized value of s(q, d)
and is within [0, 1]. Based on it, we review the
gradients of uninformative and false negatives. Un-
informative negatives can be easily distinguished
by dense retrieval models, and are more likely to be
selected by random sampling (Xiong et al., 2021).
As their normalized relevance scores are usually
rather small, i.e., sn(q, d) −→ 0, their gradient
means will be bounded into near-zero values, i.e.,
▽θl(q, d) −→ 0. Such near-zero gradients are
also uninformative and contribute little to model
convergence. False negatives are usually seman-
tically similar to positives, and are more likely to
be selected by top-k hard negatives sampling (Qu
et al., 2021). Therefore, for the gradients of false
negatives and positives, the right terms▽θsn(q, d)
may be similar, while the left terms are greater
than zero and less than 0, respectively. As a result,
the variance of gradients will be larger, which may
cause the optimization of parameters to be unstable.
Furthermore, existing works (Katharopoulos and
Fleuret, 2018; Johnson and Guestrin, 2018) have

2In this work, we perform the analysis using BCE loss,
and such analysis can also be extended to other loss functions.

559

20 40 60 80 100 120 140 160 180
Ranks

0.00

0.25

0.50

0.75

1.00

Mean Rank of Positives

Normalized Gradient Mean Normalized Gradient Variance

Figure 1: The mean and variance of gradients change
curves w.r.t. the ranks of negatives on MS-MARCO
Passage Ranking dataset using AR2 (Zhang et al., 2021).

theoretically proved that larger gradient variance is
detrimental to model convergence.

3.2 Empirical Study on Gradients of
Negatives w.r.t. Relevance Scores

Although we have analyzed that the harmful influ-
ence of uninformative and false negatives derives
from the smaller means and larger variances of
gradients respectively, it is time-consuming to com-
pute gradients of all candidate negatives to identify
and remove them. Here, we empirically study if the
query-document relevance scores can be leveraged
to avoid sampling these harmful negatives.

Experimental Setup. We use AR2 (Zhang et al.,
2021) as the retrieval model and investigate its gra-
dients on the development set of MS-MARCO Pas-
sage Ranking dataset (Nguyen et al., 2016). Con-
cretely, for each query, we rank all negatives ac-
cording to their relevance scores, and compute the
means and variances of gradients of all negatives
in the same rank 3. To better show the tendency
w.r.t. ranks of relevance scores, we normalize the
means and variances of gradients by dividing the
maximum values, and only report the results of top
200 ranked negatives.

Results and Findings. As shown in Figure 1, the
mean and variance of gradients will gradually de-
crease with the increase of the rank. Despite that,
the gradient means of the top 200 negatives are still
in the same order of magnitude (1.0 −→ 0.25),
while the gradient variances of the top 10 ranked
negatives are significantly larger than others. The
reason is that the higher-ranking negatives have
larger probabilities to be false negatives. Besides,
a surprising finding is that the mean rank of posi-

3As AR2 adopts ERNIE-2.0 (Sun et al., 2020) as the
backbone that has millions of parameters, we only compute
gradients on the parameters of its last layer for efficiency.

tives is approximate the boundary point of the high
gradient variance part and the negatives near it can
produce relatively larger gradient means and lower
gradient variances. It means that they are high-
quality ambiguous negatives that can balance the
informativeness and the risk of being false neg-
atives. Therefore, it is promising to rely on the
relevance scores of positives and candidate nega-
tives to devise more effective negative sampling
methods for training dense retrieval models.

4 Approach

Based on the findings in §3, we conjecture that the
ambiguous negatives ranked near positives accord-
ing to relevance scores are high-quality negatives,
as they are neither too easy (uninformative) nor
too hard (may be false negatives). Therefore, we
propose a simple ambiguous negative sampling
method, namely SimANS.

4.1 Ambiguous Negative Sampling

To focus on sampling ambiguous negatives, we
design a new sampling probability distribution that
can estimate the influence of each negative using
the dense retrieval models. As follows, we first
devise a general sampling distribution and then
propose its simple and efficient implementation.

General Sampling Distribution. We draw the fol-
lowing conclusions from our results about how to
choose a good sampling probability distribution for
negatives: (1) Negatives that are clearly irrelevant
and have low relevance scores should be sampled
less frequently; (2) Negatives that are highly rel-
evant and have high relevance scores should also
be sampled less frequently, because they are more
likely to be positives in disguise; (3) Negatives that
are uncertain and have relevance scores similar to
positives should be sampled more frequently, be-
cause they provide useful information and have a
lower chance of being false negatives. We propose
a general formula for negative sampling probability
that reflects these principles:

pi ∝ f(|s(q, di)− s̄(q, d+)− b|), ∀ di ∈ D \ D+, (3)

where f(·) is a function to determine the ten-
dency of the probability distribution, b is a hyper-
parameter to control the peak of the distribution,
s̄(q, d+) is the mean relevance score of all posi-
tives with the query. f(·) should be a monotone

560

decreasing function (e.g., e−x). In this way, the neg-
atives with the relevance scores close to positives
can be assigned with larger probabilities, while oth-
ers with smaller or larger scores will be punished
with smaller probabilities. Such a distribution can
satisfy the required three characteristics.

Simple Negative Sampling Distribution. We rely
on several empirical priors to determine a simple
and efficient implementation of the above sampling
probability distribution. Generally, the relevance
scores of positives and negatives are bounded by
the modulus of dense vectors, hence they are mostly
in a same order of magnitude. To ensure that the
probabilities of ambiguous negatives should be sig-
nificantly larger than other ones, we choose the
exponential function to implement f(·). As a large
proportion of negatives from D \ D+ are uninfor-
mative ones, their smaller relevance scores would
lead to near-zero probabilities using the exponential
function. Therefore, we can reduce the computa-
tion cost by narrowing the negative candidates into
the top-k ranked negatives D̃−. In addition, to fur-
ther reduce the cost, we also replace the mean rel-
evance score of all positives s̄(q, d+) by the score
of a randomly sampled positive s(q, d̃+). Finally,
we can reformulate the sampling probability distri-
bution in equation (3) as:

pi ∝ exp (−a(s(q, di)− s(q, d̃+)− b)2), ∀ di ∈ D̃−, (4)

where a is a hyper-parameter to control the den-
sity of the distribution, d̃+ ∈ D+ is a randomly
sampled positive, D̃− is the top-k ranked negatives.
In this way, the complexity of computing the sam-
pling probability distribution will be reduced into
O(k), where k ≪ |D| and we set it to 100.

4.2 Overview and Discussion

Overview. Given a mini-batch, SimANS contains
three major steps to obtain the ambiguous negatives.
The first step is the same as previous top-k hard
negatives sampling methods (Xiong et al., 2021;
Qu et al., 2021) that select the top-k ranked neg-
atives D̃− from the candidate pool D \ D+ using
an ANN search tool (e.g., FAISS (Johnson et al.,
2019)). Second, we compute the sampling probabil-
ities for all the top-k negatives using equation (4).
To reduce the time cost, we can pre-compute them
in the first step. Finally, we sample the ambigu-
ous negatives w.r.t. their sampling probabilities.
We present the overall algorithm in Algorithm 1.

Algorithm 1: The algorithm of SimANS.
Input: Queries and their positive documents

{(q,D+)}, document pool D, pre-learned
dense retrieval model M

1 Build the ANN index on D using M .
2 Retrieve the top-k ranked negatives D̃− for each

query with their relevance scores {s(q, di)} from D.
3 Compute the relevance scores of each query and its

positive documents {s(q,D+)}.
4 Generate the sampling probabilities of retrieved top-k

negatives {pi} for each query using Eq. 3.
5 Construct new training data {(q,D+, D̃−)}.
6 while M has not converged do
7 Sample a batch from {(q,D+, D̃−)}.
8 Sample ambiguous negatives for each instance

from the batch according to {pi}.
9 Optimize parameters of M using the batch and

sampled negatives.
10 end

Note that our proposed SimANS is a negative sam-
pling method and applicable to a variety of dense
retrieval methods.

Relationship with Other Methods. SimANS aims
to sample the ambiguous negatives that rank close
to the positives according to relevance scores for
improving the training of dense retrieval models. It
is a general framework that several previous nega-
tive sampling methods can be included:
• Choosing negative examples randomly

means picking them from a big collection of doc-
uments with equal chances for each one. We
can also use our method to do this by setting
b = s(q, di) − s(q, d̃+) and making D̃− include
all the documents in the collection. But this is not
a good idea, because most of the documents in the
collection are not relevant to the query and do not
help us learn from the feedback. They are easy to
sample but not useful for training.
• Top-k hard negatives sampling utilizes an

auxiliary retriever (e.g., BM25 (Karpukhin et al.,
2020) or DPR (Xiong et al., 2021)) to rank all
negative candidates and pick the top-k ones as neg-
atives. By setting b = −s(q, d̃+) and a = − inf ,
our method can also produce extremely large prob-
abilities to the top-k negatives. Whereas, the top-k
ones have a higher risk to be false negatives, which
are harmful to convergence.

5 Experiments

5.1 Experimental Setting

We extensively evaluate SimANS by conducting ex-
periments on three public passage retrieval datasets:

561

Datasets Training Dev Test Documents
NQ 58,880 8,757 3,610 21,015,324
TQ 60,413 8,837 11,313 21,015,324
MS Pas 502,939 6,980 - 8,841,823
MS Doc 367,013 5,193 - 3,213,835
Bing 1,861,102 8,013 - 5,335,927

Table 1: Statistics of the five text retrieval datasets.

Natural Question (NQ) (Kwiatkowski et al., 2019),
Trivia QA (TQ) (Joshi et al., 2017) and MS-
MARCO Passage Ranking (MS Pas) (Nguyen et al.,
2016), a public document retrieval dataset: MS-
MARCO Document Ranking (MS Doc) (Nguyen
et al., 2016), and an industry dataset that is col-
lected from Bing search logs. Their statistics are
shown in Table 1. The details of datasets, baselines
and implementations are presented in Appendix.

5.2 Results Analysis

Performance on Public Retrieval Datasets. Ta-
ble 2 and Table 3 show the experimental results on
three public passage retrieval datasets. First, we can
see that AR2 outperforms most baseline methods
on all datasets. AR2 incorporates an adversarial
training framework to iteratively improve the re-
triever and ranker. Second, SimANS can further
improve the performance of AR2, and outperform
all baselines in terms of all the metrics across all
datasets. SimANS only incorporates a new nega-
tive sampling strategy based on AR2, which aims
to sample the ambiguous negatives that are neither
too hard (potential false negatives) or too easy (un-
informative). According to the findings in §3, such
a way can alleviate the uninformative and false neg-
ative problems that are frequently encountered in
commonly-used random and top-k negatives sam-
pling methods, and is able to sample high-quality
negatives that contribute more to the model con-
vergence. Besides, the improvements of SimANS
on AR2 are larger in MS Pas and Doc datasets
than others. The reason is that the two datasets are
collected from real-world search logs that suffer
severely from the false negative problem, whereas
SimANS is capable of alleviating this problem and
provides better negatives for training.

Performance on Bing Industry Dataset. For the
Bing industry dataset, we adopt a dual-encoder
mBERT (Devlin et al., 2019) as the baseline model
to deal with multilingual queries and documents,
and implement different negative sampling strate-

gies on it. We simply evaluate the last checkpoint
after training and report the results on the develop-
ment set. As shown in Table 4, after applying the
top-k hard negatives sampling, the performance of
the baseline model is improved by a large margin.
It indicates that hard negatives are more effective
than randomly sampled ones. Furthermore, we
can see that SimANS outperforms all other nega-
tive sampling methods, especially in Hit@5 (2%
absolute improvement). It demonstrates the effec-
tiveness of SimANS in industrial scenarios. As a
comparison, SimANS is able to alleviate the un-
informative and false negatives problems that the
random and top-k negatives sampling strategies
may suffer, respectively.

5.3 Further Analysis

Applying SimANS to Other Models. Since
SimANS is a general negative sampling strategy, it
can be applied to a variety of dense retrieval meth-
ods. Thus, in this part, we implement SimANS on
two representative methods, ANCE (Xiong et al.,
2021) and RocketQA (Qu et al., 2021), as they
adopt effective techniques as asynchronous index
refresh and knowledge distillation, respectively.
We only replace the negative sampling strategies in
these methods with SimANS and conduct experi-
ments on TQ and NQ datasets. As shown in Table 5,
our approach can consistently improve the perfor-
mance of the two methods. It shows that SimANS
is general to various dense retrieval methods with
different techniques and can provide more high-
quality negatives to improve their performance.

Variation Study. Our proposed SimANS incor-
porates a new negative sampling probability dis-
tribution that is based on the differences between
the query-document relevance scores of positives
and negative candidates. To verify the effective-
ness of this distribution, we design two varia-
tions of SimANS: (1) Doc-Sim that leverages the
document-document relevance scores between pos-
itives and negative candidates to replace the query-
document relevance scores; (2) Nearest-K that
directly picks the top-k nearest negatives accord-
ing to the differences of query-document relevance
scores instead of sampling. We implement these
variations on AR2 and conduct experiments on the
development set of MS Pas dataset. As shown in
Table 6, SimANS outperforms all these variations.
It indicates the effectiveness of our devised ambigu-

562

Method NQ TQ MS Pas
R@5 R@20 R@100 R@5 R@20 R@100 MRR@10 R@50 R@1k

BM25 (Yang et al., 2017) - 59.1 73.7 - 66.9 76.7 18.7 59.2 85.7
GAR (Mao et al., 2021) 60.9 74.4 85.3 73.1 80.4 85.7 - - -
doc2query (Nogueira et al., 2019b) - - - - - - 21.5 64.4 89.1
DeepCT (Dai and Callan, 2019) - - - - - - 24.3 69.0 91.0
docTTTTTquery (Nogueira et al., 2019a) - - - - - - 27.7 75.6 94.7
DPR (Karpukhin et al., 2020) - 78.4 85.3 - 79.3 84.9 - - -
ANCE (Xiong et al., 2021) 71.8 81.9 87.5 - 80.3 85.3 33.0 81.1 95.9
COIL (Gao et al., 2021a) - - - - - - 35.5 - 96.3
ME-BERT (Luan et al., 2021) - - - - - - 33.8 - -
Joint top-k (Sachan et al., 2021) 72.1 81.8 87.8 74.1 81.3 86.3 - - -
Individual top-k (Sachan et al., 2021) 75.0 84.0 89.2 76.8 83.1 87.0 - - -
RocketQA (Qu et al., 2021) 74.0 82.7 88.5 - - - 37.0 85.5 97.9
RDR (Yang and Seo, 2020) - 82.8 88.2 - 82.5 87.3 - - -
RocketQAv2 (Ren et al., 2021b) 75.1 83.7 89.0 38.8 86.2 98.1
PAIR (Ren et al., 2021a) 74.9 83.5 89.1 - - - 37.9 86.4 98.2
DPR-PAQ (Oğuz et al., 2022) 74.2 84.0 89.2 - - - 31.1 - -
Condenser (Gao and Callan, 2021) - 83.2 88.4 - 81.9 86.2 36.6 - 97.4
coCondenser (Gao and Callan, 2022) 75.8 84.3 89.0 76.8 83.2 87.3 38.2 - 98.4
ERNIE-Search (Lu et al., 2022) 77.0 85.3 89.7 - - - 40.1 87.7 98.2
AR2 (Zhang et al., 2021) 77.9 86.0 90.1 78.2 84.4 87.9 39.5 87.8 98.6
AR2+SimANS 78.6 86.2 90.3 78.6 84.6 88.1 40.9 88.7 98.7

Table 2: Performance on the test sets of NQ and TQ, and the development set of MS Pas. The results of baselines
are from original papers. The best and second-best methods are marked in bold and underlined, respectively.

Method MRR@10 R@100
BM25 0.279 0.807
DPR (Karpukhin et al., 2020) 0.320 0.864
ANCE (Xiong et al., 2021) 0.377 0.894
STAR (Zhan et al., 2021) 0.390 0.913
ADORE (Zhan et al., 2021) 0.405 0.919
AR2 (Zhang et al., 2021) 0.418 0.914
AR2+SimANS 0.431 0.923

Table 3: Performance on MS Doc development set.

Method R@5 R@20 R@100
Baseline+Random Neg 39.5 59.0 76.2
Baseline+top-k Neg 57.1 73.5 85.1
Baseline+SimANS 59.1 74.9 85.6

Table 4: Experimental results on Bing Industry dataset.

ous negative sampling probability distribution. For
Doc-Sim, it is likely to select the false negatives
that have similar semantics to positives, hurting the
model performance. For Nearest-K, as it always
selects fixed negatives, it may cause overfitting.

Parameter Tuning. Our SimANS has two im-
portant hyper-parameters to tune, a and b, which
control the density and peak of the sampling prob-
ability distribution, respectively. Here, we investi-
gate the performance change of SimANS on AR2
w.r.t. different a and b on NQ dataset. As shown
in Figure 2, our approach achieves the best perfor-
mance when a = 0.5 and b = 0. It indicates that

Method TQ NQ
R@5 R@20 R@5 R@20

ANCE 72.4 80.3 71.8 81.9
ANCE+SimANS 74.8 82.1 74.3 83.0
RocketQA 76.1 83.0 74.0 82.7
RocketQA+SimANS 77.1 83.6 76.7 84.8

Table 5: The retrieval performance of applying our
method on other baselines on TQ and NQ datasets

Method MRR@10 R@1 R@50 R@1k
AR2 39.5 26.4 87.8 98.6
AR2+Doc-Sim 40.1 27.3 88.0 98.6
AR2+Nearest-K 40.5 27.6 88.5 98.7
AR2+SimANS 40.9 28.2 88.7 98.7

Table 6: The variation study of our method in AR2 on
MS Pas development set.

0 0.5 1.0 2.0 4.0 8.0
0.55

0.61

0.67

0.73

0.79

Recall@1 Recall@5

(a) a: density hyper-parameter

0 1.0 2.0 4.0 8.0
0.55

0.61

0.67

0.73

0.79

Recall@1 Recall@5

(b) b: peak hyper-parameter

Figure 2: Performance comparison w.r.t. hyper-
parameters a and b on NQ dataset.

when the maximum point of the distribution has
the same relevance score as the positive, the nega-

563

Ratio AR2 AR2+SimANS
R@5 Latency R@5 Latency

1 : 1 76.4 210ms 77.5 210ms
1 : 5 76.9 330ms 78.1 340ms
1 : 11 77.1 510ms 78.3 540ms
1 : 15 77.9 630ms 78.7 650ms

Table 7: The retrieval performance and training latency
w.r.t. different sampled negative ratios on NQ dataset.

10000 20000 30000 40000 50000
Steps

0.500

0.575

0.650

0.725

0.800

H
it@

1 Start Training with SimANS

Hit@1 on Training Set Hit@1 on Test Set

Figure 3: Hit@1 of AR2+SimANS on training and test
sets of NQ w.r.t. training steps.

tive sampling probability distribution can produce
more high-quality negatives. Moreover, we notice
that the model performance is not very sensitive to
the two hyper-parameters if they are properly set
within a certain range.

Impact of the Sampled Negative Ratio. We inves-
tigate the impact of the sampled negative ratio 1 : k
on retrieval performance and training latency per
batch of SimANS on AR2. As shown in Table 7,
with the increase of the sampled negative number,
the performance improves consistently while the
training latency increases. Besides, SimANS just
slightly increases the training latency of AR2. It is
because we can pre-compute the sampling probabil-
ities before training, which avoids time-consuming
computation during training.

Performance w.r.t. Training Steps. Our approach
requires continually training the model parameters
that have been pre-trained by the original dense
retrieval method. Here, we investigate the per-
formance changes of the dense retrieval method
before and after using SimANS w.r.t. the train-
ing steps. We conduct experiments on AR2 and
show the Hit@1 metric on NQ dataset in Figure 3.
First, we can see that with the increase of the
training steps, the performance of AR2 on train-
ing and test sets improves simultaneously. After
applying our SimANS, we can see that the perfor-
mance further improves, especially in the training
set (0.777 −→ 0.791). It indicates that our ap-

proach is capable of improving the fitting of the
training set, and such an improvement can also
generalize to the test set.

6 Conclusion

We investigated how the gradient statistics of neg-
ative documents affect their relevance ranking for
dense text retrieval. We discovered that negative
documents with high gradient means and low gra-
dient variances are more likely to be ambiguous
negatives, which are informative and less prone
to false negatives. Based on this insight, we pro-
posed SimANS, a novel negative sampling method
that balances the difficulty of negative examples by
adjusting their sampling probabilities. SimANS im-
proved the performance of various dense retrieval
models on four public and one industrial datasets.
We plan to apply our method to other informa-
tion retrieval tasks, such as personal recommenda-
tion, and to develop better pre-training schemes for
dense text retrieval in the future.

Acknowledgement

Kun Zhou, Wayne Xin Zhao and Ji-Rong Wen
are supported by Beijing Natural Science Foun-
dation under Grant No. 4222027, and Na-
tional Natural Science Foundation of China un-
der Grant No. 61872369, Beijing Outstand-
ing Young Scientist Program under Grant No.
BJJWZYJH012019100020098, and the Outstand-
ing Innovative Talents Cultivation Funded Pro-
grams 2021. Xin Zhao is the corresponding author.

Ethical Consideration

In this section, we discuss the ethical considera-
tions of this work from the following two aspects.
First, for intellectual property protection, the code,
data and dense retrieval models adopted from previ-
ous works are granted for research-purpose usage.
Second, since PLMs have been shown to capture
certain biases from the pre-trained corpus (Bender
et al., 2021), there is a potential problem about bi-
ases that are from the use of PLMs in our approach.
There are increasing efforts to address this problem
in the community (Ross et al., 2021).

References
Emily M Bender, Timnit Gebru, Angelina McMillan-

Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models

564

be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

Dan Brickley, Matthew Burgess, and Natasha Noy. 2019.
Google dataset search: Building a search engine for
datasets in an open web ecosystem. In WWW.

Zhuyun Dai and Jamie Callan. 2019. Deeper text un-
derstanding for ir with contextual neural language
modeling. In SIGIR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Luyu Gao and Jamie Callan. 2021. Is your language
model ready for dense representation fine-tuning?
arXiv preprint arXiv:2104.08253.

Luyu Gao and Jamie Callan. 2022. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. In ACL, pages 2843–2853.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a.
COIL: revisit exact lexical match in information re-
trieval with contextualized inverted list. In NAACL-
HLT.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan.
2021b. Scaling deep contrastive learning batch size
under memory limited setup. In Proceedings of the
6th Workshop on Representation Learning for NLP
(RepL4NLP-2021).

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Ef-
ficiently teaching an effective dense retriever with
balanced topic aware sampling. In Proceedings of
the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 113–122.

Wu Hong, Zhuosheng Zhang, Jinyuan Wang, and Hai
Zhao. 2022. Sentence-aware contrastive learning for
open-domain passage retrieval. In ACL, pages 1062–
1074.

Gautier Izacard and Édouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Tyler B Johnson and Carlos Guestrin. 2018. Training
deep models faster with robust, approximate impor-
tance sampling. Advances in Neural Information
Processing Systems, 31.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In EMNLP.

Angelos Katharopoulos and François Fleuret. 2018. Not
all samples are created equal: Deep learning with
importance sampling. In International conference on
machine learning, pages 2525–2534. PMLR.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International conference on machine learning, pages
1885–1894. PMLR.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Yuxiang Lu, Yiding Liu, Jiaxiang Liu, Yunsheng Shi,
Zhengjie Huang, Shikun Feng Yu Sun, Hao Tian, Hua
Wu, Shuaiqiang Wang, Dawei Yin, et al. 2022. Ernie-
search: Bridging cross-encoder with dual-encoder via
self on-the-fly distillation for dense passage retrieval.
arXiv preprint arXiv:2205.09153.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of the
Association for Computational Linguistics, 9:329–
345.

Kelong Mao, Zhicheng Dou, and Hongjin Qian. 2022.
Curriculum contrastive context denoising for few-
shot conversational dense retrieval. In SIGIR, pages
176–186.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.
2021. Generation-augmented retrieval for open-
domain question answering. In ACL.

Johannes Mario Meissner, Napat Thumwanit, Saku Sug-
awara, and Akiko Aizawa. 2021. Embracing ambi-
guity: Shifting the training target of nli models. In
ACL, pages 862–869.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. Ambigqa: Answering am-
biguous open-domain questions. In EMNLP, pages
5783–5797.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPS.

565

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019a.
From doc2query to doctttttquery. Online preprint.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019b. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick
Lewis, Vladimir Karpukhin, Aleksandra Piktus,
Xilun Chen, Sebastian Riedel, Wen-tau Yih, Sonal
Gupta, et al. 2022. Domain-matched pre-training
tasks for dense retrieval. In Findings of NAACL.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. Advances in Neural
Information Processing Systems, 33:19920–19930.

Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, Qiaoqiao
She, Jing Liu, Hua Wu, and Haifeng Wang. 2022.
Dureader_retrieval: A large-scale chinese benchmark
for passage retrieval from web search engine. arXiv
preprint arXiv:2203.10232.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In NAACL-HLT.

Ori Ram, Gal Shachaf, Omer Levy, Jonathan Berant,
and Amir Globerson. 2022. Learning to retrieve
passages without supervision. In NAACL.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu,
Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng
Wang, and Ji-Rong Wen. 2021a. PAIR: leverag-
ing passage-centric similarity relation for improving
dense passage retrieval. In Findings of ACL/IJCNLP.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
Qiaoqiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021b. Rocketqav2: A joint training method
for dense passage retrieval and passage re-ranking.
In EMNLP, pages 2825–2835.

Candace Ross, Boris Katz, and Andrei Barbu. 2021.
Measuring social biases in grounded vision and lan-
guage embeddings. In NAACL, pages 998–1008.

Devendra Singh Sachan, Mostofa Patwary, Mohammad
Shoeybi, Neel Kant, Wei Ping, William L. Hamilton,
and Bryan Catanzaro. 2021. End-to-end training of
neural retrievers for open-domain question answering.
In ACL/IJCNLP.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0:
A continual pre-training framework for language un-
derstanding. In AAAI.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
EMNLP, pages 9275–9293.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In ICLR.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2022. Laprador: Unsupervised pretrained dense re-
triever for zero-shot text retrieval. In Findings of
ACL, pages 3557–3569.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the use of lucene for information retrieval
research. In SIGIR.

Sohee Yang and Minjoon Seo. 2020. Is retriever
merely an approximator of reader? arXiv preprint
arXiv:2010.10999.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021. Optimizing dense
retrieval model training with hard negatives. In SI-
GIR.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2020. Repbert: Contextualized text
embeddings for first-stage retrieval. arXiv preprint
arXiv:2006.15498.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv,
Nan Duan, and Weizhu Chen. 2021. Adversarial
retriever-ranker for dense text retrieval. In Interna-
tional Conference on Learning Representations.

Jiawei Zhou, Xiaoguang Li, Lifeng Shang, Lan Luo,
Ke Zhan, Enrui Hu, Xinyu Zhang, Hao Jiang, Zhao
Cao, Fan Yu, et al. 2022a. Hyperlink-induced pre-
training for passage retrieval in open-domain ques-
tion answering. In ACL, pages 7135–7146.

Kun Zhou, Beichen Zhang, Wayne Xin Zhao, and Ji-
Rong Wen. 2022b. Debiased contrastive learning of
unsupervised sentence representations. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6120–6130.

566

𝑑+

𝑑−

𝑑−

𝑑−

𝑑−

𝑑−
𝑑−

Ambiguous Negatives

Positive Document

Too Easy Negatives

Too Hard Negatives

𝑞

Figure 4: An example of the dense embedding distribu-
tion of a query with its positive document, too easy, too
hard and ambiguous negatives.

A Illustration of Ambiguous Negatives

We illustrate the distribution of the dense embed-
dings of a query with its positive document, too
easy, too hard and ambiguous negatives in Figure 4.
Too hard negatives have a higher risk of being false
negatives, and we can see that their dense embed-
dings locate closely to the ones of the query and
the positive. If we learn to push them away, the
distances between the embeddings of the query and
the positive may also be enlarged, which is harmful
to the goal of pulling the query and its positives
together. Besides, too easy negatives locate rather
far from the query, hence it is unnecessary to learn
to push them even further. As a comparison, the
ambiguous negatives have similar distances as the
positive, which compose the circular boundary for
the document pool consisting of hard negatives re-
quired to learn (i.e., push away). In this way, our
SimANS can be seen as always sampling the bor-
derline hard negatives from the document pool. By
learning to push them away, we can narrow the
circular boundary of hard negatives, which helps
gradually achieve the goal that pulls the query and
positives together while pushing apart negatives.

B More Details on Datasets

We conduct experiments on five datasets, consist-
ing of three passage retrieval datasets: Natural
Question (NQ) (Kwiatkowski et al., 2019), Trivia
QA (TQ) (Joshi et al., 2017) and MS-MARCO Pas-
sage Ranking (MS Pas) (Nguyen et al., 2016), a
document retrieval dataset: MS-MARCO Docu-
ment Ranking (MS Doc) (Nguyen et al., 2016) and
a real-world industry dataset Bing. NQ and TQ are
open domain question answering datasets collected
from Google search logs and authored by trivia
enthusiasts, respectively. In the two datasets, each
question is paired with an answer span and sev-

eral golden passages from Wikipedia articles. Fol-
lowing existing works (Zhang et al., 2021; Sachan
et al., 2021), we adopt Recall@k (R@k) as the eval-
uation metrics, which measures if the top-k ranked
documents include the answer span. MS Pas and
MS Doc consist of real questions collected from
Bing search logs, where each question is paired
with several web passages and documents, respec-
tively. As their labels of test sets are not available,
we follow existing works (Ren et al., 2021b; Zhan
et al., 2021) that report results on their develop-
ment sets and adopt MRR@10, R@50 and R@1k
for MS Pas, MRR@10 and R@100 for MS Doc.
Bing is collected from Bing search logs, where
each example consists of a user historical query and
several documents that the user has clicked. These
documents are real-world webpages and may con-
tain hyperlinks and different languages. We select
Hit@5, Hit@20 and Hit@100 for evaluation.

C More Details on Baselines

We compare our approach with a variety of meth-
ods, including sparse and dense retrieval models.
• BM25 (Yang et al., 2017) is a widely-used

sparse retriever based on exact matching.
•GAR (Mao et al., 2021), doc2query (Nogueira

et al., 2019a), DeepCT (Dai and Callan, 2019) and
docTTTTTquery (Nogueira et al., 2019b) enhance
BM25 by incorporating neural models.
• DPR (Karpukhin et al., 2020), ANCE (Xiong

et al., 2021) and STAR (Zhan et al., 2021) are dense
retrieval methods that adopt top-k hard negatives
to improve training.
• COIL (Gao et al., 2021b) and ME-

BERT (Luan et al., 2021) combine sparse and
dense representations for text retrieval.
• Joint and Individual top-k (Sachan et al.,

2021) propose to train the dense retrieval model in
an end-to-end manner.
• RocketQA (Qu et al., 2021), RDR (Yang and

Seo, 2020), RocketQAv2 (Ren et al., 2021b) and
ERNIE-search (Lu et al., 2022) utilize knowledge
distillation technique that leverages a teacher model
to guide the training of the dense retrieval model.
• PAIR (Ren et al., 2021a), DPR-PAQ (Oğuz

et al., 2022), Condenser (Gao and Callan, 2021)
and coCondenser (Gao and Callan, 2022) design
special pre-training tasks to improve the backbone
model for the dense retrieval task.
• AR2 (Zhang et al., 2021) incorporates an ad-

versarial framework to jointly train the retriever
567

and the ranker. As it has achieved state-of-the-art
performance on most datasets, we implement our
approach on it to verify its effectiveness.

D Experimental Details

Implementation Details on Public Datasets. For
three passage retrieval tasks, we follow the exper-
imental settings in AR2 (Zhang et al., 2021) that
selects ERNIE-2.0-base (Sun et al., 2020) as the
backbone model. For MS Doc dataset, we lever-
age the model parameters of STAR (Zhan et al.,
2021) to initialize AR2, and then train AR2 with
the same hyper-parameters as STAR until conver-
gence. Next, we continue to train the AR2 model
parameters with our proposed SimANS, where we
set a and b to {(0.5, 1.0), (0.5, 0) , (0.5, 0) , (0.5,
0)} for NQ, TQ, MS Pas and MS Doc datasets,
respectively. The learning rate is set to 1e-5 for
NQ and 5e-6 for other datasets. The batch size is
256 for MS-Pas and MS-Doc, 64 for NQ and TQ,
and the sampling ratio of positives and negatives
is 1:15. All other hyper-parameter settings are the
same as AR2. All the experiments in this work are
conducted on 8 NVIDIA Tesla A100 GPUs.

Implementation Details on Bing Industry
Dataset. For the industry dataset, Bing, we
adopt mBERT-base (Devlin et al., 2019) as the
backbone of the query and document encoders,
to deal with multilingual queries and documents.
The parameters of the baseline model are trained
with randomly sampled negatives using the in-
foNCE loss (Karpukhin et al., 2020), namely Base-
line+Random Neg, and the sampling ratio of pos-
itives and negatives is 1:5. The learning rate is
1e-5, the batch size is 128 and the training step is
100,000. As a comparison, we implement the top-k
negatives sampling strategy on the baseline model,
namely Baseline+top-k Neg, where we utilize the
baseline model to rank and select the top 5 docu-
ments that do not contain the query as hard nega-
tives. In our approach, namely Baseline+SimANS,
we continue to train the Baseline+top-k Neg model,
but apply our SimANS to sample 5 negatives from
the top 100 ranked documents. We set a to 1, b
to 0, and reuse the other hyper-parameters of the
Baseline+top-k Neg model.

E Case Study

In this part, we show four examples of the gen-
erated sampling probability distributions by our

SimANS. These four examples are randomly se-
lected from the training set of MS Pas dataset. As
shown in Figure 5, we can see that SimANS indeed
assigns larger probabilities to the negatives that
rank near the positive while punishing the higher-
ranking and lower-ranking ones that may be false
negatives and uninformative negatives. Further-
more, in Figure 5b where the positive is ranked at
the first place, our approach is similar to the top-
k negatives sampling method that assigns larger
probabilities to the higher-ranking hard negatives.

F Related Work

Recent years have witnessed the remarkable perfor-
mance of dense retrieval methods in text retrieval
tasks (Zhan et al., 2020; Hong et al., 2022; Ram
et al., 2022; Zhou et al., 2022b). Different from tra-
ditional sparse retrieval methods (e.g., TF-IDF and
BM25), dense retrieval approaches typically map
queries and documents into low-dimensional dense
vectors, and then utilize vector distance metrics
(e.g., cosine similarity) for retrieval.

To learn an effective dense retrieval model, it is
key to sample high-quality negatives paired with
the given query and positives for training. Early
works (Karpukhin et al., 2020; Min et al., 2020)
mostly rely on in-batch random negatives and hard
negatives sampled by BM25. After that, a series
of works (Qu et al., 2021; Xiong et al., 2021) find
that sampling top-k ranked examples by the dense
retriever as hard negatives is more helpful to im-
prove the retriever itself. Among them, several
methods (Xiong et al., 2021; Zhan et al., 2021)
adopt a dynamic sampling strategy that actively
samples top-k hard negatives once after an interval
during training. However, these top-k negative sam-
pling strategies are easy to select higher-ranking
false negatives for training. To alleviate it, previ-
ous works have incorporated knowledge distilla-
tion (Qu et al., 2021; Ren et al., 2021b; Lu et al.,
2022), pre-training (Zhou et al., 2022a; Xu et al.,
2022) and other denoising techniques (Mao et al.,
2022; Hofstätter et al., 2021). Despite the effec-
tiveness, these methods mostly rely on complicated
training strategies or complementary models.

In this work, we propose a simple but effective
sampling method that weights the negative candi-
dates with the consideration of their differences of
relevance scores with positives. As a result, the am-
biguous negatives with similar relevance scores to
the positives will receive larger sampling probabili-

568

0 10 20 30 40
Rank

Sample Probability Positive Rank

(a)

0 10 20 30 40
Rank

Sample Probability Positive Rank

(b)

0 10 20 30 40
Rank

Sample Probability Positive Rank

(c)

0 10 20 30 40
Rank

Sample Probability Positive Rank

(d)

Figure 5: Illustration of four sampling probability distributions of the top 50 ranked negatives generated by our
SimANS on the training set of MS Pas.

ties, while the too hard (potential false negatives)
and too easy negatives (uninformative) will be pun-
ished with smaller probabilities.

569

Proceedings of EMNLP 2022 Industry Track, pages 570–580
December 9–11, 2020. ©2022 Association for Computational Linguistics

Revisiting and Advancing Chinese Natural Language Understanding with
Accelerated Heterogeneous Knowledge Pre-training

Taolin Zhang1,2, Junwei Dong2,3, Jianing Wang1,2, Chengyu Wang2∗, Ang Wang2,
Yinghui Liu2, Jun Huang2, Yong Li2, Xiaofeng He1

1 East China Normal University, Shanghai, China
2 Alibaba Group, Hangzhou, China

3 Chongqing University, Chongqing, China
zhangtl0519@gmail.com, chengyu.wcy@alibaba-inc.com

Abstract

Recently, knowledge-enhanced pre-trained lan-
guage models (KEPLMs) improve context-
aware representations via learning from struc-
tured relations in knowledge graphs, and/or
linguistic knowledge from syntactic or depen-
dency analysis. Unlike English, there is a lack
of high-performing open-source Chinese KE-
PLMs in the natural language processing (NLP)
community to support various language under-
standing applications. In this paper, we re-
visit and advance the development of Chinese
natural language understanding with a series
of novel Chinese KEPLMs released in vari-
ous parameter sizes, namely CKBERT (Chi-
nese knowledge-enhanced BERT). Specifically,
both relational and linguistic knowledge is ef-
fectively injected into CKBERT based on two
novel pre-training tasks, i.e., linguistic-aware
masked language modeling and contrastive
multi-hop relation modeling. Based on the
above two pre-training paradigms and our in-
house implemented TorchAccelerator, we have
pre-trained base (110M), large (345M) and
huge (1.3B) versions of CKBERT efficiently on
GPU clusters. Experiments demonstrate that
CKBERT outperforms strong baselines for Chi-
nese over various benchmark NLP tasks and in
terms of different model sizes. 1

1 Introduction

Pre-trained Language Models (PLMs) such as
BERT (Devlin et al., 2019) are pre-trained by self-
supervised learning on large-scale text corpora
to capture the rich semantic knowledge of words
(Li et al., 2021; Gong et al., 2022), improving
various downstream NLP tasks significantly (He
et al., 2020; Xu et al., 2021; Chang et al., 2021).
Although these PLMs have stored much internal
knowledge (Petroni et al., 2019, 2020), they can

∗ Corresponding author.
1All the codes and model checkpoints have been released

to public in the EasyNLP framework (Wang et al., 2022).
URL: https://github.com/alibaba/EasyNLP.

hardly understand external background knowledge
from the world such as factual and linguistic knowl-
edge (Colon-Hernandez et al., 2021; Cui et al.,
2021; Lai et al., 2021).

In the literature, most approaches of knowledge
injection can be divided into two categories, includ-
ing relational knowledge and linguistic knowledge.
(1) Relational knowledge-based approaches inject
entity and relation representations in Knowledge
Graphs (KGs) trained by knowledge embedding al-
gorithms (Zhang et al., 2019; Peters et al., 2019) or
convert triples into sentences for joint pre-training
(Liu et al., 2020; Sun et al., 2020). (2) Linguis-
tic knowledge-based approaches extract semantic
units from pre-training sentences such as part-of-
speech tags, constituent and dependency syntactic
parsing, and feed all linguistic information into var-
ious transformer-based architectures (Zhou et al.,
2020; Lai et al., 2021). We observe that there
can be three potential drawbacks. (1) These ap-
proaches generally utilize a single source of knowl-
edge (i.e., inherent linguistic knowledge), which
ignore important knowledge from other sources (Su
et al., 2021) (i.e., relational knowledge from KGs).
(2) Training large-scale KEPLMs from scratch re-
quires high-memory computing devices and is time-
consuming, which brings significant computational
burdens for users (Zhang et al., 2021, 2022). (3)
Most of these models are pre-trained in English
only. There is a lack of powerful KEPLMs for
understanding other languages (Lee et al., 2020;
Pérez et al., 2021).

To overcome the above problems, we release a
series of Chinese KEPLMs named CKBERT (Chi-
nese knowledge-enhanced BERT), with heteroge-
neous knowledge sources injected. We particularly
focus on Chinese as it is one of the most widely spo-
ken languages other than English. The CKBERT
models are pre-trained by two well-designed pre-
training tasks as follows:

• Linguistic-aware Masked Language Mod-
570

eling (LMLM): LMLM is substantially ex-
tended from Masked Language Modeling
(MLM) (Devlin et al., 2019) by introducing
two key linguistics tokens derived from de-
pendency syntactic parsing and semantic role
labeling. We also insert unique markers for
each linguistic component among contiguous
tokens. The goal of LMLM is to predict both
randomly selected tokens and linguistic to-
kens masked in the pre-training sentences.

• Contrastive Multi-hop Relation Modeling
(CMRM): We sample fine-grained subgraphs
from a large-scale Chinese KG by multi-hop
relations to compensate for understanding
the background knowledge of target entities.
Specifically, we construct positive triples for
matched target entities via retrieving one-hop
entities in the corresponding subgraphs. Neg-
ative triples are sampled from unrelated multi-
hop entities through the relation paths in the
KG. The CMRM task is proposed to pull the
semantics of similar entities close and push
away those with irrelevant semantics.

Based on the above heterogeneous knowledge
pre-training tasks, we produce various sizes of CK-
BERT models to meet the inference time and ac-
curacy requirements of different real-world scenar-
ios (Brown et al., 2020; Chowdhery et al., 2022),
including base (110M), large (345M) and huge
(1.3B). The models are pre-trained using our in-
house implemented TorchAccelerator that effec-
tively transforms PyTorch eager execution to graph
execution on distributed GPU clusters, boosting
the training speed by 40% per sample with our
advanced compiler technique based on Acceler-
ated Linear Algebra (XLA). In the experiments, we
compare CKBERT against strong baseline PLMs
and KEPLMs on various Chinese general and
knowledge-related NLP tasks. The results demon-
strate the improvement of CKBERT compared to
SoTA models.

2 Related Work

We briefly summarize the related work on the fol-
lowing two aspects: PLMs and KEPLMs.

2.1 PLMs

Following BERT (Devlin et al., 2019), many PLMs
have been proposed to improve performance in var-
ious NLP tasks. Several approaches extend BERT

by employing novel token-level and sentence-level
pre-training tasks. Notable PLMs include ERNIE-
Baidu (Sun et al., 2019), MacBERT (Cui et al.,
2020) and PERT (Cui et al., 2022) for Chinese
NLU downstream tasks. Other models boost the
performance by changing the internal encoder ar-
chitectures. For example, XLNet (Yang et al.,
2019) utilizes Transformer-XL (Dai et al., 2019)
to encode long sequences by the permutation in
language tokens. Sparse self-attention (Cui et al.,
2019) replaces the self-attention mechanism with
more interpretable attention units. Yet, other PLMs
such as MT-DNN (Liu et al., 2019) combine self-
supervised pre-training with the multi-task super-
vised learning to improve the performance of vari-
ous GLUE tasks (Wang et al., 2019).

2.2 KEPLMs

These models use structured knowledge or linguis-
tic semantics to enhance the language understand-
ing abilities of PLMs. We summarize recent KE-
PLMs grouped into the following four types: (1)
Knowledge-enhancement by linguistic semantics.
These works use the linguistic information already
available in the pre-training sentences to enhance
the understanding ability of PLMs. Lattice-BERT
(Lai et al., 2021) pre-trains a Chinese PLM over a
word lattice (Buckman and Neubig, 2018) structure
to exploit multi-granularity inputs. (2) Knowledge-
enhancement by entity embeddings. For exam-
ple, ERNIE-THU (Zhang et al., 2019) injects en-
tity embeddings into contextual representations via
knowledge-encoders stacked by the information
fusion module. (3) Knowledge-enhancement by
entity descriptions. These approaches learn entity
embeddings by knowledge descriptions. For ex-
ample, pre-training corpora and entity descriptions
in KEPLER (Wang et al., 2021) are encoded into
a unified semantic space within the same PLM.
(4) Knowledge-enhancement by converted triplet’s
texts. K-BERT (Liu et al., 2020) and CoLAKE
(Sun et al., 2020) convert relation triplets into texts
and insert them into training samples without using
pre-trained embeddings. In this paper, we argue
that aggregating heterogeneous knowledge infor-
mation can further benefit the context-aware repre-
sentations of PLMs.

3 Model

In this section, we elaborate the techniques of the
proposed CKBERT model. The main architecture

571

!"#$%&'()*+,(#-&.$$(/$%0/+1+223+4536

!"#$%&'(&)*+,-. Pre-training Sentence

D
at

a
So

ur
ce

02

1

3

5
6

8

7 4

9 0 1 2 3 4 5

pos. sa
mple

0 2 6
0 2 7
0 5 8neg. samples

0 2 6 9

Token:

Pr
e-

tr
ai

ni
ng

D
at

a
Pr

oc
es

si
ng

contrastive relation triples linguistic masked tokens

M
od

el
Pr

e-
tr

ai
ni

ng

Ta
sk

s LMLM CMRM

0 2

0 2 6

0 2 7

0 2 6 9

✅ ❎

0

[CLS]

[CLS] 都 [SDP] [/SDP] 多 多 实 战, 才 能

[DEP] [/DEP] 口 语 发 音。[SEP]

知 道大 家
AGT

真 正 改 善
ADV

大 家 都 [SDP] 知 道 [/SDP]

多 实 战 ， 才 能 真 正 [DEP] 改 善 [/DEP]

多

…

Position: 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21

AGT: agent

ADV: adverbial

We all know that more practice is the only way to truly improve oral pronunciation.

we know

improvetruly

Figure 1: Model overview. The LMLM task is not only able to perform random masked token prediction (similar to
BERT) but also to predict masked linguistic-aware tokens. The CMRM task injects external relation triples into
PLMs through neighboring multi-hop relations. (Best viewed in color.)

of CKBERT is firstly presented in Figure 1.

3.1 Model Architecture

It accepts a sequence of M WordPiece tokens (Wu
et al., 2016), (x1, x2, ..., xM) as input, and com-
putes theD-dimensional contextual representations
Hi ∈ RM×D by successively stacking N trans-
former encoder layers. We do not modify the ar-
chitecture here to guarantee that CKBERT can be
seamlessly integrated into any industrial applica-
tions that BERT supports with better performance.2

3.2 Linguistic-aware Masked Language
Modeling (LMLM)

In BERT pre-training, 15% of all token positions
are randomly masked for prediction. However, ran-
dom masked tokens may be unimportant units such
as conjunctions and prepositions (Clark et al., 2019;
Hao et al., 2021). We reconstruct the input sen-
tences and mask more tokens based on linguistic
knowledge so that CKBERT can better understand
the semantics of important tokens in pre-training
sentences. Specifically, we use the following three
steps to mask the linguistic input units:

• Recognizing Linguistic Tokens: We first use
2Without loss of generality, we focus on the transformer

encoder architecture only; yet our work can also be extended
model architectures with slight modification.

the off-the-shelf tool3 to recognize important
units in pre-training sentences, including de-
pendence grammar and semantic dependency
parsing. The extracted relations here serve
as important sources of linguistic knowledge,
including “subject-verb”, “verb-object” and
“adverbial” for dependence grammar and “non-
agent” for semantic dependency parsing.

• Reconstructing Input Sentences: In addi-
tion to the original input form, based on the
subjects and objects of the extracted linguis-
tic relations, we insert special identifiers for
each lexicon unit between words spans to give
explicit boundary information for model pre-
training. For example, we add [DEP] and
[/DEP] for dependence grammar and [SDP]
and [/SDP] for dependency parsing tokens.

• Choosing Masked Tokens: We choose 15%
of token positions from the reconstructed in-
put sentence for masking, using the special
token [MASK]. Among these tokens, we assign
40% of the positions to randomly selected to-
kens and the rest to linguistic tokens. Note
that these special identifiers ([DEP], [/DEP],
[SDP] and [/SDP]) are also treated as normal
tokens for masking, thus the model needs to

3http://ltp.ai/

572

be aware of predicting word boundaries rather
than simply filling in masks based on contexts.

After input sentences are processed, for LMLM,
let Ω = (m1,m2,m3, ..., γK−1, γK) denote the
indexes of the masked tokens in the sentence X ,
where mi is an index of a randomly masked token,
γi is an index of a selected linguistic-aware masked
token and K is the total number of masked tokens.
Let XΩ denote the set of masked tokens in X , and
X−Ω denote the set of observed (unmasked) tokens.
The objective of LMLM is as follows:

Lmlm(XΩ|X−Ω) =
1

K

K∑

k=1

log p(xmk|γk |X−Ω; θ)

(1)

where xmk|γk denotes the randomly selected tokens
or the linguistic tokens. θ represents the parameter
collection of our model.

3.2.1 Contrastive Multi-hop Relation
Modeling (CMRM)

In addition to LMLM, we further inject relation
triples into CKBERT to make it understand the
background factual knowledge of entities. For an
entity in the pre-training sentence, we construct
positive and negative relation triples as follows:

• Positive Triples: We employ entity linking
to link an entity in the pre-training sentence
to the target entity et in the KG. The relation
triples w.r.t. the one-hop entities are viewed
as candidate positive triples. Next, we choose
a relation triple randomly from the candidates
as a positive sample, denoted as tp.

• Negative Triples: Because the semantic sim-
ilarity between the positive triple tp and the
relation triples along the KG paths decreases,
we construct L candidate negative triples
(t1n, t

2
n, ..., t

L
n) by making multiple hops start-

ing from the target entity et. For example, in
Fig. 1, we take the target entity e0 as the
starting node and retrieve the nodes along
the edges. We obtain the ending node eend
with multi-hop relations Hop(G, e0, eend, r),
where Hop(·) means the shortest distance be-
tween e0 and eend in KG G. Here, we regard
a triple to be negative tn if Hop(·) > 1 and
is no larger than a small threshold δ4. In this

4If the threshold for the number of hops δ is too large,
the model can easily distinguish the positive and negative
triples due to the large semantic gaps. For effective contrastive
learning, good negative triples should be “hard negatives”.

paper, we set δ = 3. Hence, there are four
negative triples for e0 in Figure 1. A sample
three-hop path is e0 → e2 → e6 → e9.

The CMRM task is designed for pulling similar
relational triples of the target entity closely and
pushing unrelated multi-hop relational triples away,
in order to enhance the external background knowl-
edge of the target entity from the KG. Concretely,
after the positive sample tp and negative samples
(t1n, t

2
n, ..., t

L
n) of the target entity et are retrieved,

the context-aware representations of the target en-
tity et can be obtained as follows:

het = LN
(
σ
(
fsp

(
heit , . . . , hejt

)
W1

))
(2)

where het is the hidden representation of the target
entity et constructed by the entity’s token repre-
sentations

(
heit , . . . , hejt

)
, as an entity can have

multiple tokens in the pre-training sentence. fsp
is the self-attentive pooling operator (Lin et al.,
2017), σ(·) non-linear activation function GELU
(Hendrycks and Gimpel, 2016) and LN (·) is the
LayerNorm function (Ba et al., 2016). W1 is the
learnable weight matrix.

Meanwhile, as relation triples can be viewed
as natural sentences via concatenating the triple’s
tokens together, following Liu et al. (2020); Sun
et al. (2020), we convert the triples into sentences
to generate the representations obtained by the
shared encoder θ (which is the transformer encoder
of our CKBERT model). Hence, the representa-
tions of the positive triple htp and the negative
triples (ht1n , ht2n , ..., htLn) can also be derived. For
the CMRM task, we employ InfoNCE (van den
Oord et al., 2018) as the loss function to calculate
the similarity as follows:

Lcl = − log
exp

(
cos

(
het , htp

)
/τ

)
∑L

l=1 exp
(
cos

(
het , htln

)
/τ

) (3)

where cos(·, ·) denotes the cosine function to calcu-
late the similarity between entity and relation repre-
sentations, and τ is a pre-defined hyper-parameter.

3.3 Optimization of Model Pre-training

For model training optimization, we first give the
total loss function for pre-training CKBERT based
on our two novel pre-training tasks as follows:

Ltotal = Lmlm + Lcl (4)
573

Model Text Classification Question Answering Total

AFQMC TNEWS IFLYTEK OCNLI WSC CSL CMRC CHID C3 Score

BERT 72.73 55.22 59.54 66.53 72.49 81.77 73.40 79.19 57.91 69.72
MacBERT 69.90 57.93 60.35 67.43 74.71 82.13 73.55 79.51 58.89 70.28

PERT 73.61 54.50 57.42 66.70 76.07 82.77 73.80 80.19 58.03 70.18

ERNIE-Baidu 73.08 56.22 60.11 67.48 75.79 82.14 72.86 80.03 57.63 69.83
Lattice-BERT 72.96 56.14 58.97 67.54 76.10 81.99 73.47 80.24 57.80 70.29

K-BERT 73.15 55.91 60.19 67.83 76.21 82.24 72.74 80.29 57.48 70.35
ERNIE-THU 72.88 56.59 59.33 67.95 75.82 82.35 72.96 80.22 56.30 69.98

CKBERT-base 73.17 56.44 60.65 68.53 76.38 82.63 73.55 81.69 57.91 71.36

CKBERT-large 74.75 55.86 60.62 70.57 78.90 82.30 73.45 82.34 58.12 72.23
CKBERT-huge 75.03 59.72 60.96 78.26 85.16 89.47 77.25 97.73 86.59 78.91
CKBERT-huge 77.05 61.16 61.19 82.80 87.14 94.23 80.40 97.91 87.26 81.02(Ensemble)

Table 1: Performance of tasks on the CLUE 1.1 testing sets (%). The “Total Score” is the weighted averaged score
of the nine tasks generated by the official website automatically. All the baseline models are base models (with the
same or similar parameter size as that of BERT-base).

Here, we pre-train a series of CKBERT models on
distributed GPU clusters, with codes in PyTorch.
As PyTorch employs eager execution for tensor
computation, it lacks graph-based intermediate rep-
resentations of models, hindering deeper optimiza-
tion (Paszke et al., 2019).

Inspired by LazyTensor (Suhan et al., 2021) and
Pytorch/XLA on cloud TPUs5, we develop the Tor-
chAccelerator toolkit for Pytorch training accel-
eration on GPU clusters. Through XLA custom
function and code parsing with an abstract syn-
tax tree (AST), we improve the completeness and
performance of the transformation from eager exe-
cution to graph execution. A computational graph
is generated by TorchAccelerator. The operators
on the graph will be fused. By fusing operators, the
kernel launch overhead can be reduced. Moreover,
fewer intermediate results are written to memory
thus reducing the memory bandwidth usage. The
effectiveness of computation is also improved by
multi-stream optimization and asynchronous trans-
mission of tensors. Since the implementation of
TorchAccelerator is not our major focus, more de-
tails will be presented in our future work.

4 Experiments

We present comprehensive evaluation results of
CKBERT. Due to space limitation, the details of
data sources, baselines and hyper-parameter set-
tings are shown in Appendices A, B, C.

5https://github.com/pytorch/xla

4.1 General Experimental Results

We evaluate CKBERT over a widely-used Chinese
benchmark CLUE (Xu et al., 2020) and knowledge-
intensive tasks to evaluate the influence of knowl-
edge injection in CKBERT.

4.1.1 Results of CLUE Benchmark
The CLUE benchmark contains nine text classifi-
cation and question answering tasks. Specifically,
the text classification tasks contain various text
task types, including the classification of short sen-
tences and long sentence pairs. The results of all
tasks are shown in Table 1.

From the results, we have the following obser-
vations. (1) The performance of KEPLMs has a
large gap over BERT. It indicates that the injection
of different knowledge sources enables the models
to perform better semantic reasoning compared to
pre-training on texts only. (2) The performance of
CKBERT is further improved compared to previous
strong baseline KEPLMs under the same parameter
size in most cases. From this phenomenon, we be-
lieve that the heterogeneous knowledge sources in-
jected into the PLMs benefit the model’s results. (3)
The larger the number of parameters in the model,
the more effective the heterogeneous knowledge
fusion is for downstream tasks. The huge model
of CKBERT (1.3B parameters) outperforms base
(110M) by a large margin, which is suitable for
applications that require high prediction accuracy.
We also build an ensemble of the huge models
(denoted as CKBERT-huge (Ensemble)) from dif-
ferent checkpoints. The performance can be further
improved by more than 2.0%.

574

Model MSRA Weibo Onto. Resu.

BERT 95.20 54.65 81.61 94.86
MacBERT 95.07 54.93 81.96 95.22

PERT 94.99 53.74 81.44 95.10

ERNIE-BD 95.39 55.14 81.17 95.13
Lat.-BERT 95.28 54.99 82.01 95.31
K-BERT 94.97 55.21 81.98 94.92

ERNIE-THU 95.25 53.85 82.03 94.89

CKBERT-base 95.35 55.97 82.19 95.68

CKBERT-large 95.98 57.09 82.43 96.08
CKBERT-huge 96.79 58.66 83.87 97.19

Table 2: Performance of CKBERT and baselines over
four public Chinese NER datasets in term of F1 (%).

4.1.2 Results of NER
We further evaluate CKBERT over the four pub-
lic NER datasets, including MSRA (Levow, 2006),
Weibo (Peng and Dredze, 2015), Ontonotes 4.06,
and Resume (Yang et al., 2017). The detailed statis-
tics including the split sizes of training, develop-
ment, and testing sets are described in Appendix A.
The models are stacked by the CKBERT encoder
and a softmax linear layer, whose parameters are
initialized randomly. The entities recognized in
the samples are labeled by the B/I/O/S tags. This
transforms the NER task into a 4-class classifica-
tion task for each token.

Table 2 shows the performance of various mod-
els on four NER datasets. It can be seen that KE-
PLMs outperform vanilla PLMs. In addition, our
CKBERT model (base) with linguistic and exter-
nal knowledge achieves a large gap performance
compared to baselines. We believe that heteroge-
neous knowledge sources play an important role as
described in the ablation study (See Section 4.2).

4.2 Ablation Study

In this part, we evaluate the effectiveness of two
important model components of CKBERT on rep-
resentative tasks. Specifically, We introduce sev-
eral variants of CKBERT removing certain com-
ponents. CKBERT-LMLM means that we remove
the LMLM task and only learns the CMRM task
during pre-training. CKBERT-CMRM remove the
CRMR task and only perform the LMLM task. We
also provide the results of continual pre-training of
BERT-base to remove the influence of additional
data sources of plain texts. The performance of
those variants and CKBERT on the testing sets of
these datasets are shown in Table 3.

6https://catalog.ldc.upenn.edu/LDC2013T19

Model AFQ. IFLY. CMRC Weibo

BERT-large-con. 73.96 60.35 73.42 56.12
CKBERT-large 74.75 60.62 73.45 57.09

w/o. LMLM 73.56 60.38 73.2 56.48
w/o. CMRM 72.96 59.38 74.8 56.72

Table 3: The performance of models for ablation study.
“AFQ.” and “IFLY.” refer to AFQMC and IFLYTEX,
respectively (%).

From the results, we can see that (1) Compar-
ing CKBERT-large to BERT-large (continual pre-
trained with the same pre-training data), the explicit
heterogeneous knowledge is more useful than the
implicit text corpus for various downstream tasks.
(2) We also find that the LMLM pre-training task
benefits the QA and NER tasks more, whereas the
CMRM task improves the performance of plain
NLU task (i.e., text classification) significantly. We
conjecture that the main reason behind this phe-
nomenon is that the external background knowl-
edge can easily boost the performance due to the
shallow semantics of these simple tasks (Yang et al.,
2021).

4.3 Results of TorchAccelerator

We investigate to what extent the pre-training speed
is improved when our framework is integrated with
TorchAccelerator. Figure 2 shows the comparison
results between TorchAccelerator and Torch Native
with AMP (Automatic Mixed Precision) 7. The
metric “samples/s” means how many samples are
computed by the model in each second. Note that
we increase the batch size as large as possible to
increase the GPUs’ memory utilization and occu-
pancy to 100%, and thus the experiments w/ and
w/o. TorchAccelerator consume the same amount
of computational resources. The underlying GPU
is Tesla V100 32GB.

From the results, our observations are as follows.
(1) When we only use TorchAccelerator without
AMP, the training speed increases slightly. (2) The
training speed can have a large improvement with
the interaction between TorchAccelerator and AMP
(+40%). This is because the kernel fusion of XLA
in TorchAccelerator largely reduces the amount of
memory access operations, which are the perfor-
mance bottleneck when AMP is applied. Hence,
our TorchAccelerator effectively reduces the con-
sumption of resources and time during pre-training.

7https://github.com/NVIDIA/apex

575

0

1000

2000

3000

4000

TN w/o AMP TA w/o AMP TN w/ AMP TA w/ AMP

sa
m
pl
es
/s

1 machine 1 GPU

0

5000

10000

15000

20000

25000

30000

35000

TN w/o AMP TA w/o AMP TN w/ AMP TA w/ AMP

sa
m
pl
es
/s

1 machine 8 GPUs

Figure 2: Training speed comparison between TorchAc-
celerator (TA) and Torch Native (TN).

5 Conclusion and Future Work

In this paper, we propose a novel series of Chi-
nese KEPLMs named CKBERT to inject the hetero-
geneous sources including linguistic and external
knowledge into the PLMs. Specifically, we design
two novel pre-training tasks including linguistic-
aware MLM and contrastive multi-hop relation
modeling, and accelerate model pre-training by
TorchAccelerator. The experiments show that our
CKBERT outperforms various strong baselines in-
cluding general PLMs and KEPLMs significantly
over knowledge-intensive and natural language un-
derstanding tasks. Future work includes (1) inte-
grating more knowledge sources into PLMs to fur-
ther improve the performance of downstream tasks;
(2) exploring heterogeneous knowledge injection to
generative KEPLMs and other languages; and (3)
enriching the functionalities of TorchAccelerator
and releasing it to public.

Ethical Considerations

Our contribution in this work is fully methodolog-
ical, namely a novel series of KEPLMs, achiev-
ing the performance improvement of downstream
tasks with different parameter sizes. Hence, there
is no explicit negative social influences in this
work. However, transformer-based models may
have some negative impacts, such as gender and so-
cial bias. Our work would unavoidably suffer from
these issues. We suggest that users should carefully
address potential risks when the CKBERT models
are deployed online.

Acknowledgments

This work has been supported by Alibaba Group
through Alibaba Innovative Research Program and
Alibaba Research Intern Program.

References
Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Jacob Buckman and Graham Neubig. 2018. Neural
lattice language models. Trans. Assoc. Comput. Lin-
guistics, 6:529–541.

Tyler A. Chang, Yifan Xu, Weijian Xu, and Zhuowen
Tu. 2021. Convolutions and self-attention: Re-
interpreting relative positions in pre-trained language
models. In ACL, pages 4322–4333.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of bert’s attention. In ACL, pages
276–286.

576

Pedro Colon-Hernandez, Catherine Havasi, Jason B.
Alonso, Matthew Huggins, and Cynthia Breazeal.
2021. Combining pre-trained language models and
structured knowledge. CoRR, abs/2101.12294.

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei
Zhang. 2019. Fine-tune BERT with sparse self-
attention mechanism. In EMNLP, pages 3546–3551.

Leyang Cui, Sijie Cheng, Yu Wu, and Yue Zhang. 2021.
On commonsense cues in BERT for solving common-
sense tasks. In ACL, pages 683–693.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for chinese natural language processing. In
EMNLP, volume EMNLP 2020 of Findings of ACL,
pages 657–668. Association for Computational Lin-
guistics.

Yiming Cui, Ziqing Yang, and Ting Liu. 2022. PERT:
pre-training BERT with permuted language model.
CoRR, abs/2203.06906.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In ACL, pages 2978–
2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Zheng Gong, Kun Zhou, Xin Zhao, Jing Sha, Shi-
jin Wang, and Ji-Rong Wen. 2022. Continual pre-
training of language models for math problem un-
derstanding with syntax-aware memory network. In
ACL, pages 5923–5933.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2021. Self-
attention attribution: Interpreting information inter-
actions inside transformer. In AAAI, pages 12963–
12971.

Yun He, Ziwei Zhu, Yin Zhang, Qin Chen, and James
Caverlee. 2020. Infusing disease knowledge into
BERT for health question answering, medical in-
ference and disease name recognition. In EMNLP,
pages 4604–4614.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (gelus). arXiv:1606.08415.

Yuxuan Lai, Yijia Liu, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2021. Lattice-bert: Leverag-
ing multi-granularity representations in chinese pre-
trained language models. In NAACL, pages 1716–
1731.

Hyunjae Lee, Jaewoong Yoon, Bonggyu Hwang,
Seongho Joe, Seungjai Min, and Youngjune Gwon.
2020. Korealbert: Pretraining a lite BERT model
for korean language understanding. In ICPR, pages
5551–5557.

Gina-Anne Levow. 2006. The third international
chinese language processing bakeoff: Word seg-
mentation and named entity recognition. In
SIGHAN@COLING/ACL, pages 108–117.

Bai Li, Zining Zhu, Guillaume Thomas, Yang Xu, and
Frank Rudzicz. 2021. How is BERT surprised? layer-
wise detection of linguistic anomalies. In ACL, pages
4215–4228.

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In ICLR.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-BERT: en-
abling language representation with knowledge graph.
In AAAI, pages 2901–2908.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In ACL, pages
4487–4496.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In NeurIPS, pages 8024–8035.

Nanyun Peng and Mark Dredze. 2015. Named en-
tity recognition for chinese social media with jointly
trained embeddings. In EMNLP, pages 548–554.

Juan Manuel Pérez, Damián Ariel Furman,
Laura Alonso Alemany, and Franco Luque.
2021. Robertuito: a pre-trained language model for
social media text in spanish. CoRR, abs/2111.09453.

Matthew E. Peters, Mark Neumann, Robert L. Logan
IV, Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. 2019. Knowledge enhanced contex-
tual word representations. In EMNLP, pages 43–54.

Fabio Petroni, Patrick S. H. Lewis, Aleksandra Piktus,
Tim Rocktäschel, Yuxiang Wu, Alexander H. Miller,
and Sebastian Riedel. 2020. How context affects
language models’ factual predictions. In AKBC.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models as
knowledge bases? In EMNLP, pages 2463–2473.

Yusheng Su, Xu Han, Zhengyan Zhang, Yankai Lin,
Peng Li, Zhiyuan Liu, Jie Zhou, and Maosong Sun.
2021. Cokebert: Contextual knowledge selection and
embedding towards enhanced pre-trained language
models. AI Open, 2:127–134.

577

Alex Suhan, Davide Libenzi, Ailing Zhang, Parker
Schuh, Brennan Saeta, Jie Young Sohn, and Denys
Shabalin. 2021. Lazytensor: combining eager ex-
ecution with domain-specific compilers. CoRR,
abs/2102.13267.

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo,
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020.
Colake: Contextualized language and knowledge em-
bedding. In COLING, pages 3660–3670.

Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng,
Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu,
Hao Tian, and Hua Wu. 2019. ERNIE: enhanced
representation through knowledge integration. CoRR,
abs/1904.09223.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting
Liu, Lei Li, Jianing Wang, Ming Wang, Jun Huang,
and Wei Lin. 2022. Easynlp: A comprehensive and
easy-to-use toolkit for natural language processing.
CoRR, abs/2205.00258.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans.
Assoc. Comput. Linguistics, 9:176–194.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020.
CLUE: A chinese language understanding evaluation
benchmark. In COLING, pages 4762–4772.

Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun
Shou, Ming Gong, Wanjun Zhong, Xiaojun Quan,
Daxin Jiang, and Nan Duan. 2021. Syntax-enhanced
pre-trained model. In ACL, pages 5412–5422.

Jian Yang, Gang Xiao, Yulong Shen, Wei Jiang, Xinyu
Hu, Ying Zhang, and Jinghui Peng. 2021. A survey
of knowledge enhanced pre-trained models. CoRR,
abs/2110.00269.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural
reranking for named entity recognition. In RANLP,
pages 784–792.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NIPS, pages 5754–5764.

Taolin Zhang, Chengyu Wang, Nan Hu, Minghui Qiu,
Chengguang Tang, Xiaofeng He, and Jun Huang.
2022. DKPLM: decomposable knowledge-enhanced
pre-trained language model for natural language un-
derstanding. In AAAI, pages 11703–11711.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: enhanced
language representation with informative entities. In
ACL, pages 1441–1451.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian
Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji,
Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng,
Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan
Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao
Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, and Maosong
Sun. 2021. CPM: A large-scale generative chinese
pre-trained language model. AI Open, 2:93–99.

Junru Zhou, Zhuosheng Zhang, Hai Zhao, and Shuail-
iang Zhang. 2020. LIMIT-BERT : Linguistics in-
formed multi-task BERT. In EMNLP, volume
EMNLP 2020 of Findings of ACL, pages 4450–4461.

A Data Statistics

A.1 Data Sources for Pre-training
The pre-training corpora after pre-processing con-
tain 5 million text segments with 623,366,851 to-
kens (6.2 GB). We also perform simple data pre-
processing on the these corpora to improve the
quality of the data, including removing incorrect
characters and non-Chinese characters, etc. Our
KG data is downloaded from the largest authorita-
tive Chinese KG website OpenKG 8. The number
of entities and triples of OpenKG are 16,474,936
and 140,883,574, respectively. The total number of
relation types is 480,882.

A.2 Statistics of Downstream Tasks
In this paper, we choose three types downstream
tasks for evaluation, including Text Classification
(TC), Question Answering (QA) and Named Entity

8http://openkg.cn/

578

Dataset # Train # Dev # Test Task Metric

AFQMC 34,334 4,316 3,861 TC Acc@1

TNEWS 53,360 10,000 10,000 TC Acc@1

IFLYTEK 12,133 2,599 2,600 TC Acc@1

OCNLI 50,000 3,000 3,000 TC Acc@1

WSC 1,244 304 2573 TC Acc@1

CSL 20,000 3,000 3,000 TC Acc@1

CMRC 10,142 1,002 3,219 QA F1

CHID 84,709 3,218 3,231 QA Acc@1

C3 11,869 3,816 3,892 QA Acc@1

MSRA 40,000 6,675 4364 NER F1

Resume 3,821 462 476 NER F1

Weibo 1,350 264 262 NER F1

Ontonotes 15,740 4300 4345 NER F1

Table 4: The data statistics and evaluation metrics used in the experiments.

Model nparam. Nlayer Nhead Dhead Dff Dmodel

CKBERT-base 110M 12 12 64 3072 768
CKBERT-large 345M 24 16 64 4096 1024
CKBERT-huge 1.3B 24 8 256 8192 2048

Table 5: The overview of hyper-parameters settings of our model architectures. nparam. means the total parameters
of our model. Nlayer is the number of model layers. Nhead is the number of attention heads in each layer. Dhead is
the hidden dimension of attention heads. Dff is the intermediate dimension of FFN layers. Dmodel is the output
dimension of the model.

Recognition (NER). The statistics of dataset sizes
are shown in Table 4. The result metrics used in
our models are different among tasks. We use the
Acc@1 for text classification, F1 for NER. For
QA tasks, since CHID and C3 tasks are multiple
choices, we use Acc@1 as the metric for the two
tasks and F1 for CMRC.

B Baselines

In this work, we compare CKBERT with general
PLMs and KEPLMs with knowledge triples in-
jected, pre-trained on our text corpora:

B.1 General PLMs

We use three strong Chinese BERT-style models as
baselines, namely BERT-base (Devlin et al., 2019),
MacBERT (Cui et al., 2020) and PERT (Cui et al.,
2022). All the model weights are initialized from

Cui et al. (2020).

B.2 KEPLMs

We employ three SoTA KEPLMs continually pre-
trained on our pre-training corpora as our baseline
models, including ERNIE-Baidu (Sun et al., 2019),
ERNIE-THU (Zhang et al., 2019) and K-BERT
(Liu et al., 2020). For a fair comparison, KEPLMs
using other resources rather than the KG triples are
excluded in this work. All the baseline KEPLMs
are injected by the same KG triples during pre-
training.

C Hyper-parameters Settings

C.1 Hyper-parameters of Pre-training

For optimization, we set the learning rate as 5e-5,
the max sequence length as 128, and the batch size
as 20. The hidden dimension of the text encoder is

579

Dataset AFQMC TNEWS IFLY. OCNLI WSC CSL CMRC

BS 4 12 4 32 32 16 16

Epoch 10 10 10 50 50 10 10

LR 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5

MSL 256 128 256 128 128 256 512

Dataset CHID C3 MSRA Resume Weibo Ontonotes

BS 4 4 32 32 32 32

Epoch 15 15 10 10 10 10

LR 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5

MSL 192 512 128 128 128 128

Table 6: The important fine-tuning hyper-parameters used in our CKBERT models. “BS”, “LR”, and “MSL”
indicate the batch size, the learning rate and the max sequence length, respectively.

768. The temperature hyper-parameter τ is set to
0.5. The number of negative samplesL is 3. During
pre-training, all the experiments are conducted on
15 servers, each with 8 Tesla V100 GPUs (32GB).

C.2 Hyper-parameters of Model
Architectures

Table 5 shows the hyper-parameters settings of our
CKBERT models w.r.t. the model architectures,
including base (110M), large (345M) and huge
(1.3B).

C.3 Hyper-parameters of Fine-tuning
Table 6 shows the hyper-parameters settings for
fine-tuning. For fair comparison, we set a unified
set of important hyper-parameters for each task,
including the batch size, the learning epoch, the
learning rate and the max sequence length.

580

Proceedings of EMNLP 2022 Industry Track, pages 581–588
December 9–11, 2020. ©2022 Association for Computational Linguistics

A Stacking-based Efficient Method for Toxic Language Detection
on Live Streaming Chat

Yuto Oikawa1,2

1Graduate School of Engineering, Kitami Institute of Technology
2Rakuten Institute of Technology, Rakuten Group Inc.

Yuki Nakayama2 Koji Murakami2

Abstract
In a live streaming chat on a video streaming
service, it is crucial to filter out toxic comments
with online processing to prevent users from
reading comments in real-time. However, re-
cent toxic language detection methods rely on
deep learning methods, which can not be scal-
able considering inference speed. Also, these
methods do not consider constraints of com-
putational resources expected depending on a
deployed system (e.g., no GPU resource). This
paper presents an efficient method for toxic
language detection that is aware of real-world
scenarios. Our proposed architecture is based
on partial stacking that feeds initial results with
low confidence to meta-classifier. Experimen-
tal results show that our method achieves a
much faster inference speed than BERT-based
models with comparable performance.

1 Introduction

With the rapid growth of online social platforms,
posting text comments to a content have become
a familiar part of people’s lives for growing hu-
man connection and advertising purposes. How-
ever, these comments can include toxic language,
which can be harmful or offensive to others. Toxic
comments lead to damages of the user experience,
human well-being, and even product promotion.
Particularly, toxic language is a very common prob-
lem in live feeds on video streaming services (e.g.,
YouTube) (Liebeskind et al., 2021). Toxic com-
ments can appear more frequently in live broad-
casting, since users tend to impulsively post com-
ments in real-time with less introspection during
live streaming (Gao et al., 2020). It is not possible
to manually rule out toxic comments from a large
number of comments continuously posted across
multiple live feeds. We aim for an automatic de-
tection system to address toxic comments, such as
Figure 1.

To capture powerful latent features for detect-
ing toxic language, recent existing methods rely on

Figure 1: Diagram of Toxic Comment Detection System

deep learning techniques such as BERT. Although
the techniques have performed well on the task,
the following issues can be raised when assuming
application to comments on live streaming.
1. Inference Speed: During live streaming, many
posted comments can stream to all viewers in real-
time. To promptly prevent both viewers and video
contributors from reading toxic comments, on-
line processing should be crucial. However, deep
learning-based methods might not be scalable for
online processing due to slow inference speed.
2. Computation Resource: A computational
resource-friendly method is essential from an in-
dustry point of view. Even if the inference speed is
satisfied with one or more GPUs at the PoC phase,
there should be computational resource constraints,
depending on the requirements of a deployed sys-
tem when assuming real-world operations, such as
API on a mobile application.

To make up for the above two issues, we propose
an efficient method for toxic comment detection on
live streaming chat. Our target includes offensive,
insulting, and obscene expressions, similar to the
expressions used by Leite et al. (2020). We han-
dle Japanese comments since our method is meant
to be deployed on a Japanese live streaming ser-
vice. Our proposed architecture is a stacking-based
two-layer classification model in which detection
results with lower confidence scores in fastText
classification are re-classified by LightGBM with
five features. Thus, our method does not require
a GPU environment. That enables a developer to
facilitate deploying a system with low computation

581

resources and enough reproducibility. Experimen-
tal results show that our method achieves up to 17
times faster inference speed than several BERT-
based methods with a comparable F1 score under
an online processing setting.

2 Related Work

Many methods for toxic comment detection have
been proposed, mainly for Twitter (Leite et al.,
2020; Fehn Unsvåg and Gambäck, 2018; An et al.,
2021; ElSherief et al., 2021; Founta et al., 2019)
and comments to online news articles (Jigsaw,
2019; Baldini et al., 2022). Traditional methods use
lexical patterns based on offensive words (Hosseini
et al., 2017; Gröndahl et al., 2018) and opinion
words (Pouran Ben Veyseh et al., 2022). Since
malicious viewers create various toxic words in
diverse writing styles, this approach is not robust
to variants of words in the lexicon. In addition, it is
costly to regularly update the lexicon to keep a de-
ployed toxic detection system accurate (Nejadgholi
et al., 2022).

In recent years, many methods utilize deep
learning-based methods such as BERT and LSTM,
using sentiment information (Brassard-Gourdeau
and Khoury, 2019; Zhou et al., 2021; Cao et al.,
2020; Pouran Ben Veyseh et al., 2022), topic
contents (Almerekhi et al., 2020; Bose et al.,
2021), and context information such as text
replies (Dahiya et al., 2021; Bhat et al., 2021) and
attention-based context vectors (Chakrabarty et al.,
2019). Baldini et al. (2022) explored how BERT-
based models affect the relationship between per-
formance and fairness for toxic comment detection.
Here, fairness means equalized performance across
various sensitive groups such as religion and race.
However, none of the studies in this section ex-
plore performance that consider inference speed
and computational resources for toxic comment
detection for real-world applications.

Comment characteristics in video live stream-
ing chats are fundamentally different from Twitter
posts and news articles. There is no information
on replies (i.e., parent-child relationship) in live
streaming chats. Moreover, the comments are of-
ten short, which lacks context and topic informa-
tion. According to Yousukkee and Wisitpongphan
(2021), 63% of messages in live streaming chats on
YouTube contained fewer words than the average
word count of 8 with standard deviations of 7.

In video live streaming chat on Twitch1, Gao
et al. (2020) applied a fine-tuned RoBERTa model
to toxic comment detection. We show the efficiency
of our method by making a comparison with vari-
ous BERT-based models.

Edge computing can be an applicable solution
to address latency and scalability challenges for
NLP services with deep learning (Chen and Ran,
2019; Han et al., 2020). There is a wide range of
deployed candidates for edge computing architec-
tures and deep learning models. The deployment
should be carefully considered to accomplish sys-
tem requirements. Thus, we leave the applicability
of deep learning with edge-computing in our task
for future research.

3 Data Collection

We create annotated data for toxic comment detec-
tion on the video live streaming domain. We use
“NicoNico-Doga comment data” (DWANGO Co.,
2021-12-22) provided by the National Institute of
Informatics2. NicoNico-Doga is one of the largest-
scale Japanese video streaming services. In the
whole dataset, we used the file lists from 0000.zip
to 0005.zip, and labeled them as toxic/non-toxic
comments via human annotation. In total, 168,071
comments were annotated, which comprise 21,156
toxic comments and 146,915 non-toxic comments.
We randomly divided the annotated dataset into a
training set, development set, and test set at a ratio
of 80%, 10%, and 10%, respectively. The statistics
are shown in Table 1. To evaluate inter-annotator
agreement, additional two Japanese annotators in-
dependently identified a toxic or non-toxic label to
2,122 comments from scratch. The inter-annotator
agreement was κ = 0.77, which indicated substan-
tial agreement. Figure 2 shows the distribution of
comments divided by word count in our dataset.
The distribution of our dataset is similar to one
reported in Yousukkee and Wisitpongphan (2021)
on YouTube live stream. In our dataset, 67% of
comments contained fewer words than the average
word count of 7 with standard deviations of 6.

4 Proposed method

4.1 Overview
Our task is to classify posted comments as toxic or
non-toxic. As mentioned in §1, we assumed that

1https://www.twitch.tv
2https://www.nii.ac.jp/dsc/idr/nico/

nicocomm-apply.html

582

Figure 2: Number of comments divided by word count in our dataset

Toxic Non-toxic Total
Train 16,925 117,532 134,457
Dev 2,116 14,692 16,808
Test 2,115 14,691 16,806
Total 21,156 146,915 168,071

Table 1: Statistics of dataset

online processing should be crucial for comments
posted continuously in live streaming, and com-
putational resources are constrained depending on
the specification of the deployed system. Thus, we
design a model architecture under the following
two limitations for a deployed system.

• Avoid using a GPU resource

• Avoid using a deep learning model

Figure 3 shows the architecture of our proposed
method, which comprises two layers. We first use
fastText classification model (Joulin et al., 2017)
as described in §4.2 in order to prioritize fast infer-
ence speed. Our preliminary experiments with our
dataset showed that the lower the prediction proba-
bility for the fastText classification, the lower the
F1 score. Thus, there is much room for improve-
ment in results of lower prediction probability as
described in the triangle area in Figure 4. The re-
sults motivate us to utilize another classification
model for the case where the fastText model has
less confidence.

After getting classification results by the fast-
Text, we use the stacking technique (Džeroski and
Ženko, 2004). This technique is a simple but effec-
tive way that predictions of different classifiers are
fed to a meta-level classifier to generate final re-
sults. For efficiency, the second classifier is applied
only to the first results with lower confidence. We

Figure 3: Model Architecture

Figure 4: Macro F1-score by prediction probability for
fastText classification model

will describe the meta classifier and used features
in §4.3.

4.2 First layer: fastText classification model
The model is a simple neural network with only
one layer. The bag-of-words representation is first
fed into a lookup layer to obtain a word represen-
tation for every word. The model takes an average
of word representations into a text representation,
which is in turn fed to a linear classifier. We use
the softmax function to compute the probability
distribution over the two classes. We calculate con-
fidence score of classification result by Equation (1)

Conf(c) = max{P(y = 1|c),P(y = 0|c)} (1)
583

Input comments are fed to the meta-level classifier
if the confidence score is equal to or less than the
threshold θ. Otherwise, we use fastText prediction
as output.

4.3 Second layer: Meta-level Classification

As meta classifier, we select a LightGBM (Ke et al.,
2017), gradient boosting decision tree-based model.
The advantage of using LightGBM is its efficiency
and interpretability. Error analysis is indispensable
to keep a deployed system performance accurate
for future data. LightGBM enables us to facilitate
detecting a cause of an error through tracing deci-
sion flow. For the model training, we propose five
features from three perspectives.

Two Lexicon features: #Black words and #Gray
words Unlike existing studies, we make a lexical
feature considering certainty for toxic words. The
more a comment includes toxic words, the more the
text is likely to be toxic. However, whether or not a
word is associated with being toxic depends on con-
text. For example, the Japanese word “くそ (sh*t)”
has two word meanings, which are “very” and a
literal toxic word. If a comment uses the word with
the former meaning, a system can incorrectly iden-
tify the comment as a toxic comment. To alleviate
this problem, toxic words are divided into two cat-
egories in terms of certainty, called “black words”
and “gray words” in this paper. Black words are
words considered toxic regardless of the context.
Gray words are words that are not considered toxic
based on the context. Based on those ideas, we use
the number of black words and the number of gray
words in a comment as feature values. We man-
ually created 1,338 black words and 1,614 gray
words.

fastText Prediction We use the prediction label
as a feature value. Our preliminary experiments
show that fastText classification model tends to
return a low confidence score when ground-truth is
a “toxic” label, as illustrated in Figure 5. To utilize
this empirical finding, we also use the confidence
score ∈ (0.5,1] computed in §4.2.

SVM Prediction As a third perspective, we
use prediction results of Support Vector Machine
(SVM) trained with TF-IDF weighting scheme. For
each word w in a comment c, TF-IDF is calculated

Figure 5: Ratio of toxic comments by confidence score

by the Equation (2).

TF-IDF(w, c) =
fw,c∑

w′∈c fw′,c
· log N

df(w) + 1
(2)

where fw,c denotes frequency of w in c. df(w) de-
notes the number of documents in which w appears.
N is the total number of comments.

5 Experiments

5.1 Settings
We did experiments with the annotated dataset in
§3 to show the effectiveness and the efficiency of
our method. Model trainings were conducted on
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz with
a single processor. RAM size is 26GB. Cache
memory consists of 32KB for L1d, 32KB for L1i,
1024KB for L2, and 28,160KB for L3. The model
implementation is as follows:

fastText classification To get the word represen-
tations, we create a pre-trained model using the
fastText module (Bojanowski et al., 2017) with
all the comments in §3. For pre-processing, this
data is tokenized by the Japanese morphological
analyzer MeCab (Kudo, 2006). Additionally, a
word was lemmatized and half-width characters
were converted to full-width. Hyperparameters for
the pre-training are as follows: The number of di-
mensions for word representation is 300. We used
skip-gram to train word representation. The thresh-
old θ in §4.2 was determined with development set
(θ = 0.98).

SVM We calibrated the prediction results using
a calibrated ClassifierCV3 provided by scikit-learn

3https://scikit-learn.org/stable/
modules/generated/sklearn.calibration.
CalibratedClassifierCV.html

584

to remove the effect of bias in the unbalanced data.

LightGBM This model was optimized with op-
tuna (Akiba et al., 2019).

As baseline models, we used each component of
our method and existing pre-trained BERT-based
models. We used the BERT-base4 and BERT-large5

models pre-trained from Japanese Wikipedia. Addi-
tionally, it is essential to compare with light BERT
models for a fair evaluation of inference speed.
Over the last couple of years, variants of BERT
have been proposed to make the model size light
and inference speed efficient. Specifically, we tried
Distil-BERT6 (Sanh et al., 2019), ALBERT7 (Lan
et al., 2019), and Poor-Man’s BERT (Sajjad et al.,
2020). Poor-Man’s BERT is the method that re-
moves some layers from an original BERT. Their
experimental results showed that dropping the top
layers works consistently well across different tasks
when dropping 4 and 6 layers. Following those find-
ings, we removed the top 4 layers in the BERT-base
that we used.

For fine-tuning and testing for BERT-based meth-
ods, we used a single 32GB NVIDIA-V100 GPU.
The batch size for fine-tuning was 16. We set batch
size for inference to 1, since we assumed online
processing at the inference phase. Another possible
way of improving inference speed would be adjust-
ing the maximum length of an input sequence. We
explored the relationship between performance and
inference speed on variation of the length (4, 8, 16,
32, and 64). We evaluated the average inference
time over 10 trials.

5.2 Results
Table 2 shows classification results of our method
obtained with the threshold optimized in terms
of Macro F1 score. Our method achieved 0.942
in terms of average of Macro F1 across the two
classes. Table 3 shows results and the effectiveness
of each component. Looking at Table 3, one can
see that our stacking-based method outperformed
fastText single classification model by 3.3 points
and the remaining ones as well. We observed that
24% of test samples proceeded to the meta-level

4https://huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking

5https://huggingface.co/cl-tohoku/
bert-large-japanese

6https://huggingface.
co/bandainamco-mirai/
distilbert-base-japanese

7https://huggingface.co/ALINEAR/
albert-japanese-v2

Precision Recall Macro F1
Non toxic 0.981 0.991 0.986
Toxic 0.931 0.867 0.898
Macro Avg. 0.956 0.929 0.942

Table 2: Classification performance

Method Macro F1
fastText classification 0.919
Black words 0.905
Gray words 0.860
SVM 0.905
Our method 0.942

w/o SVM prediction 0.940
w/o graywords 0.938
w/o fastText probability 0.937
w/o blackwords 0.933
w/o fastText prediction 0.932

Table 3: Performance Comparison and Ablation Study

classifier. In Table 3, our ablation study showed
that our five features contributed to enhancing F1
score, especially black words and fastText predic-
tion. Thus, we believe that each of our proposed
features was independently effective for toxic lan-
guage detection tasks, and that the improvement
was even greater when used together.

Table 4 shows the comparison between our
method and BERT-based methods on various con-
figurations. The average inference time for our
method was 22.9 seconds for 16,807 test samples,
with a standard deviation of 1.18. In the Table,
we put QPS score (i.e., Throughput), the number
of comments which can be processed per a sec-
ond. Looking at the table, our method achieved
much faster inference speed (734QPS±41) than
any other BERT configurations. We found that the
differences in inference speed between our method
and BERT models were statistically significant at
the 1% level, irrespective of the configurations by
the two-tailed paired t-test for statistical testing.

BERT-large and ALBERT yielded slightly bet-
ter performance than our method when the maxi-
mum sequence length was 64 (F1 = 0.948) and 32
(F1 = 0.943), respectively. However, these models
sacrificed inference speed. For instance, the infer-
ence speed (47QPS±6) of BERT-large is 1.7 times
slower than BERT-base (82QPS±4) and 15.6 times
much slower than our method. On the other hand,
if attaching great importance to inference speed,

585

F1 QPS max_len = 4 max_len = 8 max_len = 16 max_len = 32 max_len = 64
F1 QPS F1 QPS F1 QPS F1 QPS F1 QPS

BERT-base 0.775 89±3 0.882 86±6 0.931 84±5 0.936 84±3 0.937 82±4
BERT-large 0.783 50±2 0.891 48±2 0.939 48±2 0.943 47±2 0.948 47±2
Distil-BERT 0.773 145±6 0.878 144±4 0.923 134±9 0.924 134±9 0.928 131±7
ALBERT 0.699 81±5 0.866 84±4 0.928 79±4 0.943 78±3 0.938 79±2
Poor Man’s BERT 0.774 114±7 0.882 115±9 0.930 112±4 0.936 112±6 0.935 109±6
Our method 0.942 734±41

Table 4: Relationship between Macro-F1 and inference speed on various configurations

Distil-BERT achieved the highest inference speed
(145QPS±6) of all the BERT-based settings when
the maximum sequence length was 4, but F1-score
dramatically went down to 0.773. It seems that
Poor-Man’s BERT and Distil-BERT had harmo-
nized results of BERT settings when the maximum
length was 32 or 64. However, all of the values did
not reach those for our method. Thus, we believe
that our method is intended for real-world deploy-
ment in terms of low-cost computational resources
with the comparable F1 score.

5.3 Error Analysis
To understand the difference between our method
and the BERT-large, we analyzed error cases where
the BERT-large made correct predictions whereas
our method failed. We describe a cause of an error
with the example comments in Table 5. In the Ta-
ble, we input English translation from the original
Japanese in parenthesis. On ethical grounds, some
parts were replaced with “*”.

The total number of our target errors was 195, di-
vided into 61 false positives and 134 false negatives.
In the false positives, 39 cases (64%) contained our
gray word. Thus, we suspected that the gray word
affects classification results for some patterns. We
observed two cases in which the gray word can be
noise.

recognized sub-word In the comment (a) in Ta-
ble 5, the word “きめつ” (kimestu) is not a toxic
word but just a title of Japanese animation. Our
method mistakenly identified the sub-word “きめ
(gross)” in the word as a gray word.

recognized without Word Sense Disambiguation
In the comment (b), the word “はげ” is often used
as the toxic word “bald”. However, this word is
sometimes also used as abbreviation of “はげしく
(strongly)”. In this context, the word had the latter
meaning and thus should not be identified as a gray
word.

In the false negatives, 96 errors (72%) were clas-
sified as a non-toxic comment for both SVM and

fastText classification models despite the presence
of gray words. Of the 96 errors, we identified that
39 cases (41%) would be due to either of the two
causes.

Coarse-grained tokenization When the same
word is written consecutively, such as the comment
(c), the MeCab tokenizer did not split that phrase
into a finer-grained word unit. We consider that our
method could not capture a feature of being toxic
due to a coarse-grained token with useless TF-IDF
value and word representation.

lol (laugh out loud) slang expression SVM was
trained so that the word “w (lol)” can contribute to
being non-toxic, rather than toxic, since the word
also appears in a non-toxic context. As a result,
even though a gray word is included in a comment,
the comment was not identified as a toxic com-
ment if the expression is used many times in the
comment (d).

Input Gold Ours
(a)だから、きめついらんよ N T(I told we don’t need kimetsu)
(b)はげど！ N T(Strongly agreed!)
(c)エロエロエロエロ T N(EroticEroticErotic)
(d)タグまじかｗ*ねｗｗ復帰スンナｗ

T N(tag is serious?lol fu**k off and die lol lol
don’t come back lol)

Table 5: Error cases (T: Toxic, N: Non-toxic)

6 Conclusion

Although many methods have been proposed to
detect toxic comments on online social platforms,
these methods have paid no attention to inference
speed and constraints of computational resources
for real-world applications. We presented a fast
and computational resource-friendly method. Our
method does not require GPU resources, which
faclitate being adjustable with a requirement of a
deployed system. We proposed a two-layer clas-

586

sification model that efficiently utilizes stacking
techniques with five features. Experimental results
showed that all of the proposed features were ef-
fective independently. Under the online processing
setting, our method achieved a much faster infer-
ence speed than fine-tuned BERT-based methods,
with the comparable F1 score. Our method is going
to be deployed on our service soon. We leave the
issues raised in error analysis for future research.

Acknowledgements

In this paper, we used "Nicovideo Comment etc.
data" provided by DWANGO Co., Ltd. via IDR
Dataset Service of National Institute of Informatics.

Ethical consideration

This study involves issues related to freedom of
expression. Detecting and hiding inappropriate
comments is an act that is closely associated with
censorship. There is still room for detailed discus-
sion on the extent to which it should be considered
toxic.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.

Hind Almerekhi, Supervised by Bernard J Jansen, and
co-supervised by Haewoon Kwak. 2020. Investi-
gating toxicity across multiple reddit communities,
users, and moderators. In Companion proceedings of
the web conference 2020, pages 294–298.

Jisun An, Haewoon Kwak, Claire Seungeun Lee, Bo-
gang Jun, and Yong-Yeol Ahn. 2021. Predicting
anti-Asian hateful users on Twitter during COVID-
19. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4655–4666, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Ioana Baldini, Dennis Wei, Karthikeyan Natesan Ra-
mamurthy, Moninder Singh, and Mikhail Yurochkin.
2022. Your fairness may vary: Pretrained language
model fairness in toxic text classification. In Find-
ings of the Association for Computational Linguistics,
pages 2245–2262, Dublin, Ireland. Association for
Computational Linguistics.

Meghana Moorthy Bhat, Saghar Hosseini, Ahmed Has-
san Awadallah, Paul Bennett, and Weisheng Li. 2021.
Say ‘YES’ to positivity: Detecting toxic language in
workplace communications. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2021,
pages 2017–2029, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5.

Tulika Bose, Irina Illina, and Dominique Fohr. 2021.
Generalisability of topic models in cross-corpora abu-
sive language detection. In Proceedings of the Fourth
Workshop on NLP for Internet Freedom: Censorship,
Disinformation, and Propaganda, pages 51–56, On-
line. Association for Computational Linguistics.

Eloi Brassard-Gourdeau and Richard Khoury. 2019.
Subversive toxicity detection using sentiment infor-
mation. In Proceedings of the Third Workshop on
Abusive Language Online, pages 1–10.

Rui Cao, Roy Ka-Wei Lee, and Tuan-Anh Hoang. 2020.
Deephate: Hate speech detection via multi-faceted
text representations. In 12th ACM conference on web
science, pages 11–20.

Tuhin Chakrabarty, Kilol Gupta, and Smaranda Mure-
san. 2019. Pay “attention” to your context when clas-
sifying abusive language. In Proceedings of the Third
Workshop on Abusive Language Online, pages 70–79,
Florence, Italy. Association for Computational Lin-
guistics.

Jiasi Chen and Xukan Ran. 2019. Deep learning with
edge computing: A review. Proceedings of the IEEE,
107(8):1655–1674.

Snehil Dahiya, Shalini Sharma, Dhruv Sahnan, Vasu
Goel, Emilie Chouzenoux, Víctor Elvira, Ang-
shul Majumdar, Anil Bandhakavi, and Tanmoy
Chakraborty. 2021. Would your tweet invoke hate on
the fly? forecasting hate intensity of reply threads on
twitter. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 2732–2742.

Ltd. DWANGO Co. 2021-12-22. Nicovideo comment
etc. data. informatics research data repository, na-
tional institute of informatics (dataset).

Saso Džeroski and Bernard Ženko. 2004. Is combining
classifiers with stacking better than selecting the best
one? Machine learning, 54(3):255–273.

Mai ElSherief, Caleb Ziems, David Muchlinski, Vaish-
navi Anupindi, Jordyn Seybolt, Munmun De Choud-
hury, and Diyi Yang. 2021. Latent hatred: A bench-
mark for understanding implicit hate speech. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 345–363,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Elise Fehn Unsvåg and Björn Gambäck. 2018. The
effects of user features on Twitter hate speech detec-
tion. In Proceedings of the 2nd Workshop on Abusive
Language Online (ALW2), pages 75–85, Brussels,
Belgium. Association for Computational Linguistics.

587

Antigoni Maria Founta, Despoina Chatzakou, Nicolas
Kourtellis, Jeremy Blackburn, Athena Vakali, and
Ilias Leontiadis. 2019. A unified deep learning ar-
chitecture for abuse detection. In Proceedings of the
10th ACM conference on web science, pages 105–
114.

Zhiwei Gao, Shuntaro Yada, Shoko Wakamiya, and
Eiji Aramaki. 2020. Offensive language detection on
video live streaming chat. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1936–1940, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti,
and N. Asokan. 2018. All you need is "love": Evad-
ing hate-speech detection. CoRR, abs/1808.09115.

Yiwen Han, Xiaofei Wang, Victor C. M. Leung,
Dusit Tao Niyato, Xueqiang Yan, and Xu Chen. 2020.
Convergence of edge computing and deep learning:
A comprehensive survey. IEEE Communications
Surveys & Tutorials, 22:869–904.

Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and
Radha Poovendran. 2017. Deceiving google’s per-
spective api built for detecting toxic comments. arXiv
preprint arXiv:1702.08138.

Kaggle Jigsaw. 2019. Jigsaw unintended bias in toxicity
classification. [Online:Acessed: 2022-07-18].

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. Advances in neural information
processing systems, 30.

Taku Kudo. 2006. Mecab: Yet another part-of-speech
and morphological analyzer. http://mecab. source-
forge. jp.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations.

João Augusto Leite, Diego Silva, Kalina Bontcheva,
and Carolina Scarton. 2020. Toxic language detec-
tion in social media for Brazilian Portuguese: New
dataset and multilingual analysis. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
10th International Joint Conference on Natural Lan-
guage Processing, pages 914–924, Suzhou, China.
Association for Computational Linguistics.

Chaya Liebeskind, Shmuel Liebeskind, and Shoam
Yechezkely. 2021. An analysis of interaction and
engagement in youtube live streaming chat. In
2021 IEEE SmartWorld, Ubiquitous Intelligence
& Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Inter-
net of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/IOP/SCI), pages 272–
279.

Isar Nejadgholi, Kathleen Fraser, and Svetlana Kir-
itchenko. 2022. Improving generalizability in im-
plicitly abusive language detection with concept ac-
tivation vectors. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5517–5529,
Dublin, Ireland. Association for Computational Lin-
guistics.

Amir Pouran Ben Veyseh, Ning Xu, Quan Tran, Varun
Manjunatha, Franck Dernoncourt, and Thien Nguyen.
2022. Transfer learning and prediction consistency
for detecting offensive spans of text. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1630–1637, Dublin, Ireland. Association
for Computational Linguistics.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2020. On the effect of dropping layers of
pre-trained transformer models.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Sawita Yousukkee and Nawaporn Wisitpongphan. 2021.
Analysis of spammers’ behavior on a live streaming
chat. IAES International Journal of Artificial Intelli-
gence (IJ-AI), 10:139–150.

Xianbing Zhou, Yang Yong, Xiaochao Fan, Ge Ren,
Yunfeng Song, Yufeng Diao, Liang Yang, and
Hongfei Lin. 2021. Hate speech detection based
on sentiment knowledge sharing. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7158–7166, Online.
Association for Computational Linguistics.

588

Proceedings of EMNLP 2022 Industry Track, pages 589–596
December 9–11, 2020. ©2022 Association for Computational Linguistics

End-to-End Speech to Intent Prediction to improve E-commerce Customer
Support Voicebot in Hindi and English

Abhinav Goyal, Anupam Singh, Nikesh Garera
Flipkart

{abhinav.goyal,anupam.s,nikesh.garera}@flipkart.com

Abstract
Automation of on-call customer support relies
heavily on accurate and efficient speech-to-
intent (S2I) systems. Building such systems
using multi-component pipelines can pose var-
ious challenges because they require large an-
notated datasets, have higher latency, and have
complex deployment. These pipelines are also
prone to compounding errors. To overcome
these challenges, we discuss an end-to-end
(E2E) S2I model for customer support voice-
bot task in a bilingual setting. We show how
we can solve E2E intent classification by lever-
aging a pre-trained automatic speech recogni-
tion (ASR) model with slight modification and
fine-tuning on small annotated datasets. Exper-
imental results show that our best E2E model
outperforms a conventional pipeline by a rela-
tive ∼27% on the F1 score.

1 Introduction

Spoken Language Understanding (SLU) systems
that extract the intent from a spoken utterance are
integral in various voicebot applications such as
automated on-call customer support, voice assis-
tants, home or vehicle automation systems, etc.
The extracted intent triggers a standard operating
procedure (SOP) as defined by the respective appli-
cation, e.g. an e-commerce customer query “I want
to return my phone” maps to “Return” intent which
triggers the SOP to help the user with returns. It
helps us reduce the reliance on human agents and
provide faster resolutions. More elaborate exam-
ples are shown in Table 4.

Conventionally, such systems consist of two
components - an Automatic Speech Recognition
(ASR) system followed by a Natural Language
Understanding (NLU) unit. ASR converts audio
to text, and NLU performs intent classification.
Further, each component can have multiple sub-
models. Typically, both these components are de-
veloped and optimized independently. ASR opti-
mizes word error rate (WER) with equal weightage

to individual words. This might not be optimal for
an S2I system since all words are not equally rele-
vant for intent classification. Also, due to the broad
diversity in speech, training reliable ASR models
can be very data intensive and strenuous. An error-
prone ASR results in noisy inputs to NLU models,
typically trained on clean text. This causes error
accumulation which reduces the pipeline’s perfor-
mance. Data-intensive training of multiple models,
high complexity & maintenance, and higher overall
latency make this pipeline approach sub-optimal.

The end-to-end S2I model is an intuitive alterna-
tive to overcome these limitations. It eliminates the
problem of error accumulation, is simple and faster,
and reduces the efforts required for independent
models. Modelling the problem as audio-to-intent
classification simplifies the task since the number
of intents is usually much less than the vocabulary
size used in ASR and NLU. It helps us reduce the
requirement of manually annotated training data.

In this work, we adapt an E2E ASR model to
build an E2E S2I model for Flipkart’s on-call cus-
tomer support. An overview of our contributions is
as follows:

• An efficient extension of end-to-end BiLSTM
and CTC based ASR models for S2I task on
noisy datasets;

• A demonstration of how the idea can outper-
form conventional pipeline in customer sup-
port voicebot in real-world settings;

• An investigation on how ASR pre-training,
offline active learning and pseudo labelling
reduce data labeling requirements for S2I.

Next, we discuss some related work in Section 2.
Section 3 & 4 describe the baseline S2I pipeline
and our E2E approach respectively. We talk about
datasets, preprocessing and experimental setup in
Section 5. Finally, we conclude with a discussion
on results and limitations in Section 6.

589

Figure 1: Text-based baseline system

2 Related Work

There have been several attempts to mitigate ASR
error propagation in text-based pipelines. One
straightforward idea is to correct the ASR out-
put, using error correction models (Weng et al.,
2020; Tam et al., 2014) or by ranking n-best hy-
potheses (Ogawa et al., 2018, 2019; Fohr and Il-
lina, 2021). Other approach is to leverage extra
information from ASR - output lattice (Ladhak
et al., 2016; Huang and Chen, 2019, 2020), n-
best hypotheses (Morbini et al., 2012; Li et al.,
2020; Liu et al., 2021) or word confusion net-
works/embeddings (Tür et al., 2002; Shivakumar
et al., 2019). Though these approaches make NLU
robust to some ASR errors, they still use a strict
multi-component pipeline.

There have been an increasing number of at-
tempts toward building end-to-end SLU models.
Qian et al. (2017); Serdyuk et al. (2018); Chen et al.
(2018) investigate end-to-end SLU models which
do not use ASR at all whereas Haghani et al. (2018)
optimizes ASR and NLU in a joint setup. Such end-
to-end models can require a large amount of paired
speech and intent data which may not always be
available. Wang et al. (2020); Morais et al. (2021)
explore unsupervised pre-training which helps in
low-resource settings but is usually very compute
intensive. An alternative approach is to initialize
SLU models using weights trained for ASR (Lu-
gosch et al., 2019; Kuo et al., 2020; Qian et al.,
2021). Since ASR datasets are more easily avail-
able, this approach presents a much easier method
of pre-training than unsupervised methods.

Inspired by ASR pre-training, we explore how to
augment a pre-trained ASR model for end-to-end
S2I task for Flipkart customer support voicebot in
Hindi and English languages.

3 Text-based Pipeline

Our baseline consists of 3 components - ASR,
transliteration and text-to-intent as shown in Fig. 1.
We use a bilingual ASR system which predicts
text in Devanagari script for both Hindi and En-
glish. The transliteration model converts this text
into Roman script. Finally, the text-to-intent model
extracts intent from Roman text.

Figure 2: E2E Speech-to-Intent. Features from the last
ASR block are used as inputs for intent classification.

Automatic Speech Recognition

Inspired by Fernández et al. (2007), we use a 3-
level HCTC architecture based on LSTM and atten-
tion (Vaswani et al., 2017) as shown in Fig. 2. Go-
ing in a fine-to-course fashion, the model predicts
characters (73 tokens), short subwords (300 tokens)
and long subwords (5000 tokens) at the respective
levels. We use unigram models from Sentencepiece
(Kudo and Richardson, 2018) for text segmentation.
Each level consists of an N-layer LSTM-attention
block (Fig. 3), N being 5-5-2, followed by a linear
softmax layer.

Figure 3: N-layer BiLSTM-attention block

590

For inference, the output of the last block, with
5000 subword units, is used for decoding the text
using prefix beam search. The top 100 candi-
dates are then re-ranked using a 3-gram KenLM
(Heafield, 2011) to select the best one.

Transliteration

A manually curated mapping and a fallback trans-
former encoder-decoder model (Vaswani et al.,
2017), with a single layer each in encoder and de-
coder, is used for transliteration. The transformer
uses a sum of character and position embeddings
as inputs. Together, this combination has a WER
of <1% on unique utterances from a blind test set.

Text-to-Intent

For text-to-intent classification, we have 28 cat-
egories (26 intents + others + blank) related to
different customer queries, e.g. “Delivery status”,
“Product return” etc. We use the “Blank” intent
when the output text is blank. For the baseline, we
try different models, out of which XGBoost (Chen
and Guestrin, 2016) with TF-IDF features gives the
best results. We observe that neural network-based
models - BiLSTM and BERT (Devlin et al., 2018)
overfit on our dataset. BERT when pre-trained on
a large corpus performs at par with XGBoost.

4 E2E Speech-to-Intent

For the S2I task, we augment the pre-trained ASR
model (same as used in the baseline) with intent
prediction head as shown in Fig. 2. We summarize
the hidden features from the last block of the ASR
model using a dot-product based multi-headed self-
attention (MHA) layer. We use the output sequence
of the last block as key-value vectors and the final
cell state of the last BiLSTM layer as the query
vector. A linear layer then predicts probability dis-
tribution over the intent classes. Since there’s no
text output from the model, the "Blank" intent is
also predicted the by E2E S2I model. We train the
intent prediction head (and fine-tune the BiLSTM
blocks) using cross entropy loss.

5 Experiments

5.1 Datasets

Automatic Speech Recognition
A collection of datasets is used to train the ASR
model - Flipkart customer support voicebot queries,
voice search queries and general domain speech

data. We transcribe all the utterances using an ex-
isting ASR system and manually correct the errors.
The ASR system used to generate reference text is
incrementally improved as more data is available.
There’s no control over the recording environment,
and the correction of ASR transcripts instead of
transcription from scratch leaves some errors intro-
duced by the ASR model. This causes the dataset
to have a lot of acoustic and textual noise. The
datasets collectively amount to ∼11 M audio-text
pairs which correspond to roughly 17k hours of
audio. It has a mix of Hindi and English (possibly
code-mixed) languages.

We train KenLM and Sentencepiece on a large
corpus collected from various sources such as Flip-
kart’s customer support chatbot and voicebot, voice
search queries and product catalogue. The ∼920k
Voicebot utterances (in-domain data) are upsam-
pled during training.

Transliteration
The transformer model is trained on ∼96k unique
words which are manually transliterated. This
dataset consists of high frequency words in Hindi
and English in equal proportions. We add manual
transliterations of words frequent for our use case
in the look-up dictionary.

Text-to-Intent
For training text-to-intent, ∼90k manually labeled
unique text-intent pairs are used. This mainly con-
sists of customer support voicebot and chatbot
queries. For deep neural-network based models
- BiLSTM and BERT, a large pre-training corpus
from e-commerce domain is also used.

Speech-to-Intent
For fine-tuning the model for S2I, we use a set of
10k randomly sampled voicebot queries (we call
it V1) and manually label the intents. We also use
additional 25k audios for offline active learning.
We name this complete 10k+25k set as V2.

Since the legacy system uses independent mod-
els, training data, to be annotated, was sampled
independently and randomly for each model. The
training datasets for ASR and Text-to-Intent don’t
have a large intersection. Therefore, we don’t have
a large dataset for training E2E S2I models and in-
stead use smaller, independently labelled datasets.

5.2 Pre-processing and Experimental Setup
We use standard log-mel-spectrogram features with
a window of 20ms, a stride of 10ms, and FFT size

591

Task Model Source Rough Size of Dataset
ASR BiLSTM Voicebot 893 hrs

Voice Search 9.9k hrs
Generic 6.4k hrs

SPM, KenLM Voicebot 920k sentences
Others 10M sentences

Transliteration Transformer Generic 96k word pairs
Text-to-Intent all Voicebot 55k text-intent pairs

Chatbot 35k text-intent pairs
Speech-to-Intent V1 Voicebot 10k audio-intent pairs

V2 Voicebot 10k+25k audio-intent pairs

Table 1: Breakup of various datasets used for training.

of 512. The number of filterbanks used is 80. We
use masking (Park et al., 2019) for data augmen-
tation. We also stack 5 consecutive frames with a
stride of 3 frames giving an input feature vector of
400 size with a receptive field of 60ms and stride
of 30ms for each time step.

We use a cyclical learning rate (LR) (Smith,
2017) to train the ASR model for 8 epochs with a
batch size of ∼42 minutes. For S2I, we use con-
stant LR, batch size of ∼26 minutes and fine-tune
it in 2 steps - on V1 dataset for 10 epochs + V2
dataset for 6 epochs. Training takes ∼2.5 days for
ASR and ∼24 minutes for S2I on 1 A100 GPU.

6 Results

We compare the baseline and E2E model on 14606
voicebot queries manually transcribed and anno-
tated for text and target intent resp. We report accu-
racy and F1 score for intent classification and word
error rate (WER) for ASR in Table 2. The ASR
system used for baseline has a WER of 8.34%. As
mentioned earlier in Section 3, transliteration mod-
ule has a WER of <1%. Together, the WER of the
ASR + transliteration system becomes <9.2%. The
text-to-intent model has an F1 score of 85.84%. We
compute this using manual transcriptions as inputs
to the text-to-intent model.

The S2I model, fine-tuned on just 10k manually
annotated audio-intent pairs (V1), outperforms the
baseline by an absolute 3.07% on the F1 score.
Using this, we predict intent on an unlabeled set
and get a random sample of 25k audios where the
model has low confidence (prediction probability as
given by softmax on the last layer). We correct this
set manually and re-train the model using all 35k
samples (V2), improving the F1 score by 1.28%.
We then re-train the model on the complete set of

voicebot queries (∼920k audios from ASR dataset)
using pseudo labels, further improving the score
marginally. Our final E2E model outperforms the
baseline by an absolute 4.59% on the F1 score.

The E2E model has a median latency of ∼41ms,
which is 1/3rd of the baseline latency (∼123ms).
Since we can deploy the complete model on a GPU,
it can handle inference at a much larger scale than
the baseline - more than 1000 queries per second
using a single A100 GPU. Whereas the decoder
in the ASR system used for the baseline, which is
the bottleneck, can only handle about 90 queries
per second. Thus, the E2E model outperforms the
baseline on accuracy, latency, and scalability.

6.1 Analysis and Discussion

We also evaluate a simple time average of sequence
output from the last ASR block in place of MHA. It
gives almost the same results as MHA showing that
the ASR model can adapt to intent classification
task without extra modelling efforts. We observe
that training the S2I model from scratch performs
very suboptimal, which shows the importance of
initializing the network using the ASR task when
paired audio-intent data is scarce.

The text-to-intent model has a higher F1 score
than the complete pipeline (85.84% vs 82.78%),
suggesting that errors by the ASR model are the
reason for the baseline’s suboptimal performance.
Our S2I model is not only able to mitigate this
but also gives more improvement as it is 1.53%
better than standalone text-to-intent with manual
transcriptions. Table 3 shows some examples to
compare our S2I model with the baseline. In ex-
amples 1-3, ASR makes a mistake due to wrong
pronunciation in 1 and high background noise in
2 & 3. These errors cause the text-to-intent model

592

#params All Intents Except blank/other
Model (in M) WER Accuracy F1 score Accuracy F1 score
Baseline 48.60 8.34 83.62 82.78 82.76 85.36
Baseline with GT text - 0 86.22 85.84 82.01 84.76
S2I linear (V1) 43.85 - 86.22 85.85 84.35 87.08
S2I MHA (V1) 45.97 - 86.28 85.85 85.88 87.81
S2I MHA from scratch (V1) 45.97 - 70.06 69.31 60.69 61.17
S2I MHA (V2) 45.97 - 87.18 87.13 87.60 89.94
S2I MHA (V2+pseudo lab.) 45.97 - 87.49 87.37 87.00 89.57

Table 2: Results on Intent Prediction. “Baseline” is the text based pipeline where text is given by the ASR system.
“Baseline with GT text” is where we substitute ASR with true transcriptions. All numbers are in %.

Utterance ASR output True intent Baseline Ours
1 Wapas karne ka hai Wapis karne ka hai Return Others Return
2 Das din ke ander mu-

jhe delivery chahiye
Das June ke ander mu-
jhe delivery chahiye

Specific deliv-
ery time

Delivery info Specific deliv-
ery time

3 Meri watch khrab hai Meri bahut khrab hai Return Others Return
4 Ji zaroor kariye Ji zaroor kariye Yes Others Yes
5 Delivery ki timing Delivery ke timing Delivery time Delivery time Delivery info
6 Kuchh nhi haan haan Kuchh nhi haan haan End End Yes

Table 3: Speech-to-Intent examples. In 1-4, our model does better and in 5 & 6, baseline does better.

to give wrong predictions demonstrating how error
propagation affects the pipeline. In example 4, the
intent model makes an error even with the correct
transcription. In examples 5 and 6, the baseline
outputs the right intent but the E2E model makes
mistakes. In both cases, the E2E model confuses
the intent with another very close category.

6.2 Conclusions

In this work, we show that pre-trained CTC-based
end-to-end ASR models can be adapted for end-to-
end Speech-to-Intent classification with slight aug-
mentation and relatively much less annotated data.
Our S2I model outperforms the text-based pipeline
by an absolute 3.07% on the F1 score while keep-
ing the model size small and requiring only 10k
annotated audio-intent pairs to train. It also simpli-
fies the pipeline by eliminating the requirement of a
dedicated ASR decoder, Text-to-Intent model, and
language models. With just 25k additional labelled
training pairs, our final model is ∼27% better than
the baseline on the F1 score (absolute improvement
of 4.59%). Thus, we show that the E2E S2I model,
adapted from ASR, outperforms the conventional
pipeline on accuracy, latency, and scalability while
requiring much less labelled training data, compute
resources, and modelling efforts.

Limitations

The baseline text-to-intent model was trained on a
different dataset from what is used for fine-tuning
the E2E models. But, using a considerably smaller
dataset than the baseline system puts the E2E mod-
els at a disadvantage. Since the E2E models still
outperform the baseline, the absolute difference in
utterances should not affect the credibility of the
results. We also need a transliteration module in
the text-based pipeline because of a mismatch in
scripts used by the ASR and Text-to-Intent models.
One might argue that the transliteration module
weakens the baseline. But being a highly accurate
system (with <1% WER), it should not affect the
baseline much. We have also verified this with
a manual analysis of errors. Also, the ASR pre-
training uses a large dataset which might not be
readily available for low-resource languages.

As the future steps, it would be interesting to see
how such models would work with more than two
languages, where some of the languages are low-
resource from ASR perspective. In such a setting,
the ASR models usually employ a larger vocabu-
lary to accommodate all languages, but since intent
categories are the same, adapted S2I models can
reduce vocabulary size by a greater extent giving
them an even bigger advantage.

593

Customer Utterance Intent/SOP Voicebot Response
Welcome Namaste, aapka svagat hai. Main aapki automated

support assistant. (English: Hello and welcome. I
am your automated support assistant)

1 Order identifica-
tion

Kya aap apne “curtain” ke bare mein baat karna
chahte hain, jo “shipped” hai? (English: Do you want
to ask about your “curtain”, which is “shipped”)

Haan (English: Yes) Yes/Confirmation Aapka order ship ho chuka hai, aur aapko aaj mil
jayega. Aapko kya madad chahiye? (English: Your
order has been shipped and you will get it by today.
What do you need help with?)

Mera order aaj kitne
time tak ghar pe aa
jayega (English: By
what time today will
my order reach?)

Delivery Info Hamare agent aaj shaam 6 bje tak deliver karne ki
koshish karenge. Yadi nahi ho paya to agle karyadin
deliver karenge. (English: Our agents will try to
deliver it by 6 pm today. If not possible, they will
deliver it the next working day.)

2 Order identifica-
tion

Kya aap “usha air cooler” ke bare poochhna chahte
hain, jo “returned” hai? (English: Are you calling
about “Usha Air Cooler”, which is “returned”)

Yes Yes/confirmation What do you need help with?
When will I get my re-
placed one cooler?

Return status Your replacement will be delivered within 2 days
after pickup of returned product.

3 Order identifica-
tion

Aapne haal hi mein ek se zyada order place kiye
hain. Aaj apne kis order ke bare mein call kiya hai?
(English: Recently you placed more than 1 order.
Which order are you calling about?)

Integriti jeans Apka “integriti jeans” ka order delivered hai. Aapko
is order ke bare mein kya madad chahiye? (English:
Your order of “integriti jeans” has been delivered.
What help do you need with this order?)

Customer executive se
baat karwao. (English:
Let me talk to a cus-
tomer executive.

Agent request Filhal hamare customer support executive vyast hain,
aapse subah 9:51 sampark karenge. Kya main call ki
vyavastha kar du? (English: Currently our executives
are busy. They could call you at 9:51 am in the
morning. Should I arrange for a call back?)

Haan thik hai. (En-
glish: yes it’s fine.)

Yes/Confirmation Thik hai, maine call ki vyavastha kar di hai. (English:
Ok, I have arranged for a call back.)

4 Order identifica-
tion

Kya aapne TV ke bare mein call kiya hai? (English:
Have you called about TV?)

Haan ji (English: Yes) Yes/Confirmation Aapka order ship ho chuka hai aur 19 November tak
deliver ho jaega. Aapko iss bare mein kya madad
chahiye? (English: Your order has been shipped and
will be delivered by 19th November. What help do
you need regarding this?)

Please deliver it today
itself

Faster delivery
request

Sorry, while faster delivery is not available, please be
assured we will deliver your order on time.

Conversation
end

*** mein call karne ke liye dhanyavaad, apka din
shubh rahe. (English: Thanks you for calling ***,
have a good day.)

Table 4: Illustrations of how an S2I system can help provide faster and automated resolutions in e-commerce.

594

References
Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A

scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
page 785–794, New York, NY, USA. Association for
Computing Machinery.

Yuan-Ping Chen, Ryan Price, and Srinivas Banga-
lore. 2018. Spoken language understanding without
speech recognition. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6189–6193.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Santiago Fernández, Alex Graves, and Jürgen Schmid-
huber. 2007. Sequence labelling in structured do-
mains with hierarchical recurrent neural networks. In
Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, IJCAI 2007.

Dominique Fohr and Irina Illina. 2021. Bert-based se-
mantic model for rescoring n-best speech recognition
list. In INTERSPEECH 2021.

Parisa Haghani, Arun Narayanan, Michiel Bacchiani,
Galen Chuang, Neeraj Gaur, Pedro Moreno, Rohit
Prabhavalkar, Zhongdi Qu, and Austin Waters. 2018.
From audio to semantics: Approaches to end-to-end
spoken language understanding. In 2018 IEEE Spo-
ken Language Technology Workshop (SLT), pages
720–726.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland. Association for Com-
putational Linguistics.

Chao-Wei Huang and Yun-Nung Chen. 2019. Adapting
pretrained transformer to lattices for spoken language
understanding. In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 845–852.

Chao-Wei Huang and Yun-Nung Chen. 2020. Learn-
ing spoken language representations with neu-
ral lattice language modeling. arXiv preprint
arXiv:2007.02629.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Hong-Kwang J Kuo, Zoltán Tüske, Samuel Thomas,
Yinghui Huang, Kartik Audhkhasi, Brian Kings-
bury, Gakuto Kurata, Zvi Kons, Ron Hoory, and

Luis Lastras. 2020. End-to-end spoken language un-
derstanding without full transcripts. arXiv preprint
arXiv:2009.14386.

Faisal Ladhak, Ankur Gandhe, Markus Dreyer, Lambert
Mathias, Ariya Rastrow, and Björn Hoffmeister. 2016.
Latticernn: Recurrent neural networks over lattices.
In Interspeech, pages 695–699.

Mingda Li, Weitong Ruan, Xinyue Liu, Luca Soldaini,
Wael Hamza, and Chengwei Su. 2020. Improving
spoken language understanding by exploiting asr n-
best hypotheses. arXiv preprint arXiv:2001.05284.

Xinyue Liu, Mingda Li, Luoxin Chen, Prashan Wani-
gasekara, Weitong Ruan, Haidar Khan, Wael Hamza,
and Chengwei Su. 2021. Asr n-best fusion nets.
In ICASSP 2021 - 2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7618–7622.

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto,
Vikrant Singh Tomar, and Yoshua Bengio. 2019.
Speech model pre-training for end-to-end spo-
ken language understanding. arXiv preprint
arXiv:1904.03670.

Edmilson Morais, Hong-Kwang J. Kuo, Samuel
Thomas, Zoltán Tüske, and Brian Kingsbury. 2021.
End-to-end spoken language understanding using
transformer networks and self-supervised pre-trained
features. In ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 7483–7487.

Fabrizio Morbini, Kartik Audhkhasi, Ron Artstein,
Maarten Van Segbroeck, Kenji Sagae, Panayiotis
Georgiou, David R. Traum, and Shri Narayanan.
2012. A reranking approach for recognition and clas-
sification of speech input in conversational dialogue
systems. In 2012 IEEE Spoken Language Technology
Workshop (SLT), pages 49–54.

Atsunori Ogawa, Marc Delcroix, Shigeki Karita, and
Tomohiro Nakatani. 2018. Rescoring n-best speech
recognition list based on one-on-one hypothesis com-
parison using encoder-classifier model. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6099–6103.

Atsunori Ogawa, Marc Delcroix, Shigeki Karita, and To-
mohiro Nakatani. 2019. Improved deep duel model
for rescoring n-best speech recognition list using
backward lstmlm and ensemble encoders. In Inter-
speech, pages 3900–3904.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Yao Qian, Ximo Bianv, Yu Shi, Naoyuki Kanda, Leo
Shen, Zhen Xiao, and Michael Zeng. 2021. Speech-
language pre-training for end-to-end spoken language

595

understanding. In ICASSP 2021 - 2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7458–7462.

Yao Qian, Rutuja Ubale, Vikram Ramanaryanan, Patrick
Lange, David Suendermann-Oeft, Keelan Evanini,
and Eugene Tsuprun. 2017. Exploring asr-free end-
to-end modeling to improve spoken language under-
standing in a cloud-based dialog system. In 2017
IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), pages 569–576.

Dmitriy Serdyuk, Yongqiang Wang, Christian Fuegen,
Anuj Kumar, Baiyang Liu, and Yoshua Bengio. 2018.
Towards end-to-end spoken language understanding.
In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5754–
5758.

Prashanth Gurunath Shivakumar, Mu Yang, and Panayi-
otis Georgiou. 2019. Spoken language intent
detection using confusion2vec. arXiv preprint
arXiv:1904.03576.

Leslie N. Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 464–472.

Yik-Cheung Tam, Yun Lei, Jing Zheng, and Wen Wang.
2014. Asr error detection using recurrent neural net-
work language model and complementary asr. In
2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2312–
2316.

Gökhan Tür, Jerry H Wright, Allen L Gorin, Giuseppe
Riccardi, and Dilek Hakkani-Tür. 2002. Improving
spoken language understanding using word confusion
networks. In Interspeech.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Pengwei Wang, Liangchen Wei, Yong Cao, Jinghui Xie,
and Zaiqing Nie. 2020. Large-scale unsupervised
pre-training for end-to-end spoken language under-
standing. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 7999–8003.

Yue Weng, Sai Sumanth Miryala, Chandra Khatri,
Runze Wang, Huaixiu Zheng, Piero Molino, Mahdi
Namazifar, Alexandros Papangelis, Hugh Williams,
Franziska Bell, and Gokhan Tur. 2020. Joint contex-
tual modeling for asr correction and language under-
standing. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6349–6353.

596

Proceedings of EMNLP 2022 Industry Track, pages 597–605
December 9–11, 2020. ©2022 Association for Computational Linguistics

PILE: Pairwise Iterative Logits Ensemble for Multi-Teacher Labeled
Distillation

Lianshang Cai∗, Linhao Zhang∗, Dehong Ma†, Jun Fan
Daiting Shi, Yi Wu, Zhicong Cheng, Simiu Gu, Dawei Yin†

Baidu Inc., Beijing, China
{cailianshang,zhanglinhao,madehong,fanjun}@baidu.com

{shidaiting01,wuyi01,chengzhicong01,gusimiu}@baidu.com
yindawei@acm.org

Abstract

Pre-trained language models have become a
crucial part of ranking systems and achieved
very impressive effects recently. To maintain
high performance while keeping efficient com-
putations, knowledge distillation is widely used.
In this paper, we focus on two key questions
in knowledge distillation for ranking models:
1) how to ensemble knowledge from multi-
teacher; 2) how to utilize the label informa-
tion of data in the distillation process. We pro-
pose a unified algorithm called Pairwise Iter-
ative Logits Ensemble (PILE) to tackle these
two questions simultaneously. PILE ensembles
multi-teacher logits supervised by label infor-
mation in an iterative way and achieved com-
petitive performance in both offline and online
experiments. The proposed method has been
deployed in a real-world commercial search
system.

1 Introduction

Search engines have been an infrastructure in the
Information Age to satisfy people’s needs for query-
ing about information. In modern search engines,
multi-stage pipelines are usually employed where
ranking is usually known as the very final stage. It
takes as input the shortlisted candidates of relevant
documents (i.e. web pages) retrieved from previ-
ous stages, and concentrates on sorting (Lin et al.,
2021) based on the degree of match between the
latent semantics of documents and the search intent
of the user’s query.

With the flourishing of pre-trained language
models (Devlin et al., 2018; Sun et al., 2019b; Lan
et al., 2019; He et al., 2020), BERT-based mod-
els have achieved state-of-the-art performance in
a broad range of downstream tasks and text rank-
ing is no exception. Pre-trained rankers based on
BERT show impressive performance in ranking

∗Equal contribution.
†Corresponding authors.

tasks (Nogueira and Cho, 2019; Nogueira et al.,
2019; Zou et al., 2021).

Despite the state-of-the-art performance pre-
trained models yield in laboratories, it is hardly
possible to apply them directly in real-world search
engines. Their large numbers of parameters go
against computational efficiency while the on-
line environment is strictly restricted in resources.
Therefore, before deploying a pre-trained model
online, one necessary procedure is to reduce com-
putational costs.

Knowledge distillation is one of the most com-
monly used methods to reduce the model size (Cris-
tian et al., 2006; Hinton et al., 2015a) and accelerate
the computation process. In a standard workflow
of distillation, a large model (i.e. teacher) is pre-
trained and finetuned well in advance, and a small
model (i.e. student) imitates the teacher model’s
behaviors. The knowledge learned by the teacher
model is then transferred to the student model.

One of the risk factors hindering the improve-
ment of the student model is that the knowledge
acquired by a single teacher may be insufficient
and biased. A straightforward solution is using an
ensemble of multiple teachers for knowledge trans-
fer. The ensemble process takes the predictions of
multiple teachers into account and provides com-
prehensive guidance that helps to improve student
performance (You et al., 2017). However, these
teachers sometimes conflict with each other, and
the heuristic of treating them equally by taking the
mean of their predictions ignores the fact that they
vary in confidence and correctness, thus often lead-
ing to suboptimal performance (Du et al., 2020).
Besides, the valuable label information is ignored.
Hence, how to ensemble knowledge from multi-
teacher and how to utilize the label information are
two key questions during the distillation process.

In this work, we introduce a unified algo-
rithm called Pairwise Iterative Logits Ensemble
(PILE) to tackle these two questions simultane-

597

ously. The key idea of PILE is to assign a higher
weight to teachers that produce more consistent
soft targets with the golden labels. The resulting
soft targets not only retain the generalization infor-
mation transferred from the teacher models but also
are integrated with the label information annotated
by human experts.

We conduct both offline and online experiments
and the results validate the effectiveness of PILE.
The main contributions of this paper can be sum-
marized as follows:

• We propose PILE, a specially designed en-
semble algorithm to tackle multi-teacher dis-
tillation and labeled distillation. To the best
of our knowledge, PILE is the first work that
addresses these two key questions simultane-
ously in the ranking scenario.

• We conduct extensive offline and online ex-
periments to demonstrate the effectiveness of
our proposed method. The results show that
PILE effectively boosts a real-world search
engine’s performance.

2 Related Work

Text Ranking The goal of text ranking is to gen-
erate an ordered list of texts in response to a query.
Conventional learning-to-rank (LTR) techniques
(Li, 2014) are widely used for text ranking, which
plays an important role in a wide range of appli-
cations, like search engines and recommender sys-
tems. LTR techniques can be roughly categorized
into three types: pointwise approach (Cooper et al.,
1992; Li et al., 2007), pairwise approach (Joachims,
2002; Zheng et al., 2007), and listwise approach
(Cao et al., 2007; Burges, 2010). The former two
are more widely used in practice as they are easier
to optimize.

Recently, deep learning approaches have been
widely adopted in ranking and BERT-based rank-
ing models achieve state-of-the-art ranking effec-
tiveness. For example, Nogueira and Cho (2019)
use BERT-large (Devlin et al., 2018) as the back-
bone and feed the concatenation of query and pas-
sage text to estimate the relevant scores for passage
re-ranking. Nogueira et al. (2019) formulate the
ranking problem as a pointwise and pairwise clas-
sification problem and tackle them with two BERT
models in a multi-stage ranking pipeline. Yilmaz
et al. (2019) aggregate sentence-level information
to estimate the relevance of the documents and

transfer the learned model to capture cross-domain
notions of relevance.

However, the performance improvement comes
at the cost of efficiency, which limits their real-
world application. There are several ways to main-
tain high performance while keeping efficient com-
putations for BERT-based models, such as knowl-
edge distillation (Hinton et al., 2015b), weight shar-
ing (Lan et al., 2019), pruning (Pasandi et al., 2020;
Xu et al., 2020), and quantization (Hubara et al.,
2017; Jacob et al., 2018). In this paper, we fo-
cus on knowledge distillation which has proven
a promising way to compress large models while
maintaining performance.

Knowledge Distillation The idea of knowledge
distillation was first introduced by Cristian et al.
(2006) to train small and fast models to mimic cum-
bersome and complex models, without much loss
in performance. Hinton et al. (2015a) developed
this idea further by minimizing the difference be-
tween their soft target distribution. With the rise of
the pre-training and fine-tuning paradigm, various
work has later extended this idea to large-scale pre-
trained models and shown impressive results on
multiple NLP tasks (Wang et al., 2019; Rajpurkar
et al., 2018; Lai et al., 2017) with a significant
gain in training efficiency. Sanh et al. (2019) con-
ducted knowledge transfer during the pre-training
phase, also known as a task-agnostic way. Sun et al.
(2019a) proposed an approach to transfer knowl-
edge between intermediate layers in the fine-tuning
stage. Jiao et al. (2020) additionally uses attention-
based distillation and hidden states-based distilla-
tion for students to imitate teachers’ behaviors in
intermediate layers. Wang et al. (2020) introduced
self-attention relation-based transfer and teacher as-
sistants (Mirzadeh et al., 2020) to further improve
the performance of students.

Ensemble Knowledge Distillation There is also
some other work exploring the issues of multi-
teacher distillation. For example, Du et al. (2020)
adaptively ensemble knowledge distillation to find
a better optimizing direction for the student net-
work. Wu et al. (2021) designed a co-finetuning
framework to jointly finetune multiple teachers for
better collaborative knowledge distillation. Li et al.
(2021) explored the influence of teacher model
adoption which is promising for improving student
performance. Different from the above work, we
investigate the problem of ensemble knowledge dis-
tillation in ranking tasks and use the golden label

598

to supervise the ensemble process.

3 Methodology

3.1 Ranking Task Definition

In a search system, the ranking task aims to mea-
sure the relative order of a set of documents Dq =
{di}Ni=1 given a query q ∈ Q, where Q is a set
of user queries and Dq ⊂ D is a set of q-related
documents retrieved from a large document corpus
D (Liu et al., 2021). The ranking model deter-
mines the order of documents by computing the
relevance score f(q, d; θ) of each query-document
pair {(q, di)}Ni=1, where f is a scoring function
parameterized by θ representing the relevance of
query q and document d .

As regards training procedure, the ranking model
is learned by minimizing the empirical loss over
the training data as

L =
∑

q∈Q
l(YDq , F (q,Dq)),

where l is the loss function in learning to rank,
e.g. pointwise loss, pairwise loss or listwise loss,
and F (q,Dq) = {f(q, di)}Ni=1 is a set of relevance
scores, YDq = {yi}Ni=1 is a set of labels. The label
yi is often assigned an integer range from 0 to 4,
representing the relevance of the query-document
pair (q, di).

3.2 Knowledge Distillation

Due to the resource constraint, the ranking model
can not directly serve online in a real production en-
vironment and we use knowledge distillation (KD)
to compress the model size. In a commonly used
KD framework, a large teacher model T is pre-
trained or finetuned well in advance, and the knowl-
edge of the teacher is transferred to a small student
S by minimization of the difference between them,
which can be formulated as:

LKD =
∑

x∈D
L(fS(x), fT (x)),

where D denotes the training dataset and x is the
input sample, fS(·) and fT (·) represent behavior
measurements of teacher and student models, and
L(·) is a loss function to measure the difference
between their behaviors. The behaviors are usually
represented by soft target distributions of the last
layer, hidden state distributions or other deep se-
mantic features such as self-attention distributions

and embedding layer outputs (Hinton et al., 2015a;
Sun et al., 2020; Jiao et al., 2020; Wang et al., 2020,
2021). The methods that transfer the knowledge
between the internal layers are limited in general-
ity since the teachers and students are required to
have the same model structure or align with each
other in the number of layers or the size of hidden
layers. Based on this consideration of generality,
we perform knowledge distillation on the last layer
only.

3.3 Pairwise Iterative Logits Ensemble
Knowledge distillation by one single teacher may
bring some bias to the student model while sim-
ple yet common mitigation is distillation on the
average of logits output by n multiple teachers.
However, the teachers with diversity may conflict
with each other since the biased teacher contributes
equally as the unbiased teacher, which corrodes
the confidence of distillation logits. Since the log-
its produced by teachers on different data vary in
the degree of confidence, we conduct a dynamic
weighting process for the ensemble. In the ranking
task, the logit predicted by the teacher for a docu-
ment represents a measurement of relevance with
the query. The larger logits represent more correla-
tion between the query and the document, and the
correlation information is already annotated in its
label. Thus, we consider utilizing the golden label
to direct the assignment of weight. The procedures
of the PILE algorithm are provided in Figure 1.

We start with initializing the ensembled distilla-
tion logit e(0)(q, d) for each query q and document
d by way of averaging each teacher’s outputs:

wk(q, d) = 1

e(0)(q, d) =
1

Z(q, d)

∑

k

wk(q, d)fk(q, d)

Z(q, d) =
∑

k

wk(q, d),

where fk(q, d) represents the relevance score pre-
dicted by k-th teacher and wk(q, d) is its weight
w.r.t query q and document d.

Then, we perform the iterations of the update
procedure. At iteration t, we randomly choose
a pair of docs (di, dj) related to the same query
q, and check whether the magnitude of their en-
semble logits is consistent with their labels. More
specifically, if label yi > yj and ensemble logits
e(t)(q, di) < e(t)(q, dj), we call this pair of docs in

599

Figure 1: Procedures of PILE: 1) start with initializing the ensemble distillation logits with equal weights and 2)
update a pair of resulting logits in reversed order by reassigning the weights of teachers.

reversed order or a negative pair and consider the
ensemble logits have been biased. We modify the
biased ensemble logits by reassigning to zero the
weight of teachers responsible for the reversed or-
der error. The reassignment rule can be formulated
as follows:

wk(q, di) =

{
0, fk(q, di) < e(t)(q, di)
1, otherwise

wk(q, dj) =

{
0, fk(q, dj) > e(t)(q, dj)
1, otherwise

where we assume the docs pair (di, dj) is in re-
versed order and label yi > yj for ease of explana-
tion. Then, we update the ensemble logits with an
update rate λ:

ẽ(t+1)(q, d) =
1

Z(q, d)

∑

i

wk(q, d)fk(q, d)

Z(q, d) =
∑

k

wk(q, d)

e(t+1)(q, d) = (1− λ)e(t)(q, d) + λẽ(t+1)(q, d)

We repeat the updating in an iterative process until
the magnitude of the ensemble logits of each pair
of docs is consistent with their labels or it reaches
the maximum iteration number. We use the final
ensemble logits to perform knowledge distillation
for the student model.

4 Experiments

To investigate the effectiveness of our proposed
method, we conduct offline experiments with base-
line models and deploy our proposed model in the

Data #Query #Query-Doc Pair
log data 635,420,390 2,970,692,361

train data 432,410 8,794,863
test data 12,044 289,835

Table 1: Dataset statistics

real-world production environment. In this sec-
tion, we report the details of the experiment setups,
datasets we used, evaluation metrics, the results of
the experiments, and the case study.

4.1 Datasets

The datasets on which we pre-train, finetune, and
evaluate our proposed method are collected from
the Baidu search engine. For the pre-training stage,
we collect a large-scale unlabeled dataset (log
data) by means of the anonymous search log. The
dataset contains 2, 970, 692, 361 query-document
pairs. As regards finetuning stage, queries and doc-
uments are collected from the search pipelines and
manually labeled on Baidu’s crowdsourcing plat-
form, where a group of hired annotators assigned
an integer label range from 0 to 4 to each query-
document pair, representing their relevance as {bad,
fair, good, excellent, perfect}. We repeat the same
process for the test set. The dataset information is
summarized in Table 1.

4.2 Training details

We use a 12-layer Transformer (Vaswani et al.,
2017) structure with 768 hidden sizes and 12 at-
tention heads as the backbone of teacher models
and a 6-layer Transformer structure with 768 hid-

600

den sizes and 12 attention heads as student models,
where the parameters are randomly initialized, pre-
trained and finetuned on the datasets described in
section 4.1.

In order to obtain multiple teachers with similar
performance and some differences for ensemble
knowledge distillation, we use the same pre-trained
checkpoint and finetune it on different samplings
of the total train data. Specifically, the teacher T1
is finetuned on the whole train data, and teacher
T2 and T3 are finetuned on 80% of the whole train
data. The intuition behind this is that we want all
the teachers to perform relatively well but not be-
have as the same one otherwise the ensemble of
three teachers may degenerate into a single model,
which will compromise the benefits of the ensem-
ble knowledge distillation. As a result, T1 performs
best on the test set and the other two teachers have
a competitive performance as T1. The results of
three teachers on the test set are shown in Table 2.

In the training procedure, we use the Adam opti-
mizer (Kingma and Ba, 2014) with β1 = 0.9 and
β2 = 0.99. For both 12-layer and 6-layer models,
we set the learning rate as 2e-5, the batch size as
64, and the warm-up step as 1000. In the PILE pro-
cedure, the maximum number of iterations is set to
|Dq|

3
2 where |Dq| is the size of documents set Dq

related to a given query q and the update rate λ is
set to 0.9. In the knowledge distillation stage, we
set the warm-up step as 1000, the learning rate as
2e-5 and the batch size as 1024.

4.3 Evaluation Metrics
The evaluation metrics we used in the experiments
are as follows.

The Positive-Negative Ratio (PNR) measures
the consistency between the golden labels and the
scores output by models. For a given query q and a
list of N associated documents ranked by model,
the PNR can be calculated by this formulation:

PNR =

∑
i,j∈[1,N] I{yi > yj}I{f(q, di) > f(q, dj)}∑
i,j∈[1,N] I{yi > yj}I{f(q, di) < f(q, dj)}

,

where I{·} is the indicator function, taking the
value 1 if the internal statement is true or 0 other-
wise. For the test set that contains a good many
queries, we average PNR values over all queries.

The Discounted Cumulative Gain (DCG)
(Järvelin and Kekäläinen, 2000) is a widely used
metric that evaluates the ranking result of search
engines. More specifically, DCG is calculated as a

weighted sum of the document’s relevance degree
Gi at each position i, where the weight is assigned
according to the document’s position in the ranking
results:

DCG =
∑

i

Gi

log2(i+ 1)

The Interleaving (Chapelle et al., 2012; Chuk-
lin et al., 2015) is extensively used for comparing
a new system with the base system in industrial
information systems evaluation. The results of two
systems are interleaved and presented together to
the end users, whose clicks would be credited to
the system that provides the corresponding results.
The gain of the new system A over the base system
B can be denoted as ∆AB:

∆AB = 0.5∗ wins(A)− wins(B)

wins(A) + wins(B) + ties(A,B)
,

where wins(A)(or wins(B)) counts the number
of times when the results produced by system A
(or B) are more preferred than the other system for
a given query and ties(A,B) counts the number
of times when the two systems are tied.

We also conduct a comparison called Good vs.
Same vs. Bad (GSB) between two systems by
inviting professional annotators to estimate which
system produced a greater ranking result for each
given query (Zhao et al., 2011). The gain of a new
system can be formulated as:

∆GSB =
#Good−#Bad

#Good+#Bad+#Same
,

where #Good (or #Bad) denotes the number of
queries that the new (or base) system provides bet-
ter ranking results and #Same for the number of
results that are equal in quality.

4.4 Offline Experimental Results
We conduct several comparison experiments to ver-
ify our proposed method. The models in the offline
comparison experiments include:

• Base: We use an ERNIE-based ranking model
as our base model, which is finetuned with
a pairwise loss using human-labeled query-
document pairs without any guidelines from
teachers;

• single-KD: In this setting we add knowledge
distillation loss when training the base model
using the teacher that performs best on the test
set;

601

Method PNR Improvement
Teacher1 3.21 -
Teacher2 3.20 -
Teacher3 3.19 -
Base 3.11 -
+ single-KD 3.15 +1.29%
+ AE-KD 3.16 +1.61%
+ PILE-KD 3.18 +2.25%

Table 2: Offline comparison of the proposed methods.

• AE-KD: Instead of using the single teacher,
this variant uses an ensemble of 3 teachers
with averaged weight to perform knowledge
distillation;

• PILE-KD: When performing knowledge dis-
tillation, PILE-KD uses human-annotated la-
bels with the help of the PILE algorithm to
conduct a dynamic weighting process for the
ensemble of 3 teachers.

The results of each model are shown in Table 2
with the improvement compared to the base model.
We also report the performance of the teachers used
in knowledge distillation. As we expected, all the
distilled models consistently outperform finetuned
base model thanks to teacher models’ guidance and
regularization. And besides, using an ensemble
of teachers gains further promotion than the sin-
gle teacher distillation. After ensembling multiple
teachers by averaging distillation logits, the PNR
reaches 3.16, exceeding the base by 1.61%. This
shows that the remission from biased distillation
by the cooperation of multiple teachers improves
students in semantic matching. Moreover, by ap-
plying the PILE algorithm, we can see that the
student can beat the base model by a large margin
w.r.t PNR, where the value is improved to 3.18 by
2.25% improvement. It shows the effectiveness of
dynamic reduction of biased teachers’ weight in
the ensemble process.

4.5 Online Experimental Results
To investigate the effectiveness of our proposed
method in the real production environment, we de-
ploy the proposed model in Baidu Search, a widely
used Chinese search engine, and conduct online
experiments for comparison.

The results are presented in Table 3, which
comprises the performance comparison regarding
∆DCG, ∆GSB, and ∆AB . We consider the

Random Tail
∆DCG +0.10% +0.27%
∆GSB +3.70% +1.62%

Query Type Query Length
Random Tail short long

∆AB +0.022% +0.029% +0.01% +0.039%

Table 3: Online comparison of the proposed methods.

Figure 2: The effect of the number of teachers.

queries from the perspective of types and lengths
in the search log. The tail queries and long queries
are the queries whose search frequency is lower
than 10 times per week or whose length is greater
than 10 respectively. Since the heterogeneous
search queries follow long-tail distributions, the
tail queries make up a significant part of the queries
in the search engine. As we can see the proposed
method improves the performance of the online
ranking system consistently. Particularly, we can
observe that the gains of tail queries in the ∆DCG
and ∆GSB for our method are 0.27% and 1.62%
respectively. Compared with AE-KD, PILE-KD
can enable students to retain the ability of teach-
ers as much as possible, and the improvement on
long-tail queries also confirms this.

4.6 Ablation Studies

To illustrate the detailed effects of the proposed
algorithm, we take a deep insight into the contribu-
tions of each setting.

Number of teachers. We first focus on the ef-
fect of the number of teachers and the results are
shown in Figure2. As expected, the PNRs under
both AE-KD and PILE-KD settings increase with
the number of teachers and consistently outperform

602

Figure 3: The effect of update rate λ in PILE.

the result of the single-KD model, showing the
benefits of using multiple teachers for distillation.
Besides, the performance under PILE-KD settings
has always been better than it under AE-KD set-
tings, showing the benefits of reducing noise and
bias with the help of the label information anno-
tated by human experts in the process of ensemble
knowledge distillation.

PILE update rate. We further examine the ef-
fect of the PILE update rate λ. As shown in section
3.3, the update rate λ controls the smoothness of
two successive iterations. As we can see in Fig-
ure 3, the PNR result increases with the λ ranging
from 0.1 to 1.0, until reaching the apex at 0.9. The
larger update rate λ makes the reliable teachers get
more weight in a PILE iteration, resulting in more
dependable soft targets. The results further prove
that the distillation process can benefit from PILE
iteration.

4.7 Case Study
To illustrate the effect of the PILE algorithm in
the ensemble knowledge distillation concretely, we
show a case that corrects the ensemble logits of
two documents that are in reversed order.

As we can see in Table 4, two documents that are
related to the same query are labeled by annotators
as 0 and 3 respectively, representing their relevance
with the query. The teachers’ predictions of the
relevance are listed in the table as T1 ∼ T3. In the
last two rows of the table, we show the ensemble
results using averaged weight (AE) and the PILE
method respectively.

To get the ensemble logits for knowledge distil-
lation, AE takes the mean of teachers’ predictions.
However, influenced by individual teachers, the
result ensemble logits of the two documents are

query 北 京 驾 校 教 练 一 个 月 能 挣 多 少
钱？(How much does a Beijing driving
school coach earn a month?)

doc 北 京 私 人 教 练
一 个 月 能 挣 多
少钱？(How much
does a Beijing per-
sonal trainer make
a month?)

驾校教练工资一
月多少？百度知
道 (How much is
the salary of a driv-
ing school coach
per month? Baidu
Knows)

label 0 3
T1 0.0589 0.0271
T2 0.1923 0.0331
T3 0.1057 0.0983
AE 0.1190 0.0528
PILE 0.0590 0.0981

Table 4: The teachers’ logits and ensemble logits for
two documents.

contrary to their golden labels. In other words, the
document with higher relevance is scored lower
than the irrelevant one after the ensemble process,
which will confuse the student in the knowledge
transfer process. Benefiting from the PILE itera-
tion, the teachers consistent with the golden label
are assigned more weight. The resulting soft tar-
gets not only retain the knowledge that transfers
from teachers but also are integrated with the label
information annotated by human experts, which is
more promising for knowledge distillation.

5 Conclusion

In this work, we propose an easy-to-implement ap-
proach to multi-teacher distillation for large-scale
ranking models. Our algorithm ensembles multi-
teacher logits supervised by human-annotated la-
bels in an iterative way. We conduct the offline
experiments as well as deploy our methods in an
online commercial search system which demon-
strates its superiority.

Acknowledgements

The authors would like to thank the colleagues at
Baidu Inc. for their constructive suggestions that
helped improve the paper, and hope everything
goes well with their work. The authors are also
indebted to the anonymous reviewers for their valu-
able comments and suggestions on the paper.

603

References

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11(23-581):81.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
pages 129–136.

Olivier Chapelle, Thorsten Joachims, Filip Radlinski,
and Yisong Yue. 2012. Large-scale validation and
analysis of interleaved search evaluation. ACM Trans.
Inf. Syst., 30:6:1–6:41.

Aleksandr Chuklin, Anne Schuth, Ke Zhou, and
Maarten De Rijke. 2015. A comparative analysis
of interleaving methods for aggregated search. ACM
Trans. Inf. Syst., 33(2).

William S Cooper, Fredric C Gey, and Daniel P Dabney.
1992. Probabilistic retrieval based on staged logistic
regression. In Proceedings of the 15th annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 198–210.

Bucila Cristian, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Shangchen Du, Shan You, Xiaojie Li, Jianlong Wu,
Fei Wang, Chen Qian, and Changshui Zhang. 2020.
Agree to disagree: Adaptive ensemble knowledge
distillation in gradient space. Advances in Neural
Information Processing Systems, 33:12345–12355.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015a.
Distilling the knowledge in a neural network. Com-
puter Science, 14(7):38–39.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015b.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. 2017. Quantized neu-
ral networks: Training neural networks with low
precision weights and activations. The Journal of
Machine Learning Research, 18(1):6869–6898.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2704–2713.

Kalervo Järvelin and Jaana Kekäläinen. 2000. Ir eval-
uation methods for retrieving highly relevant doc-
uments. In Proceedings of the 23rd Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval.

X. Jiao, Y. Yin, L. Shang, X. Jiang, and Q. Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 133–142.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard H. Hovy. 2017. RACE: Large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Hang Li. 2014. Learning to rank for information re-
trieval and natural language processing. Synthesis
lectures on human language technologies, 7(3):1–
121.

Lei Li, Yankai Lin, Shuhuai Ren, Peng Li, Jie Zhou, and
Xu Sun. 2021. Dynamic knowledge distillation for
pre-trained language models. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 379–389, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ping Li, Qiang Wu, and Christopher Burges. 2007.
Mcrank: Learning to rank using multiple classifi-
cation and gradient boosting. Advances in neural
information processing systems, 20.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021.
Pretrained transformers for text ranking: Bert and
beyond. Synthesis Lectures on Human Language
Technologies, 14(4):1–325.

Yiding Liu, Weixue Lu, Suqi Cheng, Daiting Shi,
Shuaiqiang Wang, Zhicong Cheng, and Dawei Yin.

604

2021. Pre-trained language model for web-scale re-
trieval in baidu search. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pages 3365–3375.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distil-
lation via teacher assistant. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 5191–5198.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-stage document ranking
with bert. arXiv preprint arXiv:1910.14424.

Morteza Mousa Pasandi, Mohsen Hajabdollahi, Nader
Karimi, and Shadrokh Samavi. 2020. Modeling of
pruning techniques for deep neural networks simpli-
fication. arXiv preprint arXiv:2001.04062.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

S. Sun, Y. Cheng, Z. Gan, and J. Liu. 2019a. Patient
knowledge distillation for bert model compression.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019b. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Interna-
tional Conference on Learning Representations.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. MiniLMv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2140–2151, Online. Association for Computa-
tional Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776–5788.

Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. 2021.
One teacher is enough? pre-trained language model
distillation from multiple teachers. arXiv preprint
arXiv:2106.01023.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. Bert-of-theseus: Compressing
bert by progressive module replacing. Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang,
and Jimmy Lin. 2019. Cross-domain modeling of
sentence-level evidence for document retrieval. In
Proceedings of the 2019 conference on empirical
methods in natural language processing and the 9th
international joint conference on natural language
processing (EMNLP-IJCNLP), pages 3490–3496.

Shan You, Chang Xu, Chao Xu, and Dacheng Tao. 2017.
Learning from multiple teacher networks. Proceed-
ings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining.

Shiqi Zhao, Haifeng Wang, Chao Li, Ting Liu, and
Yi Guan. 2011. Automatically generating questions
from queries for community-based question answer-
ing. In Proceedings of 5th international joint confer-
ence on natural language processing.

Zhaohui Zheng, Keke Chen, Gordon Sun, and
Hongyuan Zha. 2007. A regression framework for
learning ranking functions using relative relevance
judgments. In Proceedings of the 30th annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 287–294.

Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma,
Suqi Cheng, Shuaiqiang Wang, Daiting Shi, Zhicong
Cheng, and Dawei Yin. 2021. Pre-trained language
model based ranking in baidu search. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 4014–4022.

605

Proceedings of EMNLP 2022 Industry Track, pages 606–615
December 9–11, 2020. ©2022 Association for Computational Linguistics

A Comprehensive Evaluation of Biomedical Entity-centric Search

Elena Tutubalina
Insilico Medicine Hong Kong

elena@insilicomedicine.com

Zulfat Miftakhutdinov
Insilico Medicine Hong Kong

zulfat@insilicomedicine.com

Vladimir Muravlev
Insilico Medicine Hong Kong

v.muravlev@insilicomedicine.com

Anastasia Shneyderman
Insilico Medicine Hong Kong

a.shneyderman@insilicomedicine.com

Abstract

Biomedical information retrieval has often been
studied as a task of detecting whether a system
correctly detects entity spans and links these
entities to concepts from a given terminology.
Most academic research has focused on evalu-
ation of named entity recognition (NER) and
entity linking (EL) models which are key com-
ponents to recognizing diseases and genes in
PubMed abstracts. In this work, we perform a
fine-grained evaluation intended to understand
the efficiency of state-of-the-art BERT-based
information extraction (IE) architecture as a
biomedical search engine. We present a novel
manually annotated dataset of abstracts for dis-
ease and gene search. The dataset contains
23K query-abstract pairs, where 152 queries
are selected from logs of our target discovery
platform and PubMed abstracts annotated with
relevance judgments. Specifically, the query
list also includes a subset of concepts with at
least one ambiguous concept name. As a base-
line, we use off-she-shelf Elasticsearch with
BM25. Our experiments on NER, EL, and re-
trieval in a zero-shot setup show the neural IE
architecture shows superior performance for
both disease and gene concept queries.

1 Introduction

The amount of text data being produced is over-
whelming, especially in biomedicine; PubMed1

covers over 33 million articles from biomedical and
life sciences journals and other texts, with about 1.5
million added each year. Meanwhile, many of these
articles are about specific entities (e.g. proteins, dis-
eases, chemicals), i.e., entity-centric. In general,
entities are central to many search queries; e.g.,
(Guo et al., 2009) demonstrated that 71% of search
queries contained named entities, while (Xiong
et al., 2017) found that more than half of the traf-
fic in the Allen Institute’s scholar search engine is
about research concepts.

1https://pubmed.ncbi.nlm.nih.gov

Figure 1: Publication page for the ‘Huntington
disease’ query in our target discovery platform
PandaOmics (https://pandaomics.com/).

The use of automatic natural language process-
ing (NLP) methods is imperative for information
retrieval (IR) or information extraction (IE) from
a large volume of biomedical texts. Several ef-
forts have been made in the past years on entity
extraction from scientific publications (Kim et al.,
2013; Lee et al., 2016; Allot et al., 2018; Mohan
et al., 2018, 2021; Wang and Lo, 2021). For exam-
ple, Biomedical Entity Search Tool (BEST) uses
a dictionary-based indexing strategy to extract ten
types of biomedical entities including genes, dis-
eases, drugs, and chemical compounds (Lee et al.,
2016), while (Kim et al., 2013; Mohan et al., 2021)
adopt machine learning for disease and gene extrac-
tion and linking. However, recent works on Bidi-
rectional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2019) showed that the
generalization ability of BERT-based named entity
recognition (NER) and entity linking (EL) models
is influenced by domain shift or whether the test en-

606

tity/term has been seen in the training set (Miftahut-
dinov et al., 2020; Tutubalina et al., 2020; Kim and
Kang, 2022). Recently, (Soni and Roberts, 2021)
compared two commercial search engines with aca-
demic prototypes evaluated in the TREC-COVID
challenge (Roberts et al., 2020; Voorhees et al.,
2021). Their evaluation showed that commercial
search engines from Amazon (CORD-19 Search)
and Google (COVID-19 Research Explorer) fail
to outperform decades-old IR approaches. In par-
ticular, the best run (from sabir) was achieved by
a SMART system (Buckley, 1985) and used no
machine learning or biomedical knowledge. A sim-
ilar observation has been made for general-domain
information retrieval (Thakur et al., 2021), where
more efficient approaches e.g. based on dense or
sparse embeddings can substantially underperform
traditional lexical models like BM25 (Robertson
and Zaragoza, 2009).

In this paper, we describe the design and eval-
uation of a BERT-based IE system as an entity-
centric search engine for a target discovery plat-
form PandaOmics2. In particular, we seek to an-
swer the following research question: considering
near excellent performance on NER and EL (Mif-
tahutdinov et al., 2021; Lee et al., 2019), are there
models capable of finding relevant publications for
disease and gene queries from diverse biomedical
subdomains as real-world applications? To help
answer this question, we develop a novel search
collection of PubMed abstracts for disease and gene
queries with corresponding relevance judgments.
We evaluate the IE pipeline with two trained BERT-
based models for NER and EL and standard docu-
ment retrieval model BM25 with off-the-shelf Elas-
ticsearch software. We perform error analysis on
the models’ predictions to shed light on future work
directions.

2 Dataset

This section describes our dataset, including
queries, and the process of collecting relevance
assessments. Table 1 shows statistics of our dataset.

2.1 Queries

In our target discovery platform PandaOmics, a
user can enter a gene name or gene symbol like
‘PSEN1’ (ENSG00000080815) and retrieve all rel-
evant publications and the associated diseases in-

2https://pandaomics.com/

Figure 2: Task design in our in-house annotation tool
with search by disease concept identifier. An annotator
selects an abstract and choose one of three labels (rel-
evant/true (green), nonrelevant/false (red), or doubtful
(yellow).

cluding Alzheimer’s disease (EFO:0000249). An
autocomplete feature displays suggestions from
disease or gene dictionaries as user search terms.
Conversely, the user can enter the disease name
‘Alzheimer’s disease’ to retrieve publications for
this concept and the associated targets. These as-
sociations are relying on Omics datasets and on
a collection of AI-based scores that are based on
molecular data and previously published text-based
data (see (Ozerov et al., 2016) for more details).
As a disease terminology source, we use an inter-
nal knowledge base that contains 15,051 concept
unique identifiers (CUIs) based on an experimental
factor ontology (EFO)3 (Malone et al., 2010). As
a gene terminology source, we use an an internal
knowledge base with 28,227 CUIs from Ensembl
(Hubbard et al., 2002). We recall that each concept
consists of atoms (concept names); all of the atoms
within a concept are synonymous (NLM, 2016).
As test queries for our dataset, we use the most
frequent queries from the platform’s logs. These
queries are disease CUIs and gene CUIs. In addi-
tion, our annotators selected a list of concepts with
at least one ambiguous concept name (see Table 2
for examples).

2.2 Relevance Assessments

2.2.1 Pooling
Following standard practice of IR collection build-
ing, we employ a pooling approach (Lipani et al.,

3https://www.ebi.ac.uk/efo/

607

Subset #queries avg. number of texts per query
relevant label nonrelevant label doubtful label

Disease CUI 73 94.86 63.57 9.78
Gene CUI 79 109.39 21.62 5.93

Ambiguous 27 45.94 11.58 0.53
Total 152 102.41 41.76 7.78

Table 1: Summary of statistics of the proposed dataset.

CUI Ambiguous
concept name

Term Reason Comment

EFO_0000341 coad chronic obstructive
pulmonary disease

same_synonyms abbreviation refers to another
disease: colon adenocarci-
noma (COAD)

EFO_1001998 crps complex regional
pain syndrome

same_synonyms abbreviation refers to another
disease: ‘Colorectal polyps’

EFO_1001998 crps complex regional
pain syndrome

same_synonyms abbreviation refers to another
disease: ‘chronic regional
pain syndrome’

EFO_0000341 dops chronic obstructive
pulmonary disease

refers_to_another abbreviation refers to another
term: direct observation of
procedural skills (DOPS)

EFO_0002508 parkinson’s dis-
ease

parkinson’s disease refers_to_another author’s surname

ENSG00000170345 fos fos refers_to_another refers to fosfomycin

Table 2: A sample of concepts with at least one ambiguous concept name.

2016; Lipani, 2016; Hasibi et al., 2017; Thakur
et al., 2021), and combine retrieval results from
two main sources:

1. we obtained retrieval results from Elastic-
search; see Sect. 3.2 for the description of
this system. Results are pooled from these
runs up to depth 100.

2. we obtained retrieval results from PubMed.
Results are pooled from these runs up to depth
100, excluding abstracts from the first system.

The final assessment pool contains 23,099 query-
abstract pairs (152 abstracts per query on average).

2.2.2 Collecting Relevance Judgments
For each query-abstract pair, we collected the rele-
vance judgments by 2 annotators with biomedical
degrees using an in-house annotation tool (Fig. 2).
An expert annotator with Ph.D. in biology created
a list of queries from logs of our target discovery
platform PandaOmics. All annotators are paid biol-
ogists in the company. An expert annotator wrote
annotation guidelines and educated annotators.

Each annotator selected a disease or gene query
from the list of selected identifiers, an abstract with

information about the publication year and journal.
Abstracts were presented in random order. An-
notators were then asked to: (i) judge relevance
on a 3-point scale: “relevant”, “nonrelevant”, or
“doubtful”, and (ii) categorize the reason for rele-
vance/nonrelevance.

We note that annotators were asked to consider
EFO hierarchy during relevance annotation for dis-
ease queries. According to the annotation guide-
lines, only the synonyms belonging to the required
level of the hierarchy are relevant. Those terms that
are higher in the hierarchy are “wider terms”, and
those that are lower represent a “narrower case”.
E.g., while annotating a text for the “prostate ade-
nocarcinoma” query, “prostate cancers” is wider
than the term of interest; for the “prostate cancer”
query, the “prostate adenocarcinoma” is narrower
than the term of interest. Further, we provide a
summary of guidelines illustrated with examples.

Relevance The publication relevance to a
gene/disease can be determined as true when the
gene/disease of interest (its main name or any syn-
onym) is present in the same meaning in an abstract.
The term in the abstracts should belong to a dis-
ease/gene ontology (and not to any other category,

608

Figure 3: Statistics of Relevance reasons.

e.g. name of a clinical trial, institution, founda-
tion, etc). In particular, there are six reasons for
relevance:

1. synonym in text – one of the synonyms is
precisely present in an abstract;

2. new synonym – new synonym for the term of
interest, which is absent in our synonyms list,
was found;

3. term by fragments - an entity is annotated
by several fragments of text if: (i) a term is
either from the disease of gene ontology; (ii)
both fragments are in the same sentence; (iii)
the parts of the term are logically connected
(according to the author’s logic). E.g., the text
“...secondary diabetic complications, such
as retinopathy, neuropathy, and nephropa-
thy” (pmid 33109031) should be annotated
as TRUE for “diabetic retinopathy”;

4. enumeration - an entity is annotated by frag-
ments which are separated only with punctu-
ation marks or conjunctions. E.g., the text
“asthma-wheezing” (pmid 33276583) should
be annotated as a true for both “asthma” and
“wheezing”, while “AKT1-mTORC1 Axis”
(pmid 32404972) should be annotated as
TRUE for “AKT1”;

5. suffix/prefix - an entity was annotated as a
part of a word with a suffix/prefix. E.g., we an-
notate “obesity-induced NAFLD” as a match
for “obesity” and add “-induced” as a suf-
fix (we note that there is no “obesity-induced
NAFLD“ term in the ontology);

6. complicated case – a term is encountered in
abstract by fragments separated in different

Figure 4: Statistics of Nonrelevance reasons.

sentences, and there is a logical link between
them.

Detailed distribution of relevance reasons are
given in Fig. 3.

Nonrelevance Nonrelevance of a gene/disease
is determined as either no link between the
gene/disease and a publication abstract or a
wrongly identified relation. The first means the
gene/disease is not mentioned in an abstract. The
second means that gene/disease is incorrectly
linked to an abstract because of one of the follow-
ing six reasons:

1. no results – no results for the term of interest
were found in a publication;

2. refers to another – gene/disease name (or
its abbreviation) is a synonym of some other
term, or has some other meanings, which are
outside of the ontology (e.g., abbreviation
COAD for colon adenocarcinoma refers to an-
other term “anaerobic co-digestion (co-AD)”,
an abbreviation for Non-alcoholic steatohep-
atitis refers to another term “Nash equilib-
ria”);

3. gene/disease name (or its abbreviation) refers
to another term within the ontology (gives
collisions) because of: (i) same synonyms
(e.g., abbreviation COAD for Chronic obstruc-
tive pulmonary disease refers to another dis-
ease “colon adenocarcinoma”); (ii) refers to a
wider term – publication abstract was found
by a wider disease term, which refers not
only to a disease of interest, and may give
additional non-relevant results (e.g, colon can-
cer is wider term for colon adenocarcinoma);
(iii) narrower case – publication abstract was

609

found by more specific term (e.g., Alzheimer’s
disease is a narrower case for neurodegener-
ative disease); (iv) preprocessing issue - ei-
ther ignored punctuation mark (“background:
retinopathy”, “ER-breast cancer”) or is a part
of a longer term ("Non-small cell lung carci-
noma", “Traf2- and Nck-interacting kinase”).

Detailed distribution of nonrelevance reasons is
given in Fig. 4.

We note that our definition of nonrelevance dif-
fers from Pubmed search primarily because of the
consideration of the concept hierarchy. PubMed
search uses Best Match (Fiorini et al., 2018) trained
on the user-click information from PubMed search
logs. We believe that distinguishing more narrow
concepts from broader ones is crucial for target
discovery objectives.

Doubtful This category includes publications
that mention disease/gene of interest only in key-
words/MeSH terms without an abstract match.
PubMed articles are manually associated with au-
thor keywords and MeSH (Medical Subject Head-
ings) (Lipscomb, 2000) as standardized keywords.
The reasons for this label are the same as for the
relevance label with synonym in MeSH/keywords
and excluding the “complicated case” category. In
97.65% and 1.6% cases, the annotator associated
texts with the synonym in MeSH/keywords and
new synonym reasons, respectively.

In 91% and 80% of pairs, two annotators agreed
on a relevance label and decision reasons, respec-
tively. When annotators disagreed, the expert an-
notator was asked to decide whether the relevance
labels among with reasons selected by one of the
annotators were in fact correct. After this proce-
dure, we obtained the dataset for entity search with
73 disease queries, 79 gene queries, and 23,099
annotated query-entity pairs.

3 Models

The goal of our work is to evaluate retrieval models
in a zero-shot setup, with no available training data
to train the IR system.

3.1 BERT-based IE pipeline
In our work, we have focused on the extraction
of two entity types: disease and gene. Though,
we design our IE system with the simplicity of
scaling to new entities in mind. The system con-
sists of pipelines, each for a different entity type.

The pipelines incorporate two sub-modules: (i)
NER sub-module; (ii) EL sub-module. These sub-
modules are applied successively. The first one
extracts entities of interest the second one links
extracted entities with concepts from given knowl-
edge bases. Taken all together it means that the pro-
cessing of different types of entities is independent
and could be trained and applied separately. As
a pretrained transformer model, we use BioBERT
base v1.1. (Lee et al., 2019).

Named Entity Recognition In this paper, for re-
producibility reasons, we decided to analyze mod-
els trained on publicly available academic datasets.
Specifically, we train BioBERT on combination of
NCBI and CDR Diseases datasets (Doğan et al.,
2014; Li et al., 2016) for disease entities and on
DrugProt dataset (Miranda et al., 2021) for gene en-
tities. To join the NCBI and CDR Disease datasets,
we utilized predefined train/test subsets and com-
bined the datasets within these splits. Thus, the
train part of NCBI was combined with the CDR
Disease train sets. A similar procedure was carried
out to obtain the test part of the combined dataset.
We adopted model training hyper-parameters from
(Lee et al., 2019). Our model achieves 88.43% and
90.39% of the F-measure on official test sets of
disease and gene entities, respectively.

Entity Linking For linking extracted entities
to corresponding concepts from dictionaries, we
employ state-of-the-art Drug and disease Inter-
pretation Learning with Biomedical Entity Rep-
resentation Transformer (DILBERT) (Miftahutdi-
nov et al., 2021). This model is based on
metric learning and negative sampling, specifi-
cally, triplet constraints. Given an entity men-
tion m, a positive concept name cg and a nega-
tive concept name cn, triplet loss tunes the net-
work such that the distance between m and cg is
smaller than the distance between m and cn. De-
tails on overall architecture, configuration, hyper-
parameter search, and evaluation strategies are
presented in (Miftahutdinov et al., 2021). The
code is publicly available at https://github.
com/insilicomedicine/DILBERT. We note that
the advantage of DILBERT architecture is the abil-
ity to search for the closest concept in a different
terminology without retraining the model (cross-
terminology use).

Similar to NER, we train models on publicly
available academic datasets: CDR Diseases (Li

610

et al., 2016) and BC2GN Genes (Morgan et al.,
2008). The models are evaluated on refined test
sets without entity overlap between train/test
sets from (Tutubalina et al., 2020). These sets
are publicly available at https://github.com/
insilicomedicine/Fair-Evaluation-BERT.
Our model achieves 75.8% and 82.4% of accuracy
on the refined test sets of diseases and genes,
respectively.

Details on models’ configurations, speed perfor-
mance and system deployment are presented in
Appendices A and B.

3.2 Elasticsearch BM25

We utilized a popular search engine framework
Amazon Elasticsearch/OpenSearch Service4 that
uses OpenSearch v.1.05. OpenSearch is a fork of
open source Elasticsearch 7.106. OpenSearch uses
BM25 (Robertson and Zaragoza, 2009) to calcu-
late relevance scores. BM25 is a commonly-used
bag-of-words retrieval function based on token-
matching between two high-dimensional sparse
vectors with TF-IDF token weights. We note that
(Thakur et al., 2021) recently showed that many
approaches with sparse, dense late-interaction ar-
chitectures outperform BM25 on in-domain evalu-
ation, yet perform poorly on zero-shot setup.

4 Evaluation

For evaluation, we use precision, recall, and F-
measure. We calculate the precision as a fraction
of relevant documents among all retrieved docu-
ments. As well the recall is calculated as a fraction
of relevant documents from all possibly relevant
documents in the dataset. For experiments, we use
query-document pairs with relevant and nonrele-
vant labels excluding the doubtful category.

Tables 3 and 4 present the performance of the
BERT-based pipeline compared to BM25 on the
full set of queries and the subset of concept with
ambiguous names, respectively. Several observa-
tions can be made based on Tables 3 and 4. First,
the BERT-based system outperformed BM25 on
both sets of the dataset and both types of entities.
As expected, the performance difference between
the two models is larger on the subset with am-
biguous concept names. Third, for the BERT-based
pipeline, precision is higher than recall.

4https://aws.amazon.com/opensearch-service/
5https://opensearch.org/
6https://www.elastic.co/

Model P R F
Queries with Disease CUIs

BERT-based 93.97 84.41 88.93
Elasticsearch BM25 82.19 83.33 82.76

Genes
BERT-based 92.24 85.45 88.71
Elasticsearch BM25 89.92 79.93 84.63

Both
BERT-based 92.99 84.99 88.81
Elasticsearch BM25 86.23 81.44 83.77

Table 3: IR metrics on the full set of queries.

Model P R F
Queries with Disease CUIs

BERT-based 97.72 93.81 95.73
Elasticsearch BM25 75.67 96.72 84.91

Genes
BERT-based 93.02 93.85 93.43
Elasticsearch BM25 79.58 68.88 73.85

Both
BERT-based 94.9 93.83 94.37
Elasticsearch BM25 77.59 80.39 78.96

Table 4: IR metrics on the subset of queries with am-
biguous concepts.

In addition, we investigate search precision fur-
ther by developing a dataset for out-of-domain ab-
stract detection. Approximately 30,000 records are
included in the PubMed journal list. These journals
publish papers not only about biological entities,
but also on cultural topics, economics and econo-
metrics, artificial intelligence, law, linguistics and
language, and so on (out-of-domain categories for
us). Our expert annotator manually selected out-of-
domain journals on which we expect the IE system
to return zero results. We randomly select 58,790
abstracts from these journals, where each abstract
includes at least one gene of disease concept re-
trieved by Elasticsearch. In 90% of these abstracts,
the BERT-based system did not find any entities.

Error Analysis For error analysis of the BERT-
based IE system, we reviewed a sample of 152
false positive (FP) documents and 168 false neg-
ative (FN) results. Table 5 provides summary on
error categories for FPs. As shown in Table 5, the
most frequent category of errors (58%) is related
to the ontology hierarchy. Wider cases can also
be attributed to a gene when the gene family is
mentioned (e.g., Akt (there are Akt1/2/3), ERK

611

Reason N %
wider term 88 58
refers to another 34 22
synonym in MeSH/keywords 17 11
same synonym 11 7
preprocessing issue 1 1
synonym in the text 1 1

Table 5: Error analysis of IR results on the false positive
sample (152 texts).

Reason Model N
not found - 48
largest text span exists NER 23
not recognized NER 6
abbreviation NER 5
wrong recognition NER 1
wrong mapping EL 2
largest text span
rule/wrong mapping

NER/EL 15

Table 6: Error analysis of NER and EL predictions on
the false negative (FN) sample (100 texts).

(there are ERK1/2)). For FNs, 60% of errors (100
abstracts) fell into the synonym in the text cate-
gory. These documents were additionally analyzed
to detect which model (NER or EL) predicted in-
correctly (see Table 6). As shown in Table 6, in
23% cases, the NER model predicts a shorter en-
tity which is also known as a boundary problem.
E.g., in the text “external validation of the Nonal-
coholic [Steatohepatitis]predicted Scoring System
in patients” (pmid 33248101) Nonalcoholic Steato-
hepatitis was mapped to just Steatohepatitis due
to NER predictions. Mapping errors are often re-
lated to the presence of numbers in gene names
or abbreviations. E.g., in a text “orphan nuclear
receptor [Nr4a1] mediates perinatal neuroinflam-
mation” (pmid 32606386) entity Nr4a1 mapped to
the Nr4a2 gene instead. For FPs, we additionally
analyze 22% of errors (34 abstracts) from the refers
to another category. The NER and EL models cause
errors in 16 and 11 documents, respectively.

5 Conclusion and Future Work

In this work, we present a comprehensive evalua-
tion of a biomedical entity-centric search engine
based on BERT models for disease and gene ex-
traction and linking. This engine is a part of a
target discovery platform, where users can return
a list of relevant publications given a disease or

gene concept query. We evaluate BERT models
on two information extraction tasks, entity-centric
information retrieval, and out-of-domain abstract
detection. Moreover, we present an error analysis
for both retrieval and extraction tasks.

This work suggests several interesting directions
for future research. We plan to conduct similar
studies on other text sources such as full publica-
tion texts and patents. Moreover, we plan to expand
the list of entity types with pathways and biological
processes. To extract explicit associations between
drug targets and diseases, we plan to add relation
extraction/event detection models and study knowl-
edge graph completion with novel disease-gene
edges.

6 Ethics Statement

We outline potential ethical issues with our work
below. First, our work focuses on a comprehensive
evaluation of the information extraction pipeline
for retrieval of relevant scientific texts given queries
of disease and gene concepts. Consequently, the
developed BERT-based models could reflect many
domain-specific biases exhibited by language mod-
els. For example, (Sung et al., 2021) showed that
predictions on factual triples tend to be highly
biased towards a few objects (e.g., “headache”,
“pain”, or “ESR1”). Since pretrained language
models are used for initialization, it is possible
to reflect biased patterns in open-world applica-
tions. Second, our NLP engine is a part of the tar-
get discovery platform PandaOmics which intend
to identify targets (genes/proteins) through deep
feature selection, causality inference, and de novo
pathway reconstruction (Ozerov et al., 2016). We
use the NLP engine to assess the targets’ novelty
and disease association via the analysis of research
publications. The imperfect completeness of the
extracted information can be especially reflected
in the small number of publications in the search
results about rare diseases, making it difficult for
subsequent analysis. Third, we use EFO and En-
sembl as primary resources with disease hierarchy
and concepts’ synonyms. For example, (Miftahut-
dinov et al., 2021) demonstrated that degradation
in the accuracy from the full disease dictionary to
a 30% of the dictionary is significant for disease
linking in clinical trials. Moreover, consistent de-
scription of these entities has numerous differing
standards and opportune incorporation of new hu-
man disease terms and targets is still necessary.

612

References
Alexis Allot, Yifan Peng, Chih-Hsuan Wei, Kyubum

Lee, Lon Phan, and Zhiyong Lu. 2018. Litvar: a
semantic search engine for linking genomic variant
data in pubmed and pmc. Nucleic acids research,
46(W1):W530–W536.

Chris Buckley. 1985. Implementation of the smart in-
formation retrieval system. Technical report, Cornell
University.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), Minneapolis,
USA, pages 4171–4186.

Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong
Lu. 2014. Ncbi disease corpus: a resource for dis-
ease name recognition and concept normalization.
Journal of biomedical informatics, 47:1–10.

Nicolas Fiorini, Kathi Canese, Grisha Starchenko,
Evgeny Kireev, Won Kim, Vadim Miller, Maxim Os-
ipov, Michael Kholodov, Rafis Ismagilov, Sunil Mo-
han, et al. 2018. Best match: new relevance search
for pubmed. PLoS biology, 16(8):e2005343.

Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. 2009.
Named entity recognition in query. In Proceedings
of the 32nd international ACM SIGIR conference on
Research and development in information retrieval,
pages 267–274.

Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisz-
tian Balog, Svein Erik Bratsberg, Alexander Kotov,
and Jamie Callan. 2017. Dbpedia-entity v2: a test
collection for entity search. In Proceedings of the
40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 1265–1268.

Tim Hubbard, Daniel Barker, Ewan Birney, Graham
Cameron, Yuan Chen, L Clark, Tony Cox, J Cuff, Val
Curwen, Thomas Down, et al. 2002. The ensembl
genome database project. Nucleic acids research,
30(1):38–41.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Hyunjae Kim and Jaewoo Kang. 2022. How do your
biomedical named entity recognition models general-
ize to novel entities? Ieee Access, 10:31513–31523.

Jeongkyun Kim, Seongeun So, Hee-Jin Lee, Jong C.
Park, Jung-jae Kim, and Hyunju Lee. 2013. DigSee:
disease gene search engine with evidence sen-
tences (version cancer). Nucleic Acids Research,
41(W1):W510–W517.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: pre-trained biomedical language rep-
resentation model for biomedical text mining. Bioin-
formatics.

Sunwon Lee, Donghyeon Kim, Kyubum Lee, Jaehoon
Choi, Seongsoon Kim, Minji Jeon, Sangrak Lim,
Donghee Choi, Sunkyu Kim, Aik-Choon Tan, et al.
2016. Best: next-generation biomedical entity search
tool for knowledge discovery from biomedical litera-
ture. PloS one, 11(10):e0164680.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database, 2016.

Aldo Lipani. 2016. Fairness in information retrieval. In
Proceedings of the 39th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’16, page 1171, New York,
NY, USA. Association for Computing Machinery.

Aldo Lipani, Mihai Lupu, and Allan Hanbury. 2016.
The curious incidence of bias corrections in the pool.
In European Conference on Information Retrieval,
pages 267–279. Springer.

Carolyn E Lipscomb. 2000. Medical subject headings
(mesh). Bulletin of the Medical Library Association,
88(3):265.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

James Malone, Ele Holloway, Tomasz Adamusiak,
Misha Kapushesky, Jie Zheng, Nikolay Kolesnikov,
Anna Zhukova, Alvis Brazma, and Helen Parkinson.
2010. Modeling sample variables with an experi-
mental factor ontology. Bioinformatics, 26(8):1112–
1118.

Zulfat Miftahutdinov, Ilseyar Alimova, and Elena Tu-
tubalina. 2020. On biomedical named entity recogni-
tion: experiments in interlingual transfer for clinical
and social media texts. In European Conference on
Information Retrieval, pages 281–288. Springer.

Zulfat Miftahutdinov, Artur Kadurin, Roman Kudrin,
and Elena Tutubalina. 2021. Medical concept nor-
malization in clinical trials with drug and disease rep-
resentation learning. Bioinformatics, 37(21):3856–
3864.

Antonio Miranda, Farrokh Mehryary, Jouni Luoma,
Sampo Pyysalo, Alfonso Valencia, and Martin
Krallinger. 2021. Overview of drugprot biocreative
vii track: quality evaluation and large scale text min-
ing of drug-gene/protein relations. In Proceedings of
the seventh BioCreative challenge evaluation work-
shop.

613

Sunil Mohan, Rico Angell, Nicholas Monath, and An-
drew McCallum. 2021. Low resource recognition
and linking of biomedical concepts from a large on-
tology. In Proceedings of the 12th ACM conference
on bioinformatics, computational biology, and health
informatics, pages 1–10.

Sunil Mohan, Nicolas Fiorini, Sun Kim, and Zhiyong
Lu. 2018. A fast deep learning model for textual
relevance in biomedical information retrieval. In
Proceedings of the 2018 World Wide Web Conference,
pages 77–86.

Alexander A Morgan, Zhiyong Lu, Xinglong Wang,
Aaron M Cohen, Juliane Fluck, Patrick Ruch, Anna
Divoli, Katrin Fundel, Robert Leaman, Jörg Haken-
berg, et al. 2008. Overview of biocreative ii gene
normalization. Genome biology, 9(S2):S3.

NLM. 2016. Umls glossary.

Ivan V Ozerov, Ksenia V Lezhnina, Evgeny Izum-
chenko, Artem V Artemov, Sergey Medintsev,
Quentin Vanhaelen, Alexander Aliper, Jan Vijg, An-
dreyan N Osipov, Ivan Labat, et al. 2016. In silico
pathway activation network decomposition analysis
(ipanda) as a method for biomarker development. Na-
ture communications, 7(1):1–11.

Kirk Roberts, Tasmeer Alam, Steven Bedrick, Dina
Demner-Fushman, Kyle Lo, Ian Soboroff, Ellen
Voorhees, Lucy Lu Wang, and William R Hersh.
2020. Trec-covid: rationale and structure of an in-
formation retrieval shared task for covid-19. Journal
of the American Medical Informatics Association,
27(9):1431–1436.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval,
3(4):333–389.

Sarvesh Soni and Kirk Roberts. 2021. An evaluation
of two commercial deep learning-based information
retrieval systems for covid-19 literature. Journal
of the American Medical Informatics Association,
28(1):132–137.

Mujeen Sung, Jinhyuk Lee, Sean Yi, Minji Jeon, Sung-
dong Kim, and Jaewoo Kang. 2021. Can language
models be biomedical knowledge bases? In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4723–4734,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Elena Tutubalina, Artur Kadurin, and Zulfat Miftahutdi-
nov. 2020. Fair evaluation in concept normaliza-
tion: a large-scale comparative analysis for bert-
based models. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6710–6716.

Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina
Demner-Fushman, William R Hersh, Kyle Lo, Kirk
Roberts, Ian Soboroff, and Lucy Lu Wang. 2021.
Trec-covid: constructing a pandemic information re-
trieval test collection. In ACM SIGIR Forum, vol-
ume 54, pages 1–12. ACM New York, NY, USA.

Lucy Lu Wang and Kyle Lo. 2021. Text mining ap-
proaches for dealing with the rapidly expanding lit-
erature on covid-19. Briefings in Bioinformatics,
22(2):781–799.

Chenyan Xiong, Russell Power, and Jamie Callan. 2017.
Explicit semantic ranking for academic search via
knowledge graph embedding. In Proceedings of the
26th international conference on world wide web,
pages 1271–1279.

A System deployment

Our system is packaged in a docker container,
which is run by schedule. Since the container is
self-contained any scheduler could be used. The
pipeline of documents processing in service is as
follows: (i) load to the local storage previously
unlabeled documents from a database (ii) extract
and link entities from documents using the BERT-
based pipeline (iii) upload the labeled documents
to the database. We store our documents in Mon-
goDB (https://www.mongodb.com). The service
is implemented substantially on python, with en-
trypoints written in shell. To load/upload docu-
ments from/toMongoDB we use PyMongo library
(https://pymongo.readthedocs.io). After the
labeled documents are loaded to the MongoDB we
utilize Elasticsearch as a search index. Customers
of the drug discovery platform send concept CUI
as a query, afterward, the backend retrieve all doc-
uments containing specified CUI and transfer them
to the frontend.

B Configuration details and speed
performance

For NER and EL encoders, we apply the fine-tuned
on downstream task BioBERT v1.1 with 12 heads,
12 layers, 768 hidden units per layer, and a total
of 110M parameters. We train our NER model
using AdamW (Loshchilov and Hutter, 2018) opti-
mizer for 20 epochs with a batch size equal to 48
and learning rate equal to 5e-5. The EL model is

614

trained with the same optimizer and learning rate
for 5 epochs and batch size equal to 32. At the
inference and training time, we restrict the length
of the sequence up to 128 sub-tokens for entity
recognition and up to 28 sub-tokens for linking.

For NER sub-module we use Huggingface
python library (https://huggingface.co), for
EL we apply sentence-transformers library (https:
//www.sbert.net). At the inference time, the
EL model uses the FAISS library (Johnson et al.,
2019) with GPU support for a fast nearest neighbor
search by comparing vectors with Euclidean dis-
tance. Embeddings of all terminologies’ concepts
are indexed.

We note that deployed models are trained on
in-house datasets with similar parameters and eval-
uation metrics that are not publicly available due
to company policy.

We profiled retrieval speed on a server with Intel
Xeon CPU E5-2660 2.00GHz and 256GB memory.
First, we precomputed all embeddings for all con-
cepts (500 thousand). On a single Nvidia TITAN
X GPU, it takes about 7 minutes to compute all em-
beddings. Given that all embeddings are indexed
on Nvidia TITAN X GPU using IndexFlatL2 index
type 5 thousand documents processing takes 390
seconds, which is 0.08 seconds per document.
Most of this time, specifically 359 seconds, is
taken by the NER sub-module.

615

Proceedings of EMNLP 2022 Industry Track, pages 616–628
December 9–11, 2020. ©2022 Association for Computational Linguistics

Domain Adaptation of Machine Translation with Crowdworkers

Makoto Morishita1, Jun Suzuki2, Masaaki Nagata1

NTT Communication Science Laboratories, NTT Corporation1

Tohoku University2

{makoto.morishita.gr, masaaki.nagata.et}@hco.ntt.co.jp
jun.suzuki@tohoku.ac.jp

Abstract

Although a machine translation model trained
with a large in-domain parallel corpus achieves
remarkable results, it still works poorly when
no in-domain data are available. This situation
restricts the applicability of machine transla-
tion when the target domain’s data are limited.
However, there is great demand for high-quality
domain-specific machine translation models for
many domains. We propose a framework that
efficiently and effectively collects parallel sen-
tences in a target domain from the web with
the help of crowdworkers. With the collected
parallel data, we can quickly adapt a machine
translation model to the target domain. Our ex-
periments show that the proposed method can
collect target-domain parallel data over a few
days at a reasonable cost. We tested it with five
domains, and the domain-adapted model im-
proved the BLEU scores to +19.7 by an average
of +7.8 points compared to a general-purpose
translation model.

1 Introduction

Although recent Neural Machine Translation
(NMT) methods have achieved remarkable perfor-
mance, their translation quality drastically drops
when the input domain is not covered by training
data (Müller et al., 2020). One typical approach
for translating such inputs is adapting the machine
translation model to a domain with a small portion
of in-domain parallel sentences (Chu and Wang,
2018). Such sentences are normally extracted from
a large existing parallel corpus (Wang et al., 2017;
van der Wees et al., 2017) or created synthetically
from a monolingual corpus (Chinea-Ríos et al.,
2017). However, the existing parallel/monolingual
data may not include enough sentences relevant to
the target domain.

There is a real-world need for a method that can
adapt a machine translation model to any domain.
For example, users reading or writing in such spe-
cific fields as scientific, medical or patent domains,

General domain parallel corpus

Domain-adapted MT model

General-purpose MT model

Crowdworkers

Target domain parallel URLs

Target domain
parallel sentences

Report Reward

Crawl and extract
parallel sentencesTrain

Fine-tune

Figure 1: Overview of proposed domain-adaptation
method with crowdworkers who collected URLs that
included parallel sentences of target domain. We then
fine-tuned a general-purpose model with the collected
target domain parallel sentences. See Section 3 for de-
tails.

may experience satisfaction if they have access to a
domain-adapted machine translation model. Unfor-
tunately, the often limited availability of in-domain
parallel data complicates this task. For example, it
is difficult to adapt a model to the COVID-19 do-
main because this issue is too new, and the current
available data do not sufficiently cover it.

To alleviate the issue, we propose a method that
rapidly adapts a machine translation model to many
domains at reasonable costs and time periods with
crowdworkers. Fig. 1 shows an overview of our
framework. We hypothesize that a small number of
in-domain parallel sentences of the target domain
are available on the web, and we ask crowdworkers
to report these web URLs as a web mining task.
Our task does not require translation skills, un-
like some previous research (Zaidan and Callison-
Burch, 2011; Behnke et al., 2018; Kalimuthu et al.,
2019) that attempted manual translations of in-

616

domain monolingual sentences by crowdworkers.
Thus, workers who are not professional translators
can participate.

Furthermore, to collect effective parallel sen-
tences, we also vary the crowdworkers’ rewards
based on the quality of their reported URLs. After
collecting parallel sentences by our method, we
adapted the machine translation model with the
collected, target-domain parallel sentences. Our
method has the advantage of being applicable to
many domains, in contrast to previous works that
use existing parallel/monolingual data.

We experimentally show that our method quickly
collects in-domain parallel sentences and improves
the translation performance of the target domains
in a few days and at a reasonable cost.

Our contributions can be summarized as follows:

• We proposed a new domain-adaptation
method that quickly collects in-domain paral-
lel sentences from the web with crowdwork-
ers.

• We empirically showed that crowdworkers are
motivated by variable rewards to find more
valuable web sites and achieved better perfor-
mance than under the fixed reward system.

2 Related Work

2.1 Domain Adaptation

Domain adaptation is a method that improves the
performance of a machine translation model for
a specific domain. The most common method
for neural machine translation models is to fine-
tune the model with target-domain parallel sen-
tences (Chu and Wang, 2018). Kiyono et al. (2020),
who ranked first in the WMT 2020 news shared
task (Barrault et al., 2020), fine-tuned a model with
a news domain parallel corpus and improved the
BLEU scores by +2.2 points. Since the availabil-
ity of a target-domain parallel corpus is limited,
we typically select similar domain sentences from
a large parallel corpus (Moore and Lewis, 2010;
Axelrod et al., 2011). However, its applicability
remains limited because some domains are not cov-
ered by existing parallel corpora.

We take a different approach that freshly col-
lects target-domain parallel sentences from the web.
Since we do not rely on an existing corpus, our
method can be applied to many domains.

2.2 Collecting Parallel Sentences from the
Web

Recently, some works successfully built a large-
scale parallel corpus by collecting parallel sen-
tences from the web. The BUCC workshop orga-
nized shared-tasks of extracting parallel sentences
from the web (Sharoff et al., 2015; Zweigenbaum
et al., 2017). The ParaCrawl project successfully
created a large-scale parallel corpus between En-
glish and other European languages by extensively
crawling the web (Bañón et al., 2020). Typical
bitext-mining projects, including ParaCrawl, took
the following steps to identify parallel sentences
from the web (Resnik and Smith, 2003): (1) find
multilingual websites, which may contain paral-
lel sentences, from the web (Papavassiliou et al.,
2018; Bañón et al., 2020); (2) find parallel docu-
ments from websites (Thompson and Koehn, 2020;
El-Kishky and Guzmán, 2020); (3) extract paral-
lel sentences from parallel web URLs (Thompson
and Koehn, 2019; Chousa et al., 2020). Our work
focuses on the first step: finding bilingual target-
domain web URLs. Bañón et al. (2020) analyzed
all of the CommonCrawl data to find crawl candi-
date websites that contain a certain amount of both
source and target language texts. Their method ef-
ficiently collected parallel sentences from the web.
However, since CommonCrawl only covers a small
portion of the web, it may overlook websites that
contain valuable resources. Thus, the current web-
based corpora (Bañón et al., 2020; Morishita et al.,
2020) may not cover all the domains we want to
adapt. It is also difficult to focus on a specific topic.
In contrast, our work does not rely on Common-
Crawl but on crowdworkers who can search the
whole web and focus on specific domains.

2.3 Creating Parallel Corpus with
Crowdworkers

Some researchers have used crowdsourcing plat-
forms to create new language resources (Roit et al.,
2020; Jiang et al., 2018). Some work created
a parallel corpus for domain-adaptation by ask-
ing crowdworkers to translate in-domain monolin-
gual sentences (Zaidan and Callison-Burch, 2011;
Behnke et al., 2018; Kalimuthu et al., 2019). Al-
though this approach is straightforward, it does
suffer from several drawbacks. For example, it is
often difficult to find a sufficient amount of crowd-
workers since translation tasks often require an
understanding of both the languages that are actu-

617

ally being used. Note that although we also use
a crowdsourcing platform, our approach entirely
differs from the approach introduced in this sec-
tion, such as asking crowdworkers to do translation
tasks.

3 Collecting Parallel URLs with
Crowdworkers

Fig. 1 shows an overview of our collecting protocol.
Our method asks workers to find URLs that are
related to the target domain and written in parallel.
We then extract the parallel sentences from these
URLs and fine-tune the general-purpose machine
translation model with the collected data.

This section is organized as follows: In Sec-
tion 3.1, we explain why we focus on collecting
parallel URLs and describe their advantages. We
overview the details of our crowdsourcing task def-
inition in Section 3.2. In Section 3.3, we describe
how we extract parallel sentences from the reported
URLs. We describe the details of our reward setting
in Section 3.4.

3.1 Advantages

Previous works, which adapted a machine transla-
tion model to a specific domain, created resources
by asking crowdworkers to translate text (Lewis
et al., 2011; Anastasopoulos et al., 2020; Zaidan
and Callison-Burch, 2011; Behnke et al., 2018;
Kalimuthu et al., 2019). In contrast, our method
asks workers to find web URLs (instead of trans-
lating sentences) that have parallel sentences in the
target domain.

This method has two advantages. The first con-
cerns task difficulty. To achieve rapid domain adap-
tation, the task must be easy enough that many
crowdworkers can participate. Thus, we do not
assume that the workers fluently understand both
the source and target languages. Finding potential
web URLs that have parallel sentences is relatively
easy and can be done by any crowdworker.

The other advantage involves task efficiency. We
asked workers to collect the URLs of parallel web
pages instead of parallel sentences because recent
previous works successfully extracted parallel sen-
tences from parallel URLs (Bañón et al., 2020).
Efficiency is important for our method, since we
focus on speed to create a domain-specific model.

3.2 Crowdsourcing Task Definition

We focus on collecting the parallel sentences of
languages e and f . We created a web application
to accept reports from the crowdworkers and ex-
tracted parallel sentences from the reported web
URLs. We prepared a development set (a small
portion of the parallel sentences) of the target do-
main and distribute it to the workers as examples of
the type of sentences we want them to collect. The
crowdworkers are asked to find pairs of web URLs
that contain parallel sentences of the target domain.
We call this URL pair a parallel URL. Note that
we collect the URLs of pages written in parallel;
this means that workers act as parallel document
aligners. We do not accept parallel URLs that have
already been reported by others.

3.3 Parallel Sentence Extraction

After obtaining parallel URLs from workers, we
extract parallel sentences from the reported URLs.
First, we downloaded the reported web URLs and
extracted the texts1 and removed the sentences that
are not in the e or f language based on CLD22.
Then we used vecalign (Thompson and Koehn,
2019) to extract the parallel sentences, a step that
aligns them based on the multi-lingual sentence
embeddings LASER (Artetxe and Schwenk, 2019).
We discard noisy sentence pairs based on sentence
alignment scores3 and do not use them for model
training.

3.4 Reward Settings

To bolster the crowdworkers’ motivation, reward
setting is one of the most important issues (Posch
et al., 2019). In this paper, we tested two types of
rewards: fixed or variable. In the following, we
describe both reward settings.

3.4.1 Fixed Reward

Fixed reward pays a set amount for each reported
URL if we can extract at least one parallel sentence
from it. This fixed reward setting is one very typical
setting for crowdsourcing.

1Since we expect the workers to act as document aligners,
we focus on the reported URLs and do not crawl the links in
the reported URLs.

2https://github.com/CLD2Owners/cld2
3Since vecalign outputs a scoring cost where a lower

score means better alignment, our implementation removes a
sentence pair if its cost exceeds 0.7.

618

3.4.2 Variable Reward
The key motivation of crowdworkers is probably
to earn money (Antin and Shaw, 2012), and thus
they try to maximize their earnings (Horton and
Chilton, 2010). Since the fixed reward setting only
considers the number of reported URLs, workers
may report noisy URLs whose texts are not parallel
or not in the target domain in an effort to maximize
their number of reports.

To alleviate this concern, we tested another re-
ward setting: varying rewards based on the quality
of their reported parallel URLs. We hypothesize
that the workers will improve their work perfor-
mance when we pay more for good work and less
for poor work.

We defined parallel URLs as those satisfying the
following criteria that help improve the translation
performance in the target domain: (1) they con-
tain a large number of parallel sentences, (2) the
parallel sentences are correctly translated, and (3)
the parallel sentences are in the target domain. To
reflect these criteria in the reward, we set variable
reward r:

r = min(rmax, rmin+
∑

(xi,yi)∈D
Sa(xi, yi)+Sd(xi)),

(1)
where D is a set of parallel sentences extracted
from the reported URLs, xi and yi are parallel
sentences of languages e and f , rmin and rmax

are the minimum and maximum reward per report,
and Sa(·) and Sd(·) are the sentence alignment
and domain similarity scores, which are explained
below.

Sentence Alignment Score Suppose n parallel
sentences D = {(x1, y1), . . . , (xn, yn)} extracted
from the reported URLs. Sentence alignment score
Sa is calculated as follows:

Sa =
∑

(xi,yi)∈D
ς(−V(xi, yi)), (2)

where V(·) is an alignment cost function of
vecalign, where lower is better, and ς(·) is a sig-
moid function that converts the score into the range
0 to 1.

Domain Similarity Score The domain similarity
score is based on cross-entropy (Moore and Lewis,
2010):

Sd =
∑

xi∈D
ς(HI(xi)−HN (xi)), (3)

where I and N are in-domain and non-domain-
specific language models and H (xi) is the per-
word cross-entropy of sentence xi.

Through our web application, workers can check
the results (of their previous reports), which include
the reward amounts, the scores, and the number
of extracted parallel sentences. These results are
available a few minutes after we accept their reports
so that they can improve their work and maximize
their scores and their payments.

4 Experiments

We carried out experiments to confirm whether dif-
ferent reward settings influenced the workers’ per-
formance and translation accuracy. Prior to them,
we conducted a preliminary experiment to check
the effect of our method in smaller settings. Refer
to Section B in the Appendix for this preliminary
experiment. In this section, we empirically confirm
the effectiveness of our method by focusing on five
domains.

4.1 Experimental Settings

In this experiment, we tested English-Japanese
translations on five domains: COVID-19, news,
science, patents, and legal matters4. The details of
the domains and the corpus statistics of the devel-
opment/test sets are shown in Section A.2 in the
Appendix. We hired 97 crowdworkers through
a crowdsourcing platform called Crowdworks5.
Each worker was randomly assigned to a single
target domain.

We used both the fixed and variable reward set-
ting for the science and patent domains, and only
the variable reward setting for the other three do-
mains, since we confirmed that the variable reward
setting is effective in the following experiment
(see Section 4.2.1). We set the fixed reward at
25 JPY (≃ 0.23 USD), rmin to 10 JPY (≃ 0.09
USD), and rmax to 100 yen (≃ 0.91 USD) for
the variable reward6. Since our task is much eas-
ier than translating sentences, we pay our work-
ers much less than such translators of sentences7.
Data collection continued for 13 days. We trained

4We chose these domains because they require special
domain knowledge and are difficult to translate by current
models.

5https://crowdworks.jp/
6We paid the workers in JPY since they mainly live in

Japan. They are guaranteed at least the minimum wage.
7Typically, it requires around 0.15 USD to translate an

English word into Japanese.

619

1 2 3 4 5 6 7 8 9 10 11 12 13
Day

23
24
25
26
27
28
29
30

BL
EU

Science

Base model
Fixed reward
Variable reward

1 2 3 4 5 6 7 8 9 10 11 12 13
Day

30

32

34

36

38

40

42
Patent

Base model
Fixed reward
Variable reward

Figure 2: Transition of test set BLEU scores on science
and patent domains

in-domain language models with each develop-
ment set to calculate the domain similarity scores.
We used KenLM as an implementation of the n-
gram language model (Heafield, 2011) to calcu-
late the domain similarity scores. We trained the
in-domain language model with the development
set of TICO-19 and the non-domain-specific model
with JParaCrawl v2.0 (Morishita et al., 2020).

Translation Model Settings As a neural ma-
chine translation model, we employed the Trans-
former model with its base settings (Vaswani et al.,
2017). To train the general-purpose baseline model,
we used JParaCrawl v2.0 (Morishita et al., 2020),
which contains 10 million English-Japanese par-
allel sentences and tokenized the training data
into subwords with the sentencepiece (Kudo and
Richardson, 2018) toolkit. We set the vocabulary
size to 32,000 for each language side and removed
sentences that exceeded 250 subwords to reduce
the noisy sentence pairs.

We trained the baseline model with JParaCrawl
until it converged and then fine-tuned it with the
newly collected in-domain parallel sentences. See
Section A.1 in the Appendix for the detailed hyper-
parameter settings.

We used SacreBLEU (Post, 2018) to evaluate
the translation performance and report the BLEU
scores8 (Papineni et al., 2002).

4.2 Experimental Results

4.2.1 Fixed or Variable Reward Comparison
First, we address whether the variable reward set-
ting encouraged the workers to find more valuable
data. Fig. 2 compares the BLEU scores between
the fixed and variable reward settings in the science
and patent domains. The variable reward setting
achieved higher BLEU scores than the fixed reward
setting in both domains. Combined with the pre-

8We used NFKC to normalize both the Japanese transla-
tions and references since JParaCrawl is normalized by the
same procedure.

liminary experiments described in Section B in the
Appendix, we conclude that the variable reward
setting collects beneficial data. Thus, the following
sections mainly discuss the results of the variable
reward setting.

4.2.2 Data Collection

Table 1 shows the experimental results on the vari-
able reward setting, including the number of URLs
and collected parallel sentences. Our framework
collected a large number of parallel sentences for
all five domains. The lower half of Fig. 3 shows
the transitions of the number of sentences collected
with crowdsourcing on the COVID-19, news, and
legal domains. For the other domains, see Fig. 6 in
the Appendix. The number of collected sentences
linearly increased as we continued crowdsourcing.

We carried out the task on the five domains and
assigned roughly the same number of workers to
each task, but we found that the number of re-
ports differed. This implies that the task’s difficulty
might differ depending on the target domain. For
example, the science task might be easier than the
others because several scientific journals translate
abstracts (and make them available on the web)
into other languages.

4.2.3 Translation Performance

Table 1 shows the BLEU scores of the baseline
and the fine-tuned models with the collected in-
domain parallel sentences. The fine-tuned models
achieved significantly better accuracy with an aver-
age of +7.8 points than the baseline model on all
five domains. In particular, our legal domain model
improved by +19.7 points. One likely reason is
that the legal domain frequently uses words that
do not appear in other domains, and the collected
in-domain data improved these translations.

The top of Fig. 3 shows the transitions of the
BLEU scores as we continued the data collection
for the COVID-19, news, and legal domains (see
the Base Model and w/Crawled lines). Fig. 6 in
the Appendix shows the results of the other do-
mains. All the domains show identical tendencies.
Their performance surpassed the baseline on the
first or second day of crowdsourcing and continued
growing as we collected more data. This supports
our assumption that our method can achieve rapid
domain adaptation for many domains.

620

Development BLEU Test BLEU

Domain #URLs #Sentences Cost (USD) Base model w/Crawled Base model w/Crawled

COVID-19 6,841 165,838 1,807.7 25.9 28.7 (+2.8) 31.7 34.3 (+2.6)
News 10,712 220,559 2,765.5 19.3 21.2 (+1.9) 20.5 23.1 (+2.6)
Science 10,948 390,303 3,217.8 25.0 27.9 (+2.9) 24.7 28.3 (+3.6)
Patent 4,135 307,104 1,431.3 27.4 36.6 (+9.2) 31.4 41.8 (+10.4)
Legal 5,438 302,747 2,088.0 22.9 42.0 (+19.1) 22.8 42.5 (+19.7)

Table 1: Experimental results for five domains. Model fine-tuned with newly crawled data significantly improved
BLEU scores on all of them.

1 2 3 4 5 6 7 8 9 10 11 12 13
30

31

32

33

34

35

B
LE

U

COVID-19

Base model
w/Crawled
w/Moore-Lewis

1 2 3 4 5 6 7 8 9 10 11 12 13
19

20

21

22

23

24
News

Base model
w/Crawled
w/Moore-Lewis

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

Legal

Base model
w/Crawled
w/Moore-Lewis
w/Gold

1 2 3 4 5 6 7 8 9 10 11 12 13
Day

0

100000

200000

300000

#
Se

nt

1 2 3 4 5 6 7 8 9 10 11 12 13
Day

0

100000

200000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13
Day

0

100000

200000

300000

Figure 3: Transition of BLEU scores (top) and sentences collected (bottom) as we continued data collection for the
COVID-19, news, and legal domains. Model named w/Moore-Lewis is fine-tuned with domain-relevant sentences
extracted from existing general-purpose corpus, as described in Section 4.3. As an upper bound of fine-tuning,
we show the scores of the w/Gold model, which was fine-tuned with existing target-domain parallel corpus, as
described in Section D.2 in the Appendix.

Test BLEU

Domain Base w/Crawled w/ML

COVID-19 31.7 34.3 (+2.6) 32.0 (+0.3)
News 20.5 23.1 (+2.6) 20.6 (+0.1)
Science 24.7 28.3 (+3.6) 25.3 (+0.6)
Patent 31.4 41.8 (+10.4) 32.0 (+0.6)
Legal 22.8 42.5 (+19.7) 24.0 (+1.2)

Table 2: BLEU score comparisons with Moore-Lewis
(w/ML)

4.3 Comparison: Selecting In-domain Data
from Existing Parallel Corpus

In this section, we compare our method with the
existing domain adaption method to answer the
following question: Do we really need to collect
new data with crowdworkers?

Currently, the most common domain-adaptation
method is to find target domain sentences from
existing parallel corpora (Chu and Wang, 2018). As
with the existing method, we used the one proposed
by Moore and Lewis (2010)9. We scored all the

9Some may be concerned that this method is outdated, but
it is still considered a strong domain-adaptation method, since
the recent first-ranked system among WMT submissions uses
it for selecting relevant data (Junczys-Dowmunt, 2018).

sentences in JParaCrawl and used those considered
most relevant to the target domain. We selected the
same number of sentences as in our collected data.

Table 2 shows the BLEU scores of each model,
and the top of Fig. 3 shows the transition of the
BLEU scores (see w/Moore-Lewis). The Moore-
Lewis method surpassed the baseline on all five
domains, but by a narrow margin. Although
their method does not require additional cost, our
method achieved significantly better performance
with just a small additional cost. Thus the answer
to the above question is yes: our method outper-
formed the existing domain-adaptation method.

5 Conclusion

We introduced a new framework for domain adap-
tation in machine translation. Our method asks
crowdworkers to find parallel URLs related to the
target domain. Such a task does not require any pro-
fessional skills and can be done cheaply by many
people. We then fine-tuned the machine transla-
tion model with parallel sentences in the target do-
main extracted from the reported URLs. Through
experiments, we empirically confirmed that our

621

framework significantly improved the translation
performance for a target domain within a few days
of crowdsourcing and at a reasonable cost. We
also confirmed that our variable reward function,
which is based on the quality of parallel sentences,
changed the behavior of the workers who began to
collect more effective parallel sentences, increasing
the translation accuracy.

Limitations

We assume that websites containing in-domain par-
allel sentences are available on the web, which
might not be true for some difficult domains. How-
ever, since we believe that parallel sentences in
neighboring domains are available on the web, we
expect our method to improve the translation accu-
racy on these domains.

We conducted English-Japanese experiments.
We expect our method to work on most major
language pairs, including German-English and
Chinese-Japanese, since there are many parallel
websites on these language pairs. However, we
haven’t yet confirmed whether it does works on
very minor language pairs, because finding parallel
websites for them is difficult.

Ethics Statement

In the experiments, our crawler strictly followed
the “robots.txt” and crawled only from allowed
websites. During the experiments, we also ensured
that the crowdworkers earned at least the minimum
wage.

Acknowledgements

We thank the three anonymous reviewers for their
insightful comments.

References
Antonios Anastasopoulos, Alessandro Cattelan, Zi-

Yi Dou, Marcello Federico, Christian Federmann,
Dmitriy Genzel, Franscisco Guzmán, Junjie Hu, Mac-
duff Hughes, Philipp Koehn, Rosie Lazar, Will Lewis,
Graham Neubig, Mengmeng Niu, Alp Öktem, Eric
Paquin, Grace Tang, and Sylwia Tur. 2020. TICO-19:
the translation initiative for COvid-19. In Proceed-
ings of the 1st Workshop on NLP for COVID-19 (Part
2) at EMNLP 2020.

Judd Antin and Aaron Shaw. 2012. Social desirabil-
ity bias and self-reports of motivation: A study of
amazon mechanical turk in the US and India. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2925–2934.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 7:597–610.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011.
Domain adaptation via pseudo in-domain data selec-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 355–362.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale acqui-
sition of parallel corpora. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 4555–4567.

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-
jar, Marta R. Costa-jussà, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the 5th Conference on Machine Translation (WMT),
pages 1–55.

Maximiliana Behnke, Antonio Valerio Miceli Barone,
Rico Sennrich, Vilelmini Sosoni, Thanasis Naskos,
Eirini Takoulidou, Maria Stasimioti, Menno van Za-
anen, Sheila Castilho, Federico Gaspari, Panayota
Georgakopoulou, Valia Kordoni, Markus Egg, and
Katia Lida Kermanidis. 2018. Improving machine
translation of educational content via crowdsourcing.
In Proceedings of the 11th International Conference
on Language Resources and Evaluation (LREC).

Mara Chinea-Ríos, Álvaro Peris, and Francisco Casacu-
berta. 2017. Adapting neural machine translation
with parallel synthetic data. In Proceedings of the
2nd Conference on Machine Translation (WMT),
pages 138–147.

Katsuki Chousa, Masaaki Nagata, and Masaaki Nishino.
2020. SpanAlign: Sentence alignment method based
on cross-language span prediction and ILP. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics (COLING), pages 4750–
4761.

Chenhui Chu and Rui Wang. 2018. A survey of do-
main adaptation for neural machine translation. In
Proceedings of the 27th International Conference on
Computational Linguistics (COLING), pages 1304–
1319.

622

Ahmed El-Kishky and Francisco Guzmán. 2020. Mas-
sively multilingual document alignment with cross-
lingual sentence-mover’s distance. In Proceedings
of the 1st Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 10th International Joint Conference on Natural
Language Processing, pages 616–625.

Isao Goto, Ka Po Chow, Bin Lu, Eiichiro Sumita, and
Benjamin K. Tsou. 2013. Overview of the patent ma-
chine translation task at the NTCIR-10 workshop. In
Proceedings of the 10th NTCIR Conference on Eval-
uation of Information Access Technologies, pages
260–286.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the 6th
Workshop on Statistical Machine Translation (WMT),
pages 187–197.

John Joseph Horton and Lydia B. Chilton. 2010. The
labor economics of paid crowdsourcing. In Proceed-
ings of the 11th ACM Conference on Electronic Com-
merce, pages 209–218.

Youxuan Jiang, Catherine Finegan-Dollak, Jonathan K.
Kummerfeld, and Walter Lasecki. 2018. Effective
crowdsourcing for a new type of summarization task.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL HLT), pages 628–633.

Marcin Junczys-Dowmunt. 2018. Microsoft’s submis-
sion to the WMT2018 news translation task: How I
learned to stop worrying and love the data. In Pro-
ceedings of the 3rd Conference on Machine Transla-
tion (WMT), pages 425–430.

Marimuthu Kalimuthu, Michael Barz, and Daniel Son-
ntag. 2019. Incremental domain adaptation for neu-
ral machine translation in low-resource settings. In
Proceedings of the 4th Arabic Natural Language Pro-
cessing Workshop, pages 1–10.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Rep-
resentations (ICLR).

Shun Kiyono, Takumi Ito, Ryuto Konno, Makoto Mor-
ishita, and Jun Suzuki. 2020. Tohoku-AIP-NTT at
WMT 2020 news translation task. In Proceedings of
the 5th Conference on Machine Translation (WMT),
pages 145–155.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 66–
71.

William Lewis, Robert Munro, and Stephan Vogel. 2011.
Crisis MT: Developing a cookbook for MT in crisis
situations. In Proceedings of the 6th Workshop on

Statistical Machine Translation (WMT), pages 501–
511.

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
220–224.

Makoto Morishita, Jun Suzuki, and Masaaki Nagata.
2020. JParaCrawl: A large scale web-based English-
Japanese parallel corpus. In Proceedings of the 12th
International Conference on Language Resources
and Evaluation (LREC), pages 3603–3609.

Mathias Müller, Annette Rios, and Rico Sennrich. 2020.
Domain robustness in neural machine translation. In
Proceedings of the 14th Conference of the Associa-
tion for Machine Translation in the Americas (Volume
1: Research Track), pages 151–164.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. ASPEC: Asian
scientific paper excerpt corpus. In Proceedings of
the 10th International Conference on Language Re-
sources and Evaluation (LREC).

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL HLT), pages 48–53.

Vassilis Papavassiliou, Prokopis Prokopidis, and Ste-
lios Piperidis. 2018. Discovering parallel language
resources for training MT engines. In Proceedings
of the 11th International Conference on Language
Resources and Evaluation (LREC).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 311–318.

Lisa Posch, Arnim Bleier, Clemens M. Lechner, Daniel
Danner, Fabian Flöck, and Markus Strohmaier. 2019.
Measuring motivations of crowdworkers: The mul-
tidimensional crowdworker motivation scale. ACM
Transactions on Social Computing, 2(2).

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the 3rd Conference on
Machine Translation (WMT), pages 186–191.

Philip Resnik and Noah A. Smith. 2003. The web as
a parallel corpus. Computational Linguistics (CL),
29(3):349–380.

Paul Roit, Ayal Klein, Daniela Stepanov, Jonathan
Mamou, Julian Michael, Gabriel Stanovsky, Luke
Zettlemoyer, and Ido Dagan. 2020. Controlled
crowdsourcing for high-quality QA-SRL annotation.

623

In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
7008–7013.

Serge Sharoff, Pierre Zweigenbaum, and Reinhard Rapp.
2015. BUCC shared task: Cross-language document
similarity. In Proceedings of the Eighth Workshop
on Building and Using Comparable Corpora, pages
74–78.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the Inception Architecture for Computer Vision.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2016), pages 2818–2826.

Brian Thompson and Philipp Koehn. 2019. Vecalign:
Improved sentence alignment in linear time and
space. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1342–1348.

Brian Thompson and Philipp Koehn. 2020. Exploit-
ing sentence order in document alignment. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
5997–6007.

Marlies van der Wees, Arianna Bisazza, and Christof
Monz. 2017. Dynamic data selection for neural ma-
chine translation. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1400–1410.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st Annual Con-
ference on Neural Information Processing Systems
(NeurIPS), pages 6000–6010.

Rui Wang, Andrew Finch, Masao Utiyama, and Eiichiro
Sumita. 2017. Sentence embedding for neural ma-
chine translation domain adaptation. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 560–566.

Omar F. Zaidan and Chris Callison-Burch. 2011.
Crowdsourcing translation: Professional quality from
non-professionals. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1220–1229.

Pierre Zweigenbaum, Serge Sharoff, and Reinhard Rapp.
2017. Overview of the second BUCC shared task:
Spotting parallel sentences in comparable corpora. In
Proceedings of the 10th Workshop on Building and
Using Comparable Corpora, pages 60–67.

624

Base model

Architecture Transformer (base)
Optimizer Adam (β1 = 0.9, β2 = 0.98, ϵ = 1 ×

10−8) (Kingma and Ba, 2015)
Learning rate schedule Inverse square root decay
Warmup steps 4,000
Max learning rate 0.001
Dropout 0.3 (Srivastava et al., 2014)
Gradient clipping 1.0
Label smoothing ϵls = 0.1 (Szegedy et al., 2016)
Mini-batch size 320,000 tokens
Updates 24,000 updates
Averaging Save checkpoint every 200 steps and average

the last eight
Implementation fairseq (Ott et al., 2019)
Parameters 93.2 million

Fine-tuning

Learning rate 1 × 10−5 (Fixed)
Mini-batch size 32,000 tokens
Updates 8 epochs10

Averaging Save checkpoint every epoch and average
the last eight

Table 3: List of hyperparameters

Development Test

Domain #Sentences #Tokens #Sentences #Tokens

COVID-19 971 21,085 2,100 49,490
News 1,998 45,318 1,000 22,141
Science 1,790 39,377 1,812 39,573
Patent 2,000 60,312 2,300 71,847
Legal 1,313 46,922 1,310 46,842

Table 4: Number of sentences and English tokens in
development and test sets

A Detailed Experimental Settings

A.1 Hyperparameters
Table 3 shows the hyperparameter settings used to
train a general-purpose machine translation model
and fine-tune it with target domain sentences. We
did not conduct a hyperparameter search, and al-
most all the settings were borrowed from previous
works (Morishita et al., 2020; Kiyono et al., 2020).

A.2 Datasets
We used TICO-19 (Anastasopoulos et al., 2020) as
development and test sets to evaluate the translation
performance of the COVID-19 domain. Since the
original TICO-19 does not include Japanese transla-
tions, professional translators translated the English
sentences to create a Japanese reference. We used
the development/test sets from the WMT20 news
shared task (Barrault et al., 2020) for the news do-
main and the NTCIR-10 patent translation task for
the patent domain. For the science domain, we used
ASPEC (Nakazawa et al., 2016), which contains

10One epoch means the model sees the entire corpus once.
Thus the number of updates depends on the data size. We
chose this setting because a fixed number of updates has a risk
of over-fitting if the fine-tuning data are too small.

1 2 3 4 5
Day

30

31

32

33

34

BL
EU

Base model
Fixed reward
Variable reward

Figure 4: Relationship between BLEU scores and
crowdsourcing days for small-scale experiment

excerpts of scientific papers. For the legal domain,
we used the Japanese-English legal parallel cor-
pus11. Since it is not divided into development and
test sets, we created them by randomly choosing
sentences from the entire corpus. The details of
the development and test set corpus statistics are
shown in Table 4.

B Preliminary Experiments

We carried out a preliminary experiment to deter-
mine how the different reward settings influenced
the workers’ performance and translation accuracy.

B.1 Experimental Settings

Target Domain and Crowdsourcing Settings In
this experiment, we focused on English-Japanese
translations in the COVID-19 domain. We as-
signed ten crowdworkers to each reward setting
and asked them to find websites that contained par-
allel sentences related to the COVID-19 domain.
The crowdsourcing continued for five days.

We set the fixed reward at 70 JPY (≃ 0.64 USD)
per report. For the variable reward setting, we paid
r JPY for each report, as shown by Eq. 1. We set
rmin to 20 JPY (≃ 0.18 USD) and rmax to 100
JPY(≃ 0.91 USD). Other model training settings,
including the hyperparameters, are identical as in
Section 4.1.

B.2 Experimental Results

B.2.1 Data Collection
Table 5 shows the results of crowdsourcing, in-
cluding the number of reports, extracted parallel
sentences, and the payments to the workers. We
received almost the same number of reports in both
reward settings. However, there was a significant
difference in the average number of sentences per
report: 10.4 for the fixed rewards and 13.4 for
the variable rewards. One likely reason is that the

11http://www.phontron.com/jaen-law/index.html

625

Development BLEU Test BLEU

Reward #URLs #Sentences Cost (USD) Base model w/Crawled Base model w/Crawled

Fixed 504 5,220 322.8 25.9 26.3 (+0.4) 31.7 31.9 (+0.2)
Variable 503 6,722 284.3 27.1 (+1.2) 33.2 (+1.5)

Table 5: Small-scale experiment’s results (five days of crowdsourcing), including crowdsourcing results and BLEU
scores of baseline and model fine-tuned with newly collected in-domain corpus.

workers tried to maximize their rewards. We be-
lieve the number of in-domain parallel sentences
is one crucial key for improving accuracy, and we
reflected this idea in our reward function. Thus
it improved the workers’ performance more than
the fixed reward setting. With the variable reward
setting, we also reduced the cost and obtained even
more parallel sentences by reducing the payments
to low-quality workers and increasing them to good
workers.

B.2.2 Translation Performance

Table 5 shows the BLEU scores of the baseline
model and the fine-tuned model with our crawled
in-domain parallel data. The model fine-tuned with
variable reward data achieved better results than
using fixed rewards. We believe the quality of the
collected data caused the difference in addition
to the number of parallel sentences, as previously
mentioned. We compared the domain similarity
scores described in Section 3.4.2 to check whether
the collected data are related to the target domain
and found that the data collected with the variable
reward setting achieved higher scores than with the
fixed rewards. This implies that the variable reward
setting motivated the workers to find parallel web
URLs related to the target domain, increasing the
accuracy of the fine-tuned model.

Fig. 4 shows how the BLEU scores changed as
crowdsourcing continued, and Fig. 5 in the Ap-
pendix shows the number of sentences used for this
experiment. The fine-tuned model with the variable
reward data outperformed the baseline model, even
by the second day of crowdsourcing. This result
supports our claim that our method helps provide
a domain-adapted model in a few days, which is
critical in such urgent situations as COVID-19.

From this experiment, we found that a variable
reward setting encouraged workers to find more
valuable parallel URLs, improved their translation
performance in the target domain over a few days,
and reduced the cost more than the fixed reward
setting.

1 2 3 4 5
Day

0

1000

2000

3000

4000

5000

6000

7000

#S
en

t

Reward
Fixed
Variable

Figure 5: Collected sentences used for fine-tuning in
experiment of Fig. 4. See Section B for details.

Alignment Domain Both

Top 20% 34.9 34.2 34.4
Middle 20% 32.9 33.3 33.1
Bottom 20% 30.5 32.3 31.8

Table 6: BLEU scores of model fine-tuned with
top/middle/bottom 20% scored sentences on COVID-19
domain test set

C Additional Experimental Results

Fig. 5 shows the numbers of sentences used for fine-
tuning in the preliminary experiment (Section B).
Fig. 6 shows the transitions of the BLEU scores in
the experiment described in Section 4 and the num-
ber of sentences collected in the variable reward
setting.

D Additional Analysis

D.1 Analysis: Reward Function

We varied the rewards to the workers with the re-
ward function based on the sentence alignment and
domain similarity scores. We pondered whether
this reward function could correctly measure the
data quality. To confirm this, we ordered the col-
lected data with respect to the sentence alignment
scores (Eq. 2), the domain similarity scores (Eq. 3),
or the sum of both scores. Then we fine-tuned
the model with the top/middle/bottom 20% of the
sorted data.

626

1 2 3 4 5 6 7 8 9 10 11 12 13
17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

BL
EU

Science

Base model
Fixed reward
Variable reward
w/Moore-Lewis
w/Gold

1 2 3 4 5 6 7 8 9 10 11 12 13
25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0
Patent

Base model
Fixed reward
Variable reward
w/Moore-Lewis
w/Gold

1 2 3 4 5 6 7 8 9 10 11 12 13
Day

0

100000

200000

300000

400000

#S
en

t

1 2 3 4 5 6 7 8 9 10 11 12 13
Day

0

100000

200000

300000

400000

Figure 6: Transitions of BLEU scores (upper-side) and number of collected sentences (lower-side) as we continued
data collection for science and patent domains. Detailed explanations can be found in Section 4.

Test BLEU

Domain Base w/Crawled w/Gold

Science 24.7 28.3 (+3.6) 36.0 (+11.3)
Patent 31.4 41.8 (+10.4) 42.6 (+11.2)
Legal 22.8 42.5 (+19.7) 59.6 (+36.8)

Table 7: BLEU score comparison with Gold data
(w/Gold)

Table 6 shows the BLEU scores of the fine-tuned
models on the COVID-19 domain. There is a clear
trend that the model fine-tuned with high-scored
data achieved higher accuracy, and there is a large
gap between the top and the bottom for all the score
functions. From this result, we conclude that our
reward function correctly measured the quality of
the data, and we paid more for high-quality works
and less for low-quality works.

D.2 Comparison: Gold In-domain Parallel
Corpus

In this section, we compare our collected data
with the existing domain-specific parallel corpus.
Among the five domains from which we collected
sentences, there is a domain-specific parallel cor-
pus for the science, patent, and legal domains. Note
that the availability of domain-specific data is quite
limited since creating such parallel data requires

professionals, thus incurring heavy costs. Accord-
ingly, this experiment resembles a comparison be-
tween our method and the upper bound. In the
following, we call this domain-specific parallel cor-
pus the gold data.

As gold data, we used ASPEC (Nakazawa et al.,
2016) for the science domain, NTCIR (Goto et al.,
2013) for the patent domain, and the Japanese-
English legal parallel corpus for the legal domain.
For a fair comparison, we randomly selected the
same number of sentences as our collected data.

Table 7 shows the BLEU scores of the model
fine-tuned with the gold data. Unsurprisingly, the
w/Gold models achieved better accuracy than the
w/Crawled models. However, the results of some
of the latter were close to those of the former, such
as the patent domain.

From Fig. 3, we compared the transition of
the BLEU scores (see w/Crawled and w/Gold in
the legal domain). From the first to third days,
our method’s performance resembled that of the
w/Gold model. Since room remains for improve-
ments after the fourth day, future work will refine
the crowdsourcing protocol.

627

E Links to Data and Software

E.1 Data
JParaCrawl https://www.kecl.ntt.co.jp/icl/

lirg/jparacrawl/

TICO-19 https://tico-19.github.io/

WMT20 news shared task http://www.statmt.

org/wmt20/translation-task.html

ASPEC http://orchid.kuee.kyoto-u.ac.jp/ASPEC/

NTCIR-10 http://research.nii.ac.jp/ntcir/

permission/ntcir-10/perm-en-PatentMT.html

Legal parallel corpus http://www.phontron.com/

jaen-law/index.html

E.2 Software
vecalign https://github.com/thompsonb/vecalign

CLD2 https://github.com/CLD2Owners/cld2

KenLM https://github.com/kpu/kenlm

fairseq https://github.com/pytorch/fairseq

SacreBLEU https://github.com/mjpost/sacreBLEU

sentencepiece https://github.com/google/

sentencepiece

628

Proceedings of EMNLP 2022 Industry Track, pages 629–636
December 9–11, 2020. ©2022 Association for Computational Linguistics

Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu
Framework

Wonjin Yoon 1† Richard Jackson 2† Elliot Ford 2 Vladimir Poroshin 2 Jaewoo Kang 1,3

1Korea University, Seoul, South Korea
2AstraZeneca, Cambridge, United Kingdom

3AIGEN Sciences, Seoul, South Korea
† Equal contribution

{wjyoon, kangj}@korea.ac.kr
{richard.jackson4, elliot.ford, vladimir.poroshin}@astrazeneca.com

Abstract
In order to assist the drug discov-
ery/development process, pharmaceutical
companies often apply biomedical NER and
linking techniques over internal and public
corpora. Decades of study of the field of
BioNLP has produced a plethora of algorithms,
systems and datasets. However, our experience
has been that no single open source system
meets all the requirements of a modern
pharmaceutical company. In this work, we
describe these requirements according to our
experience of the industry, and present Kazu,
a highly extensible, scalable open source
framework designed to support BioNLP for
the pharmaceutical sector. Kazu is a built
around a computationally efficient version of
the BERN2 NER model (TinyBERN2), and
subsequently wraps several other BioNLP
technologies into one coherent system.

1 Introduction

One of the promises of the applications of A.I.
within the pharmaceutical sector is to empower
the search for new drugs, and quicken their devel-
opment into safe, effective medicines. Within the
field of NLP, this commonly involves the applica-
tion of named entity recognition (NER, which is
the task of finding entities from a document) and
entity linking (EL, also known as grounding, or nor-
malisation), and other techniques to internal and ex-
ternal documents. Documents enhanced with such
metadata have a wide variety of use cases, such as
improving the performance of enterprise search sys-
tems, phase 4 monitoring of adverse events or as a
precursor to relationship extraction (for instance in
biomedical knowledge graph construction (Geleta
et al., 2021)).

Our experience has been that high quality NER
remains at the core of many typical NLP use cases
within the pharmaceutical industry, and therefore
is the prominent focus of our work. BioNER as
a field is notable for it’s technical complexity and

chronic shortage of sufficiently sized training/test
datasets, relative to general domain corpora. Al-
though recent advances have produced excellent
results on benchmark datasets, recent work (Kim
and Kang, 2022) has also suggested that such ap-
proaches may be overfit, and may not necessarily
generalise sufficiently to meet the needs of a pro-
duction system.

Similarly, the tendency of academic products to
focus on minimising the error rate over a given
benchmark ignores practical issues of productioni-
sation, such as the computational complexity of an
algorithm, ecological impact and the maintenance
of a coherent codebase. While a low overall error
rate is undoubtedly important for any enterprise
A.I. system, world class performance often comes
at the expense of speed. Therefore, striking a bal-
ance between an acceptable error rate and other
performance metrics is central to user acceptance.
We posit that ‘near’ (rather than ‘absolute’) state of
the art is sufficient for most use cases.

While several commercial solutions are avail-
able to address this requirement, we suggest that a
freely available open source solution to deal with
the intricacies of this area has not been forthcom-
ing. In this piece, we describe the practical chal-
lenges and requirements of enterprise BioNLP an-
alytics. We present our TinyBERN2 biomedical
NER model, which utilises weak supervision to
address generalisability issues, and our associated
Kazu framework by which we deploy it for enter-
prise applications within a large pharmaceutical
company. The Kazu framework and models (in-
cluding TinyBERN2 and distillated PubMedBERT
(Gu et al., 2021)) are open-sourced 1.

1https://github.com/AstraZeneca/KAZU

629

2 Challenges of BioNLP in the
Pharmaceutical Sector and the Kazu
Framework

The priorities of academic research in NLP often
do not focus on the various practical elements of
productionising algorithms within the context of a
corporate environment. Nevertheless, this is one of
the domains where their outputs can deliver value
- via extending existing systems and enabling new
projects. The challenges of managing A.I. sys-
tems in such environments are acknowledged by
the emergence of the field of MLOps, and we re-
peat some of the most salient aspects relevant to
BioNLP here.

2.1 Language/technology agnostic and
scalability

The majority of algorithms for BioNLP are typi-
cally written in JVM languages or Python, each of
which may have dependency conflicts with other
algorithms within the overall Kazu pipeline. Here,
we utilise the scalable Ray framework (Moritz et al.,
2018) which allows different processes to run with
distinct Python virtual environments/JVM class-
paths, substantially reducing the chance of a con-
flict.

2.2 Flexibility of datasource ingestion

The biomedical domain is awash with ontolo-
gies and knowledgebases, representing various at-
tempts to standardise and model biological con-
cepts. These typically form the basis of EL targets
and/or dictionary based NER vocabularies. Thus,
we have built a parsing system to allow any data
source to be converted into a vocabulary, suitable
for curated dictionary based entity matching and/or
entity linking.

2.3 Robustness of data model

The biomedical literature is known for the over-
representation of certain linguistic phenomena,
such as multi section documents/abstracts, nested
entities (Alex et al., 2007) and non-contiguous en-
tities (Lever et al., 2020). We note that the data
models of many popular NLP frameworks don’t
contain native support for these concepts, and have
thus built these into the standard Kazu dataclasses.

2.4 Extensibility of pipeline design

The current pace of NLP development is extremely
rapid. We present Kazu with implementations of

several algorithms that we have chosen based on
our preference at the time of writing. However, we
recognise that any or all of these are likely to be
super-ceded in the short to medium term. There-
fore, we have designed Kazu in a modular pipeline
fashion, wherein new algorithms can be introduced
relatively easily.

2.5 Stability in execution
Executing NLP algorithms over large corpora of
text is notoriously unreliable, due to the difficulties
in building systems that are able to cope with highly
arbitrary input. For instance, certain strings of text
may cause NER processes to crash due to high
memory usage. Systems that are able to identify
problematic text, and either a) avoid processing ex-
ceptions or b) recover from such situations are help-
ful in production environments. To deal with these
scenarios, we leverage several techniques such
as process memory monitoring/automatic worker
restarting, which in turn allows the processing of
millions of documents with relative ease.

3 Methods

3.1 Model Architecture
Historically, BioNER approaches have utilised ‘se-
quence tagging’ style tasks (Yoon et al., 2019; Lee
et al., 2020), wherein a string of text is tokenized,
and a model assigns each token a label according to
the popular Begin, Inside, Outside schema. How-
ever, this single-label classification approach can
not properly predict nested entities (Katiyar and
Cardie, 2018), where the spans of multiple types
of entities are overlapped, without additional pro-
cessing or methods.

To mitigate the problem from nested entity, we
applied multi-label label prediction for each token.
The method is straight-forward and neither require
complicated training strategy nor additional param-
eters that leads to significant speed reduction in
inference.

Our model is composed of BERT layers and a
dense output layer. For the case where the number
of entity classes is k and using the B-<entity class>,
I-<entity class>, and O tag schema (Ramshaw and
Marcus, 1999), the output layer o is defined as
follows:

o = Sigmoid(hW + b) (1)

where h ∈ Rd is the output of the final layer of
BERT layers for a token W ∈ Rd∗(2∗k+1), and

630

b ∈ R2∗k+1. The output layer will produce a vector
(with 2 ∗ k + 1 elements) of probability for each
tokens.

The training objective is to reduce loss between
the output of the model (vector of size 2 ∗ k + 1)
and the annotation vector. Each element of the an-
notation vector represents whether the token is a
part of the corresponding entity class. Note that the
elements are independent and an annotation vector
can label multiple entity classes. The element can
be a binary value (hard-label) or a probability value
(soft-label) of an off-the-shelf model. We used
a standard Binary Cross Entropy loss (as imple-
mented in the pytorch library) as our loss function
2.

3.2 Weakly supervised learning

To address the aforementioned generalisability con-
cerns, we adapt a weakly supervised learning strat-
egy (Ratner et al., 2018). Figure 1 shows an exam-
ple of our training dataset generation. Off-the-shelf
models or existing models can be used to gener-
ate weakly-labeled datasets. In our case, we uti-
lized predictions of BERN2 (Sung et al., 2022) on
PubMed articles, that is available on the official
web-page 3 (downloaded Feb 7, 2022 version v1.0).
Statistics of the downloaded dataset are shown in
Table 1. We pre-processed about 25 Million MED-
LINE abstracts available in PubMed website 4. In
order to reduce ecological footprint during exper-
iments, we used about 10% of BERN2-labeled
dataset to make our weakly labeled dataset. Ar-
ticles in test set of benchmark datasets are filtered
out from our weakly-labeled training dataset by
PMIDs to prevent any downstream models from di-
rectly learning/memorizing of BERN2 predictions.

Some of the obstacles in training with weakly
supervised learning are noises and biases added dur-
ing the labeling (Jiang et al., 2021). In the Section
5.1, we explore both soft-labels (i.e. training with
the confidence values of the supervising model)
and hard-labels (i.e. training with the categorical
labels produced by the supervising model).

3.3 Distillation

Distillation is a key tool to address the scalability
requirement as it enables to make computationally

2https://pytorch.org/docs/1.12/generated/
torch.nn.BCELoss.html

3http://bern2.korea.ac.kr/
4https://www.nlm.nih.gov/databases/download/

pubmed_medline.html

Type BERN2-labeled Our weakly-labeled

Abstracts 25,726,681
Sentences 157,267,033 16,712,485
Words (tokens) 3,646,395,389 438,686,717
Words per sentences 23.18 26.24

Table 1: Statistics of BERN2-labeled dataset and our
weakly-labeled dataset. About 10% of the BERN2-
labeled dataset is used as the weakly-labeled dataset
for the training step of TinyBERN2. Words denotes the
tokens delimited by spaces or special characters in the
sentence.

efficient models while retaining most of the F1 per-
formance. During distillation, both the hidden size
and the number of layers are reduced. The for-
mer reduces the parameter size, resulting a smaller
memory usage, and eventually facilitates inferenc-
ing with much larger batchsize. The latter not
only reduces memory usage, but also decreases
the CPU/GPU time spent for a single example to
be processed.

Following the work of Jiao et al. (2020), we
applied two-stage approach of distillation. In the
first stage, we distillate a biomedical domain spe-
cific transformer language model to build a task-
independent tiny language model (LM). In the sec-
ond stage, the distilled LM can be trained for a task-
specific dataset (such as an NER task) directly or
alternatively, a full-sized transformer model trained
on the specific NER task is used as a teacher model,
which in turn tunes a task-specific distilled LM.

In our experiment, the teacher model for the first
stage is PubMedBERT (Gu et al., 2021). For the
second stage, we first train a full sized BERN2
(Sung et al., 2022) on our weakly labeled dataset,
which is then used as a teacher model for our final,
distilled NER model (TinyBERN2).

4 Experiments and Results

4.1 Benchmark Datasets
For evaluation of our TinyBERN2 model, we
chose 8 benchmark datasets of 6 entity classes:
Gene/Protein, Disease, Chemical, Species, Cell
line, and Cell type (Doğan et al., 2014; Li et al.,
2016; Krallinger et al., 2015; Smith et al., 2008;
Kim et al., 2004; Gerner et al., 2010; Neves et al.,
2013; Kaewphan et al., 2016). While we were de-
signing the experiment, we wanted to examine the
generalizability (i.e. ability to predict unseen en-
tities that are not in the training dataset (Kim and
Kang, 2022), which is essential for real-world use

631

Inference

LM

Dataset
(Supervised)

Entity
Identification

Model

BERN(2) Model
(Identification)

MEDLINE

(a) Off‐the‐shelf model (BERN)
Trained on manually annotated datasets

Train

Weak supervision
dataset

(Predicted labels)

(b) Weakly‐labeled dataset generation
Inferencing BERN(2) model on MEDLINE corpus

Additional datasource integration can be applied at this step

Models

Datasets

Legends

LM
(PubMedBERT)

Dataset
(Weak)

Teacher
Model

(c) Training LM on weakly labeled dataset
Trained LM is used as teacher model

in the following distillation step

Train

Figure 1: Building a weakly supervised dataset and subsequent training our weakly supervised BERN2 (WS-BERN2)
model. We used BERN2 (Sung et al., 2022) to generate weakly-labeled datasets. Alternatively, off-the-shelf models
/ existing models can be used. Additional datasource integration can be applied at the step (b). Generated weakly-
labeled datasets can be used to train a full-sized LM (WS-BERN2, or teacher model in the step (c)) or to train a
tiny-sized LM (distillated LM) directly.

cases. To this end, we evaluate our model on sev-
eral datasets that were not used to train our teacher
model (BERN2). These are marked with † in the
main experiment table (Table 2).

For the benchmark datasets, we used MTL-
Bioinformatics-2016 GitHub repository 5 (Crichton
et al., 2017) with an additional processing step that
ensures all special characters are consistently used
as token delimiters. All benchmark datasets were
pre-processed to have the same format, where a
line contains one token and a corresponding label
tag as in CoNLL-X format (Buchholz and Marsi,
2006).

4.2 Results

Table 2 shows our experimental results on bench-
mark datasets. We compared the performance
of the off-the-shelf model (BERN2), weakly-
supervised model (WS-BERN2), and distilled
weakly-supervised BERN2 model (TinyBERN2)
in terms of precision/recall/F1 and computational
costs.

4.2.1 Evaluation metrics (accuracy)
We measured entity level Precision, Recall, and F1-
score using SeqEval library 6 (Nakayama, 2018).
Some datasets contain multiple entity classes. As
our model supports multi-label output for each to-
ken, we first save model predictions for all types

5https://github.com/cambridgeltl/
MTL-Bioinformatics-2016

6https://huggingface.co/spaces/
evaluate-metric/seqeval

and collect each type separately using the saved out-
put and evaluate entity classes using the collected
output. Formally, assume that a model can predict
k entity classes and an example has n tokens. If
we use BIO-tagging schema the number of labels
are 2 ∗ k+1 including "O" label. The output of the
model can be denoted as a matrixM ∈ R(2∗k+1)×n.
For evaluating i-th (i ∈ {1 · · · k}) entity class, we
use two rows that marks the given entity class and
a row for "O" in M each of them is a vector of
length n. These three vectors are merged and form
a prediction list, which is used along with the gold
standard labels for evaluating an entity class of a
benchmark dataset.

In our experiments, F1-scores of our weakly su-
pervised model (WS-BERN2) were analogous to
BERN2 model for entity classes where more train-
ing data were available (Gene, Disease, Chemical).
Our weakly supervised model showed better per-
formance in cross-dataset evaluation (i.e. evalua-
tion on datasets that are not used to train BERN2),
which support our assumption on generalisabil-
ity. As expected, our distilled model, TinyBERN2
showed a lower F1 score across most datasets com-
pared to WS-BERN2, although this was marginal
in many cases.

4.2.2 Evaluation metrics (Computational
costs)

For evaluation of the models in respect of through-
put and speed, we used 26,365 sentences from
BC4CHEMD test dataset. One sentence forms a
test sample. Speed in Table 2 is a measurement for

632

BERN2 (*) WS-BERN2 TinyBERN2

Group Benchmark P / R / F1 P / R / F1 P / R / F1

Gene BC2GM † 82.47% / 80.77% / 81.61% 82.52% / 82.55% / 82.54% 80.80% / 79.37% / 80.08%
JNLPBA 67.23% / 72.37% / 69.70% 65.88% / 70.14% / 67.95% 64.72% / 69.08% / 66.83%
CellFinder 63.28% / 52.89% / 57.62% 70.25% / 80.40% / 74.98% 63.67% / 75.71% / 69.17%

Disease NCBI-disease † 86.33% / 80.94% / 83.55% 87.41% / 88.23% / 87.82% 84.95% / 82.92% / 83.92%
BC5CDR-Disease 77.14% / 64.76% / 70.41% 78.26% / 67.36% / 72.40% 76.91% / 66.25% / 71.18%

Chemical BC4CHEMD † 93.66% / 92.06% / 92.86% 91.93% / 91.44% / 91.69% 90.02% / 88.70% / 89.36%
BC5CDR-Chemical 94.41% / 86.57% / 90.32% 94.55% / 87.59% / 90.94% 94.52% / 86.55% / 90.36%

Cell line JNLPBA † 50.00% / 76.10% / 60.35% 33.43% / 71.80% / 45.62% 34.85% / 68.80% / 46.27%
CellFinder 8.52% / 36.07% / 13.78% 10.08% / 45.02% / 16.48% 3.61% / 12.37% / 5.59%
GELLUS 8.61% / 25.70% / 12.90% 9.01% / 24.02% / 13.11% 7.54% / 18.99% / 10.79%

Cell type JNLPBA † 60.49% / 67.96% / 64.01% 33.43% / 71.80% / 65.33% 66.41% / 64.06% / 65.22%
CellFinder 51.12% / 32.19% / 39.50% 48.86% / 31.81% / 38.53% 52.33% / 25.06% / 33.89%

Species LINNAEUS † 89.13% / 91.56% / 90.33% 80.82% / 44.01% / 56.99% 81.86% / 42.05% / 55.56%
CellFinder 33.38% / 75.08% / 46.21% 38.03% / 52.96% / 44.27% 46.02% / 50.47% / 48.14%

Model complexity Backbone model Bio-LM (Lewis et al., 2020) PubMedBERT (Gu et al., 2021) Distilled model
Parameters 365M 109M 14M
Layers 24 12 4

Throughput (CPU) Speed (s/steps) 0.37 sec/steps 0.043 sec/steps 0.017 sec/steps
(batch size = 1) Throughput (samples/s) 2.66 samples/s 22.93 samples/s 57.43 samples/s

Throughput (CPU) Speed (s/steps) N/A 1.204 sec/steps 0.119 sec/steps
(batch size = 32) Throughput (samples/s) N/A 26.56 samples/s 267.40 samples/s

Throughput (GPU) Speed (s/steps) 0.037 sec/steps 0.012 sec/steps 0.006 sec/steps
(batch size = 1) Throughput (samples/s) 26.33 samples/s 83.66 samples/s 160.86 samples/s

Throughput (GPU) Speed (s/steps) N/A 0.086 sec/steps 0.023 sec/steps
(batch size = 32) Throughput (samples/s) N/A 367.89 samples/s 1354.08 samples/s

Table 2: Performance of our TinyBERN2 model and BERN2 model. Benchmark datasets that are used to train
BERN2 is marked with †. WS-BERN2 denotes our model trained on weakly-supervised dataset. # Layers denotes
the number of transformers layer in the backbone model, excluding embedding layer and the output layer. *:
Performance for the BERN2 may vary with the BERN2 paper (Sung et al., 2022) as we applied different tokenization
schema, and application overheads for throughput.

seconds spent for an evaluation step: we divided
the number of steps by time spent to process the
dataset using mini batch size of 1. The models
were loaded in the memory before the experiment.

For BERN2 model (the off-the-shelf model), we
installed BERN2 in a local machine to reduce net-
work overheads. The model codes were modified
to run without normalization and rule-based post-
processing features, with help of the BERN2 au-
thors. For evaluating the memory usage of BERN2,
we only report memory usage of batch_size = 1 set-
ting, as BERN2 doesn’t currently support making
batch predictions 7. For the same reason, we omit
throughput results for BERN2.

We used a bare-metal server (Ubuntu Server
16.04.3 LTS) with single NVIDIA TITAN Xp
(12GB) GPU and Xeon(R) E5-2630 v4 @ 2.2GHz
(10 Core / 20 Threads) CPU for the experiments.

7https://github.com/dmis-lab/BERN2/issues/10

5 Discussions

5.1 Effect of training by soft-labeling

In Section 3.2 we suggested that the traditional
binary labeling, or hard-labeling, can hinder the
weakly-labeled training by adding biases. To exam-
ine this hypothesis, we compared the performance
of models trained using the hard-label dataset and
the soft-label dataset.

Table 3 shows the performance of WS-BERN2
models trained on BIO-tagging with hard-labels
and soft-labels (for the comparison between IO-
tagging and BIO-tagging, see Section 5.2). In
macro average score, WS-BERN2 model trained
with soft-label outperformed model trained with
hard-label by 0.52%. An interesting observation
is that the model benefited from soft-labelling for
entity classes with fewer training instances in the
weakly-labeled dataset. Here, the macro average
improvement was 0.89% in 7 benchmark datasets
across the species, cell line and cell type entity

633

BIO-Hard BIO-Soft IO-Soft

Entity Group Benchmark F1 F1 F1

Gene BC2GM † 82.78% 82.54% 83.76%
JNLPBA 67.93% 67.95% 68.82%
CellFinder 73.71% 74.98% 75.36%

Disease NCBI-disease † 87.38% 87.82% 87.82%
BC5CDR-Disease 72.67% 72.40% 72.85%

Chemical BC4CHEMD † 91.81% 91.69% 92.44%
BC5CDR-Chemical 91.05% 90.94% 91.26%

Cell line JNLPBA † 44.70% 45.62% 48.27%
CellFinder 15.66% 16.48% 14.73%
GELLUS 12.46% 13.11% 12.11%

Cell type JNLPBA † 64.45% 65.33% 66.60%
CellFinder 39.27% 38.53% 38.83%

Species LINNAEUS † 56.70% 56.99% 57.23%
CellFinder 40.86% 44.27% 43.33%

Macro Average 60.10% 60.62% 60.96%

Table 3: Performance of our weakly-supervised BERN2
models by different labeling schema. Benchmark
datasets that are used to train BERN2 is marked with †.

classes. Marginal improvements were observed
for entity classes where more training data were
available (Gene, Disease, Chemical), with a macro
average improvement of 0.14% in 7 benchmark
datasets.

5.2 Tagging Schema

Previous works on Biomedical NER tasks have
preferred to use the BIO-tagging schema over IO-
tagging (i.e. only tag with Inside or Outside), pre-
sumably because BIO-tagging can delimit entity
spans completely (i.e. IO-tagging cannot delimit
two consecutive entities). However, we revisit this
convention for the NER task where the model is
a transformer based language model and the input
text are from the formal scientific literature.

Transformer based language models, such as
BERT and BioBERT, use trained tokenizers, such
as BPE-tokenizers (Sennrich et al., 2016), and do
not remove stopwords or special characters. In-
stead those tokenizers make stopwords or special
characters an independent token.

We hypothesized that in scientific literature, the
writer of the text tend to express themselves in a
way that causes entities to be wrapped with non-
entities, stopwords (such as and, or) or punctuation
characters (such as ",", ".", "’", and """).

From this perspective, we conducted a prelimi-
nary study using BERN2 predictions on 106,921
sentences from randomly sampled articles. Across
102,569 entities, 99,814 entities (97.3%) do not
have adjacent entities, in the sense that an entity

span starts right after an entity span of the same
class ends - only 466 entities were found to have
adjacent entities that cannot be delimited with the
IO-tagging schema.

… metabolism of goldfish Carassius auratus (L.).',

{'doc_id': '9245_00',
 'inpSeq': 'Influence of anoxia on the energy metabolism of goldfish Carassius auratus
(L.).',
 'sentStart': 0,
 'sentEnd': 80,
 'annotations': [{'id': ['NCBI:txid7957'],
 'span': {'begin': 48, 'end': 56},
 'obj': 'species',
 'is_neural_normalized': False,
 'mention': 'goldfish',
 'prob': 0.59980309009552},5542535
 {'id': ['NCBI:txid7957'],
 'span': {'begin': 57, 'end': 74},
 'obj': 'species',
 'is_neural_normalized': False,
 'mention': 'Carassius auratus',
 'prob': 0.9694346785545349}],
 'tokenized': ['Influence',
 'of',
 'anoxia',
 'on',
 'the',
 'energy',
 'metabolism',
 'of',
 'goldfish',
 'Carassius',
 'auratus',
 '(',
 'L',
 '.',
 ')',
 '.'],
 'position_original': [{'begin': 0, 'end': 9},
 {'begin': 10, 'end': 12},
 {'begin': 13, 'end': 19},
 {'begin': 20, 'end': 22},
 {'begin': 23, 'end': 26},
 {'begin': 27, 'end': 33},
 {'begin': 34, 'end': 44},
 {'begin': 45, 'end': 47},
 {'begin': 48, 'end': 56},
 {'begin': 57, 'end': 66},
 {'begin': 67, 'end': 74},
 {'begin': 75, 'end': 76},
 {'begin': 76, 'end': 77},
 {'begin': 77, 'end': 78},
 {'begin': 78, 'end': 79},
 {'begin': 79, 'end': 80}],
 'index_diff_original': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4]}

Figure 2: An example of adjacent entities (goldfish and
Carassius auratus).

Based on this observation, we conducted an ex-
periment to evaluate the usability of IO-tagging.
Performances of WS-BERN2 models trained on
IO-soft and BIO-soft are denoted in Table 3. Based
on the macro average score, the model using IO-
tagging outperformed the model with BIO-schema.
For the performance on entity classes across the
benchmark datasets, 11 scores output 14 were im-
proved by using IO-tagging. Using IO-tagging was
also beneficial for the aspect of the computational
cost required for the training convergence (i.e. fully
trained), as the model is less complex.

However, we do not recommend the IO-tagging
model for enterprise use cases, as the input samples
cannot be guaranteed to be restricted in the scien-
tific/academic writing with complete punctuation.
Absence of statistics for manually-labeled dataset
remains as limitation of this auxiliary study and is
a topic for further research.

5.3 Enterprise usage of Kazu
We have integrated our TinyBERN2 model into our
new Kazu framework, alongside other components
for abbreviation expansion (Neumann et al., 2019),
entity linking (Liu et al., 2020) and additional novel
algorithms outside the scope of this paper (full
details of the other Kazu components can be found
at 8).

Kazu is deployed at AstraZeneca enterprise
wide, and is already in use as a core component
for projects such as biological knowledge graph
(BIKG) construction (Geleta et al., 2021) and clini-
cal trial design via enabling the structured search
of clinical studies. An execution over PubMed (ab-
stracts) and PubMed Central (full text documents)
has extracted the following (uniquely mapped) ref-
erences: 22 532 diseases, 19 884 genes, 18 715
drugs, 6469 anatomy references, 5 372 cell line
references, and 53 cell type references. Additional
deployments of Kazu for other internal projects are
planned in the near future.

8https://github.com/AstraZeneca/KAZU

634

Limitations

One of our objectives in this work was to establish
that the TinyBERN2 model is highly performant,
both in terms of accuracy metrics and computa-
tional efficiency. However, we were limited to
testing this on just a single type of CPU and GPU.
Since hardware varies dramatically, it is difficult to
predict the precise throughput gains for any single
setup. In addition, BERN2 incorporates several
elements of pre/post processing, that it wasn’t pos-
sible to completely disable during throughput test-
ing, which will impact the reported throughput and
accuracy results to a small degree. Nevertheless,
we expect our conclusions to be broadly consistent,
given the massive reduction in parameters/layers
of the TinyBERN2 model vs the original BERN2.

Notably, both the full BERN2 and our weakly
supervised/distilled versions struggled to achieve
high F1 on the cell line/type classes. This may be
due to inconsistencies in the annotation schema
of the cell line/type datasets. However, we also
suspect that this is due to the fact our model does
not make use of dictionary features. This is con-
sistent with the observations of Kaewphan et al
(Kaewphan et al., 2016), in that ML models with-
out dictionary support tend to perform poorly on
this entity class. Further work will seek to supple-
ment our approach to weak supervision with such
dictionary features for entity classes that are likely
to benefit.

Regarding the sizing of our TinyBERN2 model,
we followed the recommendations of the original
TinyBERT paper, and did not attempt a hyperpa-
rameter search to find the optimal trade off between
throughput and performance degradation. Further
work should explore this aspect.

Ethics Statement

This work complies with the ACL Ethics Policy.

Acknowledgements

We would like to express our gratitude to An-
toine Lain (University of Edinburgh) for helping
authors to collect and unify the format of bench-
mark datasets and Mujeen Sung and Minbyul Jeong
for providing NER predictions and information
for the inference speed experiments. This work
is partially funded by National Research Founda-
tion of Korea [NRF-2020R1A2C3010638], the Ko-
rea Health Industry Development Institute (KHIDI)

[HR20C0021] and ICT Creative Consilience pro-
gram [IITP-2022-2020-0-01819] funded by Gov-
ernment of Republic of Korea. We would also like
to thank Rolando Fernandez for his development
work on Kazu.

References
Beatrice Alex, Barry Haddow, and Claire Grover. 2007.

Recognising nested named entities in biomedical text.
In BioNLP@ACL.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning (CoNLL-X), pages
149–164, New York City. Association for Computa-
tional Linguistics.

Gamal Crichton, Sampo Pyysalo, Billy Chiu, and Anna
Korhonen. 2017. A neural network multi-task learn-
ing approach to biomedical named entity recognition.
BMC bioinformatics, 18(1):1–14.

Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong
Lu. 2014. Ncbi disease corpus: a resource for dis-
ease name recognition and concept normalization.
Journal of biomedical informatics, 47:1–10.

David Geleta, Andriy Nikolov, Gavin Edwards, Anna
Gogleva, Richard Jackson, Erik Jansson, An-
drej Lamov, Sebastian Nilsson, Marina Pettersson,
Vladimir Poroshin, et al. 2021. Biological insights
knowledge graph: an integrated knowledge graph to
support drug development. Biorxiv.

Martin Gerner, Goran Nenadic, and Casey M Bergman.
2010. Linnaeus: a species name identification sys-
tem for biomedical literature. BMC bioinformatics,
11(1):85.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1–23.

Haoming Jiang, Danqing Zhang, Tianyu Cao, Bing Yin,
and Tuo Zhao. 2021. Named entity recognition with
small strongly labeled and large weakly labeled data.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1775–1789, Online. Association for Computational
Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

635

Suwisa Kaewphan, Sofie Van Landeghem, Tomoko
Ohta, Yves Van de Peer, Filip Ginter, and Sampo
Pyysalo. 2016. Cell line name recognition in support
of the identification of synthetic lethality in cancer
from text. Bioinformatics, 32:276 – 282.

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 861–871, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Hyunjae Kim and Jaewoo Kang. 2022. How do your
biomedical named entity recognition models general-
ize to novel entities? Ieee Access, 10:31513–31523.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduction to
the bio-entity recognition task at jnlpba. In Proceed-
ings of the international joint workshop on natural
language processing in biomedicine and its applica-
tions, pages 70–75. Association for Computational
Linguistics.

Martin Krallinger, Obdulia Rabal, Florian Leitner,
Miguel Vazquez, David Salgado, Zhiyong Lu, Robert
Leaman, Yanan Lu, Donghong Ji, Daniel M Lowe,
et al. 2015. The chemdner corpus of chemicals and
drugs and its annotation principles. Journal of chem-
informatics, 7.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Jake Lever, Russ B. Altman, and Jin-Dong Kim. 2020.
Extending textae for annotation of non-contiguous
entities. Genomics & Informatics, 18.

Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoy-
anov. 2020. Pretrained language models for biomedi-
cal and clinical tasks: Understanding and extending
the state-of-the-art. In Proceedings of the 3rd Clini-
cal Natural Language Processing Workshop, pages
146–157, Online. Association for Computational Lin-
guistics.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database: The Journal of Biological Databases &
Curation, 2016.

Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco
Basaldella, and Nigel Collier. 2020. Self-alignment
pre-training for biomedical entity representations.
CoRR, abs/2010.11784.

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. 2018. Ray: A distributed frame-
work for emerging AI applications. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 561–577, Carlsbad, CA.
USENIX Association.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and Robust Models
for Biomedical Natural Language Processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319–327, Florence, Italy. Association for
Computational Linguistics.

Mariana Neves, Alexander Damaschun, Nancy
Mah, Fritz Lekschas, Stefanie Seltmann, Harald
Stachelscheid, Jean-Fred Fontaine, Andreas Kurtz,
and Ulf Leser. 2013. Preliminary evaluation of the
cellfinder literature curation pipeline for gene expres-
sion in kidney cells and anatomical parts. Database,
2013.

L. A. Ramshaw and M. P. Marcus. 1999. Text Chunking
Using Transformation-Based Learning, pages 157–
176. Springer Netherlands, Dordrecht.

Alexander J. Ratner, Braden Hancock, Jared A. Dunn-
mon, Roger E. Goldman, and Christopher Ré. 2018.
Snorkel metal: Weak supervision for multi-task learn-
ing. Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Larry Smith, Lorraine K Tanabe, Rie Johnson nee Ando,
Cheng-Ju Kuo, I-Fang Chung, Chun-Nan Hsu, Yu-
Shi Lin, Roman Klinger, Christoph M Friedrich, Kuz-
man Ganchev, et al. 2008. Overview of biocreative ii
gene mention recognition. Genome biology, 9(2):S2.

Mujeen Sung, Minbyul Jeong, Yonghwa Choi,
Donghyeon Kim, Jinhyuk Lee, and Jaewoo Kang.
2022. Bern2: an advanced neural biomedical named
entity recognition and normalization tool. arXiv
preprint arXiv:2201.02080.

Wonjin Yoon, Chan Ho So, Jinhyuk Lee, and Jaewoo
Kang. 2019. Collabonet: collaboration of deep neu-
ral networks for biomedical named entity recognition.
BMC bioinformatics, 20(10):55–65.

636

Proceedings of EMNLP 2022 Industry Track, pages 637–644
December 9–11, 2020. ©2022 Association for Computational Linguistics

Large-scale Machine Translation for Indian Languages in E-commerce
under Low Resource Constraints

Amey Patil, Nikesh Garera
Flipkart

{amey.patil,nikesh.garera}@flipkart.com

Abstract

The democratization of e-commerce platforms
has moved an increasingly diversified Indian
user base to shop online. We have deployed
reliable and precise large-scale Machine Trans-
lation systems for several Indian regional lan-
guages in this work. Building such systems is
a challenge because of the low-resource nature
of the Indian languages. We develop a struc-
tured model development pipeline as a closed
feedback loop with external manual feedback
through an Active Learning component. We
show strong synthetic parallel data generation
capability and consistent improvements to the
model over iterations. Starting with 1.2M par-
allel pairs for English-Hindi we have compiled
a corpus with 400M+ synthetic high quality
parallel pairs across different domains. Further,
we need colloquial translations to preserve the
intent and friendliness of English content in
regional languages, and make it easier to un-
derstand for our users. We perform robust and
effective domain adaptation steps to achieve
colloquial such translations. Over iterations,
we show 9.02 BLEU points improvement for
English to Hindi translation model. Along with
Hindi, we show that the overall approach and
best practices extends well to other Indian lan-
guages, resulting in deployment of our models
across 7 Indian Languages.

1 Introduction

As one of the largest e-commerce platform, we
support a very diverse user base in terms of re-
gional languages. Product Descriptions, Catalog
Attributes, and Product Reviews help customers
understand and compare various products available
on the platform. For the growing user-base in In-
dia with non-English background, providing this
information in regional Indian languages makes
their shopping experience more informative and
friendly. With only 10% of the Indian population

being versed in English 1, vernacular support is
vital for the platform and its diverse users. In this
work, we develop Machine Translation System to
translate the available product data from English to
regional languages to address this problem. Given
the size of the Product Catalog and user base, the
volume of the data to be translated is in the order
of 100s of millions. This poses a challenge to build
Translation Systems that are robust, reliable, and
precise at scale.

The low resource nature of Indian Languages2 is
another challenge for data-hungry deep networks
such as Transformer(Vaswani et al., 2017). Given
a large enough parallel corpus, the Transformer
model can learn the inter-lingual mappings very
well, even for very long sequences. These mod-
els can generate human-level precision translations
for some resource-rich European languages(Popel
et al., 2020). So theoretically, if we can get a large
enough parallel corpus for Indian languages, we
can solve the Automatic Machine Translation for
Indian languages.

We build a training pipeline that can take mono-
lingual corpus(abundantly available from public
and in-house sources) and generate a high-quality
synthetic parallel corpus. This is an efficient and
effective approach, especially when paired with the
Active Learning component over model iterations.
For Hindi, starting with 1.2M parallel examples,
we have compiled over 400M synthetic parallel
examples with numerous model iterations.

Translation is an inherently one-to-many task
where a single text can have various correct trans-
lations. The domain gap between the e-commerce
domain and public domain (news, government sites,
Wikipedia, books, etc.) is significant. To showcase
this, Figure 1 has colloquial and non-colloquial

1https://en.wikipedia.org/wiki/2011_Census_of_
India#Language_demographics

2The most extensive parallel corpus has 8.56M English-
Hindi translation pairs from Samanantar Dataset(Ramesh et al.,
2021)

637

Figure 1: Both colloquial and non-colloquial translations are correct, but for E-commerce platform we need
more colloquial translation styles.

Hindi translations for a source sentence in English.
Both of these translations are correct, but as an
e-commerce platform, we refrain from using non-
colloquial and infrequently used words as it de-
creases the appeal of the information from the col-
loquial e-commerce English domain.

Based on the final training steps, translation mod-
els can generate appropriate translations at infer-
ence. We fine-tune the model only using the collo-
quial in-domain data with robust domain adaptation
steps to get more colloquial translations.

Our contributions in this paper are as follows:

• Synthetic Parallel Corpus Generation:
With the help of sub-modules, we generate
a vast amount of high-quality parallel corpus
solving for low-resource Indian Languages.

• Iterative Model Training Pipeline: With the
help of data cleaning and filtering modules,
we showcase how we iteratively improve the
Translation models significantly with Active
Learning steps.

• Large-Scale High Precision and Colloquial
Models: Finally, we provide large-scale Ma-
chine Translation models with high precision
and domain-adapted colloquial styles for sev-
eral Indian Languages.

2 Related Work

Transformers (Vaswani et al., 2017) are widely
used architecture for seq2seq tasks. Along with
Unigram-based subword tokens, the fully attention-
based model performs very well for Translation
tasks, even for longer sequences. Translation is
a well-explored area, and even for low-resource
settings, significant work has already been done.
Along the lines of data gathering - collecting paral-
lel corpora (Ramesh et al., 2021), mining multilin-
gual sets and retrieving parallel entries (Tran et al.,

2020), iterative cross-lingual alignments (Philip
et al., 2021) has been explored. Zhang et al. (2020),
showed parallel corpus filtering on web crawled
data.

Transfer Learning is also a convenient approach
to improve final model performance in low resource
settings. (Rothe et al., 2020) explored leveraging
large language models trained on unlabelled data
for translation tasks. This approach works well
only if we have strong pre-trained models. For In-
dian language settings, this is typically not the case.
Also, synthetic data generation is very inefficient
without active learning. (Imankulova et al., 2019)
shows that translation models can help with pseudo
labeling, but this improvement saturates without
external feedback. (Peris and Casacuberta, 2018)
has explored an active learning framework for ma-
chine translation. Gupta et al. (2021) investigate
the active learning methods for Machine Transla-
tion in Indian Languages settings. Lample et al.
(2017) even shows that completely unsupervised
Machine Translation is possible using just mono-
lingual data. But these practices don’t work in
large-scale settings. Given a large amount of good
quality parallel data, supervised methods still beat
other weak methods. Especially for production set-
tings, there has not been much exploration done
at large-scale systems starting with low resource
settings.

3 Overall Pipeline

We use Transformer encoder-decoder model with
6 encoder layers and 6 decoder layers with hidden
size of 512. We use 32,000 unigram subword to-
kens trained on data from all domains. This config-
uration has 93M parameters. As a pre-processing
step, we split long paragraphs into sentences and
translate independent sentences using the Trans-
former model.

638

3.1 Datasets Used

We use all publicly available parallel corpus from
various domains within commercial licensing re-
strictions. Also, we conduct internal operations
for parallel corpus creation for in-domain sampled
datasets from the Product Descriptions, Catalog
Attributes, Search, and Product Reviews. This op-
eration is costly and is only done with the Active
Learning step. Apart from parallel corpus, our
pipeline heavily relies on synthetic data generation,
for which we use publicly available monolingual
corpus from general domain compiled from various
sources (Wenzek et al., 2020; Abadji et al., 2022;
Barrault et al., 2019). The details for the datasets
are listed in table 1.

Language
Public
Parallel
Corpus

In-House
Tagged
Corpus

Public
Mono.
Corpus

Hindi 0.89M 0.28M 167M
Tamil 0.86M 0.46M 80M
Telugu 0.32M 0.44M 23M
Bengali 2.13M 0.44M 79M
Marathi 0.448M 0.16M 15M

Malayalam 0.61M 0.16M 32M
Kannada 0.05M 0.20M 18M

Table 1: Monolingual Datasets used in Synthetic
Data Generation along with Parallel Corpus

3.2 Monolingual Data Processing

To generate synthetic parallel corpus, we use well-
known Back-Translation methods (Sennrich et al.,
2016) to translate Indic monolingual corpus back
to English. The corpus we use from the public
domain is already curated and cleaned. So cleaning
Indic monolingual data is easy with some basic text-
normalization, rare character filtering, punctuation
fixes, etc.

Apart from back-translations, we also use For-
ward Translations, where we translate monolingual
source text to the target language with an imper-
fect translation model. Forward Translations are
a crucial part of our training pipeline. But the
quality of synthetic pairs heavily impacts the fi-
nal model training. Domains such as English Re-
views and Search queries can be very noisy with
spelling errors, punctuation errors, case errors, etc.
While generating translations for these noisy en-
tries, the quality of the translations is limited by the

noisy input itself. Hence before using monolingual
data for synthetic parallel data generation, we filter
out unclean English texts from the corpus using
the pipeline as shown in Fig. 2. We use BERT
based classifier model to detect noisy texts from
the monolingual corpus. To improve the Transla-
tion model robustness, we (1) Correct some of the
noisy data filtered out from monolingual corpus to
get translations even for noisy text inputs and (2)
introduce noise to already clean input texts. We
use In-House Transformer-based Encoder-Decoder
Spell Correction models to correct unclean texts
for search queries and reviews. And as spell cor-
rect models have low precision (benchmarks de-
tailed in table 2) we again filter out unclean data
from spell corrected set as shown in Fig. 2. We
add pairs <noisy text, translation from cleaned cor-
rected text> as the translation pairs in generated
training data.

Data Stream General
Domain Search Reviews

F1 score - Noisy text
classification 95.03 90.24 92.55

Spell Correct
Rate - 80.53% 55.75%

Table 2: Monolingual Data Cleaning. (Spell Correction
rate is the percent of unclean text model corrects

properly)

Figure 2: Monolingual Data Cleaning and Spell
Correction pipeline.

3.3 Translation Quality Estimation
We monitor and filter imperfect parallel pairs with
two methods:

• Translation model Uncertainty score: The
transformer model uses predictions from a

639

softmax layer to generate each token output.
The output of this layer is the probability dis-
tribution over the vocabulary for each token.
When the probability of the predicted token is
low - the model is more uncertain about the
token prediction and vice versa. We aggregate
this metric over the entire output sequence and
normalize it for the output length to get a final
uncertainty score for a translation.

• Independent BERT based Quality estima-
tion: Given a source and target sequence,
we train a multilingual BERT (Devlin et al.,
2018) based classifier, which predicts if the se-
quences are perfect parallel pairs. The BERT-
based classifier model is trained on a set of
correct translation pairs (pooled from avail-
able high-quality manual translation pairs)
and noise-induced pairs from the correct trans-
lation pairs with multiple levels of translation
errors. To get the final translation score, we
pass both the source-target and target-source
combination of pairs to a pre-trained BERT
encoder and use concatenated context for the
classification head.

quality_score(x1..T , y1..T ′) =

h([B(x1..T , y1..T ′), B(y1..T ′ , x1..T)])(1)

Model Precision
(good trans.)

Recall
(bad trans.)

Overall
F1 score

Uncertainty
Scoring 0.8889 0.8375 0.8554

BERT
Translation

Scoring
0.8091 0.6750 0.8166

Ensemble 0.8899 0.8500 0.8264

Table 3: Translation Quality Estimation
Benchmark.

As the Translation model Uncertainty score can
still be biased toward the erroneously predicted to-
kens, the independent translation scoring is a good
supplement for data filtering. We use an ensemble
of two translation quality estimation methods and
reject translations setting up high rejection recall.
The evaluation scores for both models and ensem-
ble are detailed in Table 3. The final filtered data
counts are detailed in table 4 for Hindi language.
As expected, rejected synthetic translations are very
high for search and reviews set as the stream has
very noisy inputs.

Monolingual
Dataset

Data
Language

Dataset
Size

Final Filtered
Syn. Parallel
Corpus Size

CC-100 Hindi 94.08M 83.09M
OSCAR Hindi 12.85M 10.77M

news-crawl Hindi 48.86M 45.11M
Wikipedia Hindi 1.85M 1.61M

Our Product
Descriptions English 71.32M 70.45M

Our Catalog
Attributes English 64.82M 56.73M

Our Reviews English 65.80M 44.79M
Our Search Hindi 29.81M 29.14M
Our Search English 218.71M 83.03M

Total - 608.1M 424.72M

Table 4: Monolingual datasets used and
back-translated or forward translated dataset

size and filtered synthetic corpus size.

3.4 Pipeline with Active Learning

To generate the synthetic parallel corpus and train
Translation models using this corpus, we use a
pipeline demonstrated in figure 3 in an iterative
manner. The detailed algorithm is mentioned in
Algo. 1.

Figure 3: Model Training and Synthetic Data
Generation pipeline

We start with English to Indic and Indic to En-
glish translation models trained with publicly avail-
able and in-house parallel corpus. This base cor-
pus provides good first-version translation models
for our iterative pipeline. Iteratively, we process
more monolingual data through the pipeline and
add good quality synthetic corpus to the training
set. The monolingual in-domain text, which the
model can not translate accurately, detected by the

640

Algorithm 1: Training + Data generation
pipeline.

Models : Mf (Forward Translation model)
Mb (Backward Translation model)
Mn (Noisy text detection BERT)
Ms (Spell correct model)
Mq (Translation Quality Est.)

Data : P (Existing parallel corpus)
Cs (mono. source lang. corpus)
Ct (mono. target lang. corpus)

1 begin
2 Mf = TransformerTraining(P)
3 Mb = TransformerTraining(P)
4 repeat
5 Cs_clean, Cs_noisy = Mn(Cs)
6 Cs_corr = Mspell(Cs_noisy)
7 Cs_corr_clean, Cs_corr_noisy =

Mn(Cs_corr)
8 C′

s_clean = Translate(Cs_clean, Mf)
9 C′

s_corr_clean = Translate(Cs_corr_clean,
Mf)

10 C′
t = Translate(Ct, Mb)

11 S = (Cs_clean, C′
s_clean) + (Cs_corr_clean,

C′
s_corr_clean) + (C′

t, Ct)
12 Sgood, Spoor = Mquality(S)
13 Ss_poor = sample(Spoor)
14 Scorr = oracle(Ss_poor)
15 TR = Sgood + Scorr + P
16 Mf = TransformerTraining(TR)
17 Mb = TransformerTraining(TR)
18 Cs = collect()
19 Ct = collect()
20 until Satisfactory precision achieved;
21 end

Translation Quality Estimation module, is pooled,
and a diverse batch is sampled from this set to get
corrected by manual annotators. This batched Ac-
tive Learning is crucial in the iteration and makes
the forward translations feasible. While re-training
the model in the next model iteration, we have fil-
tered good synthetic translations generated by the
model and manual translations instead of imperfect
translations the model produces. This is an overall
translation corpus quality update; hence we train
improved Translation models in each iteration.

3.5 Domain Adaptation

As we need colloquial translations in the output,
we have to fine-tune the pre-trained models on all
domain corpus using just the in-domain colloquial
dataset. As evident from Table 5, BLEU scores
jump sharply when the model is fine-tuned on the
in-domain small training set. This shows that do-
main gap with general domain and e-commerce col-
loquial domain is significant. In-domain Forward
Translations(forward translated in-domain mono-
lingual corpus) are crucial in this step as the cleaned

Figure 4: Snapshot of selected models. Iterations vs
Product Description BLEU scores for English-Hindi

Translation.

Model Training Steps & Corpus PD BLEU
Google - 36.27
Azure - 29.29

IndicTrans Samanantar Dataset 31.15
model-v1 Public parallel corpus 15.18

model-v1.1 v1 =>In-domain fine-tuning 32.3

model-v2 Public Parallel Corpus
+ 50M back-translations 32.3

model-v2.1 v2 =>In-domain fine-tuning 37.59

model-v8 Public Parallel Corpus
+ 150M back-translations 34.36

model-v8.1 v8 =>In-domain fine-tuning 38.1
model-v9 v8 =>Forward translations 38.11

model-v10 v8 =>Filtered Forward translations 38.56

model-v12
Public Parallel Corpus

+ 150M back-translations
+ Filtered Forward translations

37.22

model-v12.1 v12 =>In-domain fine-tuning 39.62
model-v12.2 v12 =>Active Learning (+50k) 40.6
model-v12.3 v12 =>Active Learning (+80k) 41.32

Table 5: Hindi Product Description BLEU
scores

and filtered high-quality forward translations help
bridge the domain gap and provide much more ca-
pable pre-trained models. This ensures that the
model does not go through over-fitting or catas-
trophic forgetting(for the in-domain set), and we
get a more robust and reliable model at scale. Table
1 has some examples where our model produces
more colloquial translations and refrains from us-
ing non-colloquial and non-friendly Hindi words.

3.6 Model Iterations

As evident from Table 4, the BLEU scores are dras-
tically improved in each synthetic data addition
step. The best model is improved by +9.01 BLEU
scores over the v1.1 model which does not use any
synthetic corpus. The size of back-translated cor-

641

Language
EN->X PD EN->X WAT21 X->EN WAT21 Our Translation Accuracy

Ours Google Ours Google Ours Google PD Catalog Attributes
Hindi 41.32 36.27 32.95 32.5 37.85 36.7 95.76% 97.39%
Tamil 44.83 31.86 10.65 8.98 25.37 23.51 94.36% 95.54%
Telugu 39.69 30.78 4.34 4.21 26.28 25.66 90.87% 94.31%
Bengali 30.65 24.33 7.56 5.05 22.51 20.52 98.87% 91.13%
Marathi 37.37 28.86 12.96 12.6 28.07 26 82.05% 95.14%
Kannada 31.32 24.19 12.85 12.9 29.61 24.75 90.38% 96.94%

Malyalam 30.57 27.83 5.09 10.6 28.32 27.2 - 93.32%

Table 6: BLEU scores comparing best public API and Manual Translation Accuracy for our Product
Descriptions(PD) and Catalog Attributes.

pus is also impactful even in the range of 10s of
million entries, as more data helps significantly.
Forward translations are very critical part of the
synthetic corpus, as theoretically the quality of for-
ward translations is limited by the performance of
the translation model itself used to generate the for-
ward translations. This is where translation quality
estimation plays a crucial role for filtering out low
quality translations. From Table 4, the model v9
performs very similar to v8.1, which is used to gen-
erated forward translations for a large set. But once
we filter out imperfect translations, even forward
translations show an improved final v10 model.
Finally, the additional small set of manual trans-
lations generated from Active Learning step over
these imperfect translations provides even better
v12.* models.

Hindi
Model

Test
set

Good
Trans.

Can be
better
Trans.

Bad
Trans.

Catalog,
PD Model PD 53% 42% 5%

Google PD 14% 51% 35%

Table 7: English to Hindi Translation evaluation
for Product Descriptions(PD)

4 Results and Discussion

We benchmark our models on manually annotated
Product Descriptions(PD) test set along with public
Indic WAT21 benchmark(Nakazawa et al., 2021) in
table 6. We consistently show better BLEU scores
on all test sets than Public translation API(Google).

We define the Translation Accuracy i.e., the rate
at which the translation is acceptable with only
minor errors(percent excluding bad cases), is very
high across all languages. This allows us to de-

ploy the Translation Systems in large-scale, highly
precise settings. Table 7 shows the exact figures
for manual evaluation for English to Hindi cata-
log translations. Our models show remarkably low
bad translation cases and very high, (> 50%) gold
standard translations. The huge domain gap be-
tween e-commerce and general domains leads to
poor evaluation results for Google as it produces
consistent non-colloquial words and is not adapted
to the domain.

The training pipeline has consistently shown bet-
ter translation models throughout the model itera-
tions paired with Active Learning, adding more
monolingual data and filtered high-quality syn-
thetic parallel translations. As evident from the
plot 4, the addition of more synthetic data in pre-
training, the addition of forward translation for pre-
training as well as domain adaptation, model re-
training from scratch with higher quality corpus
and better pipeline sub-modules, and active learn-
ing steps show very significant improvements at
each stage. Starting from 32.3 BLEU score, we
have reached 41.32 BLEU score, which is a mas-
sive improvement just using a few active learning
steps and synthetic corpus updates.

4.1 Deployment and Business Impact

Currently the Translation models for all the lan-
guages are deployed in batch-prediction mode on
CPU inference system. While translating the cat-
alog data or updating the translation models, we
trigger the deployment pipeline and update the of-
fline batch-predictions in the database.

The primary metric used to determine the impact
of this deployment is conversion and cost savings.
We have seen +11 bps improvement in conversion
and significant cost savings through 100% auto-
mated translations via our system across various

642

languages.

5 Conclusion

In this work we have shown that synthetic paral-
lel corpus generation and data filtering is a viable
option to train large-scale translation models in low-
resource settings. Also we show that Active Learn-
ing can consistently improve the model. We build
very robust, large-scale models which work very
precisely on our In-domain data and also outper-
form Google on public general domain benchmarks
consistently. We also show how building colloquial
models are important for ease of understanding,
and we also show that our overall approach and
best practices extend well to multiple Indian lan-
guages.

Limitations

The proposed training pipeline heavily relies on
synthetic translations. In some cases(for example,
Assamese has only <1M monolingual text), there is
not enough data, and the initial model itself can not
be appropriately trained, which makes the entire
pipeline ineffective. Data efficiency is a consider-
able challenge in low-resource settings.

The pipeline uses several Language Model based
sub-modules for data-cleaning, translation quality
estimation, etc., which also impact the pipeline
capability, and it might get cumbersome to manage
and update many modules.

References

Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and
Benoît Sagot. 2022. Towards a Cleaner Document-
Oriented Multilingual Crawled Corpus. arXiv e-
prints, page arXiv:2201.06642.

Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Kamal Gupta, Dhanvanth Boppana, Rejwanul Haque,
Asif Ekbal, and Pushpak Bhattacharyya. 2021. Inves-
tigating active learning in interactive neural machine
translation. In Proceedings of Machine Translation
Summit XVIII: Research Track, pages 10–22, Virtual.
Association for Machine Translation in the Americas.

Aizhan Imankulova, Takayuki Sato, and Mamoru
Komachi. 2019. Filtered pseudo-parallel corpus
improves low-resource neural machine translation.
ACM Transactions on Asian and Low-Resource Lan-
guage Information Processing, 19:1–16.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.

Toshiaki Nakazawa, Hideki Nakayama, Isao Goto,
Hideya Mino, Chenchen Ding, Raj Dabre, Anoop
Kunchukuttan, Shohei Higashiyama, Hiroshi Man-
abe, Win Pa Pa, Shantipriya Parida, Ondřej Bojar,
Chenhui Chu, Akiko Eriguchi, Kaori Abe, Yusuke
Oda, Katsuhito Sudoh, Sadao Kurohashi, and Push-
pak Bhattacharyya, editors. 2021. Proceedings of
the 8th Workshop on Asian Translation (WAT2021).
Association for Computational Linguistics, Online.

Álvaro Peris and Francisco Casacuberta. 2018. Active
learning for interactive neural machine translation
of data streams. In Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning,
pages 151–160, Brussels, Belgium. Association for
Computational Linguistics.

Jerin Philip, Shashank Siripragada, Vinay P. Nambood-
iri, and C. V. Jawahar. 2021. Revisiting low resource
status of indian languages in machine translation. In
8th ACM IKDD CODS and 26th COMAD. ACM.

Martin Popel, Marketa Tomkova, Jakub Tomek, Łukasz
Kaiser, Jakob Uszkoreit, Ondřej Bojar, and Zdeněk
Žabokrtský. 2020. Transforming machine transla-
tion: a deep learning system reaches news translation
quality comparable to human professionals. Nature
Communications, 11(4381):1–15.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, Raghavan AK,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Ma-
halakshmi J, Divyanshu Kakwani, Navneet Kumar,
Aswin Pradeep, Srihari Nagaraj, Kumar Deepak,
Vivek Raghavan, Anoop Kunchukuttan, Pratyush Ku-
mar, and Mitesh Shantadevi Khapra. 2021. Samanan-
tar: The largest publicly available parallel corpora
collection for 11 indic languages.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Associ-
ation for Computational Linguistics, 8:264–280.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data.

643

Chau Tran, Yuqing Tang, Xian Li, and Jiatao Gu. 2020.
Cross-lingual retrieval for iterative self-supervised
training.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
4003–4012, Marseille, France. European Language
Resources Association.

Boliang Zhang, Ajay Nagesh, and Kevin Knight. 2020.
Parallel corpus filtering via pre-trained language mod-
els.

644

Proceedings of EMNLP 2022 Industry Track, pages 645–653
December 9–11, 2020. ©2022 Association for Computational Linguistics

Topic Modeling by Clustering Language Model Embeddings: Human
Validation on an Industry Dataset

Anton Eklund
Umeå University

Adlede AB
Umeå, Sweden

anton.eklund@cs.umu.se

Mona Forsman
Adlede AB

Umeå, Sweden
mona.forsman@adlede.com

Abstract

Topic models are powerful tools to get an
overview of large collections of text data, a
situation that is prevalent in industry applica-
tions. A rising trend within topic modeling is
to directly cluster dimension-reduced embed-
dings created with pretrained language models.
It is difficult to evaluate these models because
there is no ground truth and automatic measure-
ments may not mimic human judgment. To
address this problem, we created a tool called
STELLAR for interactive topic browsing which
we used for human evaluation of topics cre-
ated from a real-world dataset used in industry.
Embeddings created with BERT were used to-
gether with UMAP and HDBSCAN to model
the topics. The human evaluation found that
our topic model creates coherent topics. The
following discussion revolves around the re-
quirements of industry and what research is
needed for production-ready systems.

1 Introduction

Contextual advertising is a rising solution for ad
placement on the Internet, which avoids the need
for user data and cookies. However, to find good
contexts for a placement, the content of a page
needs to be known and classified as a useful ad-
vertising context. News media are dependent on
advertising for funding their work and is therefore
an important market for contextual advertising. The
news is constantly changing, which makes it diffi-
cult to create classifiers that can catch and catego-
rize new articles. A possible way to solve this is to
use unsupervised topic models, which are powerful
tools to structure large collections of text data.

Traditional approaches to do topic modeling are
stochastic, the most well-known one being Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). The
problem with stochastic approaches is that they are
slow and getting increasingly more difficult to in-
tegrate with modern language models (Zhao et al.,
2021; Vayansky and Kumar, 2020). To tackle this,

Neural Topic Models (NTMs), which leverage the
power of neural networks to create topic models,
are becoming increasingly popular. The techniques
of our particular interest are Neural Topic Model-
ing by Clustering Embeddings (NTM-CE). We de-
fine NTM-CE as models that use a distance-based
clustering algorithm on the document embeddings
created with a Pretrained Language Model (PLM).
Performing topic modeling by directly clustering
embeddings has been shown to perform compara-
bly to LDA (Sia et al., 2020), or better (Meng et al.,
2022), and is claimed to create more coherent top-
ics than other types of NTMs (Zhang et al., 2022).
These results make the models attractive for use
within industry as analytical tools, and hopefully as
part of an automatic classification pipeline. Here,
we evaluate a modified BERTopic (Grootendorst,
2022) on an industry dataset consisting of unstruc-
tured news articles from a brief period of time.

The evaluation of topic models is not trivial
since the lack of annotated datasets makes meth-
ods like the F1 score not applicable. It also is
counterintuitive to our purpose of having flexible
topic models if they are evaluated through static
dataset categories. Instead, the field has gravitated
to automatic measurements which do not require
a ground truth like the Normalized Pointwise Mu-
tual Information (NPMI) (Bouma, 2009). NPMI
is a popular way to evaluate topic models, as it is
claimed to emulate human judgment of topic co-
herence (Lau et al., 2014). However, an alarming
study by Hoyle et al. (2021) argues that automatic
evaluation with NPMI cannot emulate human judg-
ment, a fact which topic modeling papers usually
rely on to make their claims. From an industry
perspective, it is important to be able to trust and
validate topic models before they can be used in
a production system. Additionally, to the best of
our knowledge, there are no studies that use hu-
man evaluation for NTM-CE. Therefore, this paper
presents a human expert evaluation using our novel

645

tool Systematic Topic Evaluation Leveraging Lists
of ARticles (STELLAR), which is described fur-
ther in Section 4. The human expert evaluation is
described in Section 5.

A problem that remains for topic models, includ-
ing NTM-CE, is the interpretability of the resulting
topics. This is usually addressed by selecting a
set of keywords deemed to be the most descrip-
tive of the topic. The words closest to the centroid
of a cluster can be used as descriptors as seen in
Bianchi et al. (2021). Another solution by Grooten-
dorst (2022) is to use a class-based term weighting
to extract keywords. The question remains if, and
to what extent, human evaluators would find the
keywords descriptive enough for the overall topic.
Hence, we add an assessment of the topic descrip-
tion using a simple four-point scale.

In this paper, we demonstrate NTM-CE in the
industry setting of contextual advertisement and
do a human expert evaluation of the topic model
using our new STELLAR tool. The NTM-CE is
an implementation of BERTopic, described in Sec-
tion 3, that has been applied to a news data set,
described in Section 2. The STELLAR tool for
topic evaluation is described in Section 4, with fur-
ther explanation of the human expert evaluation in
Section 5. The results of the human evaluation are
presented in Section 6, with further discussions of
the process, the results, and future improvements
in Section 7.

2 Data

The dataset used for this study is a unique col-
lection of publicly available English online news
articles. The collection consists of 10000 articles
from 58 publishers collected between 2022-05-29
and 2022-06-22. The lengths of the articles range
from 501 to 99000 characters with a mean length
of 3052. 9753 articles are shorter than 10000 char-
acters. Except for removing articles shorter than
500 characters, no other filtering of the articles was
applied. This makes the dataset have the same char-
acteristics as the news from the sampled weeks,
with topics such as the Queen’s jubilee, Cancelled
flights, and Formula 1 racing taking up a dispro-
portionally large part of the content. These are
examples of large but brief news topics that will be
irrelevant in a few weeks, illustrating the dynamic
nature of the news cycle and why static classifiers
are of limited use.

3 Topic Modeling Pipeline

Our NTM-CE approach adopts the pipeline of
BERTopic (Grootendorst, 2022) and CETopic
(Zhang et al., 2022) by using the sequence pre-
sented in Figure 1. The class-based TF-IDF of
Grootendorst (2022) is used to create keywords for
the topics. The components are described in more
detail in the following section.

Figure 1: The topic modeling pipeline starts with vec-
torization using BERT, followed by dimension reduc-
tion using UMAP, and ends with clustering using HBD-
SCAN.

Vectorization was performed with Transformer-
based (Vaswani et al., 2017) model BERT (Devlin
et al., 2019). It was chosen as it has been widely
used in neural topic models and shown to per-
form well (Grootendorst, 2022; Zhang et al., 2022;
Bianchi et al., 2021). Those models used Sentence-
BERT from Reimers and Gurevych (2019). How-
ever, to have the results less tied to a specific BERT
model, the model in this project used the Hugging-
Face base model1 (768D, 12A, 12L) which was
fine-tuned with Masked Language Modeling for
the task. As the final document embedding we used
the averaged token embeddings of hidden_state 1.2

Dimension reduction of high dimensional vec-
tors is used to, among other things, reveal patterns
in the data and reduce vector space noise. Tech-
niques for dimension reduction come in two main
categories: dimensionality reduction based on ma-
trix factorization and based on neighbor graphs.
In this study, we used the neighbor graph method
UMAP (McInnes et al., 2018) because it was re-
ported to be both faster and have better clustering
quality than the popular t-SNE (Maaten and Hinton,
2008) in the original article.

Clustering has a plethora of techniques but we
settled for HDBSCAN (Campello et al., 2013;

1https://huggingface.co/docs/
transformers/model_doc/bert

2Using the unconventional hidden_state 1 as the embed-
dings was due to a bug in the code which was found after
the human evaluation was completed. However, the vector
space is similar to the embeddings from the more conventional
last_hidden_state. Therefore, for showcasing STELLAR, and
exploring NTM-CE, we deemed using the embeddings from
hidden_state 1 sufficient as the topic model still follows our
definition of NTM-CE.

646

McInnes and Healy, 2017) because of its successful
use in Grootendorst (2022) and its ability to dynam-
ically choose the number of topics and their size.
We used soft clustering for HDBSCAN, meaning
that all points in the vector space get assigned to
a cluster, which in turn means that no points were
considered outliers.

4 The STELLAR Topic Browser

Systematic Topic Evaluation Leveraging Lists of
ARticles (STELLAR) is a tool developed to sim-
plify the in-depth exploration of a topic model into
what constitutes the topics rather than just consid-
ering the top keywords. The user wants to: 1) get a
visual overview of what topics exist and how they
are related to each other, 2) be able to quickly iden-
tify articles that do not fit into the topic, and 3) go
beyond keywords to validate a topic. To solve 1),
there is a list of topics with their description along-
side a 3D vector space visualization. For 2) and 3),
the proposed solution is to allow the user to read
the title and keywords of the article and, if needed,
to read the text body. The tool needs to be dynamic
and interactive, as the user needs the flexibility to
study topics freely and investigate different aspects
without recreating the topic model and plots.

STELLAR, shown in Figure 2, was created as
an application that can run directly in an Internet
browser. Its purpose was to aid the user to perform
activities 1–3 as described above. It was imple-
mented using the Python Flask3 library. The core
functionalities are a topic list, an article list from
the chosen topic, a box for the article text body,
and a 3D visualization made in Plotly4. For each
topic, the articles can be marked as not belonging
to the topic and thus assist with the evaluation of
the topics. The 3D visualization shows the individ-
ual articles as points in the vector space reduced
to three dimensions, which are color-coded to the
cluster to which they belong. Hovering over the ar-
ticles shows the title and the keywords of the article
which helps the user to get a better understanding
of the cluster and search in different sections of
a cluster. The repository5 for STELLAR was re-
leased.

3https://flask.palletsprojects.com/en/2.1.x/
4https://plotly.com/python/
5https://github.com/antoneklund/STELLAR

5 Human Expert Evaluation

The first human evaluation of the topic model and
STELLAR was made by three experts (including
the first author) in the field of news space analysis.
From now we call them evaluators. An evaluator
is distinguished from an annotator in this work, by
having the more complex task of contextualizing
a set of articles, finding patterns, and drawing the
line for what is considered a topic by excluding ar-
ticles. In contrast, an annotator selects topics from
a list of choices and makes decisions for individual
articles. We deem the evaluation task too complex
to easily be crowd-sourced. We acknowledge that
three evaluators may be too few to make strong
claims about NTM-CE in general. However, for
our purpose of demonstrating one NTM-CE model
on an industry dataset, as well as collecting sug-
gested improvements for STELLAR, we deemed
the small expert group adequate.

We make a distinction between the terms cluster,
topic, and focus topic. A cluster is a set of points
that are grouped by the clustering algorithm rep-
resenting a group of article embeddings. A topic
is a cluster of article embeddings combined with
the descriptive topic keywords. This is the output
of the topic model. A focus topic is the topic of a
cluster that the evaluators decide that most of the
article supports.

Each evaluator received an individual dataset
with 20 randomly sampled articles per topic. Five
of the articles per topic overlapped between the
evaluators to calculate inter-rater agreement. The
task given was to systematically analyze each topic
by reading the article titles and keywords, and read-
ing the article body if needed. Then, record their
evaluation by 1) deciding on a focus topic with the
help of suggestions6, 2) record the id of articles
that did not belong to the focus topic, and 3) give
a score between 1 and 4 on how well they thought
the keywords given by the topic model reflected
the focus topic. The scores correspond to: 1=very
bad, 2=bad, 3=good, and 4=very good. We chose
a four-point scale to force the evaluators to decide
if the keywords are good or bad. The instructions
given to the evaluators are specified in Appendix A.

Inter-rater agreement AG was used to assess the

6The list of suggested topics was compiled by the first
author which will introduce biases. However, evaluators were
encouraged to record their custom focus topic if none of the
items on the list was satisfactory.

647

Figure 2: The user interface of STELLAR. The four core components are the 3D visualization, a list of topics with
keywords, a list of articles from chosen topics with keywords, and the article text of a chosen topic.

reliability of the evaluators. It was calculated as:

AG =
nagree
N

(1)

where nagree is the number of the agreeing deci-
sions, and N is the number of possible decisions.
Two different types of decisions are aggregated.
The first type of decision is the focus topic of the
clusters, called Agreement focus topic. The second
type of decision is for each overlapping article. The
evaluator decides whether they belong to the focus
topic or not, called Agreement overlapping articles.

To assess whether the topic model produced
coherent topics. Our definition of evaluator-
determined coherence score (Coh) is:

Coh = 1− nmisplaced

narticles
(2)

where narticles is the number of articles evaluated
in the topic and nmisplaced is the number of arti-
cles that the evaluators found was misplaced into
that topic. We call a topic coherent if Coh ≥ 0.8.
This threshold at 80% is where we consider a topic
coherent enough for being useful in an industrial
application. Further, a topic that has at least one
evaluator labeling it Incoherent will be considered
incoherent, regardless of the opinions of other eval-
uators.

We are aware that the judgment of how coherent
a topic is will depend on the individual experiences

Nr topics found 63

Nr coherent topics 52

Average Coh for coherent topics 96%

Articles in coherent topics 57%

Agreement focus topic 87%
(including incoherent topics)
Agreement focus topic for coherent topics 98%

Agreement overlapping articles 95%

Keywords describing topic 2.8

Table 1: Statistics of the topic modeling and the human
evaluation.

and interests of every evaluator. However, the pur-
pose of the evaluation is not to find a ground truth
of what is the focus topic, but rather to determine if
the articles presented by the model form a coherent
topic. If the evaluators draw the line on what consti-
tutes a topic differently, we see that as a limitation
of the model, and the reduction in coherence score
is justified.

6 Results

The topic modeling pipeline resulted in 63 clus-
ters with varying sizes as seen in Figure 3. The
largest one contains 3347 articles, and the smallest
ones are around 20. In total, 2367 of the 10000
articles were manually analyzed. The evaluators
agreed on 95% of their decision on overlapping

648

Figure 3: A pie chart illustrating the sizes and coherence of all topics. Light blue means that the topic is incoherent.
Different shades of blue indicate how strong the coherence is based on the human evaluation. In the north-west part
of the graph, the mixed wedges are Formula 1, Gambling, and Gardening.

articles. The focus topics identified by the evalua-
tors were [Court/Legal, Crime/Violence, Entertain-
ment, Epidemic, Food/Drink, Football, Formula 1,
Gambling, Gardening, Health, Incoherent, Money,
Politics, Royal, Science, Sports, Technology, Travel,
Ukraine War, Weather], a total of 20 focus topics.
A focus topic can be assigned to multiple clusters.
Broader focus topics such as Entertainment con-
tain articles about gossip, celebrities, movies, and
TV-series. The Sports topic is all sports excluding
Football and Formula 1. It is made up of tennis,
combat sports, golf, cricket, and rugby among the
larger ones.

The data from the human evaluation in Table 1
shows that 52 out of 63 topics were over 80% co-
herent. Topics that were determined coherent had
an average coherence score of 96%. Those topics
contain 5653 of the articles, which is 57% of the
dataset. A little less than half of the articles ended
up in incoherent topics. The largest Incoherent
cluster (see Figure 3) consists of shorter articles,

with an average length of 1500 characters. The fea-
tures of Incoherent clusters will be further explored
in Section 7.

The evaluators agree on the focus topic for 87%
of topics. In topics where coherence is high, the
evaluators agree on the focus topic for 98% of the
topics, that is, all topics except one. The disagree-
ments between the evaluators usually came from
when one evaluator had chosen Incoherent while
the others had specified a topic.

Another common disagreement, important for
understanding the difficulty of the topic modeling
problem is shown in Table 2. The focus topic was
about Weather, but one can find that the topic con-
sisted of two subtopics, which we can call Fore-
casts and Hurricanes. One evaluator decided the
focus topic to be Forecasts and then continued to
mark the articles about Hurricanes as misplaced.
However, the other evaluators considered the focus
topic as Weather and thus fully coherent. Cases
like these, where one evaluator creates a more nar-

649

row focus topic than the others, make up for much
of the reduction in the total coherence score.

7 Discussion

The topic model found 63 topics in which 20 focus
topics were identified. We interpret it as a good
partitioning of the corpus, except for the fact that
the largest topic was labeled as Incoherent. The
optimal number of topics found may vary greatly
between corpora and the aim should not be to find
one cluster per focus topic from the focus topic
list, e.g. finding 20 clusters for this dataset. How-
ever, for an analytical application in the industry,
it would be advantageous to have a way to collect
clusters with a similar focus topic into a larger col-
lection. Whether that should be done with the vec-
tor space distance or with other methods remains
to be studied.

The human evaluation determined 52 out of 63
topics to be coherent, with an average coherency of
96%. However, only 57% of the dataset ended up
in coherent topics. One reason for this is the strict
requirement that all evaluators should agree on the
focus topic for a topic to be considered coherent.
However, the foremost reason is that the largest
topic, which contained 3347 articles, was labeled
Incoherent.

A deeper inspection of the clusters of incoherent
topics gave interesting insights. The largest cluster
contained short articles with half the average length
as the rest of the dataset. We assume they have
been padded before the BERT vectorization and are
clustered on the padding artifacts. An informal test
to re-cluster this particular cluster was done to see
if dividing it into smaller partitions would create
coherent clusters. However, these new clusters did
not create coherent topics either. Since we found
large coherent clusters such as Football, as well
as small Incoherent clusters, we believe that the
clusters should not necessarily be as small nor as
balanced as possible, balancing being something
Meng et al. (2022) emphasized. Rather, we think
that the dynamic properties of HDBSCAN could
suffice if guided by inputs from suitable vector
space statistics, and applied to a well-formed vector
space.

Further analysis of the Incoherent topics re-
vealed patterns among the articles but not enough
to make them coherent. Some of the topics con-
tain articles on multiple focus topics. An example
is a topic with the combination Real estate, Home

styling, and Tourist attractions that all describe nice
environments but not in one coherent focus topic.
One topic has locally anchored articles, but about
different focus topics and locations. One of the top-
ics is dominated by first-person stories, however,
the focus topics differ, and hence it was incoherent
in the evaluation. The same can be said for a topic
with very emotional content. These topics deserve
a deeper examination and understanding, as they
have themes that have a stylistic or emotional char-
acter. Studying this remains future work since it
was not included in the evaluator instructions.

According to the keyword evaluation, the key-
words describing the topics were on average posi-
tive (> 2.5), yet not good (2.8). The overall posi-
tive assessment was still slightly unexpected as the
perception before the study was that the keywords
did not describe the focus topics well. One factor
affecting the results might be that the evaluators
had a better understanding of what the keywords
mean after reading the topic articles and therefore
thought the keywords described the articles well.
A more focused study on keywords for topic de-
scriptions needs to be done to investigate this. Nev-
ertheless, since the description was not close to
very good (4), ways forward might be to find better
keyword extractors or other methods to describe
the topics. A preferred scenario for our industry
purposes is a topic model where we trust that all
topics have Coh ≥ 80% and that the topic descrip-
tions are clear enough for a human to determine
the focus topic without looking deeply into what
articles are in the topic. An ideal scenario would be
that we can trust a system to automatically decide
the focus topic similar to human judgment.

The evaluators agreed on the focus topic for 87%
of the topics and also had an agreement of 95% for
overlapping articles. The agreement on the focus
topic for coherent topics was almost perfect at 98%,
which means that it was almost always recogniz-
able. However, as shown in Table 2, there are
difficulties even for humans to determine where
to limit a focus topic. Then, can we expect topic
models to do that for us? We expect topic models
to be able to divide the articles into topics with a
focus reasonably well. However, for the contex-
tual advertisement vital finesse of correctly finding
narrow or trendy focus topics, a human will still
be needed. An important addition for managing
contextual campaigns would be the possibility to
analyze topics over time in the style of Blei and

650

Topic 0 [spells, sunny, hurricane, forecast, cloudy, highs, rain, temperatures, weather,...]
id: 777 1st of 2022, Hurricane Agatha heads for Mexico tourist towns

[landfall, millimeters, mazunte, mexico, kph, storm, puerto, oaxaca, center, ...]
id: 2510 Hurricane Agatha is first named storm of Atlantic season after hitting Mexico...

[maximum, hurricanes, noaa, atlantic, storm, inches, southern, mexico, hurricane, ...]
id: 2197 Met Office gives Scotland weather update for Queen’s Platinum Jubilee weekend

[forecast, places, warmer, rain, unsettled, dry, drier, weather, spells, showers]
id: 4899 The wait is over, Met Office has revealed Platinum Jubilee weather forecast

[northern, drier, umbrella, western, dry, sunny, spells, showers, weather, sunshine]
id: 5770 London weather: Exactly when temperatures in capital are expected to soar to 23C

[20c, june, 13c, gentle, 11c, sunny, intervals, lows, highs, breeze]

Table 2: Example of when the evaluators disagreed on the focus topic. One evaluator decided the focus topic to
be Forecasts and then continued to mark the articles about Hurricanes (on the top) as errors. However, the other
evaluators decided that the whole topic was coherent as Weather.

Lafferty (2006) or Wang and McCallum (2006).
This is something that Grootendorst (2022) has
been working on with BERTopic. Another obser-
vation was that it would be beneficial if the time-
consuming analysis was only required to be done
once and then have systems detecting new topics
emerging and disappearing.

The tool STELLAR, presented in this paper, was
created to allow an evaluator to systematically eval-
uate a topic model by reading the articles that make
up a topic. The main purpose was to be able to
apply a credible coherence score on a topic model
while using as little evaluator time as possible. We
believe that STELLAR aids this purpose reason-
ably well. Since this is the first evaluation with
STELLAR, naturally, there are improvements to be
made both to the evaluation process and the tool
itself. When doing human evaluation of topic mod-
els, usually the concept of an intrusion task is used
to identify how coherent a topic is (Chang et al.,
2009; Hoyle et al., 2021). This task is not fully
transferable to our concept of coherence. However,
we believe the incorporation of ideas around the
intrusion task would make STELLAR better.

Finally, we believe that using the PLM not only
allows for the topic models to stay relevant when
new language models are released but also creates
a more interpretable vector space for analysis since
one can observe what topics are related to each
other with visual inspection. This human expert
evaluation of NTM-CE concludes that the tech-
nique is viable and has many attractive benefits.
However, it has some limitations that need to be
addressed before being used to its full potential as
an automatic classifier.

8 Conclusions

In this study, we applied Neural Topic Modeling
by Clustering Embeddings (NTM-CE) made with
BERT on an industry dataset of news articles. Our
human evaluation of NTM-CE, done with our novel
STELLAR tool, agrees with previous studies of
the technique: coherent topics can be created by
clustering embeddings from a pretrained language
model. However, only 57% of the articles ended up
in coherent topics. Inspection of incoherent topics
revealed them to consist of multiple focus topics,
or have some other emotional or stylistic character-
istic. Unraveling the workings of incoherent topics
to increase the number of articles in coherent topics
shows great opportunity for industry application.
With the STELLAR tool, we hope to keep improv-
ing on NTM-CE as a promising technique for the
future.

Ethical Considerations

The dataset was scraped from public news sites
of established publishers. No personal blogs were
used. The names of the people who are written in
the articles are mentioned as public persons. We
do not view this as a privacy infringement. The
articles are not redistributed.

We identified that our personal biases have an
impact on the outcome of the results. Examples
are choosing the list of focus topics or determining
when to limit a topic. In practice, those choices
in turn might have an effect on what type of topic
model is deployed in the end. A consideration
could be to include a more diverse group of ex-
pert evaluators. A model might be too generalizing
and fail to identify topics that are associated with
marginalized groups or cultures, leading to technol-
ogy being catered to a homogeneous majority.

651

Acknowledgements

We thank Adrian Andreasson and Dusan Mitic for
being expert evaluators, Frank Drewes and anony-
mous reviewers for their insightful input, and the
rest of the university and Adlede teams. This Ph.D.
student is funded by the Swedish Foundation for
Strategic Research, project id ID19-0055.

References
Federico Bianchi, Silvia Terragni, Dirk Hovy, Debora

Nozza, and Elisabetta Fersini. 2021. Cross-lingual
contextualized topic models with zero-shot learning.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1676–1683, Online.
Association for Computational Linguistics.

David M. Blei and John D. Lafferty. 2006. Dynamic
topic models. In ICML ’06: Proceedings of the 23rd
international conference on Machine learning, pages
113–120.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. Proceedings
of the Biennial GSCL Conference.

Ricardo J. G. B. Campello, Davoud Moulavi, and Jo-
erg Sander. 2013. Density-based clustering based
on hierarchical density estimates. In Advances in
Knowledge Discovery and Data Mining, pages 160–
172, Berlin, Heidelberg. Springer Berlin Heidelberg.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan
Boyd-Graber, and David Blei. 2009. Reading tea
leaves: How humans interpret topic models. Ad-
vances in neural information processing systems, 22.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Maarten Grootendorst. 2022. Bertopic: Neural topic
modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794.

Alexander Hoyle, Pranav Goel, Andrew Hian-Cheong,
Denis Peskov, Jordan Boyd-Graber, and Philip
Resnik. 2021. Is automated topic model evalua-
tion broken? the incoherence of coherence. In Ad-
vances in Neural Information Processing Systems,
volume 34, pages 2018–2033. Curran Associates,
Inc.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 530–539, Gothenburg, Sweden.
Association for Computational Linguistics.

Laurens Van Der Maaten and Geoffrey Hinton. 2008.
Visualizing high-dimensional data using t-SNE. Jour-
nal of Machine Learning Research, 9:2579–2605.

Leland McInnes and John Healy. 2017. Accelerated
hierarchical density based clustering. In 2017 IEEE
International Conference on Data Mining Workshops
(ICDMW). IEEE.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Großberger. 2018. Umap: Uniform manifold ap-
proximation and projection. Journal of Open Source
Software, 3(29):861.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang, and
Jiawei Han. 2022. Topic discovery via latent space
clustering of pretrained language model representa-
tions. In Proceedings of the ACM Web Conference
2022, WWW ’22, page 3143–3152, New York, NY,
USA. Association for Computing Machinery.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Suzanna Sia, Ayush Dalmia, and Sabrina J. Mielke.
2020. Tired of topic models? clusters of pretrained
word embeddings make for fast and good topics too!
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1728–1736, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ike Vayansky and Sathish Kumar. 2020. A review
of topic modeling methods. Information Systems,
94:101582.

Xuerui Wang and Andrew McCallum. 2006. Topics
over time: A non-markov continuous-time model
of topical trends. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’06, page
424–433, New York, NY, USA. Association for Com-
puting Machinery.

652

Zihan Zhang, Meng Fang, Ling Chen, and Moham-
mad Reza Namazi Rad. 2022. Is neural topic mod-
elling better than clustering? an empirical study on
clustering with contextual embeddings for topics. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3886–3893, Seattle, United States. Association
for Computational Linguistics.

He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du,
and Wray Buntine. 2021. Topic modelling meets
deep neural networks: A survey. arXiv preprint
arXiv:2103.00498.

A Human Evaluation Protocol

Instructions for filling in Table
For each Topic in Topics List:

1. Click on the Topic in the Topic list.

2. Notice the keywords describing the Topic.

3. Read the article titles and keywords.

4. Click on the article to read the body if not
clear what the topic is about.

5. Choose the main topic from the list. A topic
in the list can be chosen multiple times.

(a) If you can’t find a topic that includes 50%
of the articles, then choose “no topic”7.

(b) If you don’t agree with any of the topics
in the list, write “custom” and then in the
notes write your custom topic. Please
make suggestions so that it is not only
my biases determining the categories.

6. Write down the article id for articles that do
not belong to the topic.

7. Write on a scale (1-4) if you think the key-
words are a good representation of the topic.
1=bad, 2=sort of bad, 3=sort of good, 4=good.

While doing the task. Write notes of interesting
things that you reflect over. Also, make general
notes about what improvements that can be made
to the tool.

7We have translated ’No topic’ to ’Incoherent’ when writ-
ing the article.

653

Author Index

., Govind, 332

Abraham, Nabila, 342
Afzal, Zubair, 323
Aguirre, Maia, 148
Anaby Tavor, Ateret, 228
Ankit, Ankit, 90
Antognini, Diego, 1
Antonius, Gilbert, 216
Apponsah, Kwesi, 450
Au, Winnie, 450

Balazs, Jorge, 155, 179
Banitalebi-Dehkordi, Amin, 29
Barut, Emre, 427
Bavadekar, Shailesh, 531
Belyaev, Vladislav, 295
Belz, Anya, 121
Ben-Shaul, Ido, 273
Bendersky, Michael, 502
Bertelli, Luca, 502
Bettencourt-Silva, Joao, 77
Biś, Daniel, 408
Boaz, David, 228
Bonin, Francesca, 77
Bourgon, Richard, 389
Bradford, Melanie, 264
Buckley, Mark, 358

Cai, Lianshang, 597
Cao, Qian, 236
Cecil, Matt, 468
Chada, Rakesh, 485
Chen, Bei, 164
Chen, Cheng, 494
Chen, Lei, 400
Chen, Nancy, 247
Chen, Weizhu, 558
Chen, Zhiyu, 367
Cheng, Zhicong, 597
Chilimbi, Trishul, 9
Chin, Peter, 264
Chiu, Justin, 171
Chou, Houwei, 400
Church, Chris, 264

Collins, Marcus, 468
Comment, Nicholas, 208

Danchenko, Pavel, 155, 179
Das, Anasuya, 342
Dekeyser, Elizabeth, 208
del Pozo, Arantza, 148
Deval, Pandya, 450
Ding, Yifan, 110
Ding, Zhuoye, 282
Do, Quynh, 131
Dolatabadi, Elham, 450
Dong, Anlei, 558
dong, junwei, 570
Duan, Nan, 558

Eklund, Anton, 645
El-Kurdi, Yousef, 461
Emmadi, Madhuri, 295
Ernst, Patrick, 155, 179
Estes, Alex, 468

Fan, Jun, 597
Fan, Xing, 90, 408, 485
Fang, Anjie, 367
Fang, Biyi, 216
Feng, Hao, 63
Fetahu, Besnik, 367, 439
Ford, Elliot, 629
Forsman, Mona, 645
Fu, Xue-Yong, 494
Fuchs, Gilad, 273
Fusco, Francesco, 1

Gabrilovich, Evgeniy, 531
Gandhi, Apurva, 216
García-Sardiña, Laura, 148
Gardiner, Shayna, 494
Garera, Nikesh, 550, 589, 637
Garrido Ramas, Jose, 164
Gaspers, Judith, 131
Gee, Leonidas, 419
Ghosh, Debanjan, 304
Gojayev, Turan, 138
Gong, Yeyun, 558

655

Goyal, Abhinav, 589
Grant, Christan, 110
Gu, Simiu, 597
Gueudre, Thomas, 138
Guo, Chenlei, 90, 408, 485
Gupta, Jai, 531
Gupta, Nalin, 427
Gupta, Rahul, 381
Gupta, Saurabh, 408, 485
Gupta, Vivek, 216

Hajebi, Kiana, 381
Hamza, Wael, 18
Hao, Jie, 90, 408, 485
Hasan, Rakeb, 358
Haverty, Lisa, 208
HE, Shiqi, 29
HE, XIAOFENG, 570
Hiranandani, Pooja, 494
Hong, Jenna, 216
huang, jun, 570

Ishola, Bukola, 450

J Kurisinkel, Litton, 247
Jackson, Richard, 629
Jiang, Jiarong, 316
Jiang, Ziyan, 90

Kalaiselvi Bhaskar, Karthik Raja, 450
Kamath, Chaitanya, 531
Kandpal, Chandra Shekhar, 198
Kang, Jaewoo, 629
Kannan, Kawshik, 342
Keivanloo, Iman, 9
Khan Khattak, Faiza, 450
Koleva, Aneta, 358
Kumar, Karun, 295
Kumar, Manoj, 164, 381
Kumar, Rajat, 208
Kumar, Vineet, 228
Kunc, Ladislav, 512

Laskar, Md Tahmid Rahman, 494
Lau, Elaine, 450
Le, Dieu-Thu, 164, 264
Le, Hieu, 264
Lee, Sungjin, 90
Lee, Taesung, 541
Lehnen, Patrick, 131
Lei, Zeyang, 522
Li, Alexander Hanbo, 316
Li, Dan, 323

Li, Erin, 450
Li, Haley, 29
Li, Shuanglong, 522
Li, Xian, 110, 477
Li, Yong, 570
Liang, Yan, 110
Liao, Lingrui, 502
Lin, Jimmy, 295, 389
Lin, Peng, 282
Liu, Xiao, 558
Liu, Xinyue, 427
Liu, Yang, 485
Liu, Ye, 254
Liu, Yinghui, 570
Liu, Ziyang, 63
Long, Bo, 282
Loo, Ellen, 389
López-Fernández, Jacobo, 148
Lu, Jingwen, 558
Lu, Weiyi, 9

Ma, Dehong, 597
Ma, Mian, 282
Majumder, Rangan, 558
Malmasi, Shervin, 367, 439
Mandelbrod, Matan, 273
Manotas, Irene, 189
Mao, Yajie, 295
Matin, Mahan, 389
Méndez, Ariane, 148
Metzler, Donald, 531
Miftahutdinov, Zulfat, 606
misra, amita, 99
Moramarco, Francesco, 121
Morishita, Makoto, 616
Munim, Alif, 450
Murakami, Koji, 581
Muravlev, Vladimir, 606
Murray, Craig, 295

Nagata, Masaaki, 616
Nakayama, Yuki, 581
Nallapati, Ramesh, 316
Narain, Jaswinder, 450
Natarajan, Pradeep, 381, 485
Nayak, Ravindra, 550
Ng, Patrick, 316
Nguyen, Tra My, 216
Nigam, Priyanka, 9
Niu, Jingcheng, 450
Niu, Zheng-Yu, 522
Nosakhare, Ehi, 216

Obadinma, Stephen, 450
Odry, Benjamin, 342
Oikawa, Yuto, 581
Oz, Gokmen, 138

Pandey, Akshat, 295
Pandey, Gaurav, 228
Papadopoulos Korfiatis, Alex, 121
Park, Youngja, 541
Patel, Kanishk, 450
Patil, Amey, 637
Pei, Shermin, 208
peng, haoyuan, 254
Peng, Xia, 236
Perera, Mark, 121
Peris, Charith, 138
Poddar, Lahari, 155, 179
Popescu, Octavian, 189
Poroshin, Vladimir, 629
Potdar, Saloni, 512
Purpura, Alberto, 77

Qi, Haode, 512
Qian, Cheng, 512
Qiao, Lingfeng, 254
Qin, Kechen, 427
Quinn, Jerry, 461

Rabinovich, Ella, 228
Raeesy, Zeynab, 427
Rai, Shruti, 208
Rajagopalan, Sunny, 9
Ramakrishna, Anil, 381
Ramamonjison, Rindra, 29
Raman, Karthik, 502
Rawls, Stephen, 427
Reiter, Ehud, 121
Ren, Bo, 254
Ren, Iris, 450
Rengan, Vishnu, 29
Rigutini, Leonardo, 419
Ringsquandl, Martin, 358
Robertson, Sean, 450
Rokhlenko, Oleg, 367, 439, 468
Rottmann, Kay, 164, 264
Rudzicz, Frank, 450

Samanta, Anupam, 502
Sandiri, Spurthi, 427
Savkov, Aleksandar, 121
Schroedl, Stefan, 381
Sehanobish, Arijit, 342
Sengupta, Sudipta, 316

Serrao, Ryan, 216
Serras, Manex, 148
Shaffer, Irene, 216
Shapira, Ofer, 389
Sheinin, Vadim, 189
Shen, Yelong, 558
Shi, Daiting, 597
Shiah, Yu-Jia, 450
Shimizu, Kanna, 208
Shinzato, Keiji, 171
Shneyderman, Anastasia, 606
Sidhorn, Tania, 450
Sil, Avi, 461
Singh, Anupam, 589
Sohoney, Saurabh, 332
Soltan, Saleh, 18, 485
Sorokin, Daniil, 131
Soto, Victor, 18
Srinivasan, Krishna, 502
Srinivasan, Soundararajan, 216
Staar, Peter, 1
Stowe, Kevin, 304
Su, Chengwei, 427
Sun, Mimi, 531
Sun, Xiaodi, 9
Suzuki, Jun, 616
Szarvas, György, 155, 179

Tan, Lizhen, 138
Tang, Raphael, 295
Tanner, Griffin, 450
Tay, Yi, 531
TN, Shashi Bhushan, 494
Torroni, Paolo, 419
Tran, Ke, 18
Tran, Vinh, 531
Tresp, Volker, 358
Tsatsaronis, George, 323
Tur, Gokhan, 485
Ture, Ferhan, 295
Tutubalina, Elena, 606

Uma Naresh, Niranjan, 90

Vadakkekara Suresh, Gautham, 198
Vedula, Nikhita, 468
Veeragouni, Akash, 439
Venkatapathy, Sriram, 381
Vetterli, Thomas, 389
Vetzler, Matan, 228
Vishwanathan, Asha, 198
Vo, Ngoc Phuoc An, 189

Wang, Ang, 570
Wang, Chaokun, 63
Wang, Cheng, 155, 179
Wang, Chengyu, 570
Wang, Gengyu, 512
Wang, Haifeng, 522
Wang, Jianing, 570
Wang, Jun, 316
Wang, Michael, 450
Wang, Qinlong, 236
Wang, Shirley, 450
Wang, Zhiguo, 316
Wanigasekara, Prashan, 427
Waqar, Muhammad, 450
Warrier, Rajeev, 198
Weber, Verena, 264
Wei, Bencheng, 450
Wei, Pan, 138
Wen, Ji-Rong, 558
Weninger, Tim, 110
Wu, Chen, 254
Wu, Fengtao, 208
Wu, Hua, 522
Wu, Lingfei, 63, 282
Wu, Wenquan, 522
Wu, Yi, 597

Xiang, Bing, 316
Xiao, Jiajie, 389
Xiong, Deyi, 236
Xu, Xinchao, 522
Xu, Yi, 9

Yadav, Vikrant, 323
Yang, Fan, 427
Yang, Gefei, 295
Yang, Liqun, 63
Yang, Yi, 522
Yi, Sheng, 216
Yin, Dawei, 597
yin, di, 254
Yoon, Wonjin, 629
Yu, Timothy, 29

Zalmout, Nasser, 110, 477
Zeng, Belinda, 9
Zhang, Bryan, 99
Zhang, Chao, 522
Zhang, Linhao, 597
Zhang, Sean X., 450
Zhang, Taolin, 570
Zhang, Yong, 29

Zhao, Jie, 367
Zhao, Mengxuan, 304
Zhao, Wayne Xin, 558
Zhong, Yizhen, 389
Zhou, Kun, 558
Zhou, Zirui, 29
Zhu, Xiaodan, 400, 450
Ziyadi, Morteza, 381
Zou, Yanyan, 282
Zugarini, Andrea, 419

	Unsupervised Term Extraction for Highly Technical Domains
	DynaMaR: Dynamic Prompt with Mask Token Representation
	A Hybrid Approach to Cross-lingual Product Review Summarization
	Augmenting Operations Research with Auto-Formulation of Optimization Models From Problem Descriptions
	Knowledge Distillation based Contextual Relevance Matching for E-commerce Product Search
	Accelerating the Discovery of Semantic Associations from Medical Literature: Mining Relations Between Diseases and Symptoms
	PENTATRON: PErsonalized coNText-Aware Transformer for Retrieval-based cOnversational uNderstanding
	Machine translation impact in E-commerce multilingual search
	Ask-and-Verify: Span Candidate Generation and Verification for Attribute Value Extraction
	Consultation Checklists: Standardising the Human Evaluation of Medical Note Generation
	Towards Need-Based Spoken Language Understanding Model Updates: What Have We Learned?
	Knowledge Distillation Transfer Sets and their Impact on Downstream NLU Tasks
	Exploiting In-Domain Bilingual Corpora for Zero-Shot Transfer Learning in NLU of Intra-Sentential Code-Switching Chatbot Interactions
	Calibrating Imbalanced Classifiers with Focal Loss: An Empirical Study
	Unsupervised training data re-weighting for natural language understanding with local distribution approximation
	Cross-Encoder Data Annotation for Bi-Encoder Based Product Matching
	Deploying a Retrieval based Response Model for Task Oriented Dialogues
	Tackling Temporal Questions in Natural Language Interface to Databases
	Multi-Tenant Optimization For Few-Shot Task-Oriented FAQ Retrieval
	Iterative Stratified Testing and Measurement for Automated Model Updates
	SLATE: A Sequence Labeling Approach for Task Extraction from Free-form Inked Content
	Gaining Insights into Unrecognized User Utterances in Task-Oriented Dialog Systems
	CoCoID: Learning Contrastive Representations and Compact Clusters for Semi-Supervised Intent Discovery
	Tractable & Coherent Multi-Document Summarization: Discrete Optimization of Multiple Neural Modeling Streams via Integer Linear Programming
	Grafting Pre-trained Models for Multimodal Headline Generation
	Semi-supervised Adversarial Text Generation based on Seq2Seq models
	Is it out yet? Automatic Future Product Releases Extraction from Web Data
	Automatic Scene-based Topic Channel Construction System for E-Commerce
	SpeechNet: Weakly Supervised, End-to-End Speech Recognition at Industrial Scale
	Controlled Language Generation for Language Learning Items
	Improving Text-to-SQL Semantic Parsing with Fine-grained Query Understanding
	Unsupervised Dense Retrieval for Scientific Articles
	Learning Geolocations for Cold-Start and Hard-to-Resolve Addresses via Deep Metric Learning
	Meta-learning Pathologies from Radiology Reports using Variance Aware Prototypical Networks
	Named Entity Recognition in Industrial Tables using Tabular Language Models
	Reinforced Question Rewriting for Conversational Question Answering
	Improving Large-Scale Conversational Assistants using Model Interpretation based Training Sample Selection
	Improving Precancerous Case Characterization via Transformer-based Ensemble Learning
	Developing Prefix-Tuning Models for Hierarchical Text Classification
	PAIGE: Personalized Adaptive Interactions Graph Encoder for Query Rewriting in Dialogue Systems
	Fast Vocabulary Transfer for Language Model Compression
	Multimodal Context Carryover
	Distilling Multilingual Transformers into CNNs for Scalable Intent Classification
	Bringing the State-of-the-Art to Customers: A Neural Agent Assistant Framework for Customer Service Support
	Zero-Shot Dynamic Quantization for Transformer Inference
	Fact Checking Machine Generated Text with Dependency Trees
	Prototype-Representations for Training Data Filtering in Weakly-Supervised Information Extraction
	CGF: Constrained Generation Framework for Query Rewriting in Conversational AI
	Entity-level Sentiment Analysis in Contact Center Telephone Conversations
	QUILL: Query Intent with Large Language Models using Retrieval Augmentation and Multi-stage Distillation
	Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants
	PLATO-Ad: A Unified Advertisement Text Generation Framework with Multi-Task Prompt Learning
	Dense Feature Memory Augmented Transformers for COVID-19 Vaccination Search Classification
	Full-Stack Information Extraction System for Cybersecurity Intelligence
	Deploying Unified BERT Moderation Model for E-Commerce Reviews
	SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval
	Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training
	A Stacking-based Efficient Method for Toxic Language Detection on Live Streaming Chat
	End-to-End Speech to Intent Prediction to improve E-commerce Customer Support Voicebot in Hindi and English
	PILE: Pairwise Iterative Logits Ensemble for Multi-Teacher Labeled Distillation
	A Comprehensive Evaluation of Biomedical Entity-centric Search
	Domain Adaptation of Machine Translation with Crowdworkers
	Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework
	Large-scale Machine Translation for Indian Languages in E-commerce under Low Resource Constraints
	Topic Modeling by Clustering Language Model Embeddings: Human Validation on an Industry Dataset

