@inproceedings{tang-etal-2022-improving,
title = "Improving Complex Knowledge Base Question Answering via Question-to-Action and Question-to-Question Alignment",
author = "Tang, Yechun and
Cheng, Xiaoxia and
Lu, Weiming",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.10",
pages = "137--147",
abstract = "Complex knowledge base question answering can be achieved by converting questions into sequences of predefined actions. However, there is a significant semantic and structural gap between natural language and action sequences, which makes this conversion difficult. In this paper, we introduce an alignment-enhanced complex question answering framework, called ALCQA, which mitigates this gap through question-to-action alignment and question-to-question alignment. We train a question rewriting model to align the question and each action, and utilize a pretrained language model to implicitly align the question and KG artifacts. Moreover, considering that similar questions correspond to similar action sequences, we retrieve top-k similar question-answer pairs at the inference stage through question-to-question alignment and propose a novel reward-guided action sequence selection strategy to select from candidate action sequences. We conduct experiments on CQA and WQSP datasets, and the results show that our approach outperforms state-of-the-art methods and obtains a 9.88{\%} improvements in the F1 metric on CQA dataset. Our source code is available at \url{https://github.com/TTTTTTTTy/ALCQA}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tang-etal-2022-improving">
<titleInfo>
<title>Improving Complex Knowledge Base Question Answering via Question-to-Action and Question-to-Question Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yechun</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoxia</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiming</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Complex knowledge base question answering can be achieved by converting questions into sequences of predefined actions. However, there is a significant semantic and structural gap between natural language and action sequences, which makes this conversion difficult. In this paper, we introduce an alignment-enhanced complex question answering framework, called ALCQA, which mitigates this gap through question-to-action alignment and question-to-question alignment. We train a question rewriting model to align the question and each action, and utilize a pretrained language model to implicitly align the question and KG artifacts. Moreover, considering that similar questions correspond to similar action sequences, we retrieve top-k similar question-answer pairs at the inference stage through question-to-question alignment and propose a novel reward-guided action sequence selection strategy to select from candidate action sequences. We conduct experiments on CQA and WQSP datasets, and the results show that our approach outperforms state-of-the-art methods and obtains a 9.88% improvements in the F1 metric on CQA dataset. Our source code is available at https://github.com/TTTTTTTTy/ALCQA.</abstract>
<identifier type="citekey">tang-etal-2022-improving</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.10</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>137</start>
<end>147</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Complex Knowledge Base Question Answering via Question-to-Action and Question-to-Question Alignment
%A Tang, Yechun
%A Cheng, Xiaoxia
%A Lu, Weiming
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F tang-etal-2022-improving
%X Complex knowledge base question answering can be achieved by converting questions into sequences of predefined actions. However, there is a significant semantic and structural gap between natural language and action sequences, which makes this conversion difficult. In this paper, we introduce an alignment-enhanced complex question answering framework, called ALCQA, which mitigates this gap through question-to-action alignment and question-to-question alignment. We train a question rewriting model to align the question and each action, and utilize a pretrained language model to implicitly align the question and KG artifacts. Moreover, considering that similar questions correspond to similar action sequences, we retrieve top-k similar question-answer pairs at the inference stage through question-to-question alignment and propose a novel reward-guided action sequence selection strategy to select from candidate action sequences. We conduct experiments on CQA and WQSP datasets, and the results show that our approach outperforms state-of-the-art methods and obtains a 9.88% improvements in the F1 metric on CQA dataset. Our source code is available at https://github.com/TTTTTTTTy/ALCQA.
%U https://aclanthology.org/2022.emnlp-main.10
%P 137-147
Markdown (Informal)
[Improving Complex Knowledge Base Question Answering via Question-to-Action and Question-to-Question Alignment](https://aclanthology.org/2022.emnlp-main.10) (Tang et al., EMNLP 2022)
ACL