@inproceedings{wan-etal-2022-rescue,
title = "Rescue Implicit and Long-tail Cases: Nearest Neighbor Relation Extraction",
author = "Wan, Zhen and
Liu, Qianying and
Mao, Zhuoyuan and
Cheng, Fei and
Kurohashi, Sadao and
Li, Jiwei",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.113",
doi = "10.18653/v1/2022.emnlp-main.113",
pages = "1731--1738",
abstract = "Relation extraction (RE) has achieved remarkable progress with the help of pre-trained language models. However, existing RE models are usually incapable of handling two situations: implicit expressions and long-tail relation types, caused by language complexity and data sparsity. In this paper, we introduce a simple enhancement of RE using $k$ nearest neighbors ($k$NN-RE). $k$NN-RE allows the model to consult training relations at test time through a nearest-neighbor search and provides a simple yet effective means to tackle the two issues above. Additionally, we observe that $k$NN-RE serves as an effective way to leverage distant supervision (DS) data for RE. Experimental results show that the proposed $k$NN-RE achieves state-of-the-art performances on a variety of supervised RE datasets, i.e., ACE05, SciERC, and Wiki80, along with outperforming the best model to date on the i2b2 and Wiki80 datasets in the setting of allowing using DS. Our code and models are available at: https://github.com/YukinoWan/kNN-RE.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wan-etal-2022-rescue">
<titleInfo>
<title>Rescue Implicit and Long-tail Cases: Nearest Neighbor Relation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qianying</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhuoyuan</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiwei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Relation extraction (RE) has achieved remarkable progress with the help of pre-trained language models. However, existing RE models are usually incapable of handling two situations: implicit expressions and long-tail relation types, caused by language complexity and data sparsity. In this paper, we introduce a simple enhancement of RE using k nearest neighbors (kNN-RE). kNN-RE allows the model to consult training relations at test time through a nearest-neighbor search and provides a simple yet effective means to tackle the two issues above. Additionally, we observe that kNN-RE serves as an effective way to leverage distant supervision (DS) data for RE. Experimental results show that the proposed kNN-RE achieves state-of-the-art performances on a variety of supervised RE datasets, i.e., ACE05, SciERC, and Wiki80, along with outperforming the best model to date on the i2b2 and Wiki80 datasets in the setting of allowing using DS. Our code and models are available at: https://github.com/YukinoWan/kNN-RE.</abstract>
<identifier type="citekey">wan-etal-2022-rescue</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.113</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.113</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>1731</start>
<end>1738</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rescue Implicit and Long-tail Cases: Nearest Neighbor Relation Extraction
%A Wan, Zhen
%A Liu, Qianying
%A Mao, Zhuoyuan
%A Cheng, Fei
%A Kurohashi, Sadao
%A Li, Jiwei
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F wan-etal-2022-rescue
%X Relation extraction (RE) has achieved remarkable progress with the help of pre-trained language models. However, existing RE models are usually incapable of handling two situations: implicit expressions and long-tail relation types, caused by language complexity and data sparsity. In this paper, we introduce a simple enhancement of RE using k nearest neighbors (kNN-RE). kNN-RE allows the model to consult training relations at test time through a nearest-neighbor search and provides a simple yet effective means to tackle the two issues above. Additionally, we observe that kNN-RE serves as an effective way to leverage distant supervision (DS) data for RE. Experimental results show that the proposed kNN-RE achieves state-of-the-art performances on a variety of supervised RE datasets, i.e., ACE05, SciERC, and Wiki80, along with outperforming the best model to date on the i2b2 and Wiki80 datasets in the setting of allowing using DS. Our code and models are available at: https://github.com/YukinoWan/kNN-RE.
%R 10.18653/v1/2022.emnlp-main.113
%U https://aclanthology.org/2022.emnlp-main.113
%U https://doi.org/10.18653/v1/2022.emnlp-main.113
%P 1731-1738
Markdown (Informal)
[Rescue Implicit and Long-tail Cases: Nearest Neighbor Relation Extraction](https://aclanthology.org/2022.emnlp-main.113) (Wan et al., EMNLP 2022)
ACL