@inproceedings{cardon-etal-2022-linguistic,
title = "Linguistic Corpus Annotation for Automatic Text Simplification Evaluation",
author = {Cardon, R{\'e}mi and
Bibal, Adrien and
Wilkens, Rodrigo and
Alfter, David and
Norr{\'e}, Magali and
M{\"u}ller, Adeline and
Patrick, Watrin and
Fran{\c{c}}ois, Thomas},
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.121",
doi = "10.18653/v1/2022.emnlp-main.121",
pages = "1842--1866",
abstract = "Evaluating automatic text simplification (ATS) systems is a difficult task that is either performed by automatic metrics or user-based evaluations. However, from a linguistic point-of-view, it is not always clear on what bases these evaluations operate. In this paper, we propose annotations of the ASSET corpus that can be used to shed more light on ATS evaluation. In addition to contributing with this resource, we show how it can be used to analyze SARI{'}s behavior and to re-evaluate existing ATS systems. We present our insights as a step to improve ATS evaluation protocols in the future.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cardon-etal-2022-linguistic">
<titleInfo>
<title>Linguistic Corpus Annotation for Automatic Text Simplification Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rémi</namePart>
<namePart type="family">Cardon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrien</namePart>
<namePart type="family">Bibal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rodrigo</namePart>
<namePart type="family">Wilkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Alfter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magali</namePart>
<namePart type="family">Norré</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adeline</namePart>
<namePart type="family">Müller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Watrin</namePart>
<namePart type="family">Patrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">François</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Evaluating automatic text simplification (ATS) systems is a difficult task that is either performed by automatic metrics or user-based evaluations. However, from a linguistic point-of-view, it is not always clear on what bases these evaluations operate. In this paper, we propose annotations of the ASSET corpus that can be used to shed more light on ATS evaluation. In addition to contributing with this resource, we show how it can be used to analyze SARI’s behavior and to re-evaluate existing ATS systems. We present our insights as a step to improve ATS evaluation protocols in the future.</abstract>
<identifier type="citekey">cardon-etal-2022-linguistic</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.121</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.121</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>1842</start>
<end>1866</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Linguistic Corpus Annotation for Automatic Text Simplification Evaluation
%A Cardon, Rémi
%A Bibal, Adrien
%A Wilkens, Rodrigo
%A Alfter, David
%A Norré, Magali
%A Müller, Adeline
%A Patrick, Watrin
%A François, Thomas
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F cardon-etal-2022-linguistic
%X Evaluating automatic text simplification (ATS) systems is a difficult task that is either performed by automatic metrics or user-based evaluations. However, from a linguistic point-of-view, it is not always clear on what bases these evaluations operate. In this paper, we propose annotations of the ASSET corpus that can be used to shed more light on ATS evaluation. In addition to contributing with this resource, we show how it can be used to analyze SARI’s behavior and to re-evaluate existing ATS systems. We present our insights as a step to improve ATS evaluation protocols in the future.
%R 10.18653/v1/2022.emnlp-main.121
%U https://aclanthology.org/2022.emnlp-main.121
%U https://doi.org/10.18653/v1/2022.emnlp-main.121
%P 1842-1866
Markdown (Informal)
[Linguistic Corpus Annotation for Automatic Text Simplification Evaluation](https://aclanthology.org/2022.emnlp-main.121) (Cardon et al., EMNLP 2022)
ACL
- Rémi Cardon, Adrien Bibal, Rodrigo Wilkens, David Alfter, Magali Norré, Adeline Müller, Watrin Patrick, and Thomas François. 2022. Linguistic Corpus Annotation for Automatic Text Simplification Evaluation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 1842–1866, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.