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Abstract
ASR Error Detection (AED) models aim to
post-process the output of Automatic Speech
Recognition (ASR) systems, in order to de-
tect transcription errors. Modern approaches
usually use text-based input, comprised solely
of the ASR transcription hypothesis, disregard-
ing additional signals from the ASR model. In-
stead, we utilize the ASR system’s word-level
confidence scores for improving AED perfor-
mance. Specifically, we add an ASR Con-
fidence Embedding (ACE) layer to the AED
model’s encoder, allowing us to jointly en-
code the confidence scores and the transcribed
text into a contextualized representation. Our
experiments show the benefits of ASR confi-
dence scores for AED, their complementary
effect over the textual signal, as well as the
effectiveness and robustness of ACE for com-
bining these signals. To foster further research,
we publish a novel AED dataset consisting of
ASR outputs on the LibriSpeech corpus with
annotated transcription errors.1

1 Introduction

Automatic Speech Recognition (ASR) systems
transcribe audio signals, consisting of speech, into
text. While state-of-the-art ASR systems reached
high transcription quality, training them requires
large amounts of data and compute resources. For-
tunately, many high performing systems are avail-
able as off-the-shelf cloud services. However, a
performance drop can be observed when applying
them to specific domains or accents (Khandelwal
et al., 2020; Mani et al., 2020), or when transcrib-
ing noisy audio. Moreover, cloud services usually
expose the ASR models as a black box, making it
impossible to further fine-tune them.

ASR Error Detection (AED) models are de-
signed to post-process the ASR output, in order

∗ Equal contribution.
1Our code and data are available at https:

//github.com/google-research/google-research/
tree/master/red-ace.

Figure 1: Our AED pipeline. The confidence scores
are quantized and jointly encoded with the transcription
text into a contextualized representation.

to detect transcription errors and avoid their propa-
gation to downstream tasks (Errattahi et al., 2018).
AED models are widely used in interactive systems,
to engage the user to resolve the detected errors.
For example, AED systems can be found in Google
Docs Voice Typing, where low confidence words
are underlined, making it easier for users to spot
errors and take actions to correct them.

Modern NLP models usually build upon the
Transformer architecture (Vaswani et al., 2017).
However, no Transformer-based AED models have
been proposed yet. Recently, the Transformer has
been applied to ASR error correction (Mani et al.,
2020; Liao et al., 2020; Leng et al., 2021a,b), an-
other ASR post-processing task. These models use
only the transcription hypothesis text as input and
discard other signals from the ASR model. How-
ever, earlier work on AED (not Transformer-based)
has shown the benefits of such signals (Allauzen,
2007; Pellegrini and Trancoso, 2009; Chen et al.,
2013) and specifically the benefits of ASR word-
level confidence scores (Zhou et al., 2005), which
are often provided in addition to the transcribed
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text (Jiang, 2005; Qiu et al., 2021; Li et al., 2021).
In this work we focus exclusively on AED and

propose a natural way to embed the ASR confi-
dence scores into the Transformer architecture. We
introduce RED-ACE, a modified Transformer
encoder with an additional embedding layer, that
jointly encodes the textual input and the word-level
confidence scores into a contextualized representa-
tion (Figure 2). Our AED pipeline first quantizes
the confidence scores into integers and then feeds
the quantized scores with the transcribed text into
the modified Transformer encoder (Figure 1). Our
experiments demonstrate the effectiveness of RED-
ACE in improving AED performance. In addition,
we demonstrate the robustness of RED-ACE to
changes in the transcribed audio quality. Finally,
we release a novel dataset that can be used to train
and evaluate AED models.

2 RED-ACE

Following recent trends in NLP, we use a pre-
trained Transformer-based language model, lever-
aging its rich language representation. RED-ACE
is based on a pre-trained BERT (Devlin et al.,
2019), adapted to be confidence-aware and further
fine-tuned for sequence tagging. Concretely, our
AED model is a binary sequence tagger that given
the ASR output, consisting of the transcription
hypothesis words and their corresponding word-
level confidence scores, predicts an ERROR or
NOTERROR tag for each input token.2

Our AED pipeline is illustrated in Figure 1. First,
we quantize the floating-point confidence scores
into integers using a binning algorithm.3 Next, the
quantized scores and the transcription text are fed
into a confidence-aware BERT tagger.

In BERT, each input token has 3 embeddings:
token, segment and position.4 To adapt BERT to
be confidence-aware, we implement an additional
dedicated embedding layer, indicating the confi-
dence bin that the input token belongs to. We
construct a learned confidence embedding lookup
matrix M ∈ RB×H , where B is the number of con-
fidence bins and H is BERT’s embedding vector’s
size. For a given token, its input representation is
constructed by summing the corresponding BERT’s

2We discuss words to tokens conversion in §A.1.
3Typical confidence scores range between 0.0 to 1.0. We

perform experiments with simple equal-width binning and
quantile-based discretization (equal-sized buckets), as well as
different bin numbers. More details in §A.1.

4We refer the reader to Devlin et al. (2019) for more details.
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Figure 2: Our confidence-aware AED model. We use
a BERT-based tagger with modifications colored in
green. An additional embedding layer is added to repre-
sent the embedding of the quantized confidence scores.

ASR Model Pool Split # Examples # Words # Errors

default

clean
Train 103,895 3,574,027 357,145 (10.0%)
Dev 2,697 54,062 5,111 (9.5%)
Test 2,615 52,235 4,934 (9.4%)

other
Train 146,550 4,650,779 770,553 (16.6%)
Dev 2,809 48,389 9,876 (20.4%)
Test 2,925 50,730 10,317 (20.3%)

video

clean
Train 104,013 3,589,136 210,324 (5.9%)
Dev 2,703 54,357 3,109 (5.7%)
Test 2,620 52,557 2,963 (5.6%)

other
Train 148,678 4,810,226 148,678 (7.9%)
Dev 2,809 50,983 5,901 (11.6%)
Test 2,939 52,192 6,033 (11.6%)

Table 1: AED dataset statistics.

embeddings with its confidence embedding (Fig-
ure 2). This allows the model to learn a dedicated
dense representation vector for each confidence
bin, as well as naturally combine it with the final
contextualized representation of each input token.

3 Dataset Creation and Annotation

To train and evaluate AED models, we generate a
dataset with labeled transcription errors.

Labeling of ASR Errors. We decode audio data
using an ASR model and obtain the transcription
hypothesis. Then, we align the hypothesis words
with the reference (correct) transcription. Specifi-
cally, we find an edit path, between the hypothesis
and the reference, with the minimum edit distance
and obtain a sequence of edit operations (insertions,
deletions and substitutions) that can be used to
transform the hypothesis into the reference. Every
incorrect hypothesis word (i.e needs to be deleted
or substituted) is labeled as ERROR, the rest are
labeled as NOTERROR.

Audio Data Source. We use the LibriSpeech cor-
pus (Panayotov et al., 2015), containing 1000 hours
of transcribed English speech from audio books.5

5https://www.openslr.org/12/
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The corpus contains clean and other pools, where
clean is of higher recording quality.6

ASR Models. In this work we focus exclusively
on a black-box setting, where the exact implemen-
tation details of the ASR and the confidence mod-
els are unknown. This setting is particularly rel-
evant since many applications rely on strong per-
formance of black-box ASR models which are ex-
posed as cloud services. We use Google Cloud
Speech-to-Text API as our candidate ASR model.7

In our main experiments we select the default ASR
model.8 To ensure the generalization ability of
RED-ACE, we repeat our main experiments using
a different ASR model, in this case we choose the
video model. Table 1 presents the statistics of our
dataset. It is notable that the main model’s error
rate (default) is about twice as high as the addi-
tional model’s error rate (video), which shows that
(even though both models are part of the Google
Cloud API) this additional ASR model is substan-
tially different from the main ASR model we used.

Data Release. Since Google Cloud requires a
paid subscription and since the underlying ASR
models may change over time, we make our dataset
publicly available.9 This ensures full reproducibil-
ity of our results (in case the ASR models change)
and makes it easier for researchers to train and
evaluate AED models, removing the need to run
inference on paid cloud-based ASR models or train
dedicated models in order to transcribe audio.

4 Experimental Setup

Our experiments examine the informativeness of
the confidence scores as well as the effectiveness
of RED-ACE in combining them with text. We
provide extensive implementation details in §A.1.

4.1 Baselines
C-O (Confidence Only) Uses the word-level
scores from the ASR confidence model directly.
Predicts ERROR if the token’s confidence score is
below a threshold.10

BERT-MLM Masks out the input words one at
a time and uses a pre-trained BERT (Devlin et al.,

6We provide additional details about the corpus in §A.2.
7https://cloud.google.com/speech-to-text
8https://cloud.google.com/speech-to-text/docs/

basics#select-model
9Additional details about the dataset are provided in §A.2.

10We choose the confidence threshold or k value (in case
of BERT-MLM) with the best F1 on the dev set (Figure 3).
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Figure 3: Threshold tuning process for the C-O base-
line. Models are evaluated using different confidence
scores thresholds and the threshold that yields the best
F1 is chosen. A similar process is performed for BERT
& C and BERT | C. For BERT-MLM we tune the val-
ues for k.
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Figure 4: The BERTC baseline, which modifies the
input to the tagger, unlike RED-ACE which modifies
BERT’s embeddings. The value of the respective confi-
dence score is appended to the final contextualized rep-
resentation.

2019) as a Masked Language Model (MLM) in or-
der to infill them. Predicts ERROR for input words
that are not in the top k BERT’s suggestions.9

BERT We fine-tune BERT (Devlin et al., 2019)
for sequence tagging (only on text, without adding
RED-ACE). As Transformers have not beeen ap-
plied for AED yet, we choose BERT as a pre-
trained LM following Cheng and Duan (2020),
who applied it for Grammatical Error Detection
(GED) and achieved the highest performance in
the NLPTEA-2020 Shared Task (Rao et al., 2020).

BERT & C Predicts ERROR if BERT predicts
ERROR and confidence is below a threshold.9

BERT | C Predicts ERROR if BERT predicts ER-
ROR or confidence is below a threshold.9

BERTC We fine-tune BERT jointly with the con-
fidence scores by concatenating the score value
to the token’s contextualized representation pro-
duced by BERT (directly before it is fed into the
sequence tagger). BERT’s last hidden layer dimen-
sion is increased by 1, and the corresponding value
populated with the token’s confidence score. An
illustration is provided in Figure 4.
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clean other
R P F1 R P F1

C-O 52.1 42.5 46.8 63.5 45.6 53.1
BERT-MLM 58.0 26.5 36.4 72.7 35.9 48.1
BERT 58.5 77.6 66.7 58.0 77.1 66.2
BERT & C 55.8 75.0 64.0 55.5 75.5 64.0
BERT | C 63.3 68.1 65.6 68.1 67.1 67.6
BERTC 51.7 78.9 66.3 58.1 78.8 66.9

RED-ACE 61.1 81.9∗ 70.0∗ 64.1 79.9∗ 71.1∗

F1 ∆% +4.9% +7.4%

Table 2: Main settings using the errors from the default
ASR model (see Table 1). R and P stands for Recall and
Precision. F1 ∆% compares RED-ACE to the BERT
baseline. Results with ∗ indicate a statistically signifi-
cant improvement compared to the strongest baseline.

4.2 Evaluation

Main Settings. In the main settings we train the
models on the clean and other training sets and
evaluate them clean and other test sets respectively.

Robustness Settings. A real-word AED system
should remain effective when the audio stems from
different recording qualities. Changes in recording
quality, can affect the ASR model’s errors distribu-
tion and thus can potentially reduce the effective-
ness of the AED model. As our dataset contains 2
pools with different recording quality (Table 1), we
can measure whether RED-ACE’s performance
deteriorates when the audio quality of the training
data changes. To this end we define the robustness
settings (Table 3), where we perform a cross-pools
evaluation, evaluating models that were trained on
clean and other training sets using the other and
the clean test sets respectively.

Metric. We measure errors detection Precision
(P), Recall (R) and F1. Recall measures the percent
of real errors that were detected, while Precision
measures the percent of the real errors out of all
detected errors. We calculate the P and R on the
word-level. We also report span-level results for
the main settings in Table 9 in the appendix.

5 Results

Table 2 presents our main results, evaluating the
models on the main settings using errors from the
main (default) ASR model. Table 3 presents the
results on the robustness settings, also using errors
from the main ASR model.

The low F1 of C-O suggest that the ASR confi-
dence has low effectiveness without textual signal.
The low F1 of BERT-MLM indicates that super-
vised training on real transcription errors is crucial.

other → clean clean → other
R P F1 R P F1

BERT 64.3 71.9 67.9 47.1 80.3 59.4
RED-ACE 67.9∗ 77.0∗ 72.2∗ 53.7∗ 83.3∗ 65.3∗

F1 ∆% +6.3% +9.9%

Table 3: Robustness settings with the default ASR
model (Table 1). other → clean means train on other
and eval on clean. Format is similar to Table 2.

We next observe that BERT & C performs
worse than BERT on all metrics. When compar-
ing BERT | C to BERT we observe the expected
increase in recall (BERT’s errors are a subset of
the errors from BERT | C) and a decrease in preci-
sion, F1 decreases on clean and increases on other.
The results on BERTC are particularly surprising.
Similarly to RED-ACE, BERTC trains BERT
jointly with the scores. However, unlike RED-
ACE, BERTC performs worse than BERT. This
demonstrates the effectiveness and importance of
our modeling approach, that represents the scores
using a learned dense embedding vectors. As RED-
ACE is the only method that successfully combines
the scores with text, we focus the rest of the analy-
sis on comparing it to the text-based BERT tagger.

In the main settings (Table 2), RED-ACE con-
sistently outperforms BERT on all evaluation met-
rics in both pools. This demonstrates the usefulness
of the confidence signal on top of the textual in-
put, as well as the effectiveness of RED-ACE in
combining those signals. RED-ACE’s F1 ∆% on
clean is lower than on other. This can be attributed
to the fact that the error rate in clean is twice lower
than in other (Table 1), which means that the model
is exposed to fewer errors during training.

Finally, we analyze the robustness settings from
Table 3. We first note that RED-ACE outperforms
BERT in both settings, indicating its robustness
across different settings, and that it can remain ef-
fective with recording quality differences between
train and test time. When observing the perfor-
mance on the clean test set, we observe that train-
ing AED models on other instead of clean, leads
to improvement in F1. This can be attributed to
the higher error rate and larger number of training
examples in other (see Table 1), which exposes
the models to larger amount of errors during train-
ing. The F1 ∆% on other → clean (Table 3) is
comparable to clean (Table 2), with a statistically
insignificant improvement. An opposite trend can
be seen on the other test set. The performance
of models that were trained on clean instead of
other deteriorates. Yet, RED-ACE’s relative per-
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clean other
R P F1 R P F1

BERT 54.9 77.2 64.2 52.7 78.8 63.2
RED-ACE 58.6∗ 75.4 65.9∗ 55.2∗ 80.7∗ 65.6∗

F1 ∆% +2.6% +3.8%

Table 4: Main settings using the errors from the video
ASR model. Format is similar to Table 2.

formance drop is smaller than BERT’s. RED-ACE
drops by 8.2% (from 71.1 to 65.3) while BERT by
10.3% (from 66.2 to 59.4). This is also demon-
strated by the statistically significant increase in
F1 ∆%, from 7.4% in other → other to 9.9% in
clean→ other. This serves as additional evidence
for the robustness of RED-ACE. We also note that
clean→ other is the most challenging setting, with
BERT’s F1 significantly lower than the other 3 set-
tings, meaning that RED-ACE shows the largest
improvement (F1 ∆%) in the hardest setting.

Generalization Across ASR Models. As dis-
cussed in §3, to ensure that RED-ACE is appli-
cable to not only one specific ASR model, we re-
peat our experiments using a different ASR model.
The results are presented in Table 4 and Table 5.
RED-ACE outperforms BERT in all settings, with
statistically significant F1 improvements, further
highlighting RED-ACE robustness.

6 Related Work

ASR Confidence Scores are used to evaluate re-
liability of recognition results (Jiang, 2005). In
modern ASR models, a separate confidence net-
work is usually trained using a held-out dataset
(Qiu et al., 2021; Wessel et al., 2001).

Uncertainty Calibration adapts a models pre-
diction probabilities to better reflect their true cor-
rectness likelihood (Guo et al., 2017). We provide
the Brier Scores (evaluating calibration) for our
dataset in Table 8. AED models, which perform a
binary classification - ERROR or NOTERROR, do
not explicitly use calibration. For example in C-O,
BERT | C and BERT & C we tune the threshold to
an optimal value, and since most calibration tech-
niques will preserve the relative scores ordering,
better calibration will not improve performance.
BERTC and RED-ACE do not rely on calibrated
scores, since deep neural networks can model non
linear relationships (Hornik et al., 1989).

AED. We provide a brief summary of relevant
AED papers, for a more thorough review of AED
we refer the reader to Errattahi et al. (2018).

other → clean clean → other
R P F1 R P F1

BERT 61.2 73.5 66.8 42.9 82.2 56.4
RED-ACE 62.8∗ 75.8∗ 68.7∗ 47.7∗ 79.8∗ 59.7∗

F1 ∆% +2.8% +5.9%

Table 5: Robustness settings using the errors from the
video ASR model. Format is similar to Table 3.

Zhou et al. (2005) used data mining models,
leveraging features from confidence scores and a
linguistics parser. Allauzen (2007) used logistic
regression with features extracted from confusion
networks. Pellegrini and Trancoso (2009) used a
Markov Chains classifier. Chen et al. (2013) fo-
cused on spoken translation using confidence from
a machine translation model, posteriors from entity
detector and a word boundary detector.

Modern Transformer-based approaches have not
addressed the AED task directly. A few attempts
were made to apply Transformers for ASR error
correction, using a sequence-to-sequence models
to map directly between the ASR hypothesis and
the correct (reference) transcription (Mani et al.,
2020; Liao et al., 2020; Leng et al., 2021a,b). To
the best of our knowledge, our work is the first to
address AED using the Transformer and to intro-
duce representation for ASR confidence scores in
a Transformer-based ASR post-processing model.

7 Conclusion

We introduced RED-ACE, an approach for em-
bedding ASR word-level confidence scores into a
Transformer-based ASR error detector. RED-ACE
jointly encodes the scores and the transcription hy-
pothesis into a contextualized representation.

Our experiments demonstrated that the ASR
word-level confidence scores are useful on top of
the transcription hypothesis text, yet it is not trivial
to effectivelly combine these signals. We showed
that performing such combination using RED-ACE
leads to significant performance gains, as well as in-
creased robustness to changes in the audio quality,
which can be crucial for real-world applications.

In addition, we published a novel AED dataset
that allows researchers to train and evaluate AED
models, without the need to run ASR models. It
also ensures the full reproducibility of our results in
case Google Cloud models will change over time.

In future work, we would like to leverage addi-
tional signals from the ASR model (such as alter-
native hypotheses), as well as explore the benefits
of confidence scores for error correction models.
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8 Limitations

Limitations Our approach does not account for
ASR errors where the ASR system simply deletes
output words. However, it is not clear whether
those cases are of a practical use for an AED ap-
plication that highlights incorrect words in the hy-
pothesis, as in this case there is nothing to highlight.
More specifically, our approach does not consider
isolated deletions.

To illustrate that, let’s first consider an example
in which 2 words were transcribed as 1 word, mean-
ing that 1 word was omitted in the transcription.
For example, if "a very big cat" was transcribed as
"a small cat". An AED application would ideally
highlight the word "small" as a transcription error.
This case is actually covered by our approach, even
though one word is omitted in the transcription, be-
cause when creating the AED dataset we will label
“small” as an error and train the model accordingly
(details in section 3).

The cases that are not covered are when the ASR
model omits words while all the surrounding words
are transcribed correctly. For example "a very big
cat" that was transcribed as "a big cat". In this
case, all the words in the transcription hypothesis
are correct words and our approach is not expected
to discover any error. We chose not to cover those
cases as it is not clear if they are useful for an
error detection application, that usually needs to
highlight incorrect words in the hypothesis. In
addition, ignoring those cases is also in-line with
previous work (Zhou et al., 2005). Finally, our
analysis showed that those cases are extremely rare,
for example in clean they occur only in 0.37% of
the words.

Risks A possible risk posed by an AED system
could be caused by an over-reliance on it. Whereas
without AED, the entire output of an ASR system
may have been manually verified, with AED only
parts of output which the AED flagged may be
verified, leading to errors remaining that were not
found by the AED system.
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A Appendix

A.1 Implementation Details

Training. We fine-tune our BERT-based (Devlin
et al., 2019) model with a batch size of 51211, a
weight decay of 0.01, and a learning rate of 3e-512.
The maximum input length is set to 128 tokens.
We pad shorter sequences and truncate longer ones
to the maximum input length. We use the cross-
entropy loss function, optimizing the parameters
with the AdamW optimizer. We train for a maxi-
mum of 500 epochs and choose the checkpoint with
the maximum tagging accuracy on the development
set.13 The best checkpoint was found at epochs 100-
150 after approximately 8 hours of training time.
All models were trained on TPUs (4x4). BERT-
base has 110 million parameters, the inclusion of
confidences embeddings for RED-ACE added 10k
additional parameters. The confidence embedding
matrix is randomly initialized with truncated nor-
mal distribution14.

If a single word is split into several tokens during
BERT’s tokenization, all the corresponding tokens
get the confidence score of the original word. To
predict word-level errors (used throughout the pa-
per), we treat a word as an error if one of its tokens
was tagged as error by the model. To predict span-
level errors (reported for completeness in Table 9),
we treat every sequence of errors as one error-span
and every sequence of correct words as a correct-
span.

Binning. Table 6 presents results for different
binning algorithms and bin sizes. For binning algo-
rithms we use: (1) simple equal-width binning and
(2) quantile-based discretization (equal-sized buck-
ets). We note that there is no significant difference
between the results. In our main experiments we
used equal width binning with 10 bins. For special
tokens,15 that do not have confidence scores, we
chose to allocate a dedicated bin.

Statistics Significance Test. In table 2, in addi-
tion to the main results, we provide a statistic sig-
nificance tests results. For this purpose we pseudo-

11We choose the best among 128, 512 and 1024, based on
tagging accuracy on the development set.

12We choose the best among 5e-5, 4e-5, 3e-5, and 2e-5,
based on tagging accuracy on the development set.

13For RED-ACE the tagging accuracy was 95.4 on clean
and 89.7 on other.

14https://www.tensorflow.org/api_docs/python/
tf/keras/initializers/TruncatedNormal

15[CLS] and [SEP] in case of BERT.

Binning algorithm # Bins R P F1

Equal width bins
10 64.1 79.9 71.1
100 62.5 80.5 70.4
1000 63.2 80.7 70.9

Equal size bins 10 63.0 81.5 71.1

Table 6: Effect on different binning strategies (other).

Pool Subset Name Audio Hours # Examples

Clean

train-clean-100 100.6 28,539
train-clean-360 363.6 104,014
dev-clean 5.4 2,703
test-clean 5.4 2,620

Other
train-other-500 496.7 148,688
dev-other 5.3 2,864
test-other 5.1 2,939

Table 7: LibriSpeech corpus subsets statistics.

randomly shuffle all words in our test set, split them
up into 100 approximately equally sized subsets,
and compute recall, precision and F1 for each of
them for the baseline and RED-ACE models. We
then apply the Student’s paired t-test with p < 0.05
to these sets of metrics. To determine statistical
significance in F1 ∆% between different setups
evaluated on the same data set, F1 ∆% is com-
puted for each of the given subsets, and the same
significance test is applied to the resulting sets of
F1 ∆% between two setups.

A.2 Published AED Dataset

As described in §3, we generate our own AED
dataset. To this end we transcribe the LibriSpeech
corpus using 2 modes from Google Cloud Speech-
to-Text API.16 We choose the default model as our
main model and the video model as the additional
model17. We also enable the word-level confidence
in the API.18 Our submission includes the AED
dataset as well as the predictions of our models on
the test sets. We hope that our dataset will help
future researchers and encourage them to work on
AED.

The LibriSpeech Corpus Details. We provide
here additional details abut the LibriSpeech cor-
pus.19 The corpus contains approximately 1000
hours of English speech from read audio books.

16https://cloud.google.com/speech-to-text
17https://cloud.google.com/speech-to-text/docs/

basics#select-model
18https://cloud.google.com/speech-to-text/docs/

word-confidence#word-level_confidence
19https://www.openslr.org/12/
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Figure 5: A single example from our AED dataset.

ASR Model Pool Brier Score

default clean 0.069

other 0.142

video clean 0.06

other 0.1

Table 8: Brier Scores (evaluating confidence scores cal-
ibration, lower is better) for our dataset.

The corpus contains clean and other pools. The
training data is split into three subsets: train-clean-
100, train-clean-360 and train-other-500, with ap-
proximate sizes of 100, 360 and 500 hours respec-
tively. Each pool contains also a development and
test sets with approximately 5 hours of audio. Full
data split details can be seen in table 7. We note
that the #Examples is slightly different than the
numbers in our dataset (see table 1). When tran-
scribing with Google Cloud API, we occasionally
reached a quota limit and a negligible number of
examples was not transcribed successfully (up to
2% per split). The clean pool contains 2 training
sets, we used the larger one in our dataset (train-
clean-360).

Annotation Description. A single example
from our AED dataset can be seen is fig. 5. The
annotation contains the ASR hypothesis words, the
corresponding word-level confidence scores and
the ERROR or NOTERROR label.

License. This data as well as the underlying Libr-
Speech ASR corpus are licensed under a Creative
Commons Attribution 4.0 International License20.

20http://creativecommons.org/licenses/by/4.0/

clean other
R P F1 R P F1

C-O 31.0 27.5 29.1 23.4 20.2 21.7
BERT-MLM 27.4 12.3 17.0 22.2 11.6 15.2
BERT 47.1 59.6 52.6 37.1 46.6 41.3
BERT & C 44.5 55.5 49.4 35.5 43.7 39.2
BERT | C 48.9 51.0 49.9 40.6 40.2 40.4
BERTC 45.4 59.9 51.7 37.5 48.0 42.1

RED-ACE 49.4 63.6∗ 55.6∗ 42.1∗ 50.9∗ 46.1∗

F1 ∆% +5.4% +9.5%

Table 9: Span-level results for the main settings using
the errors from the default ASR model. The format is
similar to Table 2.
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