@inproceedings{hui-etal-2022-localized,
title = "A Localized Geometric Method to Match Knowledge in Low-dimensional Hyperbolic Space",
author = "Hui, Bo and
Xia, Tian and
Ku, Wei-Shinn",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.182/",
doi = "10.18653/v1/2022.emnlp-main.182",
pages = "2822--2832",
abstract = "Matching equivalent entities across Knowledge graphs is a pivotal step for knowledge fusion. Previous approaches usually study the problem in Euclidean space. However, recent works have shown that hyperbolic space has a higher capacity than Euclidean space and hyperbolic embedding can represent the hierarchical structure in a knowledge graph. In this paper, we propose a localized geometric method to find equivalent entities in hyperbolic space. Specifically, we use a hyperbolic neural network to encode the lingual information of entities and the structure of both knowledge graphs into a low-dimensional hyperbolic space. To address the asymmetry of structure on different KGs and the localized nature of relations, we learn an instance-specific geometric mapping function based on rotation to match entity pairs. A contrastive loss function is used to train the model. The experiment verifies the power of low-dimensional hyperbolic space for entity matching and shows that our method outperforms the state of the art by a large margin."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hui-etal-2022-localized">
<titleInfo>
<title>A Localized Geometric Method to Match Knowledge in Low-dimensional Hyperbolic Space</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Hui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tian</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei-Shinn</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Matching equivalent entities across Knowledge graphs is a pivotal step for knowledge fusion. Previous approaches usually study the problem in Euclidean space. However, recent works have shown that hyperbolic space has a higher capacity than Euclidean space and hyperbolic embedding can represent the hierarchical structure in a knowledge graph. In this paper, we propose a localized geometric method to find equivalent entities in hyperbolic space. Specifically, we use a hyperbolic neural network to encode the lingual information of entities and the structure of both knowledge graphs into a low-dimensional hyperbolic space. To address the asymmetry of structure on different KGs and the localized nature of relations, we learn an instance-specific geometric mapping function based on rotation to match entity pairs. A contrastive loss function is used to train the model. The experiment verifies the power of low-dimensional hyperbolic space for entity matching and shows that our method outperforms the state of the art by a large margin.</abstract>
<identifier type="citekey">hui-etal-2022-localized</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.182</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.182/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>2822</start>
<end>2832</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Localized Geometric Method to Match Knowledge in Low-dimensional Hyperbolic Space
%A Hui, Bo
%A Xia, Tian
%A Ku, Wei-Shinn
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F hui-etal-2022-localized
%X Matching equivalent entities across Knowledge graphs is a pivotal step for knowledge fusion. Previous approaches usually study the problem in Euclidean space. However, recent works have shown that hyperbolic space has a higher capacity than Euclidean space and hyperbolic embedding can represent the hierarchical structure in a knowledge graph. In this paper, we propose a localized geometric method to find equivalent entities in hyperbolic space. Specifically, we use a hyperbolic neural network to encode the lingual information of entities and the structure of both knowledge graphs into a low-dimensional hyperbolic space. To address the asymmetry of structure on different KGs and the localized nature of relations, we learn an instance-specific geometric mapping function based on rotation to match entity pairs. A contrastive loss function is used to train the model. The experiment verifies the power of low-dimensional hyperbolic space for entity matching and shows that our method outperforms the state of the art by a large margin.
%R 10.18653/v1/2022.emnlp-main.182
%U https://aclanthology.org/2022.emnlp-main.182/
%U https://doi.org/10.18653/v1/2022.emnlp-main.182
%P 2822-2832
Markdown (Informal)
[A Localized Geometric Method to Match Knowledge in Low-dimensional Hyperbolic Space](https://aclanthology.org/2022.emnlp-main.182/) (Hui et al., EMNLP 2022)
ACL