
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 346 - 359
December 7-11, 2022 ©2022 Association for Computational Linguistics

Linearizing Transformer with Key-Value Memory

Yizhe Zhang∗
Meta AI †

yizhe.zhang@hotmail.com

Deng Cai∗
The Chinese University of Hong Kong

thisisjcykcd@gmail.com

Abstract

Efficient transformer variants with linear time
complexity have been developed to mitigate
the quadratic computational overhead of the
vanilla transformer. Among them are low-
rank projection methods such as Linformer
and kernel-based Transformers. Despite their
unique merits, they usually suffer from a perfor-
mance drop comparing with the vanilla trans-
former on many sequence generation tasks, and
often fail to obtain computation gain when
the generation is short. We propose Mem-
Sizer, an approach towards closing the per-
formance gap while improving the efficiency
even with short generation. It projects the
source sequences into lower dimension rep-
resentations like Linformer, while enjoying
efficient recurrent-style incremental computa-
tion similar to kernel-based transformers. This
yields linear computation time and constant
memory complexity at inference time. Mem-
Sizer also employs a lightweight multi-head
mechanism which renders the computation as
light as a single-head model. We demon-
strate that MemSizer provides an improved bal-
ance between efficiency and accuracy over the
vanilla transformer and other efficient trans-
former variants in three typical sequence gen-
eration tasks, including machine translation,
abstractive text summarization, and language
modeling. Our code is released at https:
//github.com/jcyk/memsizer

1 Introduction

Transformer (Vaswani et al., 2017) has become the
de facto standard for almost all NLP tasks across
the board. At the core of the vanilla transformer
is the attention mechanism that captures the in-
teractions between feature vectors at different po-
sitions in a sequence. Despite its great success,
the vanilla transformer models are typically com-
putationally expensive as the computation of the

∗Equal contribution.
† Currently at Apple

attention mechanism scales quadratically with the
sequence length. This bottleneck limits the effi-
cient deployment of large-scale pre-trained models,
such as GPT-3 (Brown et al., 2020), Image Trans-
former (Parmar et al., 2018), Codex (Chen et al.,
2021) and DALL-E (Ramesh et al., 2021). Training
and deploying such gigantic transformer models
can be prohibitively difficult for scenarios with
limited resource budgets and may result in huge
energy consumption and greenhouse gas emission
(Strubell et al., 2019; Schwartz et al., 2020).

A number of transformer variants have been
proposed to reduce the computational overhead
(Tay et al., 2020c). One family of methods lever-
ages low-rank projections to reduce the number
of pair-wise interactions (i.e., the size of attention
matrices) (Wang et al., 2020; Xiong et al., 2021;
Tay et al., 2020a). These methods first project
the input sequence into a low-resolution represen-
tation. For example, Wang et al. (2020) project
the length dimension to a fixed feature dimension.
Nevertheless, these methods have difficulties mod-
eling variable-length sequences and autoregressive
(causal) attention, impeding their applications in
sequence generation tasks. Recent works propose
to approximate the softmax attention through ker-
nelization (Katharopoulos et al., 2020; Peng et al.,
2021; Choromanski et al., 2021; Kasai et al., 2021).
For sequence generation tasks, these works can
cache computation in a recurrent manner, leading
to constant memory complexity in sequence length
during inference. Despite the improved efficiency
in long-form generation, the computation gain of
these kernel-based approaches vanishes when the
generation is as short as a typical sentence length.
Additionally, they usually suffer from a perfor-
mance loss when training from scratch (Kasai et al.,
2021).

In this work, we propose an approach called
MemSizer, an efficient transformer variant which
follows the paradigm of low-rank projections while

346

https://github.com/jcyk/memsizer
https://github.com/jcyk/memsizer


enjoying memory-efficient recurrent-style genera-
tion as the kernel-based transformers. Concretely,
we develop a key-value memory layer (Sukhbaatar
et al., 2015) to substitute the multi-head attention
layer in the vanilla transformer. We pack the infor-
mation in the source sequence into a fixed-sized set
of memory values in a length-dynamic manner, and
use input-independent parametric matrices as the
memory keys. In this way, we emphasize more on
modeling the values and significantly simplify the
design of keys. This unbalanced design of keys and
values further enables us to suppress the multi-head
computation to be as fast as with single head.

MemSizer is conceptually simple yet can han-
dle variable-length sequences and causal attention
for generation thanks to the length-dynamic pro-
jection. With the unbalanced memory layer and
dynamic projection, MemSizer enjoys linear time
complexity and constant memory complexity. Our
experiments in three typical sequence generation
tasks (machine translation, abstractive text summa-
rization, and language modeling) show that the pro-
posed method achieves comparable or better perfor-
mance to state-of-the-art linear recurrent transform-
ers, with more substantial reductions in inference
latency, memory consumption, and model size. The
advantages are more prominent with longer input
lengths. In some tasks, the proposed MemSizer can
maintain or even improve the performance of the
vanilla transformer, offering an appealing alterna-
tive for sequence generation tasks.

2 Preliminaries

2.1 Key-Value Memory Networks
We first review the general ideas of memory net-
works (Graves et al., 2014; Sukhbaatar et al., 2015).
In a nutshell, given a set of source vectors Xs ={xs

i}Mi=1, a basic key-value memory network first
projects the entire set into memory key vectors
K ∈ RM×h and value vectors V ∈ RM×h respec-
tively. A target vector xt for querying the key-
value memories will also be embedded as q ∈ Rh

which shares the same embedding space of K. This
is followed by computing a probability vector over
the key vectors according to the inner product simi-
larity:

α = f(qKT ), (1)

where f denotes an activation function. A typical
choice for f is the softmax function. The output
vector xout, which can be used for final prediction

or next layer’s input, is simply summarizing over
the value vectors according to their probabilities:

xout = αV. (2)

2.2 Transformer

Architecture The vanilla transformer architec-
ture consists of multi-head attention, feedforward
layers, and layer normalization modules (Vaswani
et al., 2017). The multi-head attention module
(referred to as standard attention, or SA, through-
out this paper) plays a core role in a vanilla trans-
former. SA takes input as sequences of source
and target vectors. The source vectors are used to
produce key and value features, while the target
vectors are mapped to query vectors. We denote
the source and target vectors by Xs ∈ RM×d and
Xt ∈ RN×d, where d is the model dimensionality.
The input vectors for each head are first mapped
to h-dimensional query, key, and value features by
learned affine transformations with W∗ ∈ Rd×h
and b∗ ∈ Rh:

Q =XtWq + bq, K =XsWk + bk, (3)

V =XsWv + bv. (4)

The attention is achieved by computing the normal-
ized similarities of query vector and key vectors:

α = softmax(QKT√
h
). (5)

The attention weights α are then used to calculate
a weighted average of the value vectors as in eq (2).
It is generally assumed there are r attention heads
of h-dimensional such that d = hr. SA performs
above procedure for each of the r heads in parallel
and concatenates r output vectors to get the final
d-dimensional vector:1

Xout = [Xout(1) , . . . ,Xout(r)]Wo + bo, (6)

where Wo ∈ Rd×d and bo ∈ Rd are the output pro-
jection weights.

Time Complexity The computation in a trans-
former can be divided into three stages:(i) FEATURE MAPPING: The time complexity
of the computation of Q, K, and V for all r heads
(Eq. (3-4)) is O(Nd2), O(Md2), and O(Md2),
respectively.

1The layer normalization (Ba et al., 2016) and residual
connection (He et al., 2016) steps are suppressed for brevity.

347



(ii) ATTENTION: The time complexity of the
computation of attention matrices for all r heads
(Eq. (5)) is O(MNd), which scales quadratically
in sequence length (M , N ).(iii) PROJECTION: The time complexity of pro-
jecting the concatenated xout from r heads back to
d-dimensional vector is O(Nd2).

Taking all three parts together, a SA module
scales atO(MNd+Md2+Nd2). When sequence
length is long (M,N ≫ d), O(MNd) will domi-
nate the computation.

Memory Complexity At every generation step,
query, key, and value vectors consume space com-
plexity of O(d), O(Md), and O(Md), respec-
tively. Every step’s attention weight (Eq. (5))
attends across M source positions, consumingO(Mr) space.

3 MemSizer: A Different Perspective of
Attention Mechanism

As discussed in Section 2.2, the SA in the vanilla
transformer can be perceived as an instantiation
of the key-value memory network in Section 2.1,
where the memory key K and value V are point-
wise projections of the source Xs. In this work,
we replace the SA module with a different mem-
ory mechanism which achieves recurrent inference
computation thus linear complexity. Our memory
mechanism comes with a different specification of
query, key and value in SA. Specifically, following
Eq. (1-2), we specify the key-value memory layer
as

Q =Xt, K =Φ, (7)

V = LN(Wl(Xs)T )LN(XsWr). (8)

Unbalanced Key-value Memory Mechanism
The key-value memory layer in MemSizer contains
k memory slots. Inspired by Tay et al. (2020a),
which demonstrates that query-key attention can be
significantly simplified in the vanilla transformer,
the key matrix Φ ∈ Rk×d in Eq. (7) is a learnable
parametric matrix, which is input-independent and
shared across different instances. The value matrix
in MemSizer, likewise, contains k memory value
vectors of d dimension. It summarizes the source
information into a fixed-sized space Rk×d regard-
less of the source length M . Compared with the
vanilla Transformer which treats keys and values
equally, this unbalanced key-value mechanism em-
phasizes learning better input-dependent values to
match with input-independent keys.

Values Matrix via Dynamic-length Projection
To pack the source information into the Rk×d value
matrix, Linformer (Wang et al., 2020) uses a low-
rank projection. However, performing the low-rank
projection would require the input sequence length
M to be preset before training, making Linformer
difficult to be applied to scenarios with dynamic in-
put length and generation tasks. To solve this issue,
we apply a linear kernel (XTX) to the source input
Xs to cancel out the length dimension M , so that
M is not required to be preset. The value matrix es-
sentially captures the second moment (covariance)
information from the source Xs (El-Nouby et al.,
2021; Zhu et al., 2021). We use two adaptor projec-
tion matrices Wl ∈ Rk×d and Wr ∈ Rd×d to project
source information into k global token-independent
memory value vectors2. The value matrix V is for-
mulated in Eq. (8), where LN(⋅) denotes the layer
normalization (Ba et al., 2016), which makes the
training robust in our experiments. To control the
magnitude of V across variable-length input se-
quences, we multiply the V by a scaling factor
of 1/√M , which resembles the rescaling rationale
from SA in Eq. (5).

Lightweight Multi-head Computation The
model can be made more expressive with multi-
head specification, where we share V across r dif-
ferent heads but use a distinct K for each head.
Following Lample et al. (2019), the outputs from
each head are simply aggregated through mean-
pooling. Specifically,

Xout = 1/r ⋅ r∑
i=1X

out(i) , (9)

where Xout(i) is the output from i-th head. The final
output X has dimension d, therefore the output
projection layer in the vanilla transformer is no
longer needed.

In MemSizer, the above multi-head computation
is negligible, as it can be done by first averaging the
attention weights α in Eq. (1) from different heads
into ᾱ, followed by as if performing single-head
attention using ᾱ. The overall computation is as
lightweight as a single-head model.

Recurrent Computation for Memory-efficient
Generation Similar to previous kernel-based
transformers (Kasai et al., 2021; Peng et al., 2021),

2Note that the inclusion of Wr does not affect the dimen-
sionality of V. However, in our experiments removing the
Wr will harm the performance.

348



generation computation in MemSizer can be rolled
out as a recurrent procedure. At each gener-
ation step i, define Vi as the recurrent states
(Katharopoulos et al., 2020):

Vi = i∑
j=1LN(Wl(xs

j)T )LN(xs
jWr), (10)

where xs
j is the j-th row of Xs, Vi can be perceived

as a rolling-sum matrix:

Vi =Vi−1 + LN(Wl(xs
i )T )LN(xs

iWr). (11)

Consequently, the output xout
i can be computed

in an incremental manner from cached recurrent
matrix Vi−1. This avoids quadratic computation
overhead in input sequence length.

Time Complexity We break down the time com-
plexity of each step in MemSizer. MemSizer pro-
ceeds over two stages which correspond to the first
two stages of SA. The last output projection stage
in SA does not exist in MemSizer.(i) MEMORY PROJECTION: To obtain the value
matrix V (Eq. (8), shared over heads), we first
compute Wl(Xs)T and XsWr, of which the time
complexity isO(Mdk) andO(Md2), respectively.
The product of Wl(Xs)T and XsWr further takesO(Mdk). In total, O(Md2 +Mdk).(ii) ATTENTION: The attention computation
(Eq. (1)) is computed with O(Ndk).

Taking both parts together, the attention mech-
anism in MemSizer scales with O(Mdk +Md2 +
Ndk). Compared to O(MNd +Md2 +Nd2) of
SA, we see that if the number of memory slots k is
much smaller than sequence lengths (k <<M,N ),
the change of time complexity from O(MNd) toO(Mdk) +O(Ndk) brings a substantial speedup.

Memory Complexity MemSizer only needs to
store the value matrix V, and thus its space com-
plexity isO(dk), constant in sequence length. This
implies a reduction in memory footprints when
k <<M , compared to SA’s O(Md).
Comparison with Other Transformers Com-
pared with the vanilla transformer, each mem-
ory slot value vj∈{1,⋯,k} summarizes a global
position-agnostic feature of the source context Xs.
MemSizer enjoys linear time complexity as Lin-
former and additionally possesses the advantage
of recurrent-style sequence generation as kernel-
based transformers. A detailed comparison among
MemSizer, the vanilla transformer and other effi-
cient transformers is in the Appendix B (Table 4).

4 Experiments

We present extensive experiments on three typical
sequence generation tasks in NLP, including ma-
chine translation, abstractive text summarization,
and language modeling.

4.1 Baselines

We compare MemSizer with previous transformer
variants with linear time complexity and con-
stant memory complexity in input sequence length,
which limits the comparison to kernelization ap-
proaches (Katharopoulos et al., 2020; Peng et al.,
2021; Choromanski et al., 2021; Kasai et al., 2021).
Linformer assumes a fixed sequence length. This
makes Linformer suit well with understanding
tasks but difficult to be applied to generation tasks,
as generation tasks typically assume variable gen-
eration length and autoregressive (causal) attention
Likewise, Synthesizer needs to specify the maxi-
mum input length and thus does not suit well tasks
with variable generation lengths. Thus Linformer
and Synthesizer are excluded from the comparison.
The compared methods correspond to three differ-
ent feature maps ϕ: ELU (ϕ (x) = elu (x) + 1,
Katharopoulos et al., 2020); RFA (random feature
approximation with softmax temperature reparam-
eterization, Peng et al., 2021; Katharopoulos et al.,
2020); T2R (trainable random feature). Performer
(Choromanski et al., 2021) employs a similar ran-
dom approximation to RFA. We omitted it from
the comparison as it diverges during training in our
experiments. All models are randomly initialized
via Xavier initialization (Glorot and Bengio, 2010).

4.2 Machine Translation

Setup We experiment with WMT16 En-De
(4.5M train pairs, average target length 29.5 to-
kens), WMT14 En-Fr (36M, 31.7) and WMT17
Zh-En (20M, 28.5) translation benchmarks (Bojar
et al., 2016). We follow the experiment setup, pre-
processing and data splits by previous work (Kasai
et al., 2021). Following Vaswani et al. (2017), we
use the large-sized transformer with 6 layers, 16
attention heads, 1024 model dimensions, and 4096
hidden dimensions for both the encoder and de-
coder. We apply dropout with 0.3, weight decay
with 0.01, and label smoothing with ε = 0.1. Fol-
lowing Ott et al. (2018), we use an increased batch
size of approximately 460K tokens by accumulat-
ing gradients without updating parameters. Each

349



Model k (cross, causal) En-De En-Fr Zh-En Speed Memory Model size
ELU 64 64 28.4 * 23.4 4605.6 9.842G 209M
RFA 32 4 28.1 41.7 23.4 3771.6 4.058G 210M
T2R 32 4 27.5 39.8 23.1 5408.4 4.057G 210M
MemSizer 32 4 28.4 42.4 24.5 7476.3 3.896G 176M
Transformer – – 28.9 42.2 24.2 5506.5 5.537G 209M

Table 1: Machine translation test results on MT datasets. The results for baselines are from Kasai et al. (2021). The
vanilla transformer is implemented following Vaswani et al. (2017). (Vaswani et al. (2017) reports BLEU= 28.4 for
En-De and 41.8 for En-Fr, which is worse than this implementation). “*” indicates divergence during training. The
inference speed (Speed) measured in the number of tokens per second, peak memory usage (Memory), and model
size are benchmarked on En-De translation task.

model is trained from random initialization for 30K
(60K for the large En-Fr dataset) steps using Adam
with a learning rate of 5 ⋅ 10−4 and β = (0.9,0.98)
(Kingma and Ba, 2015). We employ beam search
decoding with beam size 5 and length penalty 1.0
(Wu et al., 2016). The checkpoints from the last
five epochs are averaged to obtain the final model
(Vaswani et al., 2017). Following previous works,
we use tokenized BLEU (Papineni et al., 2002) for
evaluation. Our method is applied to both cross and
causal attention. Following Kasai et al. (2021), we
use memory sizes k = (32,4) for cross and causal
attention.

Results Table 1 presents machine translation re-
sults. In general, the kernel-based transformers suf-
fer from additional overhead when the generated
sequence is relatively short (∼ 30 tokens in this
task), leading to an incremental speedup compared
with the vanilla transformer. ELU has a much larger
feature size k, leading to increased memory over-
head. With ∼ 17% smaller model size, MemSizer
outperforms RFA and T2R while being compara-
ble to ELU, in terms of test BLEU score in En-De.
In En-Fr and Zh-En, MemSizer outperforms all
baseline methods including the vanilla transformer.

As a result of significantly reduced model size,
MemSizer achieves faster generation time and
more efficient GPU memory utilization compared
to other linear recurrent transformer variants.

4.3 Abstractive Text Summarization

Setup We evaluate on two popular datasets,
namely CNN/DailyMail (Hermann et al., 2015)
and XSUM (Narayan et al., 2018). We used the
standard splits of (Nallapati et al., 2016) for train-
ing, validation, and testing (287,113/13,368/11,490
documents). The average lengths of articles
and highlights are 766 and 53 respectively.
The XSUM dataset (Narayan et al., 2018) con-

sists of 227K (204,045/11,332/11,334 for train-
ing/validation/testing) BBC articles covering a
wide variety of subjects. The average lengths of
articles and summaries are 431 and 23 respectively.

We follow Lewis et al. (2020) for data pre-
processing and model configuration. We use the
BART-large configuration with 12 layers, 16 at-
tention heads, 1024 model dimensions, and 4096
hidden dimensions for both the encoder and de-
coder. We apply dropout with 0.1, weight decay
with 0.01, and label smoothing with ε = 0.1. Each
model is trained from random initialization for 50K
steps using Adam (Kingma and Ba, 2015). We em-
ploy beam search decoding with length penalty as
in Lewis et al. (2020). We use the standard ROUGE
metrics (F1 scores ROUGE-1/2/L) (Lin, 2004) for
evaluation. Following the settings in machine trans-
lation, we use memory sizes k = (32,4) for cross
and causal attention.

Results Table 2 presents abstractive text summa-
rization results in ROUGE scores. MemSizer out-
performs RFA and T2R on both datasets in terms
of ROUGE scores.3 On the XSUM dataset, Mem-
Sizer even achieves better results than the vanilla
transformer while being much faster and memory-
efficient. On the CNN/DailyMail dataset, however,
there are still considerable performance gaps be-
tween MemSizer and the vanilla transformer. We
attribute it to the distinct characteristics of the two
datasets. XSUM contains highly abstractive sum-
maries while the summaries in the CNN/DailyMail
tend to be more extractive. In fact, the Lead-3 base-
line (Zhang et al., 2020) outperforms all presented
models. We hypothesize that MemSizer may suffer
from the limited capacity of the reduced memory
bank for memorizing the exact wordings in the
source documents.

3We omitted the results of ELU because it diverged during
training in our experiments.

350



Model k XSUM CNN/DailyMail Speed Memory
cross casual R1 R2 RL R1 R2 RL

Lead-3 16.3 1.6 12.0 40.4 17.6 36.7
RFA 32 4 28.0 9.0 22.4 35.0 10.7 31.9 323.4 8.6G
T2R 32 4 28.6 9.3 22.8 35.8 11.2 32.7 358.3 6.2G
MemSizer 32 4 32.3 11.6 25.8 36.3 12.1 33.1 412.3 5.9G
Transformer – – 31.8 11.3 25.3 39.1 15.3 35.8 338.6 23.4G
Zhang et al. (2020) – – 30.8 10.8 24.4 38.3 15.0 35.5 - -

Table 2: Summarization test results on XSUM and CNN/DailyMail datasets. The inference speed (Speed) measured
in the number of tokens per second and peak memory usage (Memory) are benchmarked on XSUM dataset. The
last row is from Zhang et al. (2020) with the same transformer architecture in our Transformer baseline.

Similar to machine translation, the kernel-based
transformers suffer from additional overhead when
the generated sequence is relatively short (∼ 30
tokens for summaries), leading to an incremen-
tal speedup compared with the vanilla transformer.
However, the reduction in peak memory consump-
tion is substantial. This is because the lengthy input
documents are packed into a fixed-sized key-value
memory bank. Overall, MemSizer achieves the
largest speed-up (22% speed-up compared to the
vanilla transformer) and the smallest memory con-
sumption (75% reduction compared to the vanilla
transformer).

4.4 Language Modeling

Setup For the first task, we use the WikiText-103
language model (LM) benchmark, which consists
of 103M tokens sampled from English Wikipedia
(Merity et al., 2017). Following Kasai et al. (2021),
we choose similar hyperparameters to prior work
(Baevski and Auli, 2019; Fan et al., 2020): 32 lay-
ers, 8 heads, 128 head dimensions, 1024 model
dimensions, 4096 fully connected dimensions and
dropout (Srivastava et al., 2014) and layer dropout
rates of 0.2. We set the memory size k to be 32.
The word embedding and softmax matrices are tied
(Press and Wolf, 2017; Inan et al., 2017). We parti-
tion the training data into non-overlapping blocks
of 512 contiguous tokens and train the model to
autoregressively predict each token (Baevski and
Auli, 2019). Validation and test perplexities are
measured by predicting the last 256 words out of
the input of 512 consecutive words to avoid evalu-
ating tokens in the beginning with limited context
(early token curse, Press et al., 2021). We generally
follow the optimization method from Baevski and
Auli (2019), with a slight modification for some
hyperparameters including learning rate (we use
10−4), which shows better convergence. To evalu-
ate the time and memory efficiency of MemSizer

Model k
PPL Speed Memory Model

dev. test Size
ELU 128 22.0 22.8 2491 6.825G 449M
RFA 32 20.4 21.3 2311 3.731G 449M
T2R 32 20.1 20.8 2692 3.733G 450M
MemSizer 32 20.2 20.8 3165 3.373G 357M
Transformer – 17.9 18.5 1932 19.21G 448M

Table 3: WikiText-103 language modeling results in
perplexity. The speed is measured for free text genera-
tion in the number of tokens per second. The top three
rows are implementations from Kasai et al. (2021). The
vanilla transformer is implemented according to Baevski
and Auli (2019), which reports the test perplexity to be
18.7 (worse than our 18.5 result).

in sequence generation, we generate 256 tokens for
each method. The batch size is set to be 256.

Results Table 3 presents the language modeling
results in perplexity and computation cost. We ob-
serve that MemSizer outperforms ELU and RFA,
and achieves comparable performance to T2R, sug-
gesting that a similar level of performance to the
state-of-the-art kernel-based transformer can be ob-
tained without approximating the softmax attention
in the vanilla transformer. The generation time,
memory usage, and model size are significantly re-
duced in MemSizer. We attribute this reduction to
the fact that MemSizer: i) uses fewer parameters in
feature mapping as it projects the input into a much
lower dimension k; ii) does not have the output
projection layer; iii) suppresses the computation
of intermediate state for feature mapping required
in kernel-based transformers. There remains a gap
of 2.3 perplexity points between the MemSizer and
transformer models, which might be reduced by
leveraging a swap-then-finetune approach similar
to Kasai et al. (2021). Further improvement of the
MemSizer is left for future work. Compared with
the results from machine translation and abstrac-
tive text summarization, we hypothesize that Mem-

351



G
en

er
at

io
n 

Sp
ee

d 
(to

ke
ns

/s
)

5,000

10,000

15,000

20,000

25,000

30,000

Sequence Length

8 16 32 64 128 256 512

MemSizer RFA
ELU T2R
Transformer

(a) Generation speed.

D
ec

od
er

 M
em

or
y 

A
llo

ca
tio

n 
(M

B
)

2^9

2^10

2^11

2^12

2^13

2^14

Sequence Length

8 16 32 64 128 256 512

MemSizer RFA
ELU T2R
Transformer

(b) Peak memory consumption.

Figure 1: Computational overhead of machine translation (En-Dn) of different sequence lengths.

Te
st

 P
er

pl
ex

ity
 

20

21

22

23

Number of Memory Slots

8 16 32 64 128

MemSizer

k

(a) Effect of different numbers of memory slots k.

Te
st

 P
er

pl
ex

ity
 

20

21

22

23

Number of Attention Heads 

1 2 4 8 16

MemSizer

r

(b) Effect of different numbers of attention heads r.

Figure 2: Language model (Wikitext-103) perplexities of different model configurations.

Sizer is more advantageous with cross-attention in
encoder-decoder architectures.

4.5 Analysis of MemSizer

Computational Overhead vs. Sequence Length
As discussed, MemSizer is a linear and recurrent
model for sequence generation tasks. To evaluate
the time and memory efficiency against length, we
run a set of experiments with different sequence
lengths. For simplicity, we assume the source
length is equal to the target length in our exper-
iments (Kasai et al., 2021). Figure 1a and 1b show
the time and memory cost results of MT (En-De)
models in Table 1. All models are tested using
greedy decoding with the same batch size of 256
on the same NVIDIA A100 GPU. As shown in
figure 1a, we observe that MemSizer can gener-
ate a nearly-constant number of tokens per second
regardless of the sequence length, dramatically out-
pacing the vanilla transformer model in longer se-
quence generation (300% speedup when the length
becomes 512). MemSizer also outperforms other
linear recurrent variants by large margins (35%
faster than ELU for 512-length sequences). The
maximum speedup compared with other linear re-
current variants is achieved at length=64. Figure 1b

plots decoder memory consumption when running
the generation with different lengths. The curves
show that the peak memory consumption is almost
a constant over varying sequence lengths and is con-
sistently lower than other baselines. This reveals
the potential of MemSizer to achieve even more sig-
nificant speed gains by allowing for a larger batch
size thanks to its lower memory consumption.

Number of Memory Slots Next, we study the
effect of the number of memory slots k. Figure
2a compares the test perplexities using different
values of k on the WikiText-103 language model
task. We observe that the performance gets bet-
ter as k goes larger. Among the values of k in
Figure 2a, we do not observe that the number of
memory slots k has a considerable impact on infer-
ence time and memory cost. Presumably, as shown
in Section 3, as k is generally much smaller than
the model dimension d, a larger k does not slow
down the inference. However, during training time,
processing time per token is roughly linear to k,
presumably because more intermediate states need
to be stored for back-propagation.

Number of Attention Heads We also investi-
gate the impact of the number of attention heads

352



on model performance. Figure 2b shows the re-
sults with varying values of r on the WikiText-103
language model task. As can be seen, the number
of attention heads slightly affects the test perplex-
ity, resulting in slightly better performance with
more attention heads. No significant difference
in training and inference overhead is observed, as
the multi-head computation is lightweight in Mem-
Sizer (e.g., setting r = 16 only introduces 4.5 %
more parameters and GPU memory than r = 1).

MemSizer with alternative design of Keys K
We further experiment with freezing the keys K
with random standard Xavier initialization and let
the input q adapt to these keys. In both language
model and machine translation tasks, the perfor-
mance dropped by a relatively small margin (See
Appendix C, Table 5), indicating learning K is less
essential comparing to learning V. Another evi-
dence of this is that we also performed experiments
to model K in the same input-dependent manner
as V, which failed to yield performance gains.

5 Related Work

Transformers with Memory Mechanism Previ-
ous work investigated injecting a memory mecha-
nism into transformers. Burtsev et al. (2020) aug-
mented Transformer by adding memory tokens to
store non-local representation. Lample et al. (2019)
used a product key memory layer to substitute the
feed-forward layer in Transformer. Fan et al. (2021)
used a KNN-based information fetching module to
enable Transformer access to external knowledge.
Our approach is fundamentally different from them
as we replace the standard attention (SA) with a
key-value memory layer, which leads to linear com-
plexity and recurrent computation.

Recurrent Transformers Previous work pro-
posed several recurrent transformers focusing on
approximating the softmax attention kernel be-
tween q and k by projecting them via feature map
function ϕ(⋅). These recurrent variants scale at
the linear time and constant space complexity in
sequence length. Katharopoulos et al. (2020) pro-
posed ϕ (x) = elu (x) + 1 and applied it to image
generation. In language modeling and machine
translation tasks, RFA (Peng et al., 2021) and Per-
former (Choromanski et al., 2021) used random
features that approximate the softmax attention via
Monte Carlo sampling (Rahimi and Recht, 2007;
Yu et al., 2016). T2R (Kasai et al., 2021) used train-

able feature mapping which allows smaller feature
size thus further improving the efficiency. Schlag
et al. (2021) connects kernel-based transformers
with previous Fast Weight Programmers. However,
approximating softmax typically needs additional
steps to obtain intermediate feature mapping re-
sults. Instead of approximating the self-attention
softmax kernel, MemSizer employs a key-value
memory module, which suppresses these interme-
diate steps. The output projection step in SA is also
omitted in this key-value memory module, yielding
further computation and memory savings.

Other Efficient Transformers One family of
efficient transformers limited the receptive fields
that are attended to by sparsifying the attention
patterns. Some works introduced fixed patterns of
blockwise attention (Qiu et al., 2020) and strided
attention (Child et al., 2019; Beltagy et al., 2020;
Zaheer et al., 2020). (Sukhbaatar et al., 2019)
learned sparse attention patterns in a data-driven
manner. These sparse local attention approaches
reduced the computation at a cost of potentially
harming the modeling capacity. Another family of
efficient transformers compresses the context via
low-rank projections to reduce memory overhead
(Wang et al., 2020; Tay et al., 2020a). Other meth-
ods add “global tokens" as surrogates for global
information exchange (Rae et al., 2020; Ma et al.,
2021) or employ clustering-based attention (Kitaev
et al., 2020; Roy et al., 2020; Tay et al., 2020b). We
compared MemSizer in detail with some of these
efficient Transformers in the Appendix B.

Prior work also suggested many other strategies
to improve efficiency in transformers, such as fac-
torization (Dehghani et al., 2019; Lan et al., 2020),
pruning (Michel et al., 2019; Fan et al., 2020), and
quantization (Zafrir et al., 2019; Shen et al., 2020).
Some of these methods present orthogonal design
choices and can be integrated into our MemSizer
model to gain further efficiency.

6 Conclusion

We present MemSizer, a method that leverages a
novel key-value memory network specification to
accelerate the original self-attention module. Mem-
Sizer compresses source information to a set of
global memory entries and uses an unbalanced key-
value mechanism which further leads to lightweight
multi-head computation. MemSizer advances re-
cent recurrent transformers with kernel approxima-
tion with lower time, memory, and storage cost

353



during generation. Our experiments in three stan-
dard generation tasks demonstrate that our model
achieves an improved balance between efficiency
and accuracy. The proposed method can be stacked
with other computation reduction techniques to fur-
ther advance the efficiency of transformers.

Limitations

This work has several limitations. First, there is
still a performance gap between our method and
the vanilla transformer in the language modeling
task and CNN/Daily summarization task. We ex-
pect this can be closed by leveraging a swap-then-
finetune procedure similar to (Kasai et al., 2021).
We left it for future work as we focus on closing the
gap by training from scratch in this paper. It would
also be interesting to make the attention sparse so
that fewer memory slots are attended to further re-
duce the training and generation computation. We
also note that the feedforward layer still takes a lot
of computation, which can be further reduced by
unifying the self-attention layer with the feedfor-
ward layer with memory network framework.

Broader Impact

This work focuses on improving the natural lan-
guage processing (NLP) and general artificial intel-
ligence (AI) research community. Our work can be
leveraged to improve natural language generation
(NLG) models, including but not limited to text
editing, conversational agents and question answer-
ing systems. The broader impact the risks of this
work are summarized as following:
• This work can facilitate research in the NLG
tasks in a generic manner, to potentially accelerate
generations in applications like machine translation,
text summarization, and virtual assistants.
• This work is a fundamental research work that fo-
cuses on the technical improvement, thus we have
NOT imposed additional aggressive filtering tech-
niques to the text data we used, beyond what has
been performed to the original dataset from their
sources. The text data we used may have offensive-
ness/toxicity/fairness/bias issues that we have not
been able to identify, as those are not the focus of
this work.
• Given the above potential risks, due to the nature
of natural language generative models, we note
that the generations or outputs of this work, though
not likely, may reflect gender and other historical
biases in the data. Under rare circumstances, the

generations may exhibit a mild extent of unethical,
biased, or offensive attitudes. These are known
issues with current state-of-the-art text generation
models. We would hope that a faster generation
system like what we present can enable more itera-
tions of further mitigation strategies for inappropri-
ate and hallucinated generations.
• This work aims to advance AI technology in
an environmental-friendly manner. Our proposed
method can potentially reduce the carbon footprints
produced by AI models.

References
Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.

2016. Layer normalization.

Alexei Baevski and Michael Auli. 2019. Adaptive input
representations for neural language modeling. In
Proc. of ICLR.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri.
2016. Findings of the 2016 conference on machine
translation. In Proc. of WMT.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proc. of NeurIPS.

Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and
Grigory V Sapunov. 2020. Memory transformer.
arXiv preprint arXiv:2006.11527.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

354

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1809.10853
https://arxiv.org/abs/1809.10853
https://arxiv.org/abs/2004.05150
https://www.aclweb.org/anthology/W16-2301
https://www.aclweb.org/anthology/W16-2301
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509


Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamás Sar-
lós, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2021. Rethinking attention with per-
formers. In Proc. of ICLR.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Universal
transformers. In Proc. of ICLR.

Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron,
Piotr Bojanowski, Matthijs Douze, Armand Joulin,
Ivan Laptev, Natalia Neverova, Gabriel Synnaeve,
Jakob Verbeek, et al. 2021. Xcit: Cross-covariance
image transformers. In Advances in Neural Informa-
tion Processing Systems.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine
Bordes. 2021. Augmenting transformers with knn-
based composite memory for dialog. Transactions of
the Association for Computational Linguistics, 9:82–
99.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In Proc. of ICLR.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference
Proceedings.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In Proc. of CVPR.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In Proc. of
ICLR.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama,
Gabriel Ilharco, Nikolaos Pappas, Yi Mao, Weizhu
Chen, and Noah A Smith. 2021. Finetuning pre-
trained transformers into rnns. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10630–10643.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In Proc. of ICML.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proc. of ICLR.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Proc.
of ICLR.

Guillaume Lample, Alexandre Sablayrolles,
Marc’Aurelio Ranzato, Ludovic Denoyer, and
Hervé Jégou. 2019. Large memory layers with
product keys. In NeurIPS, volume 32.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Proc. of
ICLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proc. of ACL.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou,
Jonathan May, Hao Ma, and Luke Zettlemoyer. 2021.
Luna: Linear unified nested attention. Advances in
Neural Information Processing Systems, 34.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In Proc. of ICLR.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Proc. of
NeurIPS.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling neural machine translation. In
Proc. of WMT.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proc. of ACL.

355

https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1611.01462
https://arxiv.org/abs/1611.01462
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://arxiv.org/abs/1806.00187
https://www.aclweb.org/anthology/P02-1040.pdf
https://www.aclweb.org/anthology/P02-1040.pdf


Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. In Proc. of ICML.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021.
Random feature attention. In Proc. of ICLR.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better language modeling using shorter
inputs.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proc. of
EACL.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih,
Sinong Wang, and Jie Tang. 2020. Blockwise self-
attention for long document understanding. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2555–2565, Online. Association
for Computational Linguistics.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In Proc. of ICLR.

Ali Rahimi and Benjamin Recht. 2007. Random fea-
tures for large-scale kernel machines. In Proc. of
NeurIPS.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2020. Efficient content-based sparse
attention with routing transformers. TACL.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber.
2021. Linear transformers are secretly fast weight
programmers. In International Conference on Ma-
chine Learning, pages 9355–9366. PMLR.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020. Green ai. Communications of the
ACM, 63(12):54–63.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: hessian based ultra low
precision quantization of BERT. In Proc. of AAAI.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. JMLR.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive at-
tention span in transformers. In Proc. of ACL.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks. In
NeurIPS.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan,
Zhe Zhao, and Che Zheng. 2020a. Synthesizer: Re-
thinking self-attention in transformer models.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan,
Zhe Zhao, and Che Zheng. 2021. Synthesizer: Re-
thinking self-attention for transformer models. In In-
ternational Conference on Machine Learning, pages
10183–10192. PMLR.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-
Cheng Juan. 2020b. Sparse sinkhorn attention. In
Proc of ICML.

Yi Tay, M. Dehghani, Dara Bahri, and Donald Metzler.
2020c. Efficient Transformers: A survey.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov,
Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jes-
sica Yung, Andreas Steiner, Daniel Keysers, Jakob
Uszkoreit, et al. 2021. Mlp-mixer: An all-mlp archi-
tecture for vision. Advances in Neural Information
Processing Systems, 34.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
2021. Nyströmformer: A nyström-based algorithm
for approximating self-attention. In Proc. of AAAI.

Felix Xinnan X Yu, Ananda Theertha Suresh,
Krzysztof M Choromanski, Daniel N Holtmann-Rice,
and Sanjiv Kumar. 2016. Orthogonal random fea-
tures. In Proc. of NeurIPS.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: quantized 8bit BERT.
In Proc. of EMC2.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big Bird: Trans-
formers for longer sequences. In Proc. of NeurIPS.

356

http://proceedings.mlr.press/v80/parmar18a.html
https://openreview.net/forum?id=QtTKTdVrFBB
https://arxiv.org/abs/2012.15832
https://arxiv.org/abs/2012.15832
https://arxiv.org/abs/1608.05859
https://arxiv.org/abs/1608.05859
https://doi.org/10.18653/v1/2020.findings-emnlp.232
https://doi.org/10.18653/v1/2020.findings-emnlp.232
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://proceedings.neurips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2003.05997
https://arxiv.org/abs/2003.05997
https://aaai.org/ojs/index.php/AAAI/article/view/6409
https://aaai.org/ojs/index.php/AAAI/article/view/6409
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.aclweb.org/anthology/P19-1032
https://www.aclweb.org/anthology/P19-1032
https://arxiv.org/abs/2005.00743
https://arxiv.org/abs/2005.00743
http://proceedings.mlr.press/v119/tay20a.html
https://arxiv.org/abs/2009.06732
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2102.03902
https://arxiv.org/abs/2102.03902
https://arxiv.org/abs/1610.09072
https://arxiv.org/abs/1610.09072
http://arxiv.org/abs/1910.06188
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf


Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad
Shoeybi, Tom Goldstein, Anima Anandkumar, and
Bryan Catanzaro. 2021. Long-short transformer:
Efficient transformers for language and vision. In
NeurIPS, volume 34.

357



Appendix for Linearizing Transformer with Key-Value Memory

A Illustration of MemSizer

We provide an illustrative figure of Memsizer in Figure 3. Details are provided in the main text.

Figure 3: Illustration of the recurrent computation of Memsizer. “LN” represents the Layer Normalization.

B Detailed Comparison with Other Transformers

Q K V Linear Recurrent M -Agnostic
Transformer XtWq XsWk XsWv

Dim. N × h M × h M × h × × ✓
Synthesizer (R) I Φ XsWv

Dim. N ×N M ×N M × h × × ×
Synthesizer (D) Xt Φ XsWv

Dim. N × d M × d M × h × × ×
Linformer XtWq WeX

sWk WfX
sWv

Dim. N × h k × h k × h ✓ × ×
RFA/Performer ϕ(XtWq) ϕ(XsWk) XsWv

Dim. N × k M × k M × h ✓ ✓ ✓
Ours Xt Φ Wl(Xs)TXsWr

Dim. N × d k × d k × d ✓ ✓ ✓
Table 4: A high-level comparison of attention mechanism perspectives in different transformer variants, including
Synthesizer (Tay et al., 2021) random/dense (R/D), Linformer (Wang et al., 2020) and Performer (Choromanski
et al., 2021). Details are removed for brevity. “M -Agnostic” indicates the maximum source length M is not required
to be preset.

Comparison with Vanilla Transformer Compared with SA in the vanilla transformer, the number
of memory slots k in MemSizer is independent of the source sequence length M and can be arbitrarily
configured to balance between performance and efficiency. Also, we only pack the source information

358



Xs into V. Note that each row of V (vj∈{1,⋯,M}) in the vanilla transformer corresponds to one input
dimension out of the total length M , in a point-wise manner. However, in MemSizer, each memory
slot value vj∈{1,⋯,k} summarizes a global position-agnostic feature of the source context Xs. Vanilla
transformer is not linear and not recurrent.

Comparison with Linformer MemSizer operates with the original Xt rather than the projection of
Xt in Linformer. The key K in MemSizer does not contain source information. The projection matrices
Wl and Wr do not depend on source dimension M , which allows dynamic input length thus facilitating
generation. In contrast, the projection matrices We and Wf is a k ×M matrix. Linformer is linear but not
recurrent.

Comparison with Synthesizer/MLP-Mixer MemSizer also share similarities with Synthesizer (Tay
et al., 2021). MLP-Mixer (Tolstikhin et al., 2021) is computationally comparable to Synthesizer (random)
except that in MLP-mixer the f is an identity function. As show in Table 4, MemSizer becomes akin
to Synthesizer (dense) if the V is computed by an MLP Xs (V = XsWv + bv ∈ RM×h). However,
Synthesizer attends to M different token and MemSizer attends on k different memory slots in memory.
Consequently, Synthesizer scales quadratically with input length while MemSizer scales linearly. As
the maximum sequence length needs to be preset when initializing the weights, it is not straightforward
to apply Synthesizer to generation tasks with various input lengths. Synthesizer is not linear and not
recurrent.

C MemSizer with fixed Keys K

Inspired by the "random" version of Synthesizer (Tay et al., 2020a), we further experiment with fixing
the keys K and let the input q adapt to these keys. Specifically, we initialize K for each layer and each
head with standard Xavier initialization and freeze them during the training process. In both language
model and machine translation tasks, the performance dropped by a relatively small margin (Table 5).
Presumably, as k ≪ d, the keys in K are almost orthogonal with Xavier initialization, thus less likely to
“collide” with each other (Schlag et al., 2021). Therefore, updating K becomes less essential comparing
to other parts of the model.

LM (PPL) ↓ MT (BLEU) ↑
K Trainable 20.8 28.4
K fixed 21.3 27.8

Table 5: Fixing K results in performance decrease.

359


