@inproceedings{zhang-etal-2022-relu,
title = "{R}el{U}-Net: Syntax-aware Graph {U}-Net for Relational Triple Extraction",
author = "Zhang, Yunqi and
Chen, Yubo and
Huang, Yongfeng",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.282",
doi = "10.18653/v1/2022.emnlp-main.282",
pages = "4208--4217",
abstract = "Relational triple extraction is a critical task for natural language processing. Existing methods mainly focused on capturing semantic information, but suffered from ignoring the syntactic structure of the sentence, which is proved in the relation classification task to contain rich relational information. This is due to the absence of entity locations, which is the prerequisite for pruning noisy edges from the dependency tree, when extracting relational triples. In this paper, we propose a unified framework to tackle this challenge and incorporate syntactic information for relational triple extraction. First, we propose to automatically contract the dependency tree into a core relational topology and eliminate redundant information with graph pooling operations. Then, we propose a symmetrical expanding path with graph unpooling operations to fuse the contracted core syntactic interactions with the original sentence context. We also propose a bipartite graph matching objective function to capture the reflections between the core topology and golden relational facts. Since our model shares similar contracting and expanding paths with encoder-decoder models like U-Net, we name our model as Relation U-Net (RelU-Net). We conduct experiments on several datasets and the results prove the effectiveness of our method.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2022-relu">
<titleInfo>
<title>RelU-Net: Syntax-aware Graph U-Net for Relational Triple Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunqi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongfeng</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Relational triple extraction is a critical task for natural language processing. Existing methods mainly focused on capturing semantic information, but suffered from ignoring the syntactic structure of the sentence, which is proved in the relation classification task to contain rich relational information. This is due to the absence of entity locations, which is the prerequisite for pruning noisy edges from the dependency tree, when extracting relational triples. In this paper, we propose a unified framework to tackle this challenge and incorporate syntactic information for relational triple extraction. First, we propose to automatically contract the dependency tree into a core relational topology and eliminate redundant information with graph pooling operations. Then, we propose a symmetrical expanding path with graph unpooling operations to fuse the contracted core syntactic interactions with the original sentence context. We also propose a bipartite graph matching objective function to capture the reflections between the core topology and golden relational facts. Since our model shares similar contracting and expanding paths with encoder-decoder models like U-Net, we name our model as Relation U-Net (RelU-Net). We conduct experiments on several datasets and the results prove the effectiveness of our method.</abstract>
<identifier type="citekey">zhang-etal-2022-relu</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.282</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.282</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>4208</start>
<end>4217</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RelU-Net: Syntax-aware Graph U-Net for Relational Triple Extraction
%A Zhang, Yunqi
%A Chen, Yubo
%A Huang, Yongfeng
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F zhang-etal-2022-relu
%X Relational triple extraction is a critical task for natural language processing. Existing methods mainly focused on capturing semantic information, but suffered from ignoring the syntactic structure of the sentence, which is proved in the relation classification task to contain rich relational information. This is due to the absence of entity locations, which is the prerequisite for pruning noisy edges from the dependency tree, when extracting relational triples. In this paper, we propose a unified framework to tackle this challenge and incorporate syntactic information for relational triple extraction. First, we propose to automatically contract the dependency tree into a core relational topology and eliminate redundant information with graph pooling operations. Then, we propose a symmetrical expanding path with graph unpooling operations to fuse the contracted core syntactic interactions with the original sentence context. We also propose a bipartite graph matching objective function to capture the reflections between the core topology and golden relational facts. Since our model shares similar contracting and expanding paths with encoder-decoder models like U-Net, we name our model as Relation U-Net (RelU-Net). We conduct experiments on several datasets and the results prove the effectiveness of our method.
%R 10.18653/v1/2022.emnlp-main.282
%U https://aclanthology.org/2022.emnlp-main.282
%U https://doi.org/10.18653/v1/2022.emnlp-main.282
%P 4208-4217
Markdown (Informal)
[RelU-Net: Syntax-aware Graph U-Net for Relational Triple Extraction](https://aclanthology.org/2022.emnlp-main.282) (Zhang et al., EMNLP 2022)
ACL