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Abstract

Many language generation models are now
available for a wide range of generation tasks,
including machine translation and summariza-
tion. Combining such diverse models may
lead to further progress, but ensembling gener-
ation models is challenging during inference:
conventional ensembling methods (e.g., shal-
low fusion) require that the models share vo-
cabulary/tokenization schemes. We introduce
TWIST decoding, a simple and general text
generation algorithm that benefits from diverse
models at inference time. Our method does
not assume the vocabulary, tokenization or
even generation order is shared. Our exten-
sive evaluations on machine translation and
scientific paper summarization demonstrate
that TWIST decoding substantially outperforms
each model decoded in isolation over vari-
ous scenarios, including cases where domain-
specific and general-purpose models are both
available. TWIST decoding also consistently
outperforms the popular reranking heuristic
where output candidates from one model are
rescored by another. We hope that our work
will encourage researchers and practitioners to
examine generation models collectively, not
just independently, and to seek out models with
complementary strengths to the currently avail-
able models.1

1 Introduction

Natural language generation is an important build-
ing block for many applications, such as machine
translation, summarization, and question answer-
ing (Ng et al., 2019; Lewis et al., 2020; Raffel et al.,
2020; Brown et al., 2020; Asai et al., 2021, inter
alia). Researchers have recently explored and ad-
vanced models for generation in various aspects, in-

∗ This work was done while Keisuke Sakaguchi was at
the Allen Institute for AI and Hao Peng was at the University
of Washington.

1Our code is available at https://github.com/
jungokasai/twist_decoding.
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COVID cases in@ clude ...

COV@ ID cases include ...

COV@ ID symptoms include ...

COVID symp@ toms in@ ...

COVID symp@ toms in@ ...

Figure 1: TWIST decoding of two generation models,
f and g, that does not assume a shared vocabulary, tok-
enization, or generation order. Beam search is first ap-
plied to f to generate y(0), followed by output mapping
to ˜︁y(0) (e.g., f ’s detokenization and g’s tokenization or
sequence reversal). g is then decoded with beam search
augmented with distances from the set of previously-
generated outputs (here only one sequence y is shown):
d(z

(1)
≤n, ˜︁y

(0)
≤n). Subsequently, f is similarly decoded with

g’s guidance. Here we show one iteration that already
achieves substantial improvements (§4). @ indicates
the BPE separator.

cluding model architecture (Bahdanau et al., 2015;
Vaswani et al., 2017), domain adaptation (Chu and
Wang, 2018; Bapna and Firat, 2019), prompting
(Brown et al., 2020), and even generation order
(Gu et al., 2018). The resulting generation models
are diverse, trained on different data, with different
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assumptions, at different times. We hypothesize
that diverse generation models may achieve bet-
ter results through ensembling, if the various ap-
proaches have complementary strengths. Given the
high cost of unifying approaches during training
time (Strubell et al., 2019; Schwartz et al., 2019),
inference-time combination of existing models is
an attractive alternative.

One well-established ensembling technique is
“shallow fusion” (Sutskever et al., 2014; Gulcehre
et al., 2015; Firat et al., 2016, inter alia), which ag-
gregates models’ scores during beam search. This
approach requires, however, that the models use the
same vocabulary/tokenization scheme and organize
the search in the same way (e.g., autoregressive,
left-to-right factorization).

We introduce a new inference algorithm, TWIST

decoding (Fig. 1), that enables more diverse gener-
ators to guide each other. TWIST decoding can
combine generators with different vocabularies,
(de)tokenization, and even generation order with-
out any additional training or finetuning. Our
method decodes a model by standard beam search,
but the scores at every step incorporate a simple
function that measures the distance from outputs
of the other model. We run this procedure on each
generation model in turn, so that both can benefit
from each other.

We present extensive experiments on machine
translation and scientific paper summarization
and show that TWIST decoding can improve per-
formance over each model decoded in isolation
across several scenarios: combining 1) generic
and domain-specific models, 2) left-to-right and
right-to-left generation models, and 3) models that
generate using different conditioning inputs. Our
results show consistent performance gains from
combining generic and domain-specific translation
models over a wide range of domains, including
medical and legal translation. Applications in these
domains require particularly high accuracy, and
TWIST decoding is a desirable alternative to stan-
dard beam search on a single model. Interestingly,
we find that TWIST decoding between generic and
domain models is effective even when parallel data
from the domain are scarce and the domain model
yields poor performance by itself, suggesting com-
plementary strengths of diverse generators (§3.4).

TWIST decoding can be seen as a generalization
of reranking heuristics that have proven effective
in syntactic parsing (Shen and Joshi, 2003; Char-

TWIST Decoding
g generates z with guidance from f at iteration t

k: beam size. M : maximum length.
Vg: vocabulary of g. g(·): scoring function.
Y(t−1): set of output sequences from f . Z(t): new outputs.
Bn: beam of continuing sequences.
H: expanded hypotheses before beam selection.
d(·, ·) : distance between partial sequences.
λf : scalar coefficient for the distance.

1: ˜︁Y(t−1) =
{︂
˜︁y = map_output(y) | y ∈ Y(t−1)

}︂

2: B0 ← {BOS}, Z(t) ← ∅
3: for n ∈ {1, . . . ,M} :
4: H ← ∅
5: for z ∈ Bn−1 : # Expansion.
6: for z ∈ Vg :
7: s← g(z ◦ z)−λf min˜︁y∈ ˜︁Y(t−1) d (z ◦ z, ˜︁y≤n)

8: H.add(⟨s, z ◦ z⟩)
9: Bn ← topk(H), Z(t).add (finished(H))

10: return Z(t)

Figure 2: TWIST decoding when g is guided by f . Swap
f and g and y and z to obtain Y(t). map_output con-
verts outputs from f to g; e.g., f ’s detokenization fol-
lowed by g’s tokenization. It would also include se-
quence reversal if f or g is a right-to-left model. The
highlighted line is the only modification that TWIST de-
coding introduces to standard beam search. The input
sequence to g is omitted. See also Kasai et al. (2022b)
for the stopping criterion and implementation details
(the first come, first served heuristic).

niak and Johnson, 2005; Collins and Koo, 2005),
speech recognition (Collins et al., 2005), and ma-
chine translation (Shen et al., 2004; Och et al.,
2004): one model generates candidate sequences,
followed by rescoring from another model. We
present extensive comparisons with reranking base-
lines and demonstrate that TWIST decoding out-
performs reranking consistently. We also observe
that since the encoder computations on two models
can be parallelized, the inference time required for
TWIST decoding is much shorter than the sum of
the two models, resulting only in a 50% increase,
relative to decoding of a single model in isolation
(§4). TWIST decoding is therefore a viable alterna-
tive to standard beam search on a single model and
the widespread reranking heuristic.

2 TWIST Decoding

We propose TWIST decoding, a general decoding
algorithm that generates text from diverse models
without assumptions of a shared vocabulary, tok-
enization, or generation order. At the core of the
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algorithm is a simple modification in standard beam
search (highlighted in Fig. 2); we incorporate into
a scoring function the distance from outputs that
are previously generated by another model.

2.1 Initial Decoding

Let us assume that we have two generation mod-
els: f and g.2 Both f and g assign scores to out-
put sequences.3 For example, f can be a domain-
specific translation model and g a generic one. f
and g perform their own pre/postprocessing (e.g.,
(de)tokenization) and factorization (e.g., left-to-
right or right-to-left factorization). Here we sup-
press for brevity the conditional dependence on
the input (e.g., machine translation input from the
source language). Standard beam search with a
beam size k is first applied to f to produce a set
of k output sequences: Y(0). This approximately
solves topky f (y) by pruned breadth-first search,
and often returns higher-quality outputs than the ex-
act search counterpart (Stahlberg and Byrne, 2019;
Meister et al., 2020a).

2.2 Mutually-Guided Decoding

Once Y(0) is obtained, we proceed with decoding
generators with mutual guidance (Fig. 2; t ≥ 1).

Output Sequence Mapping. The commonly-
used technique of ensembling (Sutskever et al.,
2014) or shallow fusion (Gulcehre et al., 2015;
Stahlberg et al., 2018) adds scores from f and g
at every step and executes the same search algo-
rithm to approximately solve topky f(y) + g(y).
This method thus necessitates a shared vocabulary,
tokenization, and generation order (Imamura and
Sumita, 2017). We relax this assumption and first
map the candidates in Y(t−1) to output sequences
for g: ˜︁Y(t−1) (Line 1 in Fig. 2). This mapping
(map_output) typically involves deterministic op-
erations of f ’s detokenization followed by g’s tok-
enization. Sequence reversal is also performed if
f and g generate in the opposite order. For exam-
ple, if g uses byte-pair encoding (Sennrich et al.,
2016b), but f does not, we might have y =John
does n’t like Mary mapped to ˜︁y=Jo@ hn doesn’t
like Mar@ y, where @ denotes subword separation.

2The algorithm can be readily extended to three or more
generators. We also abuse f or g to mean both the generator
and its scoring function.

3They typically assign log-probabilities, but it is not neces-
sary to assume the scores form a valid probability distribution.

Decoding with Distance Terms. We then decode
g with guidance from ˜︁Y(t−1). Specifically, we per-
form beam search with a simple modification in
scoring (Line 7). In this work, we use a simple
distance measure that adds binary distances at all
positions (i.e., the Hamming distance):

d (z≤n, ˜︁y≤n) =
∑︂

i≤n

1 {zi ̸= ˜︁yi}

We also explored using the distance be-
tween (sub)word embeddings from the model:∑︁

i≤n∥e(zi) − e(˜︁yi)∥2, but this did not bring
improvements (§4). Note also that when i exceeds
the length of ˜︁y, we assume ˜︁yi = EOS. The overall
distance term is then

min
˜︁y∈ ˜︁Y(t−1)

d (z≤n, ˜︁y≤n)

Here we minimize over the output sequences to
compute the distance to the closest candidate.
These candidates from ˜︁Y(t−1) can be equally good
outputs but differ only by one word; in such cases,
this minimization operation avoids overestimation
of the distances. The new score at step n in beam
search is now computed by:

g(z≤n)− λf min
˜︁y∈ ˜︁Y(t−1)

d (z≤n, ˜︁y≤n) ,

where λf is a scalar coefficient for the distance
term that controls the importance of f relative to
g. We tune λf ∈ {0.1, 0.3, 1.0, 3.0} during devel-
opment. After this beam search, we obtain a new
candidate set, Z(t). We then run the same beam
search (Fig. 2) with the roles of f , Y and g, Z
swapped.4 Namely, we decode f with distance
terms from Z(t) at each step of beam search:

f(y≤n)− λg min
˜︁z∈ ˜︁Z(t)

d (y≤n,˜︁z≤n)

Finally, the highest-scoring sequence from Y(t) is
output. This process of mutually-guided decod-
ing can be repeated multiple times. We observe,
however, that one iteration (t=1) suffices to bring
performance gains (§4). We also present detailed
sensitivity analysis over varying λf and λg and
find that TWIST decoding is particularly effective
when λg > λf (i.e., initial exploration by g is en-
couraged with relatively little guidance from f ’s
original outputs; see §4).

Reranking Heuristic as a Special Case. No-
tice that as λf → ∞, g’s generation falls back
to a reranking heuristic: top k sequences from
the initial f decoding are reranked according to

4We can stop inference with Z(t), but we found that led to
performance degradation in preliminary development.
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g. This reranking heuristic has proven successful
in a wide range of sequence generation tasks, in-
cluding machine translation (Shen et al., 2004), syn-
tactic parsing (Collins and Koo, 2005), and speech
recognition (Collins et al., 2005). Reranking is per-
formed in many strong machine translation systems
to use a right-to-left model to improve a left-to-
right model; e.g., top-performing systems in recent
WMT competitions (Ng et al., 2019; Kiyono et al.,
2020; Wang et al., 2021; Akhbardeh et al., 2021).
In our experiments, we extensively compare per-
formances of TWIST decoding and reranking and
demonstrate that the former consistently outper-
forms the latter.

3 Experiments

We present experiments across three scenarios:
combining domain and generic models for machine
translation (§3.1), left-to-right and right-to-left ma-
chine translation models (§3.2), and scientific paper
summarization models that take as input different
parts of the paper (§3.3). We empirically compare
TWIST decoding with decoding in isolation and
the widely-adopted reranking baselines, illustrating
that TWIST decoding offers performance improve-
ments in various situations without any change to
the trained models.

3.1 Domain and Generic Models
Machine translation has now been used for many
domains, ranging from everyday conversations to
medical documents. Machine translation models
are often trained on large amounts of parallel data,
such as the Europarl corpus (Koehn, 2005) and the
OPUS data (Tiedemann, 2012). Applying these
models to out-of-domain data remains a challenge
(Koehn and Knowles, 2017; Chu and Wang, 2018),
and users for some of these domains require high
accuracy in translation (e.g., medical and legal doc-
uments). We will demonstrate that TWIST decod-
ing between general-purpose and domain-specific
models is a viable approach to tackle this problem.

Setups. We use machine translation datasets over
diverse domains from prior work (Koehn and
Knowles, 2017; Hu et al., 2019): German→English
over medical (1.1M training sentence pairs), le-
gal (720K pairs), Koran (religious text, 480K
pairs), and subtitles (14M pairs) domains.5 For
the domain-specific models, we train a base-sized

5We excluded the IT domain because we found significant
overlap between training and dev./test data.

transformer model (Vaswani et al., 2017) with a
6-layer encoder and a 6-layer decoder on the train-
ing data of each domain. The top-performing
German→English system from WMT19 (Barrault
et al., 2019; Ng et al., 2019)6 is used as the
generic model. This generic model is a large-
sized transformer trained on a concatenation of
publicly available parallel data, including the Eu-
roparl (Koehn, 2005) and UN (Ziemski et al., 2016)
corpora with the backtranslation technique (Sen-
nrich et al., 2016a). We follow (de)tokenization
(Koehn et al., 2007) and byte-pair encoding (Sen-
nrich et al., 2016b) of previous work (Koehn and
Knowles, 2017; Hu et al., 2019).7

For every domain, we evaluate a total of six con-
figurations: decoding of the generic and domain
models each in isolation; the reranking baseline and
TWIST decoding with f being the generic model
and g being the domain model, as well as the ver-
sions where f and g are swapped to see the effect of
the two roles. In all cases, we use beam size 5 (Fre-
itag and Al-Onaizan, 2017) and length penalty 1
(Wu et al., 2016) and conduct all experiments using
the fairseq library (Ott et al., 2019). All perfor-
mance is measured with the COMET score (Rei
et al., 2020a,b) and the SACREBLEU implementa-
tion (Post, 2018) of the BLEU score (Papineni et al.,
2002). Note that COMET is based on crosslingual
contextual representations (Conneau et al., 2020),
and recent work showed that it achieves signifi-
cantly higher correlation with expert human judg-
ment than BLEU and other n-gram-based metrics
(Kasai et al., 2022a,c). More experimental details
are described in Appendix §A.1.

Results. Seen in Table 1 are the results from our
experiments over various domains. Firstly, given
two translation models f and g, TWIST decoding
outperforms the reranking baseline in all configura-
tions (indicated in blue) with only one exception (a
small drop in BLEU in the subtitles domain). Par-
ticularly noteworthy are the gains in the medical
domain: TWIST decoding outperforms the rerank-
ing heuristic by 5.8 COMET and 1.4 BLEU points
when f is the domain model and g is the generic
model. TWIST decoding is thus an effective gen-
eralization over the reranking heuristic commonly
used in the literature across domains.

Comparing the performance of decoding in iso-

6https://github.com/pytorch/fairseq/tree/main/
examples/wmt19.

7https://github.com/JunjieHu/dali.
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German→English Medicine Law Koran Subtitles

Method f g COMET BLEU COMET BLEU COMET BLEU COMET BLEU

Isolation Generic – 44.5 41.2 30.6 34.8 14.4 16.6 34.4 31.3
Isolation Domain – 80.7 48.3 60.7 40.9 8.7 17.0 32.3 29.0

Rerank Generic Domain 59.6 43.5 56.4 36.1 14.7 17.0 40.3 32.3
TWIST Generic Domain 71.6 47.5 61.4 40.2 16.5 18.5 41.0 32.2
∆ (TWIST− Rerank) +12.0 +4.0 +5.0 +4.1 +1.8 +1.5 +0.7 −0.1

Rerank Domain Generic 75.8 48.7 59.9 40.8 12.3 18.1 36.5 30.3
TWIST Domain Generic 81.6 50.1 61.6 41.3 15.3 18.7 37.3 31.0
∆ (TWIST− Rerank) +5.8 +1.4 +1.7 +0.5 +3.0 +0.6 +0.8 +0.7

Table 1: Combination of generic and domain-specific translation models. The generic model is the top-performing
translation model in WMT19 (Ng et al., 2019) that is trained on a collection of parallel corpora, such as the Europarl
and the UN corpora. Two settings are considered for the reranking baseline and TWIST decoding: f is the generic
model and g is the domain model or the reverse. The best scores are in bold. COMET (Rei et al., 2020a,b) uses
crosslingual contextual representations (Conneau et al., 2020) and achieves significantly higher correlation with
expert human judgment than BLEU (Papineni et al., 2002) and other alternative metrics (Kasai et al., 2022a,c).

lation and TWIST decoding, we observe that the
best score from TWIST decoding substantially out-
performs each individual model over all domains:
e.g., 81.6 vs. 80.7 (domain model) and 81.6 vs.
44.5 (generic model) COMET points in the medi-
cal domain. In both medical and legal domains, the
generic model underperforms the domain model
by a large margin. Nonetheless, TWIST decoding
between the two improves over the domain model,
suggesting that TWIST decoding makes use of their
complementary strengths. Finally, we see a consis-
tent pattern regarding f and g: both TWIST decod-
ing and the reranking baseline perform better when
the higher-performing model is chosen as f . (e.g.,
the domain model performs better in medicine and
law, and vice versa in subtitles.) This is expected
because f is used both for initial decoding and final
decoding with g’s guidance (Fig. 1).

3.2 Left-to-Right and Right-to-Left Models

Language generation models usually factorize se-
quences autoregressively in a left-to-right order,
but previous work showed that left-to-right (L2R)
models can be improved by reranking their outputs
with a separate right-to-left (R2L) model (Imamura
and Sumita, 2017; Ng et al., 2019; Kiyono et al.,
2020, inter alia). TWIST decoding can be readily
applied to such scenarios since it does not assume
shared generation order between models.

Setups. We experiment with two language
pairs from the WMT 2020 news translation
task (Barrault et al., 2020): Chinese→English
(WMT20 ZH-EN, 48M training sentence pairs)
and English→German (WMT20 EN-DE, 48M

pairs). Submissions for these language pairs to the
shared task have human evaluations from profes-
sional translators (Freitag et al., 2021), and the cor-
relation between automatic metrics and the human
ratings are studied in subsequent work (Kasai et al.,
2022a); COMET (Rei et al., 2020b,a) achieves the
highest correlation out of the 15+ metrics.

Similar to the previous experiments, we mea-
sure all performance using COMET and BLEU
scores. Note that we use two reference transla-
tions per instance for WMT20 ZH-EN and three
for WMT20 EN-DE, following Kasai et al. (2022a).
They both have reference translations from two
different services, and WMT20 EN-DE has an ad-
ditional translation created by linguists who are
asked to paraphrase the two translations as much as
possible. These paraphrased translations are shown
to increase correlation with human judgments by
mitigating the translationese effect (Graham et al.,
2020) and diversifying the reference (Freitag et al.,
2020). On each dataset, we follow the preprocess-
ing and tokenization (Koehn et al., 2007; Sennrich
et al., 2016b) from Kasai et al. (2022a)8 and train
a large-sized transformer model for left-to-right
and right-to-left translation, in which the output
English/German sequences are reversed after tok-
enization. We implement all models and decoding
with fairseq and apply beam search with beam
size 5 and length penalty 1. We again consider a
total of six settings: reranking and TWIST decod-
ing with L2R as f and R2L as g or the reverse, as
well as the individual models. Further details can

8https://github.com/jungokasai/billboard/tree/
master/baselines.
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be found in Appendix §A.2.

WMT20 Test ZH→EN EN→DE

Method f g COMET BLEU COMET BLEU

Isolation L2R – 40.8 35.5 42.9 45.5
Isolation R2L – 40.4 35.0 43.3 44.9

Rerank L2R R2L 41.4 36.1 43.7 46.0
TWIST L2R R2L 42.8 36.8 45.4 46.7
∆ (TWIST− Rerank) +1.4 +0.7 +1.7 +0.7

Rerank R2L L2R 41.2 35.4 44.7 45.2
TWIST R2L L2R 43.1 36.8 44.8 46.0
∆ (TWIST− Rerank) +1.9 +1.4 +0.1 +0.8

Table 2: Combination of left-to-right (L2R) and right-to-
left (R2L) transformer translation models. ZH: Chinese.
DE: German. Two settings are considered for reranking
and our TWIST decoding each: L2R or R2L as f . The
best scores are in bold.

Results. Table 2 shows the results from L2R and
R2L translation models. TWIST decoding again
outperforms the reranking counterpart by a con-
siderable margin in COMET and BLEU on both
language pairs; e.g., 43.1 vs. 41.2 COMET points
on WMT20 ZH-EN when f is R2L and g is L2R.
The best performance is achieved by TWIST decod-
ing on both datasets and improves over the indi-
vidual models by more than 1 BLEU point. The
reranking baseline, on the other hand, does not out-
perform L2R in BLEU when f is R2L: 35.4 vs.
35.5 (ZH-EN) and 45.2 vs. 45.5 (EN-DE). This
result illustrates that TWIST decoding is a more ef-
fective approach to combine models with different
generation order than the popular reranking.

3.3 Summarization with Different Input

We also experiment with strong models on a highly
abstractive scientific paper summarization task: Sc-
iTLDR (Cachola et al., 2020). Specifically, we use
two BART-based models from prior work (Cachola
et al., 2020) that differ in input type: one that only
takes as input the paper abstract (Abst.) and the
other a concatenation of the abstract, introduction,
and conclusion (AIC).9

Setups. We use the train/dev./test split from Ca-
chola et al. (2020). Again following Cachola et al.
(2020), we use all human-written summaries (writ-
ten either by authors or undergraduate computer
science students) as the reference and evaluate
performance in terms of the ROUGE score (Lin,

9https://github.com/allenai/scitldr.

2004).10 We average the instance-level scores from
the Python rouge-score implementation.11 Similar
to our previous experiments, we use beam size 5
and length penalty 1. See more detail in Appendix
A.3.

Results. Table 3 presents our results. TWIST

decoding substantially outperforms the reranking
baseline when f is the AIC model (e.g., +0.5
ROUGE-L points), but they yield (almost) the same
performance when f is the Abst. model. Nonethe-
less, TWIST decoding achieves the best perfor-
mance out of all configurations. Our small im-
provements might be attributed to the fact that the
input to the Abst. model is a strict subset of the
AIC model and there are only limited benefits from
combining them.

SciTLDR Summ. Test ROUGE

Method f g R-1 R-2 R-L

Isolation Abst. – 39.9 21.1 34.5
Isolation AIC – 40.2 21.3 34.9

Rerank Abst. AIC 40.5 21.7 35.1
TWIST Abst. AIC 40.5 21.7 35.0
∆ (TWIST− Rerank) 0.0 0.0 −0.1

Rerank AIC Abst. 40.1 21.2 34.8
TWIST AIC Abst. 40.7 22.1 35.3
∆ (TWIST− Rerank) +0.6 +0.9 +0.5

Table 3: Combination of scientific paper summarization
models. Both models are BART-based models from
prior work (Cachola et al., 2020) with different input:
abstract only (Abst.) or abstract, introduction, and con-
clusion (AIC). The best scores are in bold. The ROUGE
scores (R-1, R-2, and R-L) are computed by averaging
instance-level scores from the Python rouge-score im-
plementation.

3.4 Low-Resource Scenarios

In our experiments over four diverse domains
(§3.1), we assumed that plenty of parallel data is
available in every domain, and the domain model
generally outperformed the generic model. Con-
cretely, we used 1.1M and 720K training sentence
pairs for the medical and legal domains, based on
the data splits from previous work (Koehn and
Knowles, 2017; Hu et al., 2019). In real-world
applications, however, these domain-specific trans-
lation data are often scarce since they need to be
annotated by bilingual speakers with expertise in

10We release our models and their outputs, so other metrics
can be readily used as well in the future.

11https://pypi.org/project/rouge-score/.
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those domains. The question arises: can a domain
model trained on small parallel data still help the
generic model by its complementary strengths? To
simulate such low-resource scenarios, we randomly
sample {10k, 20k, 40k, 80k} sentence pairs and
conduct the same evaluations with the generic and
domain models as f and g, respectively.

Fig. 3 plots COMET scores of various decoding
methods on the medical and legal domains. The
score from the generic model is constant because
we only change the domain training data. There
is a striking trend: even though the domain model
performs poorly by itself, it improves the generic
model through TWIST decoding over varying sizes.
Reranking also helps the generic model as the data
size increases, but the improvement is less pro-
nounced than that of TWIST decoding.

10k 20k 40k 80k

0

50

100

Domain Data

C
O
M
E
T

(A) Medicine

10k 20k 40k 80k

0

50

100

Domain Data

(B) Law

Generic Domain Rerank Twist

Figure 3: Results when parallel data are scarce in the
target domain. Both TWIST decoding and reranking
use the generic model as f and the domain model as g.
COMET (Rei et al., 2020a) is a regression-based metric
that can take negative values. λs are tuned in each
case, and we found that as the domain model (g) gets
stronger, λg increases, relative to λf . This observation
is aligned with the intuition that λg indicates the relative
importance of g’s guidance.

4 Analysis

Iterations. So far, we have only applied one iter-
ation of TWIST decoding, but Fig. 4 plots perfor-
mance over multiple iterations. Iteration 0 signifies
f ’s initial decoding (y(0) in Fig. 1), and every it-
eration involves g’s decoding with f ’s guidance
(z(t)) and its reverse (y(t)). We observe that the
first iteration brings most of the performance gains.
This makes TWIST decoding practically appealing,
as it improves performance without much increase
in the computation or inference time (see below).

Inference Time. Table 4 reports the runtime of
each decoding method, relative to f ’s decoding in
isolation. We use batch size 1 on the same sin-
gle A100-SXM GPU and measure the wall-clock

time from when all models are loaded until all
outputs are obtained. As expected, TWIST decod-
ing results in a slowdown compared to decoding
in isolation, but the increase in time is only 50%.
The inference time for TWIST decoding is much
shorter than the sum of f and g in isolation (1.4×
vs. 2.1× on medical translation) because 1) the en-
coder computation for f and g can be parallelized
and 2) the encoder computation for f is done only
once while we need two runs of f ’s decoder. We
leave it to future work to further speed up TWIST

decoding; since the slowdown of TWIST decoding
primarily comes from the decoder, it can be sped
up by best-first beam search (Meister et al., 2020b),
a deep-encoder, shallow-decoder strategy (Kasai
et al., 2021a), or a fast, linear-complexity variant
of the transformer decoder (Peng et al., 2021; Ka-
sai et al., 2021b) that is shown to retain the perfor-
mance of the standard encoder-decoder transformer.
Another approach could be sequence-level knowl-
edge distillation (Kim and Rush, 2016), which has
proven successful in speeding up an ensemble trans-
lation model (Freitag et al., 2017).
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Figure 4: Effects of iterations on dev. performance. It-
eration 0 refers to the initial decoding from f . Every
iteration consists of g’s decoding with f ’s guidance fol-
lowed by f ’s decoding with g’s guidance. The values
of λs are kept the same over all iterations for simplicity.
Initially, we explored gradually increasing the λs as f
and g’s outputs become closer, but we found no substan-
tial performance gain.

Inference Medicine WMT20 ZH→EN

Method f g Time f g Time

Isolation Domain – 1.0× R2L – 1.0×
Isolation Generic – 1.1× L2R – 1.0×
Rerank Domain Generic 1.0× R2L L2R 1.0×
TWIST Domain Generic 1.4× R2L L2R 1.5×

Table 4: Inference time relative to a single model de-
coded in isolation. It is measured on the same single
Nvidia A100-SXM GPU with batch size 1. We measure
the wall-clock time from when the models are loaded
until the last sentence is translated on the test data.
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Figure 5: Dev. set performance measured in the COMET
score (Rei et al., 2020a,b) with varying λf and λg . See
Appendix §B for other configurations.

Dev. Set Results Medicine WMT20 ZH-EN

Distance Function COMET BLEU COMET BLEU

Original 92.8 58.1 36.5 26.4
One Candidate 93.2 58.2 35.4 25.8
Embed. Distance 92.8 57.9 36.5 26.2

Table 5: Variants of the distance function in TWIST
decoding. f is the domain model and g is the generic
model for medical translation (German→English). f is
R2L and g is L2R for WMT20 Chinese→English.

Sensitivity Analysis on Distance Coefficients.
As discussed in §2.2, λf and λg weight the dis-
tance terms from f and g respectively. We tuned
λf and λg on the dev. set from the range of
{0.1, 0.3, 1.0, 3.0}. Fig. 5 visualizes how they
affect the overall performance on the dev. sets.
λg >λf generally yields good performance, sug-
gesting the effectiveness of the initial exploration
by g with relatively weaker guidance from f .

Variants of Distance Functions. We experiment
with two variants of distance terms (Table 5): 1)
one candidate, which measures the distance from
the 1-best candidate from the other model (vs. mini-
mization over multiple candidates; §2.2) and 2) em-
bed. distance, which calculates the distance based
on the Euclidean distance between the embeddings.
Here the embeddings are taken from the output
layer of the decoder. Overall, both variants yield
similar performance to the original distance func-
tion, but the one candidate method has a substantial
performance drop on WMT20 ZH-EN. Note also
that the embed. distance method necessitates ad-
ditional distance computations between the token
embeddings. This result illustrates that our original
distance function is a simple yet effective design
choice.

Examples. Seen in Table 6 are example
German→English translations from the medical
domain. The left section presents a case where
the domain model translates the technical term,

Spätdyskinesie, into the corresponding English
term: tardive dyskinesia. The generic model,
on the other hand, generates a literal transla-
tion: late dyskinesia. In the right section, the
domain model fails to handle the coordinate
structure: 12.1% and 3.2% with aripiprazole vs.
12.1% with aripiprazole and 3.2% with placebo.
Further, the final output has wording closer
to the reference translation: trials vs. studies
and bipolar patients vs. bipolar disorder. These
examples illustrate that TWIST decoding benefits
from the complementary strengths of the domain
and generic models.

5 Further Related Work

Decoding from Multiple Models. Much early
work proposed methods to generate text from mul-
tiple models especially for machine translation (of-
ten called consensus-based decoding; Bangalore
et al., 2001, 2002; Matusov et al., 2006; Rosti
et al., 2007; Sim et al., 2007; Hildebrand and Vogel,
2008). Most of these methods limit their search
space to n-best candidates from individual transla-
tion models (Li et al., 2009), contrasting with our
TWIST decoding where one model can update its
translation outputs under the guidance of another
model. Collaborative decoding (Li et al., 2009)
trains a separate feature-based scorer that measures
the consensus between phrase-based Chinese-to-
English translation models. Several recent works
proposed inference algorithms for decoding from
multiple generators for specific tasks, such as detox-
ification and abductive reasoning (West et al., 2021;
Liu et al., 2021).

Alternatives to Left-to-Right Decoding. We
showed that TWIST decoding can be used to ben-
efit from models with diverging generation order.
Several prior works proposed approaches for gen-
erating text in a different fashion than the stan-
dard left-to-right order. For example, much recent
work explored non-autoregressive generation (Gu
et al., 2018; Lee et al., 2018; Mansimov et al., 2019;
Ghazvininejad et al., 2019; Kasai et al., 2020, inter
alia) primarily to parallelize and speed up infer-
ence. More specifically, several works introduced
training and/or inference algorithms that combine
left-to-right and right-to-left models for machine
translation (Zhou et al., 2019) and commonsense
inference (Zaidi et al., 2020). Qin et al. (2020) in-
corporated right (future) context into a left-to-right
language model by iterative gradient-based updates
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Medicine Domain (Isolation) Generic (Isolation) Domain (Isolation) Generic (Isolation)

Reference
If signs and symptoms of tardive dyskinesia appear in a
patient on ABILIFY, dose reduction or discontinuation
should be considered.

In placebo-controlled trials, the incidence of akathisia
in bipolar patients was 12.1% with aripiprazole and
3.2% with placebo.

Domain
If signs and symptoms of tardive dyskinesia appear in
one patient on ABILIFY, a dose reduction or
discontinuation should be considered.

In placebo-controlled trials , the incidence of
akathisia in bipolar disorder was
12.1% and 3.2% with aripiprazole .

Generic
If a patient treated with ABILIFY shows signs and
symptoms of late dyskinesia , it should be considered to
reduce the dose or stop treatment.

In placebo-controlled studies , the incidence of
akathisia in bipolar patients was
12.1% with aripiprazole and 3.2% with placebo .

TWIST
f : Domain
g: Generic

If signs and symptoms of tardive dyskinesia appear in
one patient on ABILIFY, a dose reduction or
discontinuation should be considered.

In placebo-controlled trials , the incidence of
akathisia in bipolar patients was
12.1% with aripiprazole and 3.2% with placebo .

Table 6: Example outputs from machine translation on the medical domain. For TWIST decoding, f is the domain
model, and g is the generic model. In the left section, the generic model fails to capture technical terminology
(late dyskinesia vs. tardive dyskinesia for the German term, Spätdyskinesie), and TWIST decoding chooses the
correct term of tardive dyskinesia from the domain model. In the right example, the domain model has a problem
in coordination (12.1% and 3.2% with aripirazole vs. 12.1% with aripirazole and 3.2% with placebo), and TWIST
decoding successfully benefits from the accurate translation of the generic model.

on the output representations. Those algorithms
are designed specifically for the combination of
left-to-right and right-to-left generation and cannot
be easily extended to more general situations, such
as diverging tokenization and vocabularies where
TWIST decoding has been shown effective.

6 Conclusion

We presented TWIST decoding, a general inference
algorithm that generates text from diverse models
without the assumption of a shared vocabulary, tok-
enization, or generation order. Our method enables
diverse models to guide each other, thereby outper-
forming individual models over various scenarios,
even when one of the models is much weaker be-
cause of limited data. We also demonstrated that
TWIST decoding can be viewed as a generalization
and improvement of the commonly-adopted rerank-
ing heuristic. As it only requires a small change
in code, we hope that researchers and practitioners
will explore complementary strengths of diverse
generation models through TWIST decoding.

Limitations

We evaluated our decoding method that combines
generation models both on machine translation and
scientific paper summarization over several sce-
narios: combining 1) generic and domain-specific
models, 2) left-to-right and right-to-left generation
models, and 3) models that generate using differ-
ent conditioning inputs. Our machine translation

experiments span diverse domains, including medi-
cal and legal text. We also presented results from
recent English-to-German and Chinese-to-English
WMT data. Nonetheless, our domain translation
experiments are limited to German-to-English, and
we only dealt with scientific papers written in En-
glish, mainly due to availability of data. There
are also many other language generation tasks for
which our method can be useful. Since we open-
source our codebase built on top of a popular li-
brary, we hope that practitioners will use it for
applications of their interest and further assess our
decoding algorithm in many application scenarios.

Evaluating language generation remains a chal-
lenging research problem. We carefully set up our
experiments to mitigate potential evaluation issues.
The WMT 2020 test data consist only of news text
written in the original language, in contrast to the
test data from WMT 2018 (Bojar et al., 2018) or
earlier. The WMT 2020 EN→DE and DE→EN
test data that we used thus come from completely
different documents. This avoids the translationese
effect that would overestimate the translation per-
formance due to the simplicity of translated text
(Graham et al., 2020). Moreover, the WMT 2020
test data for English-to-German and Chinese-to-
English translation have multiple reference trans-
lations per instance, which increases the correla-
tion of reference-based, automatic evaluations with
human judgment (Kasai et al., 2022a). We pre-
sented results using automatic metrics from recent
work (Rei et al., 2020b) as well as conventional,
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n-gram overlap metrics (Papineni et al., 2002; Lin,
2004). Recent automatic metrics have shown to
have higher correlation with human judgments, but
human judgments are sometimes inconsistent, es-
pecially when crowdsourced (Clark et al., 2021;
Kasai et al., 2022c). Since our decoding method
is a simple modification of the widely-used beam
search algorithm, we hope that it will be tested and
used in real-world systems of language generation.
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Appendices
A Hyperparameters and Settings

We provide training and implementation details for
easy replication of our work.

A.1 Domain Machine Translation
We generally follow the preprocessing and subword
tokenization from Koehn and Knowles (2017); Hu
et al. (2019). Table 7 lists the hyperparameters
and setting on fairseq that we use for all domain-
specific translation models. All embeddings are
shared (Press and Wolf, 2017; Inan et al., 2017).
We choose the checkpoint that achieved the best
loss on the validation data.

Hyperparameter Value

label smoothing 0.1
# max tokens 8192
dropout rate 0.1
encoder embedding dim 512
encoder ffn dim 2048
# encoder attn heads 8
decoder embedding dim 512
decoder ffn dim 2048
# decoder attn heads 8
max source positions 1024
max target positions 1024
Adam lrate 5× 10−4

Adam β1 0.9
Adam β2 0.98
lr-scheduler inverse square
warm-up lr 1× 10−7

# warmup updates 4000
# max updates 600K
# GPUs 8
length penalty 0.6

Table 7: Domain translation fairseq hyperparameters
and setting. We generally follow the base-sized configu-
ration from Vaswani et al. (2017).

A.2 Left-to-Right and Right-to-Left
WMT20 ZH-EN Table 8 lists the hyperprame-
ters and setting on fairseq that we use for left-
to-right and right-to-left models on the WMT20
ZH-EN dataset. We generally follow the prepro-
cessing and tokenization from Kasai et al. (2022a).
We use newstest-2019 as the dev. set and the offi-
cial training data.12 We apply Moses tokenization
(Koehn et al., 2007) and BPE with 32K operations
(Sennrich et al., 2016b) to English text. We tok-
enize Chinese text with the Jieba package,13 follow-

12http://www.statmt.org/wmt20/translation-task.
html.

13https://github.com/fxsjy/jieba.

ing Hassan et al. (2018). Separately from English,
BPE with 32K operations is then applied to Chi-
nese. The decoder input and output embeddings
are tied.

WMT20 EN-DE The same hyperparameters are
chosen as in WMT20 ZH-EN (Table 8). We again
follow Kasai et al. (2022a) and preprocess both En-
glish and German text by the Moses tokenizer and
joint BPE with 32K operations. All embeddings
are shared.

Hyperparameter Value

label smoothing 0.1
# max tokens 4096
dropout rate 0.1
encoder embedding dim 1024
encoder ffn dim 4096
# encoder attn heads 16
decoder embedding dim 1024
decoder ffn dim 4096
# decoder attn heads 16
max source positions 1024
max target positions 1024
Adam lrate 5× 10−4

Adam β1 0.9
Adam β2 0.98
lr-scheduler inverse square
warm-up lr 1× 10−7

# warmup updates 4000
# max updates 600K
# GPUs 8
length penalty 0.6

Table 8: L2R and R2L translation fairseq hyperparam-
eters and setting. We generally follow the large-sized
configuration from Vaswani et al. (2017).

A.3 SciTLDR

We use two BART-based pretrained models from
Cachola et al. (2020): the abstract-only version
of BART and the AIC version of CATTSXSUM.14

These two models are both BART-based models;
CATTSXSUM is obtained by finetuning BART on
the XSUM dataset (Narayan et al., 2018) with mul-
titask scaffolding (Cachola et al., 2020).

A.4 λ Tuning

We tune λf and λg from {0.1, 0.3, 1.0, 3.0}, based
on the dev. BLEU/ROUGE-L score on machine
translation and paper summarization, respectively.
Table 9 reports the selected λ values in all scenar-
ios.

14They are both available at https://github.com/
allenai/scitldr.
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Figure 6: Dev. set performance measured in the COMET score (Rei et al., 2020a,b) with varying λf and λg .

Tuned λ

Dataset f g λf λg

Medicine Domain Generic 0.1 0.3
Generic Domain 0.1 3.0

Law Domain Generic 1.0 0.1
Generic Domain 0.1 3.0

Koran Domain Generic 1.0 3.0
Generic Domain 0.3 3.0

Subtitles Domain Generic 1.0 1.0
Generic Domain 1.0 1.0

WMT20 ZH-EN L2R R2L 1.0 3.0
R2L L2R 0.1 3.0

WMT20 EN-DE L2R R2L 0.3 0.3
R2L L2R 0.1 0.3

SciTLDR Abst. AIC 1.0 3.0
AIC Abst. 0.3 3.0

Table 9: Selected λf and λg values.

B Sensitivity Analysis on λ

Fig. 6 presents the sensitivity analysis in the
COMET score over many scenarios. Apart from a
few exceptions, λg > λf tends to yield good per-
formance, suggesting the effectiveness of the initial
exploration by g with relatively weaker guidance
from f .
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