@inproceedings{kim-etal-2022-botstalk,
title = "{B}ots{T}alk: Machine-sourced Framework for Automatic Curation of Large-scale Multi-skill Dialogue Datasets",
author = "Kim, Minju and
Kim, Chaehyeong and
Song, Yong Ho and
Hwang, Seung-won and
Yeo, Jinyoung",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.344",
doi = "10.18653/v1/2022.emnlp-main.344",
pages = "5149--5170",
abstract = "To build open-domain chatbots that are able to use diverse communicative skills, we propose a novel framework BotsTalk, where multiple agents grounded to the specific target skills participate in a conversation to automatically annotate multi-skill dialogues. We further present Blended Skill BotsTalk (BSBT), a large-scale multi-skill dialogue dataset comprising 300K conversations. Through extensive experiments, we demonstrate that our dataset can be effective for multi-skill dialogue systems which require an understanding of skill blending as well as skill grounding. Our code and data are available at https://github.com/convei-lab/BotsTalk.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2022-botstalk">
<titleInfo>
<title>BotsTalk: Machine-sourced Framework for Automatic Curation of Large-scale Multi-skill Dialogue Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minju</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaehyeong</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="given">Ho</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-won</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinyoung</namePart>
<namePart type="family">Yeo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To build open-domain chatbots that are able to use diverse communicative skills, we propose a novel framework BotsTalk, where multiple agents grounded to the specific target skills participate in a conversation to automatically annotate multi-skill dialogues. We further present Blended Skill BotsTalk (BSBT), a large-scale multi-skill dialogue dataset comprising 300K conversations. Through extensive experiments, we demonstrate that our dataset can be effective for multi-skill dialogue systems which require an understanding of skill blending as well as skill grounding. Our code and data are available at https://github.com/convei-lab/BotsTalk.</abstract>
<identifier type="citekey">kim-etal-2022-botstalk</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.344</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.344</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>5149</start>
<end>5170</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BotsTalk: Machine-sourced Framework for Automatic Curation of Large-scale Multi-skill Dialogue Datasets
%A Kim, Minju
%A Kim, Chaehyeong
%A Song, Yong Ho
%A Hwang, Seung-won
%A Yeo, Jinyoung
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F kim-etal-2022-botstalk
%X To build open-domain chatbots that are able to use diverse communicative skills, we propose a novel framework BotsTalk, where multiple agents grounded to the specific target skills participate in a conversation to automatically annotate multi-skill dialogues. We further present Blended Skill BotsTalk (BSBT), a large-scale multi-skill dialogue dataset comprising 300K conversations. Through extensive experiments, we demonstrate that our dataset can be effective for multi-skill dialogue systems which require an understanding of skill blending as well as skill grounding. Our code and data are available at https://github.com/convei-lab/BotsTalk.
%R 10.18653/v1/2022.emnlp-main.344
%U https://aclanthology.org/2022.emnlp-main.344
%U https://doi.org/10.18653/v1/2022.emnlp-main.344
%P 5149-5170
Markdown (Informal)
[BotsTalk: Machine-sourced Framework for Automatic Curation of Large-scale Multi-skill Dialogue Datasets](https://aclanthology.org/2022.emnlp-main.344) (Kim et al., EMNLP 2022)
ACL