@inproceedings{feng-etal-2022-toward,
title = "Toward the Limitation of Code-Switching in Cross-Lingual Transfer",
author = "Feng, Yukun and
Li, Feng and
Koehn, Philipp",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.400",
doi = "10.18653/v1/2022.emnlp-main.400",
pages = "5966--5971",
abstract = "Multilingual pretrained models have shown strong cross-lingual transfer ability. Some works used code-switching sentences, which consist of tokens from multiple languages, to enhance the cross-lingual representation further, and have shown success in many zero-shot cross-lingual tasks. However, code-switched tokens are likely to cause grammatical incoherence in newly substituted sentences, and negatively affect the performance on token-sensitive tasks, such as Part-of-Speech (POS) tagging and Named-Entity-Recognition (NER). This paper mitigates the limitation of the code-switching method by not only making the token replacement but considering the similarity between the context and the switched tokens so that the newly substituted sentences are grammatically consistent during both training and inference. We conduct experiments on cross-lingual POS and NER over 30+ languages, and demonstrate the effectiveness of our method by outperforming the mBERT by 0.95 and original code-switching method by 1.67 on F1 scores.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="feng-etal-2022-toward">
<titleInfo>
<title>Toward the Limitation of Code-Switching in Cross-Lingual Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yukun</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Feng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multilingual pretrained models have shown strong cross-lingual transfer ability. Some works used code-switching sentences, which consist of tokens from multiple languages, to enhance the cross-lingual representation further, and have shown success in many zero-shot cross-lingual tasks. However, code-switched tokens are likely to cause grammatical incoherence in newly substituted sentences, and negatively affect the performance on token-sensitive tasks, such as Part-of-Speech (POS) tagging and Named-Entity-Recognition (NER). This paper mitigates the limitation of the code-switching method by not only making the token replacement but considering the similarity between the context and the switched tokens so that the newly substituted sentences are grammatically consistent during both training and inference. We conduct experiments on cross-lingual POS and NER over 30+ languages, and demonstrate the effectiveness of our method by outperforming the mBERT by 0.95 and original code-switching method by 1.67 on F1 scores.</abstract>
<identifier type="citekey">feng-etal-2022-toward</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.400</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.400</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>5966</start>
<end>5971</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toward the Limitation of Code-Switching in Cross-Lingual Transfer
%A Feng, Yukun
%A Li, Feng
%A Koehn, Philipp
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F feng-etal-2022-toward
%X Multilingual pretrained models have shown strong cross-lingual transfer ability. Some works used code-switching sentences, which consist of tokens from multiple languages, to enhance the cross-lingual representation further, and have shown success in many zero-shot cross-lingual tasks. However, code-switched tokens are likely to cause grammatical incoherence in newly substituted sentences, and negatively affect the performance on token-sensitive tasks, such as Part-of-Speech (POS) tagging and Named-Entity-Recognition (NER). This paper mitigates the limitation of the code-switching method by not only making the token replacement but considering the similarity between the context and the switched tokens so that the newly substituted sentences are grammatically consistent during both training and inference. We conduct experiments on cross-lingual POS and NER over 30+ languages, and demonstrate the effectiveness of our method by outperforming the mBERT by 0.95 and original code-switching method by 1.67 on F1 scores.
%R 10.18653/v1/2022.emnlp-main.400
%U https://aclanthology.org/2022.emnlp-main.400
%U https://doi.org/10.18653/v1/2022.emnlp-main.400
%P 5966-5971
Markdown (Informal)
[Toward the Limitation of Code-Switching in Cross-Lingual Transfer](https://aclanthology.org/2022.emnlp-main.400) (Feng et al., EMNLP 2022)
ACL