@inproceedings{zhang-etal-2022-survey,
title = "A Survey of Active Learning for Natural Language Processing",
author = "Zhang, Zhisong and
Strubell, Emma and
Hovy, Eduard",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.414",
doi = "10.18653/v1/2022.emnlp-main.414",
pages = "6166--6190",
abstract = "In this work, we provide a literature review of active learning (AL) for its applications in natural language processing (NLP). In addition to a fine-grained categorization of query strategies, we also investigate several other important aspects of applying AL to NLP problems. These include AL for structured prediction tasks, annotation cost, model learning (especially with deep neural models), and starting and stopping AL. Finally, we conclude with a discussion of related topics and future directions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2022-survey">
<titleInfo>
<title>A Survey of Active Learning for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhisong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emma</namePart>
<namePart type="family">Strubell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we provide a literature review of active learning (AL) for its applications in natural language processing (NLP). In addition to a fine-grained categorization of query strategies, we also investigate several other important aspects of applying AL to NLP problems. These include AL for structured prediction tasks, annotation cost, model learning (especially with deep neural models), and starting and stopping AL. Finally, we conclude with a discussion of related topics and future directions.</abstract>
<identifier type="citekey">zhang-etal-2022-survey</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.414</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.414</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>6166</start>
<end>6190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Survey of Active Learning for Natural Language Processing
%A Zhang, Zhisong
%A Strubell, Emma
%A Hovy, Eduard
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F zhang-etal-2022-survey
%X In this work, we provide a literature review of active learning (AL) for its applications in natural language processing (NLP). In addition to a fine-grained categorization of query strategies, we also investigate several other important aspects of applying AL to NLP problems. These include AL for structured prediction tasks, annotation cost, model learning (especially with deep neural models), and starting and stopping AL. Finally, we conclude with a discussion of related topics and future directions.
%R 10.18653/v1/2022.emnlp-main.414
%U https://aclanthology.org/2022.emnlp-main.414
%U https://doi.org/10.18653/v1/2022.emnlp-main.414
%P 6166-6190
Markdown (Informal)
[A Survey of Active Learning for Natural Language Processing](https://aclanthology.org/2022.emnlp-main.414) (Zhang et al., EMNLP 2022)
ACL
- Zhisong Zhang, Emma Strubell, and Eduard Hovy. 2022. A Survey of Active Learning for Natural Language Processing. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6166–6190, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.