Prompt Tuning has been largely successful as a parameter-efficient method of conditioning large-scale pre-trained language models to perform downstream tasks. Thus far, soft prompt tuning learns a fixed set of task-specific continuous vectors, i.e., soft tokens that remain static across the task samples. A fixed prompt, however, may not generalize well to the diverse kinds of inputs the task comprises. In order to address this, we propose Vector-quantized Input-contextualized Prompts (VIP) as an extension to the soft prompt tuning framework. VIP particularly focuses on two aspects—contextual prompts that learns input-specific contextualization of the soft prompt tokens through a small-scale sentence encoder and quantized prompts that maps the contextualized prompts to a set of learnable codebook vectors through a Vector quantization network.

On various language understanding tasks like SuperGLUE, QA, Relation classification, NER and NLI, VIP outperforms the soft prompt tuning (PT) baseline by an average margin of 1.19%. Further, our generalization studies show that VIP learns more robust prompt representations, surpassing PT by a margin of 0.6% - 5.3% on Out-of-domain QA and NLI tasks respectively, and by 0.75% on Multi-Task setup over 4 tasks spanning across 12 domains.

1 Introduction

With the increase in network size, it has become more computationally expensive to fine-tune pre-trained language models (PLMs) on downstream tasks. Recent studies have shown that prompt-based learning is a quite effective parameter-efficient method of conditioning the behavior of PLMs for a given predictive task (Lester et al., 2021; Wu et al., 2022). The goal of prompt-based learning, in contrast to traditional supervised learning approaches, is to find the task-specific template that is augmented to the input text in order to guide the PLM toward generating the correct output (Liu et al., 2021). The initial efforts in this direction involved manually designed templates to solve natural language processing (NLP) tasks (Brown et al., 2020; Schick and Schütze, 2021, 2020).

In order to reduce the human effort required in finding appropriate task and LM-specific prompt templates, more recent works aim to automate the process of prompt designing. One of the popular ways is to search for templates in the discrete space of tokens (Jiang et al., 2020; Haviv et al., 2021; Yuan et al., 2021). These are known as hard prompts. Another popular line of research aims at learning prompt token embeddings in a continuous vector space, i.e., soft prompts (Li and Liang, 2021; Lester et al., 2021). Our work is an extension of the parameter-efficient soft prompt tuning framework,

![Comparison of model performance vs parameter size on SuperGLUE dataset. PT and FT denotes prompt tuning (2021) and fine-tuning respectively while Adapter (2019) learns adapter modules inserted between layers of the PLM. VIP-IDP denotes instance dependent prompt generation (2022) under text-to-text framework. VIP is our proposed approach of quantized contextual soft prompts.](Figure_1.png)
PT, which we describe below.

Given a frozen PLM, the soft prompt tuning method PT (Lester et al., 2021) aims to learn a set of soft tokens (vectors) to solve a downstream task. There is a critical limitation of this approach, that is, the learned prompt tokens are expected to perform well across the samples of the task. Thus they are static against the change in input. Henceforth, we refer to them as static tokens. We hypothesize that learning to attend and adapt the prompt tokens to the input provides more flexibility to the system to find the distribution of prompts that generalizes well to diverse forms of the input. To address the limitation of PT, i.e., input-inadaptability of static tokens, we introduce a novel soft prompt tuning technique, Vector-quantized Input-contextualized Prompts (VIP), with two integral properties that are our main contributions:

- **Prompt Contextualization.** We propose a “contextualizer” – a transformer-based sentence encoder that generates input-adapted prompt tokens from the input text and static soft prompts. While there has been some recent interest in input-dependent prompt generation (Levine et al., 2022; Clive et al., 2021; Wu et al., 2022), we observe that a straightway utilization of the contextualized tokens as a replacement for static tokens leads to performance degradation (VIP-C in Table 3). The potential cause is training instability due to noise in the contextual prompt representations that propagates through the frozen PLM and leads to erroneous predictions.

- **Prompt Quantization.** We tackle the aforementioned challenge by introducing a prompt “Quantizer” to reduce the noise in the contextual prompt representations. The quantizer discretizes the continuous space of contextualized prompts, thus allowing us to control its representational capacity. It maps each contextual prompt token to a set of learnable vectors called codebook. These mapped vectors are used as final quantized prompts, with the codebook acting as a parametric discrete latent variable model over the contextual prompt space. Therefore, it is worth noting, quantization limits the space of contextual prompts based on the representation capacity of the codebook vectors.

Similar to the other prompting methods, the original input text is concatenated with the obtained quantized (contextual) prompt tokens and subsequently fed into the frozen PLM. The contextualizer and static tokens are learned using backpropagation to minimize the task-specific prediction loss. Whereas the codebook vectors are learned using a more stable update method of exponential moving average (Roy et al., 2018; Angelidis et al., 2021).

Empirically, we demonstrate the utility of our proposed approach VIP on a wide range of NLP tasks. On SuperGLUE, QA, Relation Classification, NER and NLI, VIP improves over the baseline soft prompt tuning method PT by an average margin of 1.19%. Additionally we find that VIP outperforms PT by a margin of 0.6% - 5.3% on out-of-domain QA and NLI tasks respectively and by 0.75% on Multi-Task setup over 4 different tasks. Overall, our experiments showcase that VIP learns more richer robust prompt representations than static soft prompts PT.

2 Problem Formulation

Following Raffel et al. (2019), we cast all the tasks into a text-to-text format. Therefore, tasks such as text and relation classification are reformulated as text generation and the model is expected to generate the class label y. Formally, given a pretrained Language Model (PLM) parameterized by θ, we formulate a task T as conditional text generation $Pr(y | x, X)$ where X and Y are respectively the sequences of token embeddings corresponding to the texts x and y, generated by the tokenizer provided by the frozen PLM.

The prompting approach of Lester et al. (2021) prepends X with the set of learnable soft tokens $P = \{p_1, \ldots, p_n\}$. Soft tokens p_i are vectors that lie in a d-dimensional continuous space \mathbb{R}^d. The idea is to condition the model output Y directly on P and X as $Pr(y | P, X)$, where the static vectors in P are conditionally independent of X given task T i.e. $Pr(P | X, T) = Pr(P | T)$. T denotes the set of tokens obtained from task-specific attributes such as task description and class labels. However, such a setting restricts the system to find a singular static set of prompt tokens that is effective for all the diverse samples of a given task.

Motivation. We hypothesize that to solve a complex language understanding task, the dependence of prompt on input X is a critical characteristic that aids in generalization over the unseen in and out-of-domain samples. In the parameter-efficient prompt tuning methods such as Lester et al. (2021),
the PLM is not allowed to tune its parameters and learn task-specific contextualization. This motivates us to learn compact prompt representations in VIP that can encode task-specific information and contextual information from each of its samples. We represent VIP tokens by the set of vectors \(P_q = \{p_q^0, \ldots, p_q^n\} \in \mathbb{R}^{d_c} \), which unlike static tokens \(P \), holds the desirable property \(\Pr(P_q|X,T) \neq \Pr(P_T|T) \).

3 Methodology

In order to obtain input-dependent soft prompts \(P_q \), we start with trainable static prompt tokens \(P \) similar to Lester et al. (2021). \(P \) along with the original input token sequence \(X \) is then fed to a parameterized submodule called CQ, which performs Contextualization and Quantization. Formally, \(P_q = CQ_\phi([P, X]) \) where \(\phi \) is the parameter set of CQ module. Our final prompt token representation is obtained by combining the CQ module’s output \(P_q \) and the static tokens \(P \) through a skip connection i.e. \(P + P_q \). This we substitute in place of \(P \) in \(\Pr(Y|P,X) \) from Lester et al. (2021)

\[
\Pr(Y|T,P,P_q,X) \overset{\text{def}}{=} \text{PLM}_\theta([T,P+P_q,X]). \tag{1}
\]

Next, we elaborate on functioning of the CQ module, which performs Contextualization followed by Quantization of the soft prompts and is the primary contribution of this work.

3.1 Contextualization & Quantization (CQ)

CQ expects the input as a sequence of token embeddings, by prepending input \(X \) with the input-agnostic soft tokens \(P \). As a first step, it performs the token contextualization described below:

3.1.1 Prompt Contextualization

To reduce the number of trainable parameters and perform meaningful contextualization that is coherent with the input space of PLM, we utilize non-tunable input embedding of PLM for mapping tokens in \(X \) to respective vectors. Then, as Figure 3 shows, \([P, X] \) is passed through a trainable transformer-based sentence encoder (Vaswani et al., 2017). For a given task \(T \), \(P \) acts as a set of constant vectors. Through the attention mechanism, the encoder fuses \(P \) with the context information from \(X \). The output of the sentence encoder is an input-contextualized set of prompt tokens \(P^c \).

Sentence encoder. To keep the number of trainable parameters low, we perform contextualization in a lower dimensional space. We project \(P \in \mathbb{R}^{n \times d} \) from \(d \) to \(d' \) dimensions \((d' < d) \) to obtain \(P'_l \in \mathbb{R}^{n \times d'} \). \(P'_l \) is subsequently fed into a two-layer transformer encoder layers having four attention heads and dense layers of dimension \(\{d' \times 2d', 2d' \times d'\} \). The output of this transformer encoder is projected back from \(d' \) to \(d \)-dimension space to get the contextualized prompt token representation \(P^c \). The input and output projections are also dense layers with trainable parameters. In our experiments, we have \(d = 768 \) and \(d' = 32 \). The sentence encoder is trained from scratch since it is significantly smaller (86K parameters) than standard PLMs.

3.1.2 Prompt Quantization

The continuous token embeddings \(P^c \) at the output of the sentence encoder suffer from high variance in their representations across diverse inputs for a given task, owing to their direct dependence on \(X \). This high variance behaves as noise for the frozen PLM, resulting in unstable performance and poor generalization. Another potential limitation of directly utilizing the contextual tokens as prompts is representation collapse resulting in \(P^c \) becoming a constant embedding ignoring the input context. We found that the posterior collapse issue persists unless specifically treated, particularly due to the downstream PLM being frozen.

This inspires us to learn a compact quantized representation \(P^q \) of the contextual prompt \(P^c \), fol-
Vector quantizer. We maintain a set of K learnable codebook vectors $e \in \mathbb{R}^{K \times d}$ shared across all the contextualized soft tokens in P^{c}. The quantization is independently performed on each $p^{c}_{i} \in P^{c}$, by sampling a mixture of codebook entries from e that are closest in representation to p^{c}_{i} in order to obtain the corresponding quantized prompts p^{q}_{i}. For this, we first define logits l^{k}_{i} for the ith token p^{c}_{i} as negative of its squared euclidean distance from the k_{th} codebook vector. We then sample, with replacement, m latent codes for each prompt token p^{c}_{i}, from a Multinomial distribution over the logits l^{k}_{i}, which results in the Soft-EM training followed by Angelidis et al. (2021); Roy et al. (2018).

$$l^{k}_{i} = -\frac{1}{r}||p^{c}_{i} - e_{k}||_{2}^{2} \quad (2)$$

$$z^{1}_{i}, \ldots, z^{m}_{i} \sim \text{Multinomial}(l^{1}_{i}, \ldots, l^{K}_{i}) \quad (3)$$

The quantized p^{q}_{i}, i.e., p^{q}_{i}, can be computed by averaging over the m samples of codebook entries obtained from the Multinomial sampling. p^{q}_{i}’s are discrete latent variables that correspond to centroid of the cluster of the codebook entries closest to p^{c}_{i}.

$$p^{q}_{i} = \frac{1}{m} \sum_{j=1}^{m} e_{x^{1}_{j}} \quad (4)$$

The contextualization and quantization processes are shown in Figure 3. For experimental stability during the initial phase of training, we scale the logits by a temperature hyperparameter τ in order to encourage fair codebook usage when sampling using Equation (3). In our experiments τ is fixed to 100 across all tasks and datasets. It is chosen based on the norm of the codebook vectors in the initial training iterations, which is typically of order 10^{2}-10^{3} for our initialization.

Learning a compact codebook (as described in 3.2) and setting the τ constant allows the quantizer to explicitly control and bottleneck the information capacity of prompt representations P^{q} before feeding it to the PLM, thus avoiding posterior collapse. Also, this sampling process ensures that for semantically similar inputs, the quantized prompts will also have similar representations, thus reducing its representation variance w.r.t the input. This consequently helps in stabilizing the frozen PLM’s performance, as is evident from our empirical results. Essentially quantization serves as a trade-off between input-agnostic soft prompts and input-contextualized soft prompts, by sampling prompts from a limited set of learnable codebook vectors.

Skip connection over CQ. Roy and Grangier (2019) illustrated the importance of having a skip connection over the input and output of the quantization bottleneck network. Following this, we also add a skip connection over CQ module, combining its input and output i.e. $P + P^{q}$ in order to obtain the final Vector-quantized Input-contextualized Prompt tokens. It is worth noting that the skip connection allows us to effectively fuse the learned information from the input-dependent aspects captured by P^{q} with the static input-agnostic prompt P. Empirically we observe that the information bypass leads to more stable performance i.e. lower variance across random initializations of prompt embedding and sentence encoder parameters.

3.2 Training

The sentence encoder, soft tokens P, and codebook vector comprise the set of trainable parameters while we freeze the parameter set of PLM. Our training objective minimizes two losses: i) cross-entropy loss between the output generated by the frozen PLM and the ground truth sequence of tokens and ii) commitment loss which encourages an encoder output to commit to a set of closest codebook vectors, without fluctuating too much. This is important in order to ensure the volume of codebook embedding space does not grow arbitrarily.

$$L = L_{CE} + \beta \sum_{r=1}^{R} ||p^{q}_{r} - \text{sg}(p^{q}_{r})||_{2}^{2} \quad (5)$$
where \(L_{CE} \) denotes the cross-entropy loss, \(sg \) refers to the stop gradient operator such that \(sg(x) = x \) in the forward pass and zero on the backward pass. \(\beta \) is a hyperparameter referred to as the commitment cost, which regulates the extent to which the encoder output should remain close to the sampled codebook vectors.

On back-propagation, the loss term will update the parameters of the sentence encoder and the prompt embedding layer that originally generated \(P \). However, a crucial part of the learning involves updating the codebook which we described below.

Learning codebook. Following works van den Oord et al. (2017); Roy et al. (2018); Angelidis et al. (2021) that use codebook-based quantization, we adopt the Exponential Moving Average (EMA) style update of the codebook vectors. This has been shown to result in more stable training than gradient-based updates. For each batch, we perform the following two steps:

- Step 1 counts the number of times \(j_{th} \) codebook vector is sampled and updates the count \(c_j \).

\[
 c_j = \lambda c_j + (1 - \lambda) \sum_{i \in [n], k \in [m]} \mathbb{1}[z_{ik} = e_j]
\]

- Step 2 updates the embedding of \(j_{th} \) codebook vector \(e_j \) by taking the mean of sentence encoder outputs for which that codebook vector was sampled during Multinomial sampling.

\[
 e_j = \lambda e_j + (1 - \lambda) \sum_{i \in [n], k \in [m]} \mathbb{1}[z_{ik} = e_j] p_{e_j}^{c_j}
\]

where \(\lambda \) is decay parameter set to 0.99, \(\mathbb{1} \) is the indicator function, \([n]\) denotes set \(\{1, \ldots, n\} \).

While we choose this online K-means clustering style of quantization of the latent space, there are other discretization techniques e.g. using Gumbel softmax to select the most appropriate codebook vector. We avoid that in our work due to its notorious sensitivity to its temperature hyperparameter.

4 Experiments

Tasks. We base our experiments on a wide range of language understanding tasks including natural language inference, question answering of extractive and multiple choice nature, relation classification, and named entity recognition.

- SuperGLUE (Wang et al., 2019). To gauge general language understanding capabilities of VIP against baselines, we evaluate on SuperGLUE benchmark using the prescribed evaluation metrics. It comprises of eight tasks—BooQ, CB, COPA, MultiRC, ReCoRD, RTE, WiC, WSC.

- QA (Fisch et al., 2019). Here we focus on two types of QA tasks: i) Extractive QA: MRQA 2019 shared task consists of multiple question-answering datasets. Six datasets are dedicated each for training and testing while a small portion of training datasets is held-out for model selection. It focuses on evaluating the generalization of a QA system, i.e., how well it performs on out-of-domain examples. ii) Multiple choice QA: RACE-middle (Lai et al., 2017) task to predict the correct answer from four given candidates. Other datasets of this category, MultiRC, and ReCoRD, are incorporated in SuperGLUE.

- Relation classification. Relation classification aims to identify the semantic relation between two specified entities in a sentence. For this task, we use two datasets—SemEval 2010 task 8 (Hendrickx et al., 2010) and TACRED (Zhang et al., 2017). SemEval is a 19-way classification problem, while TACRED is a larger-scale dataset consisting of 41 relation types.

- NER. For named entity recognition, we use the English language dataset of CoNLL-2003 shared task (Tjong Kim Sang and De Meulder, 2003). We frame the same text-to-text format suitable for T5 as in Qin and Joty (2022).

- NLI. We use Adversarial NLI (ANLI) that is a large-scale benchmark dataset to gauge natural language inference capabilities of the system (Nie et al., 2019). We further evaluate generalization of the model trained on the challenging ANLI task to out-of-domain NLI datasets CB, AXB, AXG, RTE and SNLI.

Baselines. We consider the following baselines.

- FT (Raffel et al., 2019). It refers to the standard task-specific fine-tuning of PLM.

- Adapter (Houlsby et al., 2019). It inserts learnable modules between layers of a pretrained transformer to perform transfer learning from PLMs to the downstream tasks.

- PT (Lester et al., 2021). Soft prompt tuning (PT) is the primary baseline for our work. As shown in Figure 1, PT prepends a set of continuous vectors \(P \) to \(X \) and feeds it to PLM. \(P \) is learned via backpropagation through the frozen model. Thus \(P \) relies only on the task at hand and choice of PLM while being independent of \(X \).

- VIP-IDP. Instance-Dependent Prompt Generation Method (IDPG) is a recent approach similar
Table 1: Performance of VIP vs. baseline models on SuperGLUE development set. *acc., EM, F1, F1a, and acc./F1 denote accuracy, exact match, macro and micro F1 scores and average of accuracy and macro F1 respectively. The numbers in subscript show the standard deviation across 3 random trials using different seeds.*

<table>
<thead>
<tr>
<th>Model</th>
<th>CB</th>
<th>COPA</th>
<th>WSC</th>
<th>RTE</th>
<th>WiC</th>
<th>BoolQ</th>
<th>MultiRC</th>
<th>ReCoRD</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT</td>
<td>92.9±3.69</td>
<td>57.0±1.00</td>
<td>63.5±0.10</td>
<td>78.1±1.74</td>
<td>71.9±0.7</td>
<td>79.8±0.23</td>
<td>77.6±0.31</td>
<td>72.3±0.32</td>
<td>74.2±0.99</td>
</tr>
<tr>
<td>Adapter</td>
<td>92.7±1.42</td>
<td>56.7±1.53</td>
<td>65.6±3.58</td>
<td>79.1±1.29</td>
<td>68.9±0.57</td>
<td>79.3±0.8</td>
<td>77.7±0.98</td>
<td>70.2±1.76</td>
<td>73.8±1.49</td>
</tr>
<tr>
<td>VT</td>
<td>75.8±3.61</td>
<td>59.0±2.00</td>
<td>66.7±1.48</td>
<td>70.8±2.25</td>
<td>67.4±0.78</td>
<td>69.3±0.60</td>
<td>69.6±0.55</td>
<td>63.3±1.10</td>
<td>67.7±1.55</td>
</tr>
<tr>
<td>VIP-IDP</td>
<td>37.6±28.4</td>
<td>53.0±23.7</td>
<td>66.7±1.1</td>
<td>49.8±28.2</td>
<td>61.2±8.16</td>
<td>62.6±0.55</td>
<td>52.8±3.21</td>
<td>18.2±4.91</td>
<td>57.0±12.28</td>
</tr>
<tr>
<td>VIP-C</td>
<td>73.4±2.39</td>
<td>57.0±1.00</td>
<td>65.1±1.43</td>
<td>70.9±1.5</td>
<td>65.4±3.12</td>
<td>69.2±0.71</td>
<td>69.7±3.05</td>
<td>63.7±1.65</td>
<td>66.7±1.52</td>
</tr>
<tr>
<td>VIP</td>
<td>75.5±2.63</td>
<td>62.7±0.57</td>
<td>68.7±1.30</td>
<td>72.1±0.87</td>
<td>68.0±0.61</td>
<td>69.6±1.07</td>
<td>70.5±0.40</td>
<td>65.2±0.81</td>
<td>69.1±1.03</td>
</tr>
</tbody>
</table>

Table 2: Performance comparison on relation classification, NER and NLI tasks.

<table>
<thead>
<tr>
<th>Model</th>
<th>Rel. classification</th>
<th>NER</th>
<th>NLI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SemEval F1α</td>
<td>TACRED F1α</td>
<td>CoNLL F1α</td>
</tr>
<tr>
<td>FT</td>
<td>84.8</td>
<td>87.7</td>
<td>90.2</td>
</tr>
<tr>
<td>Adapter</td>
<td>84.4</td>
<td>85.8</td>
<td>89.9</td>
</tr>
<tr>
<td>PT</td>
<td>70.2</td>
<td>83.9</td>
<td>87.1</td>
</tr>
<tr>
<td>VIP-IDP</td>
<td>68.95</td>
<td>79</td>
<td>87.2</td>
</tr>
<tr>
<td>VIP-C</td>
<td>71.8</td>
<td>83.6</td>
<td>87</td>
</tr>
<tr>
<td>VIP</td>
<td>72.4</td>
<td>84.4</td>
<td>87.4</td>
</tr>
</tbody>
</table>

To our idea of making prompt tokens dependent on the input (Wu et al., 2022). IDPG cannot be directly treated as a baseline, since it uses RoBERTa-large as PLM and has only restricted applicability to text classification tasks, where it fine-tunes a classifier head over the frozen PLM. Instead, we adopt the IDPG-style prompt generation with our backbone T5-base model and reduce the trainable parameters to be comparable to ours. This version, named VIP-IDP, fetches the input representation from a frozen T5-base encoder and applies two nonlinear projections - first to a low dimension and then upscaling to a space of dimension 768*n to generate n prompt tokens. One limitation is that this network requires two forward passes through the T5-encoder.

- **VIP-C.** This is an ablation of our VIP architecture, obtained by removing the quantization network. The contextualized prompt tokens from the output of the sentence encoder, Ph, are directly augmented to X and fed to the frozen PLM.

- An important point to note is that while quantization is meaningful for input-dependent prompts, it cannot be applied to standard soft prompts where the prompt tokens have fixed embedding across all input instances of a task.

In results Tables 1 to 3, bold numbers represent the best performing prompt-based model, as FT and Adapter enjoy a much larger parameter size. For cross-domain QA, NLI, and multi-task settings we compare VIP against only primary baseline PT.

Experimental settings. To compare with PT, we base our experiments on the LM-adapted version of T5-base encoder-decoder. We refer to Lester et al. (2021) for finding the best prompt length and fix the prompt token length to n = 100 for PT, VIP, VIP-IDP. Our quantizer comprises 1000 codebook vectors and m in the multinomial sampling is fixed to 10. We select commitment cost β = 0.1 through grid search over {0.01, 0.1, 1}. We relegate precise details to Appendix A.4.

4.1 In-domain performance

In Table 1, we report the development set scores on SuperGLUE. Following Lester et al. (2021), we report results averaging across three random seeds. We find FT and Adapter with a large number of trainable parameters show significantly better performance than prompt-based methods on the three largest datasets, i.e., ReCoRD, BoolQ, and MultiRC. However, these models perform slightly worse than prompt-based methods on COPA which is a small-scale dataset with only 400 training samples. COPA is a difficult task that requires commonsense causal reasoning, hence reliable tuning a large number of parameters will require a large number of training samples. On the other hand large parameter-sized models can be tuned with less number of samples to solve simpler tasks such as textual entailment in CB.

VIP-IDP’s performance ranks poorest amongst all models across most of the SuperGLUE tasks.
Table 3: Performance comparison (using F1 score) on Extractive QA from MRQA and multi-choice QA RACE-M.

<table>
<thead>
<tr>
<th>Train domain</th>
<th>Test domain Results in form of F1-Scores of {PT / VIP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQuAD</td>
<td>54.3 / 54.7</td>
</tr>
<tr>
<td>NewsQA</td>
<td>50.9 / 49.4</td>
</tr>
<tr>
<td>TriviaQA</td>
<td>43.2 / 46.5</td>
</tr>
<tr>
<td>SearchQA</td>
<td>42.9 / 48.3</td>
</tr>
<tr>
<td>HotpotQA</td>
<td>54.1 / 53.9</td>
</tr>
<tr>
<td>NaturalQA</td>
<td>52.7 / 52.3</td>
</tr>
</tbody>
</table>

Table 4: Out-of-domain performance comparison (using F1 Score) of VIP vs. primary baseline PT on MRQA.

<table>
<thead>
<tr>
<th>Model</th>
<th>CB</th>
<th>AXB</th>
<th>AXG</th>
<th>SNLI</th>
<th>RTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc. / F1</td>
<td>acc.</td>
<td>acc.</td>
<td>F1</td>
<td>acc.</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>43.1</td>
<td>63.8</td>
<td>49.9</td>
<td>62.6</td>
<td>70.2</td>
</tr>
<tr>
<td>VIP</td>
<td>59.7</td>
<td>66.1</td>
<td>51.9</td>
<td>66.7</td>
<td>71.8</td>
</tr>
</tbody>
</table>

Table 5: ANLI out-of-domain evaluation.

while also suffering a very high variance across seeds. This is possibly due to straightforward feeding the input-dependent prompts into the frozen PLM. This variance issue is greatly alleviated in VIP by combining the input-agnostic representation \(P \) with the quantized representation \(P^q \).

VIP outperforms the prompt-based baselines on seven out of eight SuperGLUE tasks, while also achieving the lowest variance across all prompting models. We also notice the drop in performance when the quantization bottleneck is removed (VIP-C). We posit that directly using the sentence encoder’s output results in a high variance of the prompt representation w.r.t the input leading to training instability. The performance difference between VIP and VIP-C is higher for the tasks with lesser training samples such as CB, COPA, and WSC where underfitting is likely, leading to high performance variance.

Likewise in Table 2, we observe that VIP outperforms all other prompt-based baselines on all three tasks - relation classification, NER and NLI. Particularly on NLI, the improvement is very significant – 1.5% better than PT and 4-14% better than VIP-IDP and VIP-C, while on other tasks it improves by 1% over the prompt baselines.

We next compare our models on question answering. In MRQA shared task, since the test domain is different from the train and development domain, we perform in-domain testing of models on the development data. For model selection, we held out 10% from the training set. Table 3 compares performance on QA datasets from MRQA task and multi-choice based RACE-M. Across the board, VIP proves superior to all prompt baselines - outperforming PT and VIP-C by an average margin of 1% and VIP-IDP by over 8%. However, fine-tuning (FT) and Adapter consistently outperform all prompt models, owing to their large parameter size and due to using T5-base as PLM.

In Tables 1 to 3, by comparing VIP with contextualized soft prompt VIP-C and VIP-IDP on 20 datasets across 5 tasks, we empirically substantiate the necessity of a capacity bottleneck.

4.2 Out of domain performance

We next evaluate VIP and its primary baseline PT on out-of-domain (OOD) MRQA test set. In 5 out of the 6 training domains, the micro-average OOD test performance of VIP is better than PT, whereas, on NewsQA, both perform comparably. The more fine-grained results show that on all the training domains VIP performs better than PT in at least half of the OOD test datasets. Similarly on all the 6 test datasets VIP consistently outperforms PT in at least half of the training domains.

Next, in Table 5 we present the cross-domain performance of the ANLI model trained using VIP and PT with model selection done on ANLI devel-
opment set. The test domains consist of the test set of SNLI corpus (Bowman et al., 2015) and AXB and AXG and the combined train and development set of RTE from SuperGLUE. We observe that VIP achieves significantly better results on all the OOD NLI tasks as compared to PT. These results empirically justify that the quantized contextual prompts learned by VIP indeed have a richer and more robust representation than the static soft prompts.

4.3 Multi-task performance
We also perform multi-task experiments considering tasks from NLI (ANLI and RTE), extractive QA (MRQA train set), multi-choice QA (ReCoRD and RACE-M), and relation classification (SemEval and TACRED). For each task, we choose up to a maximum of 10K samples at random for both the training and validation set. For evaluation, we consider the complete standard test split of all the datasets. For SuperGLUE-based tasks RTE and ReCoRD, we consider the test on the validation set. We run the experiments for 50K steps, performing validation at every 2K step with an early stopping set to 5. The validation is done on each dataset separately and the model is chosen based on the best mean validation score. As shown in Table 6, VIP outperforms its primary baseline PT in 10 out of 12 tasks and achieves an overall 0.7% better mean performance. This indicates that our proposed CQ module is indeed able to learn more robust soft prompts. We posit that a lower score on multi-task setting.

4.4 Further Experiments
Dedicated codebook. In this ablation, instead of having a shared codebook across all prompt tokens, we assign a dedicated codebook matrix (of dimension $\frac{K}{n}$) to each of the n prompt tokens.

Noise resilience. We also employ noise resilience training of the sentence encoder (Gao et al., 2021) which outperforms on several tasks as discussed later. We pass the same input to the sentence encoder twice to obtain two sets of representations of the same batch. For a batch with B samples, we define noise as the similarity between two sentence encoder representations (p^i), by taking the negative of their Euclidean distance. With i and i^+ representing the two samples obtained by feeding an input instance i twice to the encoder, the sample-wise noise resilience loss l_i is defined to be

$$l_i = -\log \left(\frac{e^{\text{sim}(i,i^+)}}{\sum_{(i,j) \in [B]} e^{\text{sim}(i,j)}} \right), \; (8)$$

The average sample-wise noise resilience loss over the batch is added to the loss term in Equation (5). Table 6 and Table 7 show adding noise resilience and dedicated codebook boosts performance in ANLI, RACE-M, SQuAD, and Nat. QA, while TACRED, TriviaQA and multi-task settings perform better with only noise resilience-based training.

5 Discussions
Training-time and memory overhead. As compared to PT, we did not observe an adverse impact of VIP on training time even with more trainable parameters, and notice a similar convergence pattern. The number of training steps required on SuperGLUE datasets in order (Dataset, PT, VIP) are—(WSC, 180, 90), (CB, 320, 300), (COPA, 377, 442), (WiC, 4080, 1530), (RTE, 546, 760), (BoolQ, 5015, 2360), (RACE-M, 17500, 22000), (MultiRC, 5000, 6000), (ReCoRD, 13500, 19500), where per-iteration time-overhead of VIP is 0.07 seconds (1.96 (VIP) vs 1.89 (PT)). Thus, for WSC, CB, WiC, BoolQ, VIP converges faster. Regarding memory overhead, VIP (97.7MB) is slightly worse (3.3MB) than PT (94.4MB), with the main memory bottleneck being the common frozen T5-base PLM (892MB). While codebook in VIP increases the parameter size, it can be shared across multiple
tasks, thus reducing the parameter overhead. In our multi-task experiment, VIP with codebook shared across 3 tasks still outperforms the PT baseline.

Learning codebook for small datasets. Even on small SuperGLUE datasets such as CB, COPA, and WSC with only 200-400 training instances, VIP performs an average 1.8% better than PT. Furthermore, for CB, the codebook visualization and interpretability analysis (Appendix A.3, Figure 4) shows that VIP indeed learns meaningful representations even for small scale datasets.

Comparison with L2 regularization. While L2-regularization can also limit the capacity of prompt space, quantization achieves a clustering over the contextualized prompts with the discrete latent variables (codebook vectors) being the clusters. This encourages the quantized prompts to have similar representations for semantically similar inputs, which can neither be achieved in VIP-C nor through L2-regularization. Experiments with L2-regularization did not show any performance gain, in fact, it degraded the performance for a large regularization constant. On SuperGLUE datasets CB and COPA, our pilot-study in the standard PT setting yielded these results in the form (L2-reg constant, Accuracy): For CB-(0,75.8), (1e-4,66.78), (1e-3,70.933), (1e-2,66.77), (1e-1,23.71). For COPA-(0,59.0), (1e-4,53.99), (1e-3,59.20), (1e-2,54.34), (1e-1,45.24). Lastly, learning the codebook can also lead to better interpretability of the prompt space (Appendix A.3, Figure 4).

Comparison with Adapters. Adapters fall under a different genre of parameter efficient tuning that require amending the PLM to add tunable intermediate layers. This makes them more complicated and expensive than prompt-tuning methods from practical implementation and usage perspective. In general, they are also much less parameter efficient than prompt tuning-based approaches, such as PT and VIP, and hence not directly comparable to them as one of the main baselines.

Comparing by making PT/VIP parameter-size more similar. Increasing the number of parameters in PT, i.e., prompt length > 100 shows adverse effects on model performance as mentioned by PT paper (Figure3-a of Lester et al. (2021)) and also observed in our experiments. In Appendix Table 8, we investigate different-sized VIP models by varying number of VIP-prompt-tokens and codebook-size, and each of these models still perform better than the best-setting of PT on SuperGLUE.

Impact of prompt quantization. We observed representation collapse empirically when the model ignores input during the prompt generation step, resulting in prompt representations collapsing to a single fixed embedding. We observed VIP-C (or removing quantization from VIP) is highly prone to this as the contextual prompt representations in the sentence encoder’s output collapse to a constant embedding for several random seeds. VIP’s Quantizer alleviates this by limiting the capacity of the prompt space, achieving a clustering over the contextual prompts through the codebook.

6 Related work

In this section, we briefly compare with recent prompt-based studies which particularly use dynamic prompts. Clive et al. (2021) proposes a variant of prefix-tuning (Li and Liang, 2021) which augments input-dependent activations to each layer, resulting in a much larger parameter size compared to us. Similarly Levine et al. (2022) also learns a cross-attention network of size 25M over a frozen T5-encoder to generate input-specific prompts, leading to 25x larger parameter size than VIP. (Wu et al., 2022) is another input-dependent prompt generator that we adapt to our setting as VIP-IDP and compare as a baseline. Jin et al. (2022) re-scales the soft prompt tokens based on their attention over input tokens, but also fine-tunes the PLM, hence they cannot be considered in a parameter-efficient model tuning regime.

7 Conclusion

We propose a novel extension of soft prompt tuning (PT) - Vector Quantized Input-Contextualized Prompt Tuning (VIP), designed to have two desirable characteristics - (i) contextualizing the soft prompt tokens w.r.t input text using a learnable sentence encoder (ii) discretizing the contextual prompts using a Vector Quantization network. On an extensive set of language understanding tasks - SuperGLUE, QA, NLI, NER, and Relation Classification, VIP outperforms PT baseline. Further, our generalization studies on out-of-domain evaluations of QA and NLI and multi-task settings over 4 tasks also show that VIP is able to learn richer and more robust prompt representations than PT.
8 Limitations

In this section, we point out the limitations of VIP and its potential future directions.

- **Pretraining prompt contextualizer.** The sentence encoder in VIP is trained from scratch for each downstream task. However, following the prompt pre-training proposed in Gu et al. (2021), a possible future work is to pretrain the prompt contextualizer in a task-agnostic way.

- **Larger parameter size.** VIP framework demands a larger parameter size than the baseline soft prompt tuning, owing mainly to the codebook. In Appendix A.2 we show that by reducing the number of VIP-prompt tokens and codebook-size, we can reduce the parameter size to one-third while compromising performance slightly on SuperGLUE. More extensive experimental analysis and better techniques for compressing the codebook, we leave as future work.

- **More hyperparameters.** Other than the standard hyperparameters of the sentence encoder, the quantizer introduces new hyperparameters - codebook-size, multinomial sample size, and the temperature constant τ to scale logits. While VIP needs additional hyperparameters, in all our experiments across 20 training datasets from 5 tasks, we fix all hyperparameters related to codebook and sentence-encoder. This shows that our model is indeed not sensitive to the hyperparameters and does not need very specific tuning for each task/setting.

- **Training challenges.** Learning the codebook requires an EMA style updating scheme instead of the standard gradient update. With the PLM being frozen, this needs more careful handling - for e.g. a critical hyperparameter is the value of the temperature constant τ. A very high value can lead to representation collapse of the codebook while very low values can lead to sparse codebook usage. However, as discussed above, τ is independent of the task and depends on the initial norm of codebook vectors.

- **Impact on small-scale datasets.** We posit that due to the larger parameter size of VIP, it performs worse than PT in tasks with lesser training data, e.g. scores on the CB dataset in Table 1. This is due to the larger parameter size of VIP. Indeed, by reducing the parameter size of VIP (in Appendix Table 8), we achieve much better performance on CB.

- **T5-base as backbone PLM.** Due to resource limitations, in all our experiments we use T5-base as the backbone. Following Lester et al. (2021) where larger PLMs are shown to improve prompt-tuning performance, we speculate VIP to showcase a similar effect. Also, though we use T5 as PLM in this work, our VIP architecture can be used in BERT or GPT style prediction or generation as well. However, a formal analysis of this is left as future work.

- **Data and model bias.** The language understanding tasks and datasets were predominantly in the English language, and thus limit our claims to the English language. Gender, age, race, and other socioeconomic biases may exist in these datasets, and models trained on these datasets may propagate these biases. It is likely that additional biases are also embedded within the T5-base PLM that was used as the backbone of VIP.

Acknowledgement

Soujanya Poria acknowledges the Ministry of Education, Singapore, under its AcRF Tier-2 grant (Project no. T2MOE2008, and Grantor reference no. MOET2EP20220-0017). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not reflect the views of the Ministry of Education, Singapore.

References

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. RACE: Large-scale reading comprehension dataset from examinations. In EMNLP.

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes, Daniel Jannai, Muhligay, Yoni Osin, Opher Lieber, Barak Lenz, Shai Shalev-Shwartz, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. 2022. Standing on the shoulders of giant frozen language models.

A Appendix

A.1 Dataset details

SuperGLUE (Wang et al., 2019). To gauge the general language understanding capabilities of VIP against baselines, we evaluate on SuperGLUE benchmark. It comprises of eight tasks—BoolQ (Clark et al., 2019), CB (De Marneffe et al., 2011), MultiRC (Khashabi et al., 2018), ReCoRD (Zhang et al., 2018), RTE (Haim et al., 2006), WiC (Pilehvar and Camacho-Collados, 2018), and WSC (Levesque et al., 2012).

MRQA (Fisch et al., 2019). MRQA comprises of multiple question answering datasets. Six datasets are dedicated each training—SQuAD (Rajpurkar et al., 2016), NewaQA (Trischler et al., 2017), TriviaQA (Joshi et al., 2017), SearchQA (Dunn et al., 2017), HotpotQA (Yang et al., 2018), NaturalQuestions (Kwiatkowski et al., 2019). Six separate datasets are kept for testing—BioASQ (Tsatsaronis et al., 2015), DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), RelationExtraction (Levy et al., 2017), TextbookQA (Kembhavi et al., 2017). A small portion of training datasets is held-out for model selection.

NLI. We use Adversarial NLI (ANLI) which is a large-scale benchmark dataset to gauge the natural language inference capabilities of the system (Nie et al., 2019). We further evaluate the generalization of the model trained on the challenging ANLI task to out-of-domain NLI datasets CB, AXB, AXG, RTE (taken from SuperGLUE benchmark) and SNLI (Bowman et al., 2015).

A.2 Additional Analysis

Combining Soft and VIP Tokens for SuperGLUE Table 8 reports SuperGLUE development-set scores for different variants of the VIP model obtained by taking different combinations of soft prompt tokens and VIP tokens. We observe that for the configuration with all prompt tokens as VIP, i.e., input-contextualized and quantized, the best average performance is achieved while also having a very low variance across multiple runs.

Another notable observation is that the performance improves consistently as we increase the number of VIP tokens replacing static soft prompts. On the other hand, this also shows the trade-off between parameter size and performance. Following this analysis, in our main experiments, we choose the configuration of VIP with 100 VIP-tokens and 0 soft prompt tokens.

A.3 Codebook Visualization

In this section we perform visualization and interpretability analysis on the learnt codebook, taking the CommitmentBank (CB) dataset (De Marneffe et al., 2019) as our setting. This is an NLI task where each sample is associated with one of 3 class labels (‘neutral’, ‘entailment’, ‘contradiction’). For each instance in the CB development, we first compute the m sampled codebook vectors (i.e. z_1^i, \ldots, z_m^i from Equation 3) that are used to construct each of the 100 VIP prompt tokens. Thus for each label across all instances in the development set, we can accumulate the information regarding which codebook vectors are sampled for instances of that label. With this, for each label we find the codebook vectors dedicated to that label i.e. the codebook vectors that have high odds of getting assigned to that particular label than to any other label.

For each soft token, we thus select the three (i.e., number of classes) codebook vectors that are most dedicated to each of the 3 class labels. Note that this corresponds to codebook vectors with least-entropy label distribution and the mode of the distribution is that particular class label.

Figure 4 shows the t-SNE plot of 300 codebook vectors (3 labels \times 100 prompt tokens) selected in this manner. Each codebook vector is color-coded by the corresponding class label it is dedicated to. We observe two characteristics of the learned codebooks:

1. codebook vectors of the same color are typically clustered together. These are label-specific codebook vectors that encode exclusive knowledge about that label. This clustering effect is naturally achieved through the EMA style learning of the codebook;
2. there are some clusters with codebook vectors that are dedicated to multiple labels. This we interpret as clusters of codes that capture general label-agnostic information coming from the input context or task description.

Model Selection in Multi-Task Setting Since the multi-task setting constructed by us involves sampling 10K instances randomly for the train and validation sets, we provide additional details on the
Table 8: SuperGLUE Performance of different VIP models obtained by combining u soft prompts and n VIP prompts denoted by (u,n) and codebook size of 10^n. Number of tunable parameters (denoted by # Tune params) varies across the models due to the different codebook sizes. Numbers in subscript show the standard deviation across 3 randomized trials over different seeds.

Figure 5: Plot of Validation performance on Multi-task dataset vs training iterations. Model selection in Section 4.3 and Table 6 is done based on this plot. VIP achieves more superior performance to baseline PT throughout all evaluation steps.

We refer to the study of Lester et al. (2021) to find the best prompt length and fix the number of prompt tokens to $n = 100$ for PT, VIP and VIP-IDP. The sentence encoder settings are previously discussed in Section 3.1.1. For the classification tasks such as relation classification and NLI, we prepend the set of label tokens to $[P^q, X]$ along with the task description (Equation (1)) as non-trainable hard prompt tokens. For VIP-IDP setting, we keep the weight as learnable parameters in the feedforward generator network. This is to enforce the model to rely its predictions on soft tokens which are generated from the input X. FT feeds X to the PLM and fine-tunes the
Following the same setting as FT, Adapter learns adapter layer weights as proposed by (Houlsby et al., 2019) while keeping the PLM parameters frozen. For all the experiments, standard cross-entropy is used as prediction loss. For optimization, we use Adafactor (Shazeer and Stern, 2018) with constant learning rates (LR), selected via grid search over values \{0.0001, 0.0005, 0.001\} for each of the models, CQ, VIP-IDP, and Adapter. The parameters of the soft prompt \((P)\) embedding layer, however, need a significantly different LR, which we set to 0.3, following Lester et al. (2021). Batch size is set to 128 for the multi-task setup and to 32 for all remaining experiments following Lester et al. (2021). The quantizer comprises 1000 codebook vectors as parameters learned through EMA. We select commitment cost \(\beta = 0.1\) through grid search over \{0.01, 0.1, 1\}. All our experiments are run for 30K steps, except multi-task setting which is run for 50K steps. We employ different evaluation step sizes for different datasets including epoch-wise evaluation, at 500 steps, and at 2K steps. We tune early stopping according to the evaluation step size and the number of train data samples.