@inproceedings{deb-etal-2022-boosting,
title = "Boosting Natural Language Generation from Instructions with Meta-Learning",
author = "Deb, Budhaditya and
Awadallah, Ahmed Hassan and
Zheng, Guoqing",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.456",
doi = "10.18653/v1/2022.emnlp-main.456",
pages = "6792--6808",
abstract = "Recent work has shown that language models (LMs) trained with multi-task \textit{instructional learning} (MTIL) can solve diverse NLP tasks in zero- and few-shot settings with improved performance compared to prompt tuning. MTIL illustrates that LMs can extract and use information about the task from instructions beyond the surface patterns of the inputs and outputs. This suggests that meta-learning may further enhance the utilization of instructions for effective task transfer. In this paper we investigate whether meta-learning applied to MTIL can further improve generalization to unseen tasks in a zero-shot setting. Specifically, we propose to adapt meta-learning to MTIL in three directions: 1) Model Agnostic Meta Learning (MAML), 2) Hyper-Network (HNet) based adaptation to generate task specific parameters conditioned on instructions, and 3) an approach combining HNet and MAML. Through extensive experiments on the large scale Natural Instructions V2 dataset, we show that our proposed approaches significantly improve over strong baselines in zero-shot settings. In particular, meta-learning improves the effectiveness of instructions and is most impactful when the test tasks are strictly zero-shot (i.e. no similar tasks in the training set) and are {``}hard{''} for LMs, illustrating the potential of meta-learning for MTIL for out-of-distribution tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="deb-etal-2022-boosting">
<titleInfo>
<title>Boosting Natural Language Generation from Instructions with Meta-Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Budhaditya</namePart>
<namePart type="family">Deb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="given">Hassan</namePart>
<namePart type="family">Awadallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guoqing</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent work has shown that language models (LMs) trained with multi-task instructional learning (MTIL) can solve diverse NLP tasks in zero- and few-shot settings with improved performance compared to prompt tuning. MTIL illustrates that LMs can extract and use information about the task from instructions beyond the surface patterns of the inputs and outputs. This suggests that meta-learning may further enhance the utilization of instructions for effective task transfer. In this paper we investigate whether meta-learning applied to MTIL can further improve generalization to unseen tasks in a zero-shot setting. Specifically, we propose to adapt meta-learning to MTIL in three directions: 1) Model Agnostic Meta Learning (MAML), 2) Hyper-Network (HNet) based adaptation to generate task specific parameters conditioned on instructions, and 3) an approach combining HNet and MAML. Through extensive experiments on the large scale Natural Instructions V2 dataset, we show that our proposed approaches significantly improve over strong baselines in zero-shot settings. In particular, meta-learning improves the effectiveness of instructions and is most impactful when the test tasks are strictly zero-shot (i.e. no similar tasks in the training set) and are “hard” for LMs, illustrating the potential of meta-learning for MTIL for out-of-distribution tasks.</abstract>
<identifier type="citekey">deb-etal-2022-boosting</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.456</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.456</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>6792</start>
<end>6808</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Boosting Natural Language Generation from Instructions with Meta-Learning
%A Deb, Budhaditya
%A Awadallah, Ahmed Hassan
%A Zheng, Guoqing
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F deb-etal-2022-boosting
%X Recent work has shown that language models (LMs) trained with multi-task instructional learning (MTIL) can solve diverse NLP tasks in zero- and few-shot settings with improved performance compared to prompt tuning. MTIL illustrates that LMs can extract and use information about the task from instructions beyond the surface patterns of the inputs and outputs. This suggests that meta-learning may further enhance the utilization of instructions for effective task transfer. In this paper we investigate whether meta-learning applied to MTIL can further improve generalization to unseen tasks in a zero-shot setting. Specifically, we propose to adapt meta-learning to MTIL in three directions: 1) Model Agnostic Meta Learning (MAML), 2) Hyper-Network (HNet) based adaptation to generate task specific parameters conditioned on instructions, and 3) an approach combining HNet and MAML. Through extensive experiments on the large scale Natural Instructions V2 dataset, we show that our proposed approaches significantly improve over strong baselines in zero-shot settings. In particular, meta-learning improves the effectiveness of instructions and is most impactful when the test tasks are strictly zero-shot (i.e. no similar tasks in the training set) and are “hard” for LMs, illustrating the potential of meta-learning for MTIL for out-of-distribution tasks.
%R 10.18653/v1/2022.emnlp-main.456
%U https://aclanthology.org/2022.emnlp-main.456
%U https://doi.org/10.18653/v1/2022.emnlp-main.456
%P 6792-6808
Markdown (Informal)
[Boosting Natural Language Generation from Instructions with Meta-Learning](https://aclanthology.org/2022.emnlp-main.456) (Deb et al., EMNLP 2022)
ACL