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Abstract

Stance detection aims to identify whether the
author of an opinionated text is in favor of,
against, or neutral towards a given target. Re-
markable success has been achieved when suf-
ficient labeled training data is available. How-
ever, it is labor-intensive to annotate sufficient
data and train the model for every new target.
Therefore, zero-shot stance detection, aiming
at identifying stances of unseen targets with
seen targets, has gradually attracted attention.
Among them, one of the important challenges
is to reduce the domain transfer between seen
and unseen targets. To tackle this problem,
we propose a generative data augmentation ap-
proach to generate training samples containing
targets and stances for testing data, and map the
real samples and generated synthetic samples
into the same embedding space with contrastive
learning, then perform the final classification
based on the augmented data. We evaluate our
proposed model on two benchmark datasets.
Experimental results show that our approach
achieves state of-the-art performance on most
topics in the task of zero-shot stance detection.

1 Introduction

In recent years, social media websites have become
an important platform for people to express their
opinions on different targets (or topics in some lit-
erature) ranging from politics, government policies,
movies, sports and social issues, etc (ALDayel and
Magdy, 2021). More often, users tend to take a
stance, in Favor, Against or Neutral towards a par-
ticular target (Mohammad et al., 2016). The task of
stance detection aims to automatically identify the
stance represented by the users in numerous texts.
It is of great significance to applications like argu-
ment mining, fake news detection, public opinion
analysis and has caught the attention of researchers.

Remarkable success has been achieved when
sufficient labeled training data is available in the
task of stance detection (Sun et al., 2018; Siddiqua

Figure 1: An Illustration of Target Specific Stance De-
tection and Zero-Shot Stance Detection. In ZSSD, the
annotation data of the target to be tested will not appear
in the training step of the model.

et al., 2019a; Du et al., 2020). Most of the existing
research work relies on a large number of labeled
data for a specific target. However, in reality, new
targets are constantly produced, and it is unpracti-
cal to label sufficient data for each target. Based on
the idea of transfer learning, some researchers use
cross-target stance detection to train one classifier
adapting from the current target to “new” target
(Sobhani et al., 2017). However, this adaptation
depends on the correlation between targets, and
still needs annotation data of “new” targets. To
solve the problem of missing annotating data of
“new” targets in the real world scenario, the task
of Zero-Shot Stance Detection (ZSSD), aiming at
classifying stances for a large number of unseen
targets without training data, has emerged (Allaway
and Mckeown, 2020).

A great challenge in the task of ZSSD is the gen-
eralization ability of the model due to the lack of
labeled data of specific targets. Some studies try
to introduce external knowledge (e.g. Knowledge
Graph) to capture the correlation between targets
(Du et al., 2017; Liu et al., 2021). However, due to
the existence of domain specific features, directly
transferring stance features from seen targets to un-
seen targets may not result in good performance.
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To tackle this problem, we propose generating high-
quality training data for unseen targets based on
the training data of seen targets. In order to ensure
the quality of the generated samples, we use the
discriminator and generator in Generative Adver-
sarial Networks (GANs) for adversarial learning
(Goodfellow et al., 2014; Meng et al., 2022). In
addition, we conduct hybrid contrastive learning
on the synthesized samples and the ground-truth
target samples(Allaway and Mckeown, 2020), to
remove the noise data irrelevant to the target and
improve the quality of generated samples (Siddi-
qua et al., 2019b). Through the instance-level and
the class-level contrastive learning, the knowledge
in different spaces can be effectively transferred.
Experimental results on two public ZSSD data sets
show that our method can significantly outperform
various competitive baselines. The ablation exper-
iment proves the effectiveness of each part of our
proposed model.

The main contributions of our work can be sum-
marized as follows:

• We propose a generative data augmentation
model which generates high-quality training data
for unseen targets by adversarial learning and con-
trastive learning to improve the performance of
zero-shot stance detection.

• We design comprehensive experiments on
two ZSSD benchmark datasets to compare our ap-
proach with the-state-of-art baselines. Experimen-
tal results show that our approach outperforms the
baselines.

• To the best of our knowledge, this is the
first time to use the generative data augmentation
method to improve the task of ZSSD, without any
prior knowledge.

2 Relate Work

Existing research on stance detection can be
roughly divided into target-specific and cross-target
stance detection (Augenstein et al., 2016; Du et al.,
2017). For target-specific stance detection, most
studies rely on a large number of labeled data for
the specific target to train classifiers through differ-
ent deep learning models (Siddiqua et al., 2019b;
Darwish et al., 2020; Sun and Li, 2021; Kawintira-
non and Singh, 2021). While cross-target stance de-
tection is based on the correlations between user’s
stances on different targets. Researchers proposed
many approaches, such as attention-based model
(Xu et al., 2018; Wei and Mao, 2019), memory-

based model (Wei et al., 2018) and graph-based
model (Liang et al., 2021), to capture the underly-
ing knowledge transferred between targets. Further,
(Li and Caragea, 2021) proposed a novel data aug-
mentation approach by predicting the masked token
and replacing a mentioned target with another that
achieved promising performance on Multi-Target
stance detection.

Unlike the above tasks, zero-shot stance detec-
tion aims learning a classifier that is evaluated on a
large number of completely new targets. Allaway
and Mckeown (2020) introduced a new dataset
of news article comments for zero-shot stance de-
tection and proposed a Topic-Grouped Attention
model to implicitly construct relationships between
the seen and unseen targets. Inspired by adversar-
ial learning for domain adaptation, Allaway et al.
(2021) extracted target-invariant transformation fea-
tures by adversarial learning. In addition, by intro-
ducing commonsense knowledge, Liu et al. (2021)
make use of the structural-level and semantic-level
information of relational subgraphs to strengthen
generalization capability of the model.

The above work focused on using existing fea-
tures to embed a text and any possible attribute
description into their corresponding latent repre-
sentations. The main goal of this embedding based
approach is to map textual features and attribute
descriptions into a common embedding space by
using projection functions, which are learned by
deep networks (Fu et al., 2017; Kawintiranon and
Singh, 2021). However, the method based on em-
bedding is more inclined to predict the seen class
labels as the output, it will cause the problems of
distribution deviation and domain shift. In order to
overcome this problem, some works generate train-
ing data for the unseen classes through the genera-
tion model(Verma et al., 2018; Huang et al., 2019;
Han et al., 2021; Schick and Schütze, 2021). By
augmenting the data of the target domain, zero-shot
classifier can be trained on all samples of known
and unknown classes. Our work is based on these
considerations.

3 Methodology

In this section, before introducing our proposed
Generative Data Augmentation framework with
Contrastive Learning (GDA-CL for short), we will
first define the task of ZSSD. The overall model is
shown in Figure 2, which consists of three parts,
namely Training Data Generation, Hybrid Con-
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Figure 2: The architecture of the proposed GDA-CL framework.

trastive Learning and Fine-Tuning in Stance Clas-
sification.

3.1 Problem Formulation

Formally, in the task of zero-shot stance detec-
tion, we have two disjoint sets: S for seen tar-
gets ts and U for unseen targets tu, where ts ∩
tu = ∅. Suppose that there are Ns labeled in-
stances Ds =

{(
xis, t

i
s, y

i
s

)}Ns

i=1
provided for train-

ing, where xis =
[
x1i , x

2
i , . . . , x

l
i

]
is a sequence of

l words, representing the user’s stance text in this
task, ti is the corresponding target and yi is the
stance label. The test set Du =

{(
xiu, t

i
u, y

i
u

)}Nu

i=1
contains Nu unlabeled instances. The objective of
ZSSD task is to predict a stance label for each xi
towards unseen target tiu in Du, based on the model
trained from each xi towards the seen target tis in
Ds.

3.2 Training Data Generation

To learn transferable stance features from the seen
targets, we generate synthetic targeted training data
Dg =

{
(x̂1, ŷ1, ŷ1) , · · · ,

(
x̂n, ŷn, t̂n

)}
for unseen

targets from the original targeted training data Ds

using Pretraining Language Model (PLM) and con-
trastive learning to assist text generation.

We introduce a text generation model based on
generative adversarial imitation learning (GAIL)
(Ho and Ermon, 2016) to synthesize the missing
training samples for unseen targets. The framework
consists of a generator Gθ and a discriminator Dϕ,
which are parameterized with θ and ϕ, respectively.

For each given training instance d = (x, t, y), we
concatenate t and y with prefixes as text generation
prompt a like “The topic is focus on [t], the label
is [y]” to control targets and labels of the synthetic
samples. The combination of t and y acts as the
semantic description of the target in our framework.
We use GPT-2 (Radford et al., 2019) as a genera-
tor network Gθ to produce the samples x̂ = G(a)
conditioned on an attribution description a. At the
same time, Roberta (Liu et al., 2019) is used as dis-
criminator Dϕ to distinguish a ground-truth sample
x from a synthetic sample x̂. As a result, each
synthesized sample x̂ will obtain a single sparse
reward. The saddle point of model is where the
generator and discriminator satisfy the following
objective function at the same time:

min
Gθ

max
Dϕ

Epreal [Dϕ(a, x)] +

EGθ
[1−Dϕ (a,Gθ(a))]

(1)

The discriminator outputs confidence scores pr
and pg between 0 and 1 for ground-truth sequences
and the generated sequences, respectively. Then
the confidence scores are used to optimize the dis-
criminator through cross-entropy loss and provide
a reward signal Ry for the generator. In the train-
ing process of the generator, the action space is
the whole vocabulary, so we use imitation replay
algorithm to ensure stability inspired by the recent
works (Gulcehre et al., 2019) and (Reddy et al.,
2019). Here, we set a ratio λ (e.g., 0.3) for replay
buffer to control the proportion of ground-truth se-
quences and generated sequences. In the hybrid
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buffer, generated sequences obtain reward from the
discriminator Dϕ, the scores of ground-truth se-
quences are set to a constant. However, the scores
estimate will be very noisy due to the discriminator
not being fixed, so they can not always predict the
exact value of that state. Because the discrimina-
tor has been continuously optimized, the predicted
scores fluctuate, which may cause the generator
model to change too much. To tackle this prob-
lem, we choose to use simple and effective prox-
imal policy optimization (PPO) (Schulman et al.)
rather than trust region policy optimization (TRPO)
(Schulman et al., 2015) to ensure Gθi+1

not move
far away from Gθ.

With PPO strategy, we calculate the current and
last strategy likelihood ratio of the generator model
Gθ:

r(θ) =
Gθ (y1:T | a)
Gθold (y1:T | a) (2)

LG(θ) = −min

{
r(θ)R̂y

clip(r(θ), 1− ϵ, 1 + ϵ)R̂y

(3)
where y1:T is a text sequence, T is the sequence
length, ϵ is a clip factor, R̂y is the reward after Ry

normalization.

3.3 Hybrid Contrastive Learning
We introduce two levels of contrastive learning to
guide the optimization of the generator. For the
instance-level, we utilize contrastive loss to force
the generated text closer to the ground-truth text
with the same stance label. While the class-level
contrastive loss gives higher scores to the samples
that are consistent with the ground-truth labels.

The embedding of each sample di is encoded by
an encoder to obtain the corresponding representa-
tion hi, and then we feed it into the projection func-
tion: zi = H (hi) = H (E (xi)). In instance-level
contrastive learning, we divide the samples into
positive and negative samples according to their
different stance labels. For each embedding zi, The
positive sample z+ having the same stance label
with zi is selected, while the stance labels of the
negative samples are different from zi. Concretely,
the cross-entropy loss is calculated as follows:

sins (zi, z) = exp (zi ∗ z/τe) (4)

ℓins
(
zi, z

+
)
= − log

sins (zi, z
+)

∑K
k=1 sins (zi, zk)

(5)

where τe > 0 is the temperature parameter for the
instance-level contrastive embedding.

Similarly, we divide the data into positive and
negative samples according to the similarities and
differences of their textual descriptions in class-
level contrastive embedding. We introduce a con-
trastive network F (h, a) that computes the correla-
tion score between an embedding h and a semantic
description a. The class-level contrastive loss is
defined as follows:

scls (hi, a) = exp (F (hi, a) /τs) (6)

ℓcls
(
hi, a

+
)
= − log

scls (hi, a
+)

∑S
s=1 scls (hi, as)

(7)

where τs > 0 is the temperature parameter.
Finally, we integrate the instance-level con-

trastive loss Lins and class-level contrastive loss
Lcls into GANs. To train the discriminator, we
can directly combine the contrastive loss with the
classification loss.

L′
D = LD + Lins(x, t) + Lcls(x, t, y) (8)

We combine the contrastive loss with the reward
in the training process of generator. Hence, the
reward in Equation 3 is updated as follows:

R̂′
y = R̂y − Lins(x, t)− Lcls(x, t, y) (9)

3.4 Fine-Tuning in Stance Classification
As the generator model is trained on the labeled
data of seen targets, the generated texts xg may
contain some noise unrelated to the unseen target.
Therefore, directly applying all the generated data
Dg to the training classifier C may lead to the pre-
diction biases. In this section, we make a data
selection strategy to the generated data, and train
the classifier with the filtered data set.

3.4.1 Data Selection
The aim of data selection is to keep more informa-
tion related to target t and label y in the generated
text xg. We regard the generated probability, which
is produced by Gθ conditioned on the attribution
description a, as the confidence score of the gen-
erated text. To eliminate the influence of different
text lengths, we use the average log probability of
all tokens xg of as the score function s, which is
similar to previous study (Yuan et al., 2021).

s =
1

n

n∑

i=1

log pθ
(
xi |

[
a;xg

<i

])
(10)

Given K ∗N generated texts, we sort them accord-
ing to the scores and keep the top N high probabil-
ity samples as D̂g.

6988



Statistics Train Dev Test
# Examples 13477 2062 3006
# Unique Comments 1845 682 786
# Zero-shot Topics 4003 383 600
# Few-shot Topics 638 114 159

Table 1: Statistics of VAST dataset.

Target Pro Con Neu Keywords
DT 148 299 260 trump
HC 163 565 256 hillary,clinton
FM 268 511 170 femini
LA 167 544 222 aborti
CC 335 26 203 climate
A 124 464 145 atheism,atheist

Table 2: Statistics of SemT6 dataset.

3.4.2 Objective Function
We use the Pre-trained Language Models TLM

as classification model, then fine-tune the model
by minimizing the cross-entropy loss with label
smooth (Szegedy et al., 2016) to optimize the
model. Note that our training data Dtrain is com-
posed of two parts: the selected generated samples
for unseen target D̂g and the original training sam-
ples Ds.

4 Experiments

In this section, we perform experiments to answer
the following research questions: RQ1. Can the
generative data augmentation approach effectively
improve the performance of zero-shot stance detec-
tion? If so, how much improvement is our method
compared with other baselines? RQ2. Can Genera-
tive Adversarial Networks (GANs) and contrastive
learning help to improve the quality of the gener-
ated texts? RQ3. How sensitive is our method to
the parameters?

4.1 Datasets and Evaluation Metrics

The dataset used in this paper consists of two bench-
mark datasets.

VAST (Allaway and Mckeown, 2020): This
dataset includes a large amount of specific targets
(topics). The targets in VAST are diverse and the
training data of each target is very small, which
makes it very suitable for zero-shot stance detec-
tion task. The statistics of VAST dataset are shown
in Table 1.

SemT6 (Allaway et al., 2021): This dataset con-

tains six targets obtained from English social me-
dia. Specifically, it includes Donald Trump (DT),
Hillary Clinton (HC), Feminist Movement (FM),
Legalization of Abortion (LA), Climate Change
(CC), and Atheism (A). Each instance has a stance
label as Pro, Con or Neu. For the task of zero-shot
stance detection, we select five targets as training
dataset and the remaining one as test dataset. The
statistics of SemT6 dataset are shown in Table 2.

Following the previous work (Allaway and Mck-
eown, 2020), for the VAST dataset, we use the
macro average of F1-score as the evaluation met-
ric, and for SemT6 dataset, we use the average
F1-score Favg of the class Pro and Con (Allaway
et al., 2021).

4.2 Experimental Settings

We employ the basic version of BERT (Kenton
and Toutanova, 2019) with 768-dimensional em-
bedding as the classifier C. For the encoder E, we
use the Roberta-base model (Liu et al., 2019). We
use TextGAIL (Wu et al., 2021) as the generator G
and discriminator D. The contrastive network F
is a multi-layer perceptron (MLP) containing one
hidden layer. In the generation process of training
data, we use the AdamW optimizer (Loshchilov
and Hutter, 2018) with the learning rate lr = 1e−5

and L2-regularization λ = 1e−5. The proportion of
data selection K is set to 10%. For SemT6, the clas-
sifier is optimized by the Adam optimizer(Kingma
and Ba, 2015) with a learning rate of 1e−3. For
VAST, we fine tune the whole BERT model with a
learning rate of 2e−5.

4.3 Comparison Models

We compare our model with the several state-of-
the-art baselines, including BiCond (Augenstein
et al., 2016): bidirectional conditional encoding
model, CrossNet (Xu et al., 2018): BiCond with
topic-specific self-attention, SKET (Zhang et al.,
2020): using a knowledge graph to transfer target
features, TOAD (Allaway et al., 2021): domain
adaptation of different targets through adversarial
learning. We also compare with five Bert-base
models Bert (Kenton and Toutanova, 2019), TGA
Net (Allaway and Mckeown, 2020): using contex-
tual conditional encoding and topic-grouped atten-
tion, Bert-GCN(Liu et al., 2021): BERT based on
Graph Convolution Networks (GCN), and CKE-
Net (Liu et al., 2021): commonsense knowledge
enhanced Bert based on GCN.
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Model VAST SemT6
Pro Con Neu All DT HC FM LA A CC

Bicond .459 .475 .349 .427 .305 .327 .406 .344 .310 .150
CrossNet .462 .434 .404 .434 .356 .383 .417 .385 .397 .228
SEKT .504 .442 .308 .418 - - - - - -
TOAD .426 .367 .438 .410 .495 .512 .541 .462 .461 .309
BERT .546 .584 .853 .661 .401 .496 .419 .448 .552 .373
TGA Net .554 .585 .858 .666 .407 .493 .466 .452 .527 .366
BERT-GCN .583 .606 .869 .686 .423 .500 .443 .442 .536 .355
CKE-Net .612 .612 .880 .702 - - - - - -
GDA-CL .598 .623 .893 .705 .503 .554 .534 .475 .438 .437

Table 3: Experimental results on two ZSSD datasets.

Model VAST SemT6
Pro Con Neu All DT HC FM LA CC A

GDA-CL .598 .623 .893 .705 .503 .554 .534 .475 .437 .438
(w/o CLS) .602 .607 .882 .697 .501 .542 .531 .472 .422 .433
(w/o INS) .612 .598 .884 .698 .499 .538 .526 .468 .422 .431
(w/o label smooth) .583 .605 .877 .688 .447 .528 .506 . 455 .434 .406
(w/o data selection) .611 .570 .890 .690 .487 .508 .490 .428 .378 .371

Table 4: Ablation experimental results on two ZSSD datasets.

5 Results

5.1 Main Experimental Results

In table 3, we compare our model GDA-CL with
the competitive baseline methods on two bench-
mark datasets. For the VAST data, it has 4033 zero-
shot topics, while SemT6 has six targets and pro-
vides high-quality texts for each topic. These data
are able to support the training of the model. The
following conclusions can be drawn from the exper-
iment results: (i) Our model GDA-CL outperforms
TOAD, BERT, BERT-GCN and TGA-NET, and
achieves state-of-the-art results in VAST dataset
and four targets (DT, HC, LA, A) in SemT6 dataset.
(ii) When our model compare with Bicond-based
model, we observe CrossNet and TOAD both ob-
tain acceptable results on SemT6, but perform poor
on VAST. This is because it is not applicable in the
dataset composed of a large number of different
targets by distinguishing the correlation of targets
and constructing the relationship graph between
targets. However, our method does not depend on
the correlations between targets, and directly gen-
erates training data of unseen targets, which can be
adapted to complex real-world scenarios. (iii) Ad-
ditionally, we observe that our model GDA-CL has
achieved satisfactory advantage and outperformed
Bert-GCN and CKE networks, both of which use

Bert-based graph neural networks. The improve-
ment of our model comes from data augmentation,
and no additional external knowledge is introduced,
which verifies the effectiveness of our model.

5.2 Ablation Study

We conduct ablation study for different compo-
nents of our model including class-level contrastive
embedding, instance-level contrastive embedding,
smooth loss and data selection on the VAST and
SemT6 benchmark under the setting of zero-shot
stance detection. In Table 4, the model w/o CLS
and w/o INS represent our model GDA-CL with-
out class-level contrastive embedding and instance-
level contrastive embedding, respectively. It is
found that after contrastive learning is removed,
the results on both data sets have declined. For w/o
label smooth, we directly use cross entropy loss
without label smooth strategy in stance classifica-
tion. The experimental results show that the label
smoothing strategy to prevent over-fitting, which
makes the model have higher generalization abil-
ity. Furthermore, w/o data selection represents
the model without data selection. We found that
the experimental results decreased significantly ei-
ther without label smoothing or data selection. It
demonstrates that the quality of the generated sam-
ples is very important to our method.
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SemT6 Example 1 Example 2
Target Climate change is a real concern Legalization of abortion

Ground
Truth

When your wearing sweaters in
the summer.

Remind love means willing give
hurts mother.

Generated
Texts

(1) Couldn’t believe place would keep
people safe if climate change.
(2) God help us calm climate arctic.

(1) Two years ago abortion was illegal.
(2) Let legalize make America great.

Table 5: Examples generated by our model GDA-CL in SemT6 dataset. “Ground Truth” represents the ground-truth
training samples of unseen targets, and “Generated Texts” represents the generated training samples of unseen
targets.

VAST Example 1 Example 2
Target Constitutional amendment Gun death

Ground
Truth

Constitutional amendment make
voting right. Currently disenfranchise
citizens residing abroad vote state
elections colleges ...

Professor sidesteps reality going nation
30,000 gun deaths per year many many
multiples times gun related deaths per
capita developed nations ...

Generated
Texts

Realists learned much about outlaw
competition, america bound cities
govern big business. Nothing makes
smaller firms compete cheap easier in
mass market society.

So madness. learned clearly support
legislation remove ban gun lead multiple
victims deaths.

Table 6: Examples generated by our model GDA-CL in VAST dataset.

(a) Visualization with and without class-level con-
trastive learning

(b) Visualization of instance-
level contrastive learning

(c) Visualization of class-
level contrastive learning

Figure 3: Visualization of intermediate embeddings
from instance-level and class-level contrastive learn-
ing. Dots in different colors indicate samples belong-
ing to different stance labels. Blue=Pro, Red=Con,
Green=Neu.

5.3 Data Visualization

To further analyze the effect of contrastive learning,
we visualize the intermediate representation vec-
tors of text samples produced by the model through
the visualization tool t-SNE(Van der Maaten and
Hinton, 2008). Figure 3(a) shows the comparison
of visualized embeddings learned with contrastive
learning component and without contrastive learn-
ing component in training data. We can observe
that class-level contrastive learning obviously pulls
the representations belonging to the same label
(same color) together, the representations between
different labels are pulled away. From the visualiza-
tion of instance-level and the class-level contrastive
embeddings in Figure 3(b) and Figure 3(c), we can
find that the distribution of representations belong-
ing to different stance is separate in test dataset.
This is consistent with our experimental results,
showing that contrastive learning can guide the op-
timization of the data generation in GANs.

5.4 Qualitative Analysis

In Table 5 and 6, we show some training exam-
ples generated by GDA-CL for unseen targets in
the SemT6 dataset and VAST dataset, respectively.
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(a) F1-score for DT (b) F1-score for HC (c) F1-score for FM (d) F1-score for LA

(e) F1-score for CC (f) F1-score for A (g) F1-score for VAST

Figure 4: The results of F1-score in ZSSD with respect to different temperature parameters τe and τs. With the
different τe and τs values, the F1-score results on different datasets change slightly, indicating that our method is
robust to the temperature parameters.

Figure 5: The results of F1-score in ZSSD with respect
to different nums of synthesized instances.

From Table 6, we can observe that the average
length of the training texts are usually less than ten
words so they are easier to be learned. For each
target, we show two generated sample texts with
different stance labels. The generated training texts
have similar semantics to the ground-truth samples,
and are fluent. For VAST, we can observe that as
the pre-training language model GPT2 has strong
generalization ability on large-scale data, there are
some new words like “Realists” and “legislation”
generated in the samples, which have not appeared
in training dataset.

5.5 Parameter Sensitivity Analysis

Next, we conduct parameter sensitivity analysis of
our model. We first evaluate the F1-scores of our
model under different temperature parameters in
contrastive learning. In Figure 4, we set the two
parameters τe and τs to [0.01, 0.1, 1, 10] separately
and show the performances on different targets.
For most targets in SemT6 dataset, the best results
are obtained when τe = 0.1 and τs = 1. In the
VAST dataset, the best result is achieved when
τe = 0.1 and τs = 0.1. All the experimental results
show that our model is relatively stable when the
parameters are changed.

Next, we try to add different numbers of gener-
ated samples to the training set in SemT6 dataset.
The experimental results in Figure 5 show that
when N = 3000, our model achieves the best per-
formance in the task of zero-shot stance detection
towards most targets.

6 Conclusion

In this article, we propose a generative data aug-
mentation model that generates high-quality train-
ing data for unseen targets by adversarial learning
and contrastive learning, for the task of zero-shot
stance detection. We conducted a series of exper-
iments to evaluate our approach against several
state-of-the-art models on two benchmark datasets
and found that our method outperforms the base-
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lines significantly. Through qualitative analysis
and visual analysis, we show that the generated
texts for unseen targets have good fluency while
maintaining semantics.

Limitations

In our work, we conducted experiments on two
datasets. Compared to the VAST dataset, we
achieve a greater improvement in SemT6 dataset.
We suppose that one possible reason is that the over-
all average length of samples on VAST is larger
than that in SemT6.

Although our existing model has a good perfor-
mance in generating coherent short texts. For long
text like paragraphs, it is difficult to dynamically
model the input data, and it is also difficult to per-
fectly capture the complex semantics of long texts.
This leads to an inherent limitation of our model in
dealing with long texts.
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