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Abstract

Transformer has been demonstrated effective in
Neural Machine Translation (NMT). However,
it is memory-consuming and time-consuming
in edge devices, resulting in some difficulties
for real-time feedback. To compress and accel-
erate Transformer, we propose a Hybrid Tensor-
Train (HTT) decomposition, which retains full
rank and meanwhile reduces operations and pa-
rameters. A Transformer using HTT, named
Hypoformer, consistently and notably outper-
forms the recent lightweight SOTA methods on
three standard translation tasks under different
parameter and speed scales. In extreme low re-
source scenarios, Hypoformer has a 7.1 point
absolute improvement in BLEU and 1.27×
speedup than the vanilla Transformer on the
IWSLT’14 De-En task.

1 Introduction

Transformer (Vaswani et al., 2017) is one of the
most effective models in NMT. Transformer could
achieve better performance by stacking more lay-
ers and increasing the embedding dimension (Liu
et al., 2020; Li et al., 2021a). However, this leads
to a huge scale of parameters and a slow inference
speed. Various works have been recently proposed
to compress Transformer, such as light-weight vari-
ants (Wu et al., 2020; Mehta et al., 2021), neural
architecture search (Wang et al., 2020), parameter
sharing (Reid et al., 2021), low-rank approximation
(Ma et al., 2019; Liu et al., 2021; Hrinchuk et al.,
2020), knowledge distillation (Kasai et al., 2020),
layer reassignment (Hsu et al., 2020; Bérard et al.,
2021; Li et al., 2021c).

Following the line of low-rank approximation,
existing works to compress NMT models (or re-
lated deep Transformer models like BERT) 1) are
specific to a part of sub-components, e.g., self-
attention networks (Ma et al., 2019) or embedding
layer (Hrinchuk et al., 2020); and 2) show limited
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or no potential for speedup during inference (Ma
et al., 2019; Hrinchuk et al., 2020; Noach and Gold-
berg, 2020; Liu et al., 2021). However, unlike the
cloud-based system, it needs real-time feedback
and faster inference in edge devices (e.g., smart-
phones and IoTs) even with constrained resources.
Although it is challenging, we believe that low-rank
approximation has the potential for compressing
and accelerating NMT models in edge devices.

From a general point of view, this paper rethinks
low-rank approximation methods, especially two
representative methods namely Matrix Factoriza-
tion (MF) and Tensor-Train decomposition (TT).
The former is arguably time-efficient while the lat-
ter is parameter-efficient. However, (1) MF will
encounter a low-rank bottleneck with a high com-
pression ratio, potentially leading to a moderate
performance drop (Thakker et al., 2020). (2) Trans-
former compression based on high TT-rank TT
decelerates inference speed due to its quadratic
computational complexity. Interestingly, TT was
claimed to retain a full matrix rank by Hrinchuk
et al. (2020) while the expressive power of MF is
bounded to rank R (see Table 1). Although low-
rank TT can significantly reduce parameters and
operations, preliminary experimental results show
that leveraging low-rank TT alone results in signif-
icant performance degradation (see Table 2).

To avoid performance degradation while pre-
serving its parameter efficiency of low-rank TT,
we propose to compensate low-rank TT with an
auxiliary dense projection matrix, resulting in a
hybrid decomposition (Figure 2E), called Hybrid
Tensor-Train (HTT) Decomposition, which is in-
spired by the hybrid form of MF (Thakker et al.,
2020). HTT can retain the full matrix rank, since
its dense part is full matrix rank in definition, and
its TT part is theoretically full matrix rank referring
to TT embedding (Hrinchuk et al., 2020). The full
matrix rank indicates that the expressivity of the
original matrix can be retained in its decomposed
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form. Thus, it is expected that HTT decomposition
can maintain the performance of original matrix,
meanwhile with fewer operations and parameters.

Based on HTT decomposition, we present
a Transformer-based NMT models, called Hy-
poformer in a knowledge distillation fashion.
Specifically, we replace the dense layers of sub-
components (like embedding and self-attention)
with HTT, which can compress and accelerate the
vanilla Transformer.

We evaluate Hypoformer with three standard
machine translation tasks (IWSLT’14 De-En,
WMT’16 En-Ro, and WMT’14 En-De) on Rasp-
berry Pi ARM CPU and Intel CPU. Hypoformer
consistently outperforms recent lightweight state-
of-the-art methods (Wu et al., 2020; Mehta et al.,
2021; Wang et al., 2020) under various parameter
scales and speed scales. Achieving similar perfor-
mance on three tasks, Hypoformer can compress
Transformer base model (Vaswani et al., 2017)
2.9 ∼ 4.5×, and speedup it 1.9 ∼ 3.3× on Intel
CPU and 1.8 ∼ 3.9× on Raspberry Pi ARM CPU.
Notably, when the parameter scale is extremely low,
Hypoformer achieves a 7.1 higher BLEU score and
1.27× speedup than Transformer on IWSLT’14
De-En task.

The contributions of this work are as follows: (1)
Based on the analysis of previous low-rank approx-
imation methods (Oseledets, 2011; Thakker et al.,
2020), we propose a novel Hybrid Tensor-Train
(HTT) Decomposition, which can retain full ma-
trix rank while with fewer operations and parame-
ters. (2) Applying HTT decomposition to compress
and accelerate Transformer, Hypoformer consis-
tently outperforms the recent light-weight SOTA
methods (Wu et al., 2020; Mehta et al., 2021) with
a higher compression ratio, speedup, and better
BLEU score. (3) In edge devices with extremely
limited resources, Hypoformer can retain 95% per-
formance with 1/12 parameters, setting a new
SOTA in extremely-small NMT models.

2 Preliminaries

Tensor Representation First, we introduce the
Tensor diagrams (Penrose, 1971). An n-order ten-
sor can be denoted as a node with n legs. Each
leg is labeled by the length (an associated positive
integer) of the corresponding dimension, and the
orientation of the leg does not matter. As shown in
Figure 1, a vector A ∈ RI , a matrix B ∈ RI×J and
a 3-order tensor C ∈ RJ×K×I , shown in Figure

1(A)(B)(C), have one, two, three legs, respectively.
The tensor operation is shown in Appendix A.1.

Figure 1: Tensor diagrams (Penrose, 1971) for a vector
(A), a matrix (B), a 3-order tensor (C), and the tensor
contraction among them (D).

Matrix Factorization is a common and effective
technique to compress deep neural networks. To
compress the fully connected layer, the weight ma-
trix W ∈ RI×J is decomposed into the product of
two smaller matrices U ∈ RI×R and V ∈ RR×J ,
as shown in Figure 2(B). The compression ratio
of Matrix Factorization (MF) is related to the MF
rank R; the larger R is, the smaller the compression
ratio and the bigger the capacity.

Tensor-Train Decomposition Oseledets (2011)
gives a method to represent the high-order tensor
with a low-rank approximation. In Tensor-Train
(TT) decomposition, each element in the original
tensor can be represented as the product of two
vectors and a series of matrices. For the weight
matrix W ∈ RI×J , where I =

∏n
k=1 Ik and J =∏n

k=1 Jk, it can be reshaped as a 2n-order tensor
X ∈ RI1×···×In×J1×···×Jn . Then, the element in T
is defined as follow:

T (i1, ..., in, j1, ..., jn)

= T1 (: i1, j1, :)T2 (: i2, j2, :) · · ·Tn (:, in, jn, :)
(1)

where Tk ∈ RRk−1×Ik×Jk×Rk are referred to as
TT-cores, which are smaller tensors as shown in
Figure 2(C). The set {Rk}nk=0 is called TT-ranks,
and R0 = Rn = 1. Usually, R1, . . . , Rn−1 are
equal, denoted as R (Novikov et al., 2015). TT
decomposition controls the compression ratio by
adjusting TT-ranks.

3 Hybrid Tensor-Train Decomposition

In this section, we first discuss the limitation of
MF and TT, as well as their expressivity compar-
ison in the case with limited parameters. Then,
we introduce Hybrid Tensor-Train decomposition,
which can retain full matrix rank but with fewer
operations and parameters than the original matrix.
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Figure 2: The operation of different decomposition using tensor graphical representations. For a given feature
representation denoted as x ∈ RI , there show five ways to implement an I × J linear projection for the given x.
The hybrid decomposition 1) conducts both a dense linear projection and MF/TT layer on an identical x; and 2)
concatenates such output to obtain J-dimensional output. α denotes the ratio of dense layer, where α ∈ [0, 1].
I = I1 × I2 × I3. J = J1 × J2 × J3. d is the number of TT-cores of Tensor-Train.

Method Time Complexity Space Complexity Max Rank Potential Risk

Fully-Connected O(N2) O(N2) N -
Matrix Factorization O(NR) O(NR) R low rank bottleneck
Tensor-Train O(DN1+ 1

DR2) O(DN
2
DR2) N quadratic time complexity w.r.t. R

Hybrid Matrix Factorization O(αN2 + 2NR− αNR) O(αN2 + 2NR− αNR) αN +R can not achieve full rank
Hybrid Tensor-Train O(αN2 +D(max{αN, (1− α)N})1+ 1

DR2) O(αN2 +D(1− α)
1
DN

2
DR2) N

Table 1: The comparison of Time and Space Complexity between Different decomposition methods for a N ×N
Fully Connected layer. Max Rank denotes that the approximated matrix with these decompositions can theoretically
achieve the maximum rank. α indicates the ratio of dense part, where α ∈ [0, 1]. R denotes the rank of MF and the
TT-ranks of TT. D indicates the TT-cores number of TT.

3.1 Rethinking MF and TT
Low-rank bottleneck in MF The rank of MF is
essential to its expressivity (Thakker et al., 2020).
To obtain a high compression ratio, MF needs an ex-
tremely small rank, which will lead to a Low-rank
bottleneck. Technically, for a matrix W ∈ RI×J ,
the compression ratio is IJ

(I+J)R . Furthermore, a
lower rank of MF has the potential to lead to a per-
formance drop. For example, Novikov et al. (2015)
found that compressing a dense layer with a rank
50 to 1 MF layer, shows a significant drop in per-
formance. Noach and Goldberg (2020) also found
a similar conclusion in compressing BERT (Devlin
et al., 2019) with MF.

Quadratic computational complexity in TT
Since the computational complexity of TT
is O(DN1+ 1

DR2), TT decomposition has a
quadratic computational complexity with respect
to the TT-ranks R (Table 1). Fortunately, the
quadratic computational complexity issue could
be tolerated in the case TT has relatively small
TT-ranks. In this paper, we avoid using TT with
relatively high TT-ranks. For example, to compress
a 512×512 dense layer, we used a TT-cores=3 and
TT-ranks=2 TT layer, with only 1/512 parameters
and 1/8 computational operations. As shown in
Table 2, we do not directly apply original TT layers

to the Transformer in this work, since the low-rank
TT Transformer suffers a performance degradation
and the high-rank TT Transformer decelerates the
inference speed due to quadratic computational
complexity.

Expressivity between MF and TT In the case
TT has relatively small TT-ranks, TT is more ex-
pressive than MF with a comparable amount of
parameters. For example, Novikov et al. (2015)
found that compressing a dense layer with a TT-
ranks = 1 TT layer outperforms a rank = 50 LMF
layer and achieves more significant compression.
This means that the rank of LMF can not be set
too small for preserving performance. Hrinchuk
et al. (2020) found that TT has full matrix rank
while compressing a matrix, and does not reduce
the expressivity.

3.2 Hybrid Tensor-Train Decomposition

TT decomposition has potential since any TT-
parameterized matrix has full matrix rank
(Hrinchuk et al., 2020). Considering that the high-
rank TT decomposition is time-consuming, we aim
to explore low-rank TT in this paper. However, the
preliminary experimental results in Table 2 show
that purely making use of low-rank TT decomposi-
tion results in a large performance drop.
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To compensate low-rank TT in terms of expres-
sive power, we propose Hybrid Tensor Train de-
composition (HTT) to mix TT decomposition with
an auxiliary dense projection matrix 1. The reasons
are twofold. First, HTT can relieve the quadratic
computational issue since TT-rank is small. Sec-
ond, HTT is expressive thanks to the compensation
from a dense matrix. HTT consists of two parts: a
dense part and a Tensor-Train part (Figure 2(E)).
The formula is as follows:

W = [Wdense,Wtt]

Wtt (i1, ..., in, j1, ..., jn)

= G1 (1, i1, j1, :) · · · Gn (:, in, jn, 1)

(2)

where W ∈ RI×J can be regarded as the em-
bedding layer or the weight matrix of Fully Con-
nected layer. Wdense ∈ RI×αJ , Wtt ∈ RI×(1−α)J ,
and α ∈ [0, 1] is used to control the propor-
tion of the dense and TT part. Wtt can be de-
rived from tensor Wtt by reshaping. TT-cores
Gk ∈ RRk−1×Ik×Jk×Rk , and n is the numbers
of TT-cores. We use 2 or 3 TT-cores in this pa-
per.

∏n
k=1 Ik = I ,

∏n
k=1 Jk = (1 − α)J , and

k = 1, ..., n. The space/time complexity and ex-
pressive power (in terms of rank) of the above de-
compositions are shown in Table 1. Note that HTT
could conduct flexible decomposition: There exists
a hyperparameter α in HTT to adjust the compres-
sion ratio of original matrices.

Theorem 3.1. Suppose there is an original matrix
M ∈ RN×N , we use an HTT to approximate the
original matrix. Theoretically, the max matrix rank
of the original matrix and HTT are both N . More-
over, The max matrix rank of HTT is always full,
which is not restricted to α and TT-ranks R.

MaxRank([Mtt;Mdense]) = MaxRank(M) = N (3)

where HTT includes two parts: the dense part (
Mdense ) is a N ×αN matrix and TT part (Mtt) is
to approximate a N × (1−α)N matrix. The proof
can be found in Appendix A.2.

Expressivity between HTT and HMF Theoret-
ically, HTT is superior to HMF in the theoretical
maximum rank (N ≥ αN + R) (Table 1). To

1A related work is Thakker et al. (2020) which proposes
a Hybrid Matrix Factorization (HMF). HMF decomposes a
matrix into two parts — a ‘narrow’ matrix part and a MF part
(Figure 2(D)). It is claimed that HMF can obtain a higher rank
than MF with a comparable amount of parameters.

achieve a high compression ratio, the α and R of
HMF are relatively small, which may still lead to a
low-rank bottleneck. The empirical results (Table
2) show that HMF leads to a performance drop at
high compression.
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Figure 3: The comparison between vanilla Transformer
and Hypoformer. The difference is that Hypoformer
replaces dense layers with compressed ones.

4 Hypoformer

In this section, we first show the overall structure
between the Transformer and our Hypoformer in
Figure 3. Then, we introduce the three Hypoformer
sub-layers including HTT Embedding, HTT Self-
Attention, and LMF Feed-Forward Network.

4.1 HTT Embedding

The embedding layer is a very large matrix, which
can not be overlooked. For example, it accounts for
about 1/4 of the model parameters in WMT’14 En-
De. Previous works (Wu et al., 2019) used a joint
source-target vocabulary with a large embedding
W ∈ Rv×d, where v is the size of vocabulary and
d is the embedding dimension.

Hrinchuk et al. (2020) showed that directly us-
ing Tensor-Train embedding to replace the orig-
inal embedding layer would damage the perfor-
mance of the machine translation model. To ad-
dress this problem, we propose a new word embed-
ding method named Hybrid Tensor-Train Embed-
ding (HTT EMB) that mixes dense embedding and
sparse embedding. Suppose the number of words
in the vocabulary is v, and the dimension of word
embedding is d. HTT EMB is obtained by concate-
nating a low-dimensional dense embedding matrix
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and a TT-matrix with 3 TT-cores, which can be
formulated as follows:

WE = [We,Wtt] (4)

where We ∈ Rv×αd, Wtt ∈ Rv×(1−α)d, and α ∈
[0, 1] is used to control the proportion of the two
kind of embeddings.

4.2 HTT Self-attention

In the original Transformer, the self-attention al-
lows the input X to apply three projections to ob-
tain Query, Key and Value representations. The
self-attention can be computed as:

A =
XWqW

T
k XT

√
d

Attention(Q,K,V ) = softmax(A)XWv

(5)

where X ∈ RN×d is the input from the previ-
ous layer, N is the sequence length, and d is the
model dimension. A is the attention matrix. The
three weight matrices Wq,Wk,Wv ∈ Rd×d can
be column-wise concatenated as a single matrices
W ∈ Rd×3d, which can be formulated as:

W = [Wq,Wk,Wv] (6)

Therefore, what we need to compress is the W
matrix and it consists of only an HTT layer. HTT
splits the W matrix into a dense part and a Tensor-
Train part with 3 TT-cores (Figure 2(E)). This pro-
cedure can be represented as follows:

W = [Wdense,Wtt] (7)

where Wdense ∈ Rd×3βd, Wtt ∈ Rd×3(1−β)d, and
similar to HTT EMB, β ∈ [0, 1] is used to control
the proportion of the dense part and TT part.

In HTT SAN, the input X first goes through
a dense layer, and the output is split into three
equal parts Q1,K1, V1. Second, the input X goes
through a low-rank TT layer, and the output is also
split into three equal parts Q2,K2, V2. Finally, we
obtain the Q, K and V by connecting related slices.
The procedure can be formulated as:

Q1,K1, V1 = Split(XWdense, 3)

Q2,K2, V2 = Split(XWtt, 3)

Q = Concat(Q1, Q2)

K = Concat(K1,K2)

V = Concat(V1, V2)

(8)

4.3 LMF Feed-Forward Network
In this work, we do not apply HTT decomposition
to FFN, because the performance of Transformer
is less sensitive to parameter numbers in FFN than
the counterparts of SAN (Hsu et al., 2020; Yang
et al., 2020). Based on HTT Transformer, we apply
the LMF layer to replace the HTT layer in FFN,
which brings a further speed improvement (Table
2). Therefore, we decide to use the LMF layer in
FFN. The function of the Feed-Forward Network
(FFN) is to make the input X perform a non-linear
transformation. It can be defined as:

FFN(X) = ReLU (XW1 + b1)W2 + b2, (9)

where W1 ∈ Rd×dff , W2 ∈ Rdff×d, b1 ∈ Rdff

and b2 ∈ Rd. d is the model dimension, dff is the
dimension of the FFN. To compress the FFN, we
propose Low-rank Matrix Factorized FFN (LMF
FFN). Unlike the two dense layers in the FFN, LMF
FFN consists of four dense layers, which can be
defined as follows:

LMF-FFN(X) = ReLU(XU1V1+b1)U2V2+b2,
(10)

where U1 ∈ Rd×R, V1 ∈ RR×dff , U2 ∈ Rdff×R,
V2 ∈ RR×d, b1 ∈ Rdff and b2 ∈ Rd. R is the rank
of MF.

5 Experiment

5.1 Datasets and Evaluation
We evaluate our methods on three standard trans-
lation benchmark datasets: IWSLT’14 De-En (De-
En), WMT’14 En-De (En-De), and WMT’16 En-
Ro (En-Ro). For De-En, we use the same setup as
in Liu et al. (2020), which consists of 160K sen-
tence pairs and 10K joint byte pair encoding (BPE)
(Sennrich et al., 2016) vocabulary. For En-De, we
follow the setup as in Liu et al. (2020), which in-
cludes 3.9M training sentence pairs for and 37K
joint BPE vocabulary. For En-Ro, we follow the
setup of Lee et al. (2018), which includes 610K
training sentence pairs.

5.2 Model Settings
Deep Encoder, Shallow Decoder The vanilla
Transformer (Vaswani et al., 2017) adopts 6 en-
coder layers and 6 decoder layers. Besides the
6-6 setting, we choose a deep encoder shallow de-
coder setting that assigns 12 encoder layers and
1/2 decoder layers. Assigning more layers on en-
coders than decoders is beneficial for inference
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speed while maintaining its performance (Li et al.,
2021c) – this sometimes needs knowledge distilla-
tion (Kasai et al., 2020).

Knowledge Distillation Deep to shallow Trans-
former can benefit more from Sequence-level
Knowledge Distillation (SKD) (Kim and Rush,
2016), which has been widely verified in previ-
ous work (Li et al., 2021b; Kasai et al., 2020). In
our experiments, we utilize the method of SKD for
training. Firstly, we train a teacher model with
ground truth data. Then we utilize the teacher
model to predict the training data and obtain SKD
data. Especially, we use ground truth and SKD data
together in student training. In this work, we use
the 12-2 Transformer base model as our teacher
model of knowledge distillation.

Hypoformer Hypoformer is based on a 12-2 or
12-1 Transformer base model (Vaswani et al., 2017)
with the initialization of Admin (Liu et al., 2020).
We use three of our proposed decomposition sub-
layers (HTT EMB, HTT SAN and LMF FFN) to
replace the original sub-layers (Embedding, The
self-attention and FFN). We control the parameters
of the model by adjusting the hyperparameters of
the decomposition sub-layers and model dimen-
sions. HTT EMB and HTT SAN have three hyper-
parameters: the dense part ratio α, the TT-cores
D, and TT-ranks R in TT parts. LMF FFN has
one hyperparameter: rank R. The detailed model
settings are given in Table 5 in Appendix.

Baselines and Implementation We compare Hy-
poformer with decomposition methods and re-
cent lightweight SOTA methods, including Trans-
former (Vaswani et al., 2017), Transformer with
the Admin initialization (Liu et al., 2020) (de-
noted as Our impl.), MF Transformer, TT Trans-
former, Lite Transformer (Wu et al., 2020),
HAT Transformer (Wang et al., 2020), DeLighT
(Mehta et al., 2021), and Subformer (Reid et al.,
2021). The implementation of all models uses
Fairseq (Ott et al., 2019), including baselines and
our methods. We reproduce the results of baselines
following the setting from their papers or download
trained models from official GitHub. The details of
measuring speed are given in Appendix A.4.

5.3 Experimental Results

In this section, we compare our method with two
different methods (decomposition methods and

lightweight SOTA methods) to verify the effective-
ness of our Hypoformer.

The BLEU score of Hypoformer is superior to
other decomposition-based Transformers, espe-
cially in small configurations. Table 2 shows the
results of different decomposition methods applied
in Transformer at two model scales. (1) On the
base model scale, Hypoformer outperforms the MF
Transformer and HTT Transformer in En-De. Com-
pared with HMF Transformer, Hypoformer gets 0.7
BLEU improvement in En-De and achieves simi-
lar performance in En-Ro but using fewer param-
eters. (2) On the small model scale, Hypoformer
achieves better BLEU scores than TT, MF, HMF,
and HTT Transformers on two datasets. It indi-
cates that Hypoformer is more effective than other
decomposition methods in low-resource scenarios.

Hypoformer is smaller, faster and better-
performed than recent light-weight SOTA methods.
In Table 3, we first compare the results between Hy-
poformer with previous works in the case of com-
pressing Transformer base model (Vaswani et al.,
2017) on three tasks. Under the similar or even bet-
ter performance on De-En and En-De, Hypoformer
(12-2) compresses Transformer 2.9 ∼ 4.4 × pa-
rameters and Hypoformer (12-1) accelerates Trans-
former 2.5 ∼ 2.8 × on Intel CPU and 1.8 ∼ 3.9×
on Raspberry Pi CPU, which also outperforms re-
cent light-weight the SOTA methods in compres-
sion, acceleration and performance. In addition,
we also conduct an experiment on a large dataset
(WMT’14 En-Fr with 36M training pairs) with
SKD data. The results can be found in Table 9
in Appendix.

Hypoformer consistently outperforms recent
light-weight methods under different parameters
and inference speeds. Previous works evaluate their
methods on different model scales on De-En and
En-De tasks. To further verify the effectiveness
of our method, we also compare Hypoformer to
these model scales. As shown in Figure 4(A) and
(C), Hypoformer outperforms Transformer (Ad-
min), Lite Transformer and DeLighT with fewer
parameters and better performance matching the
similar parameter scale. For the inference speedup
(Figure 4(B) and (D)), Hypoformer achieves a sig-
nificantly higher speedup than Lite Transformer
and DeLighT when scaled down the model size.
Overall, Hypoformer is more friendly than these
existing methods in edge devices.

Hypoformer gets more competitive performance
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Model E-D WMT’14 En-De WMT’16 En-Ro

Params MACs Speed BLEU Params MACs Speed BLEU

Transformer (Vaswani et al., 2017) 6-6 61.0 M 7.9 B 26.3 tokens/s 27.3 62.1M 7.9 B 23.2 tokens/s 34.3♢
Transformer 12-2 (Our impl.) 12-2 64.9 M 3.3 B 41.5 tokens/s 28.7 64.1M 3.3 B 41.5 tokens/s 34.3

Base MF Transformer 12-2 20.7 M 1.8 B 42.2 tokens/s 27.3 14.8 M 1.7 B 42.6 tokens/s 33.8
HMF Transformer 12-2 21.0 M 2.0 B 40.2 tokens/s 26.8 20.8 M 2.0 B 41.1 tokens/s 34.4
HTT Transformer 12-2 19.4 M 2.3 B 29.3 tokens/s 26.5 19.2 M 2.3 B 31.0 tokens/s 34.3
Hypoformer 12-2 21.2 M 2.2 B 42.0 tokens/s 27.5 13.9 M 1.9 B 44.0 tokens/s 34.3

TT Transformer (TT-ranks=2) 12-2 1.0 M 0.9 B 55.3 tokens/s 8.6 1.0 M 0.9 B 55.3 tokens/s 13.5
TT Transformer (TT-ranks=32) 12-2 5.8 M 8.3 B 37.6 tokens/s 23.2 5.8 M 8.3 B 37.6 tokens/s 31.7

Small MF Transformer 12-2 5.8 M 1.0 B 62.7 tokens/s 22.5 5.7 M 1.0 B 62.7 tokens/s 31.6
HMF Transformer 12-2 5.7 M 1.0 B 59.1 tokens/s 20.5 5.6 M 1.0 B 59.1 tokens/s 29.9
HTT Tranformer 12-2 5.7 M 1.1 B 50.5 tokens/s 22.5 5.6 M 1.1 B 50.5 tokens/s 31.5
Hypoformer 12-2 5.7 M 0.6 B 60.1 tokens/s 23.6 5.6 M 0.6 B 76.0 tokens/s 32.7

Table 2: The performance comparison among decomposed Transformers in TT, MF, HTT, HMF, and Hypoformer on
WMT’14 En-De and WMT’16 En-Ro. Hypoformer obtains the best BLEU score compared with other decomposition
methods. Speed denotes translation speed [tokens/s] on the Intel CPU. All models apply knowledge distillation and
initialization of Admin except for the vanilla Transformer. E-D: the numbers of the encoder (E) and the decoder
(D). ♢ indicates the results is our implementation from Mehta et al. (2021). We compute multiplication-addition
operations (MACs) using 20 source and 20 target tokens. Params: the whole model parameters including embedding
layer. We control the same α of HTT and HMF for fair comparison.

Model IWSLT’14 De-En WMT’14 En-De WMT’16 En-Ro

Params Ratio S(Pi) S(Intel) BLEU Params Ratio S(Pi) S(Intel) BLEU Params Ratio S(Pi) S(Intel) BLEU

Transformer 36.8 M 1.0× 1.0× 1.0× 34.5 61.0 M 1.0× 1.0× 1.0× 27.3 62.1 M 1.0× 1.0× 1.0× 34.3
Lite Transformer 13.9 M 2.7× 1.5× 1.5× 33.6 33.6 M 1.8× 0.8× 1.1× 26.5 - - - - -
HAT Transformer 35.2 M 1.1× 1.8× 1.7× 34.5 46.2 M 1.3× 1.5× 1.7× 26.9 - - - - -
DeLighT 19.9 M 1.9× 1.0× 0.8× 34.4 23.3 M 2.6× 1.3× 1.2× 26.7 22.0 M 2.8× 0.6× 1.2× 34.3
Subformer - - - - - 38.0 M 1.6× - - 27.7 20.0 M 3.1× - - 34.1
Hypoformer 12-2 8.4 M 4.4× 3.5× 2.7× 34.8 21.2 M 2.9× 1.5× 1.6× 27.5 13.9 M 4.5× 3.0× 1.9× 34.3
Hypoformer 12-1 8.6 M 4.3× 3.9× 3.3× 34.4 23.6 M 2.6× 1.8× 2.8× 27.4 15.0 M 4.1× 3.6× 3.3× 33.7

Table 3: Comparison of compression ratio and speedup with Light-Weight Transformers on three tasks. Best
performance is bolded. Ratio: dividing the parameters of Light-Weight Transformers by parameters of Transformer.
S(Pi) and S(Intel): the inference speedup of Raspberry Pi-4 CPU and Intel CPU, and the speedup indicates the
division between the inference speed of Light-Weight Transformers and Transformer. Hypoformer X-X: the X
numbers of encoder and decoder Hypoformer with knowledge distillation. The results of Transformer (Vaswani
et al., 2017) are from the original paper.

under extremely low parameters. Notably, Hypo-
former achieves 7.1 and 4.0 higher BLEU score
than Transformer (Admin) when two models scale
down to about 2.8M and 5.1M parameters on De-
En and En-De (Figure 4(A) and (C)). These results
indicate that Hypoformer’s effectiveness is more
significant in extremely low-resource scenarios.

5.4 Ablation Study and Analysis

Ablation Study. In Table 4, we show how the
vanilla Transformer could be ablated into Hypo-
former. From scheme 1∼3, we observe that Trans-
former with initialization of Admin and deep shal-
low structure brings an improvement of perfor-
mance and 1.6× speedup. We further apply our
Hypofomer on this setting (scheme 4), which leads
to performance degradation but can compress 3.8×
parameters and 21% speedup. However, the gap

in performance between Hypoformer and Trans-
former can be made up with knowledge distillation
(scheme 5).

From scheme 6∼8, we observe that HTT EMB
(Only compressing embedding) can reduce embed-
ding parameters without impact on speed because
look-up operations from a restored embedding ta-
ble are fast. HTT SAN (Only compressing self-
attention) and HMF FFN (Only compressing FFN)
can both reduce about 31% model parameters and
promote about 11% speedup. In the aspect of per-
formance, three components combined do not bring
a significant drop of performance and get higher
compression and acceleration compared to adding
three components respectively.

Knowledge Distillation Analysis. As shown in
Figure 5, firstly, we compared the results of Hy-
poformer and the model without distillation. We
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Figure 4: The comparison of performance between
Hypoformer and SOTA light-weight methods on
IWSLT’14 De-En (Top) and WMT’14 En-De (Down).
Left: under different parameters. Right: under different
inference speedup of Intel CPU. Transformer (Admin):
Transformer with the initialization of Admin (Liu et al.,
2020). We scaled down Transformer (Admin) by ad-
justing the model dimension and reproduced results of
different settings in Lite Transformer and DeLighT.

found that knowledge distillation can improve our
models by about 2 BLEU scores which is a sig-
nificant improvement. Secondly, without using
knowledge distillation, the BLEU of Hypoformer
w/o KD is still better than Lite Transformer and
DeLighT in different model scales. Moreover, we
provide other analysis results in the Appendix A.6.

6 Related Work

Low-rank Approximation is a common and effec-
tive technique to compress deep neural networks.
Matrix Factorization, which expresses a matrix
W ∈ RI×J as a product of two smaller matrices
U ∈ RI×R and V ∈ RR×J . Hybrid Matrix Factor-
ization (Thakker et al., 2020) is an extension of MF,
which inspired our Hybrid Tensor Train decompo-
sition. Tensor-Train decomposition is one part of
our methods, which has proved its effectiveness
in compression in previous works(Novikov et al.,
2015; Hrinchuk et al., 2020; Liu et al., 2021).
Light-Weight Transformer is an increasing de-
mand for the deployment of Transformer in
resource-constrained scenarios. Recent works ex-
plore different methods to compress and accelerate

Model #Params #Total S(Intel) BLEU

1 Transformer 31.6 M 36.8 M 1.0 × 34.5

2 + Admin 31.6 M 36.8 M 1.0 × 34.9
3 + 12-2 31.6 M 36.8 M 1.9 × 35.4
4 + Hypoformer 7.2 M 9.8 M 2.3 × 33.3
5 + Hypoformer† 7.2 M 9.8 M 2.3 × 35.2

6 + HTT EMB † 31.6 M 34.2 M 2.0 × 36.0
7 + HTT SAN † 21.7 M 24.3 M 2.1 × 35.5
8 + LMF FFN † 22.2 M 24.8 M 2.1 × 35.4

Table 4: Ablation study on IWSLT’14 De-En. #Params
and #Total indicate the model parameters without and
with embedding respectively, † denotes that the models
apply knowledge distillation. For scheme 1∼5, (+) indi-
cates that a result includes all preceding methods. For
scheme 6∼8, (+) indicates that a proposed decomposi-
tion applies on scheme 3 with knowledge distillation.

4 6 8 10 12 14 16 18 20
Params (M)

31

32

33

34

35

BL
EU

Hypoformer w/ KD
Hypoformer w/o KD
Lite Transformer w/o KD
DeLighT w/o KD

Figure 5: Distillation analysis in different model size on
IWSLT’14 De-En.

Transformer. One line of research is light-weight
variants(Wu et al., 2020; Mehta et al., 2021). Our
Hypoformer can also combine with another line
of research, which we leave the experimental in-
vestigation in future work including efficient self-
attention mechanism (Zhou et al., 2021; Tay et al.,
2020), quantization (Prato et al., 2019), Neural
Architecture Search (Wang et al., 2020), and pa-
rameter sharing (Reid et al., 2021).

7 Conclusion

In this paper, we present an HTT decomposition-
based Transformer, named Hypoformer, which
can compress and accelerate Transformer. We
explore the application of Hypoformer on edge
devices. In three standard translation tasks, Hy-
poformer is consistently better than recent light-
weight SOTA methods under various parameter and
speed scales. In edge devices with extremely lim-
ited resources, Hypoformer can retain 95% perfor-
mance with 1/12 parameters, setting a new SOTA
in extremely-small NMT models.
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Limitations

Since the proposed HTT is orthogonal to exist-
ing compression methods such as quantization, we
leave the experimental investigation of the hybrid
between HTT and other compression methods as
future work. In addition, HTT module could be fur-
ther accelerated by using a dedicated CUDA kernel,
which we leave as future work since it is also the
main focus in this work.
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A Appendix for "Hypoformer: Hybrid
Decomposition Transformer for
Edge-friendly Neural Machine
Translation"

A.1 Preliminaries: Tensor Operation
Matrix/tensor multiplication can be performed be-
tween two tensors. Two nodes share one leg means
that these two tensors perform matrix/tensor mul-
tiplication in the corresponding dimension, some-
times called ‘tensor contraction’. A tensor can
perform contraction with one or more tensors by
sharing legs together, and different orders of con-
traction execution result in an identical result. As
shown in Figure 1(D), three tensors perform two
matrix multiplications, and the result is the matrix
D ∈ RK×I . Figure 2(A) illustrates a fully con-
nected layer. That is, the input vector X ∈ RI

and the weight matrix W ∈ RI×J performs matrix
multiplication, and the result is a vector ∈ RJ .
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Tasks E-D dmodel dff
HTT EMB† HTT SAN LMF FFN

Speed(CPU) Params BLEU
α D1 R1 α D2 R2 R

12-2 512 1024 0.5 3 4 0.25 3 2 64 95 tokens/s 9.8 M 35.2
12-1 512 1024 0.5 3 4 0.25 3 2 64 140 tokens/s 8.6 M 34.4

De-En 12-2 512 1024 0.5 3 4 0.25 3 2 32 112 tokens/s 8.4 M 34.8
12-2 256 1024 0.5 3 4 0.25 3 4 32 158 tokens/s 3.6 M 33.4
12-2 256 1024 0.125 3 4 0.25 3 4 16 168 tokens/s 3.0 M 32.7

12-2 512 2048 0.25 3 16 0.5 2 4 128 42 tokens/s 21.3 M 27.5
12-1 512 2048 0.25 3 16 0.5 2 4 256 49 tokens/s 23.6 M 27.4

En-De 12-2 384 2048 0.25 3 16 0.5 2 3 96 59 tokens/s 11.4 M 26.2
12-2 256 1024 0.25 3 16 0.5 2 3 96 90 tokens/s 7.7 M 24.7
12-1 256 1024 0.25 3 16 0.5 2 3 96 96 tokens/s 7.1 M 23.9
12-2 256 512 0.125 3 16 0.5 2 3 64 87 tokens/s 5.4 M 23.4

En-Ro
12-2 512 2048 0.125 3 32 0.25 3 4 96 44 tokens/s 13.9 M 34.3
12-2 256 1024 0.25 3 16 0.25 3 4 64 76 tokens/s 5.6 M 32.7

Table 5: The overall results of Hypoformer in three tasks. E-D indicates the numbers of encoder (E) and decoder
(D). dmodel denotes the model dimension, and dff indicates the hidden state dimensions of FFN. † indicates that
the TT-ranks of HTT EMB don’t impact the inference speed because we restore the look-up table embedding in the
processing of model inference.

Hyperparameter Value

label smoothing 0.1
max tokens 4096
distributed world size 1
update frequency 1
dropout rate [0.05, 0.1, 0.2]
embedding dim [512, 256]
ffn dim 1024
Attn heads 4
optimizer radam
Adam-betas (0.9, 0.98)
lr 7e-4
lr scheduler invert sqrt
warmup lr 1e-7
warmup updates 6000
max updates 20K
fp16 True
fp16 scale window 256
threshold loss scale 0.03125
initialization Admin
beam 5
length penalty 1.0

Table 6: Training settings of De-En.

A.2 Hybrid Tensor-Train Decomposition: why
HTT can always keep full the theoretical
maximum rank.

Referring to Hrinchuk et al. ((Hrinchuk et al.,
2020)), TT can theoretically retain the full matrix
rank . Therefore, the TT part in HTT is in principle
full-rank w.r.t. the approximated matrix. The dense
part is by definition full-rank. Thus, HTT can re-
tain full matrix rank. Technically, the dense part

Hyperparameter Value

label smoothing [0.05, 0.1]
max tokens 4096
distributed world size 8
update frequency 1
dropout rate [0, 0.05, 0.1]
embedding dim [512, 384, 256]
ffn dim [2048, 1024, 512]
Attn heads 8
optimizer radam
Adam-betas (0.9, 0.98)
lr 1e-3
lr scheduler invert sqrt
warmup lr 1e-7
warmup updates 8000
max updates 60K
fp16 True
fp16 scale window 256
fp16 scale tolerance 0.25
threshold loss scale 0.03125
initialization Admin
beam 4
length penalty 0.6

Table 7: Training settings of En-De and En-Ro.

(Mdense) is a N ×αN matrix and TT part (Mtt) is
to approximate a N × (1− α)N matrix. We have

MaxRank(Mdense) = αN,

MaxRank(Mtt) = (1− α)N,

MaxRank(Mtt;Mdense]) ≤ αN + (1− α)N = N

(11)

Note that, the theoretical maximum rank is guar-
anteed in almost all cases excluding a zero-measure
negligible set, which is irrelevant with dense layer
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ratio α and TT-ranks R.

A.3 Experiment: Training Setting

Our models follow the training setups of (Liu et al.,
2020). We trained our models with 1 RTX 2080Ti
GPU on IWSLT’14 De-En, 8 Telsa V100 GPUs
on WMT’14 En-De and 4 For WMT’16 En-Ro.
The last 10 model checkpoints are averaged for
testing on En-De/En-Ro and the lowest perplexity
checkpoint for testing on De-En. The detailed hy-
perparameters are listed in Table 6 and 7. Our TT
decomposition code is based on TedNet (Pan et al.,
2021).

For evaluation, we use beam search decoding in
three tasks, where there is beam 5 for De-En and
beam 4 and length penalty 0.6 for En-De and En-
Ro. The performance is measured by case-sensitive
tokenized BLEU (Papineni et al., 2002) for all trans-
lation tasks.

A.4 Experiment: Measuring Speed

We do not use FLOPs as a speed metric because
Wang et al. (2020) found that FLOPs do not reflect
the real-time latency in autoregressive Transformer.
We instead use the number of translated tokens per
second, denoted as tokens/s, as the inference speed
metric. We sample 50 sentences of an average se-
quence length (23 for IWSLT and 30 for WMT)
to test speed. We run these samples 10 times and
remove 10% for the fastest and slowest results re-
spectively and average the rest 80% results. We
test the speed on two representative devices: Rasp-
berry Pi-4 with an ARM Cortex-A72 CPU, 1 core
Intel Xeon E5-2678 v3 @ 2.50GHz CPU. We eval-
uate the inference speed with a batch size of 1 to
simulate the inference of edge devices.

Dataset Model E-D Params Ratio S(Intel) BLEU

Transformer 6-6 36.8 M 1.0× 1.0× 34.9
De-En Transformer 12-2 36.8 M 1.0× 1.9× 35.4

Hypoformer† 12-2 9.8 M 3.8× 2.3× 35.2

Transformer 6-6 63.2 M 1.0× 1.0× 27.7
En-De Transformer 12-2 65.3 M 1.0× 1.5× 28.3

Hypoformer† 12-2 21.2 M 3.0× 1.5× 27.5

Transformer 6-6 61.4 M 1.0× 1.0× 34.5
En-Ro Transformer 12-2 64.2 M 1.0× 1.6× 34.4

Hypoformer† 12-2 13.9 M 4.4× 1.9× 34.3

Table 8: The compression ratio and the speedup compar-
ison with deep to shallow Transformer and Hypoformer
on three tasks. All models initialize with Admin. E-D:
the numbers of encoder (E) and decoder (D). † denotes
that the model utilizes knowledge distillation.
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Figure 6: Sensitivity analysis on IWSLT’14 De-En. we
calculate the MACs of HTT SAN and the embedding
parameters in HTT EMB.

Model Parameters BLEU

Transformer (Vaswani et al., 2017) 62 M 38.1
Lite Transformer 40 M 39.6
DeLighT 37 M 39.6
Hypoformer 12-2 22 M 39.7

Table 9: The Comparison of BLEU on WMT’14 En-Fr

A.5 Experiment Results: WMT’14 En-Fr

In Table 9, in order to evaluate the performance
our Hypoformer on a larger dataset, we conduct
an experiment on WMT’14 En-Fr (36M training
pairs) with SKD data. The results show that Hy-
poformer achieves similar performance with Lite
Transformer and DeLighT but saves 15M and 18M
parameters respectively. The structure of the Hypo-
former we used in En-Fr is the same as in En-De.
The results of Lite Transformer and DeLighT come
from their original paper.

A.6 Analysis

Sensitivity Analysis. In Figure 6, we present a
sensitivity analysis about the hyperparameters of
Hybrid Tensor-Train: the ratio of the dense part α
and the TT-ranks of the TT part. With the increase
of the α, the BLEU score reaches a high point at
α = 0.25 and then tends to be flat in Figure 6(A).
As shown in Figure 6(B), the BLEU score has a
slight drop or improvement when TT-cores and TT-
ranks have changed. For the hyperparameters of
HTT EMB in Figure 6(C) and Figure 6(D), the
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BLEU score has a little change by adjusting the
ratio of the dense part α or the TT-cores and TT-
ranks of TT part.
Deep to Shallow Setting. Table 8 shows the re-
sults of Hypoformer and Transformer (Admin) on
three tasks. First, we note that the deep to shallow
Transformer (12-2) can get similar performance
with symmetric Transformer (6-6) but becomes
roughly 1.6 × faster, seeing a similar conclusion in
(Li et al., 2021c). Moreover, compared with Trans-
former (12-2) baseline, our method can compress
3.0 ∼ 4.4×, accelerate 0 ∼ 21% in Intel CPU with
a slight performance drop. Note that HTT module
could be further accelerated by using a dedicated
CUDA kernel, which we leave as future work since
it is also the main focus in this work.
Regularization. Low parameter models need less
Regularization. With the same model of 11.4 M pa-
rameters, Hypoformer achieves better BLEU scores
(25.7→26.2) with using less dropout (0.1→0.05)
and label-smoothing (0.1→0.05) on WMT’14 En-
De.

A.7 Related Work: Sequence-Level
Knowledge Distillation

Sequence-Level Knowledge Distillation (Kim and
Rush, 2016) is a branch of knowledge distillation
for seq2seq model. The generated sequences from
the teacher model can be treated as the sequence-
level knowledge to guide the student network train-
ing, which can make up the performance of deep
shallow transformers (Kasai et al., 2020; Li et al.,
2021b).

The goal of Knowledge Distillation is to transfer
the knowledge learned from a large teacher network
to the small student network. The procedure of KD
can formulated like:

LKD =
∑

x∈X ,y∈Y
L
(
fT (x, y), fS(x, y)

)
(12)

where L(·) is a loss function to evaluate the gap be-
tween the teacher predict fT (x, y) and the student
predict fS(x, y). In machine translation, (x, y) is
a pair of inputs of the source and target language.
(X ,Y) is the represents the training dataset.
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