@inproceedings{mei-etal-2022-adaptive,
title = "An Adaptive Logical Rule Embedding Model for Inductive Reasoning over Temporal Knowledge Graphs",
author = "Mei, Xin and
Yang, Libin and
Cai, Xiaoyan and
Jiang, Zuowei",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.493/",
doi = "10.18653/v1/2022.emnlp-main.493",
pages = "7304--7316",
abstract = "Temporal knowledge graphs (TKGs) extrapolation reasoning predicts future events based on historical information, which has great research significance and broad application value. Existing methods can be divided into embedding-based methods and logical rule-based methods. Embedding-based methods rely on learned entity and relation embeddings to make predictions and thus lack interpretability. Logical rule-based methods bring scalability problems due to being limited by the learned logical rules. We combine the two methods to capture deep causal logic by learning rule embeddings, and propose an interpretable model for temporal knowledge graph reasoning called adaptive logical rule embedding model for inductive reasoning (ALRE-IR). ALRE-IR can adaptively extract and assess reasons contained in historical events, and make predictions based on causal logic. Furthermore, we propose a one-class augmented matching loss for optimization. When evaluated on the ICEWS14, ICEWS0515 and ICEWS18 datasets, the performance of ALRE-IR outperforms other state-of-the-art baselines. The results also demonstrate that ALRE-IR still shows outstanding performance when transferred to related dataset with common relation vocabulary, indicating our proposed model has good zero-shot reasoning ability."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mei-etal-2022-adaptive">
<titleInfo>
<title>An Adaptive Logical Rule Embedding Model for Inductive Reasoning over Temporal Knowledge Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Mei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Libin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoyan</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zuowei</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Temporal knowledge graphs (TKGs) extrapolation reasoning predicts future events based on historical information, which has great research significance and broad application value. Existing methods can be divided into embedding-based methods and logical rule-based methods. Embedding-based methods rely on learned entity and relation embeddings to make predictions and thus lack interpretability. Logical rule-based methods bring scalability problems due to being limited by the learned logical rules. We combine the two methods to capture deep causal logic by learning rule embeddings, and propose an interpretable model for temporal knowledge graph reasoning called adaptive logical rule embedding model for inductive reasoning (ALRE-IR). ALRE-IR can adaptively extract and assess reasons contained in historical events, and make predictions based on causal logic. Furthermore, we propose a one-class augmented matching loss for optimization. When evaluated on the ICEWS14, ICEWS0515 and ICEWS18 datasets, the performance of ALRE-IR outperforms other state-of-the-art baselines. The results also demonstrate that ALRE-IR still shows outstanding performance when transferred to related dataset with common relation vocabulary, indicating our proposed model has good zero-shot reasoning ability.</abstract>
<identifier type="citekey">mei-etal-2022-adaptive</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.493</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.493/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>7304</start>
<end>7316</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Adaptive Logical Rule Embedding Model for Inductive Reasoning over Temporal Knowledge Graphs
%A Mei, Xin
%A Yang, Libin
%A Cai, Xiaoyan
%A Jiang, Zuowei
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F mei-etal-2022-adaptive
%X Temporal knowledge graphs (TKGs) extrapolation reasoning predicts future events based on historical information, which has great research significance and broad application value. Existing methods can be divided into embedding-based methods and logical rule-based methods. Embedding-based methods rely on learned entity and relation embeddings to make predictions and thus lack interpretability. Logical rule-based methods bring scalability problems due to being limited by the learned logical rules. We combine the two methods to capture deep causal logic by learning rule embeddings, and propose an interpretable model for temporal knowledge graph reasoning called adaptive logical rule embedding model for inductive reasoning (ALRE-IR). ALRE-IR can adaptively extract and assess reasons contained in historical events, and make predictions based on causal logic. Furthermore, we propose a one-class augmented matching loss for optimization. When evaluated on the ICEWS14, ICEWS0515 and ICEWS18 datasets, the performance of ALRE-IR outperforms other state-of-the-art baselines. The results also demonstrate that ALRE-IR still shows outstanding performance when transferred to related dataset with common relation vocabulary, indicating our proposed model has good zero-shot reasoning ability.
%R 10.18653/v1/2022.emnlp-main.493
%U https://aclanthology.org/2022.emnlp-main.493/
%U https://doi.org/10.18653/v1/2022.emnlp-main.493
%P 7304-7316
Markdown (Informal)
[An Adaptive Logical Rule Embedding Model for Inductive Reasoning over Temporal Knowledge Graphs](https://aclanthology.org/2022.emnlp-main.493/) (Mei et al., EMNLP 2022)
ACL