@inproceedings{muller-eberstein-etal-2022-spectral,
title = "Spectral Probing",
author = {M{\"u}ller-Eberstein, Max and
van der Goot, Rob and
Plank, Barbara},
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.527",
doi = "10.18653/v1/2022.emnlp-main.527",
pages = "7730--7741",
abstract = "Linguistic information is encoded at varying timescales (subwords, phrases, etc.) and communicative levels, such as syntax and semantics. Contextualized embeddings have analogously been found to capture these phenomena at distinctive layers and frequencies. Leveraging these findings, we develop a fully learnable frequency filter to identify spectral profiles for any given task. It enables vastly more granular analyses than prior handcrafted filters, and improves on efficiency. After demonstrating the informativeness of spectral probing over manual filters in a monolingual setting, we investigate its multilingual characteristics across seven diverse NLP tasks in six languages. Our analyses identify distinctive spectral profiles which quantify cross-task similarity in a linguistically intuitive manner, while remaining consistent across languages{---}highlighting their potential as robust, lightweight task descriptors.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muller-eberstein-etal-2022-spectral">
<titleInfo>
<title>Spectral Probing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Max</namePart>
<namePart type="family">Müller-Eberstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Linguistic information is encoded at varying timescales (subwords, phrases, etc.) and communicative levels, such as syntax and semantics. Contextualized embeddings have analogously been found to capture these phenomena at distinctive layers and frequencies. Leveraging these findings, we develop a fully learnable frequency filter to identify spectral profiles for any given task. It enables vastly more granular analyses than prior handcrafted filters, and improves on efficiency. After demonstrating the informativeness of spectral probing over manual filters in a monolingual setting, we investigate its multilingual characteristics across seven diverse NLP tasks in six languages. Our analyses identify distinctive spectral profiles which quantify cross-task similarity in a linguistically intuitive manner, while remaining consistent across languages—highlighting their potential as robust, lightweight task descriptors.</abstract>
<identifier type="citekey">muller-eberstein-etal-2022-spectral</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.527</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.527</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>7730</start>
<end>7741</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Spectral Probing
%A Müller-Eberstein, Max
%A van der Goot, Rob
%A Plank, Barbara
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F muller-eberstein-etal-2022-spectral
%X Linguistic information is encoded at varying timescales (subwords, phrases, etc.) and communicative levels, such as syntax and semantics. Contextualized embeddings have analogously been found to capture these phenomena at distinctive layers and frequencies. Leveraging these findings, we develop a fully learnable frequency filter to identify spectral profiles for any given task. It enables vastly more granular analyses than prior handcrafted filters, and improves on efficiency. After demonstrating the informativeness of spectral probing over manual filters in a monolingual setting, we investigate its multilingual characteristics across seven diverse NLP tasks in six languages. Our analyses identify distinctive spectral profiles which quantify cross-task similarity in a linguistically intuitive manner, while remaining consistent across languages—highlighting their potential as robust, lightweight task descriptors.
%R 10.18653/v1/2022.emnlp-main.527
%U https://aclanthology.org/2022.emnlp-main.527
%U https://doi.org/10.18653/v1/2022.emnlp-main.527
%P 7730-7741
Markdown (Informal)
[Spectral Probing](https://aclanthology.org/2022.emnlp-main.527) (Müller-Eberstein et al., EMNLP 2022)
ACL
- Max Müller-Eberstein, Rob van der Goot, and Barbara Plank. 2022. Spectral Probing. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7730–7741, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.