Spectral Probing

Max Müller-Eberstein, Rob van der Goot, Barbara Plank


Abstract
Linguistic information is encoded at varying timescales (subwords, phrases, etc.) and communicative levels, such as syntax and semantics. Contextualized embeddings have analogously been found to capture these phenomena at distinctive layers and frequencies. Leveraging these findings, we develop a fully learnable frequency filter to identify spectral profiles for any given task. It enables vastly more granular analyses than prior handcrafted filters, and improves on efficiency. After demonstrating the informativeness of spectral probing over manual filters in a monolingual setting, we investigate its multilingual characteristics across seven diverse NLP tasks in six languages. Our analyses identify distinctive spectral profiles which quantify cross-task similarity in a linguistically intuitive manner, while remaining consistent across languages—highlighting their potential as robust, lightweight task descriptors.
Anthology ID:
2022.emnlp-main.527
Volume:
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Month:
December
Year:
2022
Address:
Abu Dhabi, United Arab Emirates
Editors:
Yoav Goldberg, Zornitsa Kozareva, Yue Zhang
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
7730–7741
Language:
URL:
https://aclanthology.org/2022.emnlp-main.527
DOI:
10.18653/v1/2022.emnlp-main.527
Bibkey:
Cite (ACL):
Max Müller-Eberstein, Rob van der Goot, and Barbara Plank. 2022. Spectral Probing. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7730–7741, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
Cite (Informal):
Spectral Probing (Müller-Eberstein et al., EMNLP 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.emnlp-main.527.pdf