
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7862 - 7874
December 7-11, 2022 ©2022 Association for Computational Linguistics

HashFormers: Towards Vocabulary-independent Pre-trained Transformers

Huiyin Xue and Nikolaos Aletras
Department of Computer Science, University of Sheffield

United Kingdom
{hxue12, n.aletras}@sheffield.ac.uk

Abstract

Transformer-based pre-trained language mod-
els are vocabulary-dependent, mapping by de-
fault each token to its corresponding embed-
ding. This one-to-one mapping results into em-
bedding matrices that occupy a lot of memory
(i.e. millions of parameters) and grow linearly
with the size of the vocabulary. Previous work
on on-device transformers dynamically gener-
ate token embeddings on-the-fly without em-
bedding matrices using locality-sensitive hash-
ing over morphological information. These
embeddings are subsequently fed into trans-
former layers for text classification. However,
these methods are not pre-trained. Inspired by
this line of work, we propose HASHFORMERS,
a new family of vocabulary-independent pre-
trained transformers that support an unlimited
vocabulary (i.e. all possible tokens in a cor-
pus) given a substantially smaller fixed-sized
embedding matrix. We achieve this by first in-
troducing computationally cheap hashing func-
tions that bucket together individual tokens to
embeddings. We also propose three variants
that do not require an embedding matrix at
all, further reducing the memory requirements.
We empirically demonstrate that HASHFORM-
ERS are more memory efficient compared to
standard pre-trained transformers while achiev-
ing comparable predictive performance when
fine-tuned on multiple text classification tasks.
For example, our most efficient HASHFORMER
variant has a negligible performance degrada-
tion (0.4% on GLUE) using only 99.1K parame-
ters for representing the embeddings compared
to 12.3-38M parameters of state-of-the-art mod-
els.1

1 Introduction

The majority of transformer-based (Vaswani et al.,
2017) pre-trained language models (PLMs; Devlin

1Code is available here: https://github.com/
HUIYINXUE/hashformer and the pre-traied HashFormer
models are available here: https://huggingface.co/
klein9692.

et al. 2019; Liu et al. 2019; Dai et al. 2019; Yang
et al. 2019) are vocabulary-dependent, with each
single token mapped to its corresponding vector in
an embedding matrix. This one-to-one mapping
makes it impractical to support out-of-vocabulary
tokens such as misspellings or rare words (Pruthi
et al., 2019; Sun et al., 2020). Moreover, it linearly
increases the memory requirements with the vocab-
ulary size for the token embedding matrix (Chung
et al., 2021). For example, given a token embed-
ding size of 768, BERT-BASE with a vocabulary
of 30.5K tokens needs 23.4M out of 110M total pa-
rameters while ROBERTA-BASE with 50K tokens
needs 38M out of 125M total parameters. Hence,
disentangling the design of PLMs from the vo-
cabulary size and tokenization approaches would
inherently improve memory efficiency and pre-
training, especially for researchers with access to
limited computing resources (Strubell et al., 2019;
Schwartz et al., 2020).

Previous efforts for making transformer-based
models vocabulary-independent include dynam-
ically generating token embeddings on-the-fly
without embedding matrices using hash embed-
dings (Svenstrup et al., 2017; Ravi, 2019) over
morphological information (Sankar et al., 2021a).
However, these embeddings are subsequently fed
into transformer layers trained from scratch for on-
device text classification without any pre-training.
Clark et al. (2022) proposed CANINE, a model
that operates on Unicode characters using a low-
collision multi-hashing strategy to support ~1.1M
Unicode codepoints as well as infinite character
four-grams. This makes CANINE independent of
tokenization while limiting the parameters of its
embedding layer to 12.3M. Xue et al. (2022) pro-
posed models that take as input byte sequences rep-
resenting characters without explicit tokenization
or a predefined vocabulary to pre-train transformers
in multilingual settings.

In this paper, we propose HASHFORMERS a new

7862

https://github.com/HUIYINXUE/hashformer
https://github.com/HUIYINXUE/hashformer
https://huggingface.co/klein9692
https://huggingface.co/klein9692

family of vocabulary-independent PLMs. Our mod-
els support an unlimited vocabulary (i.e. all pos-
sible tokens in a given pre-training corpus) with a
considerably smaller fixed-sized embedding matrix.
We achieve this by employing simple yet compu-
tationally efficient hashing functions that bucket
together individual tokens to embeddings inspired
by the hash embedding methods of Svenstrup et al.
(2017) and Sankar et al. (2021a). Our contributions
are as follows:

1. To the best of our knowledge, this is the first at-
tempt towards reducing memory requirements
of PLMs using various hash embeddings with
different hash strategies aiming to substan-
tially reduce the embedding matrix compared
to the vocabulary size;

2. Three HASHFORMER variants further reduce
the memory footprint by entirely removing
the need of an embedding matrix;

3. We empirically demonstrate that our HASH-
FORMERS are consistently more memory
efficient compared to vocabulary-dependent
PLMs while achieving comparable predictive
performance when fine-tuned on a battery of
standard text classification tasks.

2 Related Work

2.1 Tokenization and Vocabulary-independent
Transformers

Typically, PLMs are pre-trained on text that has
been tokenized using subword tokenization tech-
niques such as WordPiece (Wu et al., 2016), Byte-
Pair-Encoding (BPE; Sennrich et al. 2016) and Sen-
tencePiece (Kudo and Richardson, 2018).

Attempts to remove the dependency of PLMs on
a separate tokenization component include mod-
els that directly operate on sequences of charac-
ters (Tay et al., 2022; El Boukkouri et al., 2020).
However, these approaches do not remove the re-
quirement of an embedding matrix. Recently, Xue
et al. (2022) proposed PLMs that take as input byte
sequences representing characters without explicit
tokenization or a predefined vocabulary in multilin-
gual settings. PLMs in Clark et al. (2022) operating
on Unicode characters or ngrams also achieved the
similar goal. These methods improve memory effi-
ciency but still rely on a complex process to encode
the relatively long ngram sequences of extremely
long byte/Unicode sequences, affecting their com-
putational efficiency.

In a different direction, Sankar et al. (2021b)

proposed PROFORMER, an on-device vocabulary-
independent transformer-based model. It generates
token hash embeddings (Svenstrup et al., 2017; Shi
et al., 2009; Ganchev and Dredze, 2008) on-the-fly
by applying locality-sensitive hashing over morpho-
logical features. Subsequently, hash embeddings
are fed to transformer layers for text classification.
However, PROFORMER is trained from scratch us-
ing task-specific data without any pre-training.

2.2 Compressing PLM Embeddings

A different line of work has focused on compress-
ing the embedding matrix in transformer mod-
els (Ganesh et al., 2021). Prakash et al. (2020) pro-
posed to use compositional code embeddings (Shu
and Nakayama, 2018) to reduce the size of the
embeddings in PLMs for semantic parsing. Zhao
et al. (2021) developed a distillation method to
align teacher and student token embeddings us-
ing a mixed-vocabulary training (i.e. the student
and teacher models have different vocabularies) for
learning smaller BERT models. However, these
approaches still rely on a predefined vocabulary.
Clark et al. (2022) adopted low-collision multi-
hashing strategy to support ~1.1M Unicode code-
points and a larger space of character four-grams
with a relatively small embedding matrix contain-
ing 12.3M parameters.

3 HashFormers

In this section, we present HASHFORMERS, a fam-
ily of vocabulary-independent hashing-based pre-
trained transformers.

3.1 Many-to-One Mapping from Tokens to an
Embedding

Given a token t, HASHFORMERS use a hash func-
tion H to map t into a value v. Using hashing
allows our model to map many tokens into a single
embedding and support an infinite vocabulary. We
obtain the embedding index by squashing its hash
value v into i = [1, ..., N] where e = Ei is the cor-
responding embedding from a matrix E ∈ RN×d

where N is the number of the embeddings and d
is their dimensionality. We assume that |V | ≫ N
where |V | is the size of the vocabulary. Subse-
quently, e is passed through a series of transformer
layers for pre-training. This is our first variant,
HASHFORMER-Emb that relies on a look-up em-
bedding matrix (see Figure 1). Our method is inde-
pendent of tokenization choices.

7863

Figure 1: HASHFORMER-Emb.

3.2 Message-Direct Hashing
(HashFormers-MD)

Our first approach to hash tokens is by using a
Message-Digest (MD5) hash function (Rivest and
Dusse, 1992) to map each token to its 128-bits out-
put, v = H(t). The mapping can be reproduced
given the same secret key. MD5 is a ‘random’ hash-
ing approach, returning mostly different hashes for
tokens with morphological or semantic similarities.
For example:

MD5(‘play’) = d077f244def8a70e5ea758bd8352fcd8

MD5(‘plays’) = 4a258d930b7d3409982d727ddbb4ba88

It is simple and does not require any pre-processing
to obtain the bit encoding for each token. To map
the hash output v into its corresponding embedding,
we transform its binary value into decimal and then
compute the index i to E as i = v %N .

3.3 Locality-Sensitive Hashing
(HASHFORMERS-LSH)

Locality-sensitive hashing (LSH) hashes sim-
ilar tokens into the same indices with high
probability (Rajaraman and Ullman, 2011).
HASHFORMER-LSH uses LSH hashing to as-
sign tokens with similar morphology (e.g. ‘play’,
‘plays’, ‘played’) to the same hash encoding. This
requires an additional feature extraction step for
token representation.

Token to Morphological Feature Vector: We
want to represent each token with a vector x as

a bag of morphological (i.e. character n-grams)
features. For each token, we first extract charac-
ter n-grams (n ∈ 1, 2, 3, 4) to get a feature vector
whose dimension is equal to the vocabulary size.2

Each element in the feature vector is weighted by
the frequency of the character n-grams of the token.

Morphological Vector to Hash Index: Once we
obtain the morphological feature vector of each to-
ken, we first define N random hyperplanes, each
represented by a random unit vector ri ∈ Rdx ,
where dx is the dimensionality of the morpholog-
ical feature vector. Following a similar approach
to Kitaev et al. (2020), we compute the hash value
v as the index of the nearest random hyperplane
vector to the token’s feature vector, x obtained
by computing v = H(x) = argmax(xR),R =
[r1; ...; rN] where [α;β] denotes the concatenation
of two vectors. This approach results into buck-
eting together tokens with similar morphological
vectors. Similar to HASHFORMER-MD-Emb, we
compute the embedding index as i = v %N .

To prevent storing a large projection matrix
(Rdx×N) for accommodating each unit vector, we
design an on-the-fly computational approach. We
only store a vector η ∈ Rdx that is randomly initial-
ized from the standard normal distribution, guar-
anteeing that each column r in the matrix R is a
permutation of η with a unique offset value (e.g.
r1 = [η2, ..., ηN , η1]). Each offset value only relies
on the index of the hyperplane. This setting ensures
that each hyperplane has the same L2-norm.

3.4 Compressing the Embedding Space
We also propose three embedding compression ap-
proaches that allow an even smaller number of
parameters to represent token embeddings and sup-
port unlimited tokens (i.e. very large |V |) without
forcing a large number of tokens to share the same
embedding. For this purpose, we first use a hash
function H to map each token t into a T -bit value
b, b ∈ [0, 2T). Then, we pass b through a trans-
formation procedure to generate the corresponding
embedding (to facilitate computation, we cast b into
a T -bit vector τ). This way tokens with different
values b will be assigned to a different embedding
by keeping the number of parameters relatively
small. Figure 2 shows an overview of this method.

Pooling Approach (Pool) Inspired by Svenstrup
et al. (2017) and Prakash et al. (2020), we first

2We keep the top-50K most frequent n-grams in the pre-
training corpus.

7864

Figure 2: Compressing the embedding space.

create a universal learnable codebook, which is
a matrix denoted as B ∈ R2k×d. Then, we split
the hash bit vector τ in k successive bits without
overlap to obtain ⌈Tk ⌉ binary values. We then cast
these binary values into an integer value represent-
ing a codeword. Hence, each token is represented
by a vector c ∈ Rd with elements cj ∈ [0, 2k).
For example, given k = 4 and a 12-bits vector
[1,0,1,0,0,1,0,0,0,0,0,1], 4-bit parts are treated as
separate binary codewords [1010,0100,0001] then
transformed into their decimal format codebook
[10,4,1]. We construct the embedding e ∈ Rd for
each token by looking up the decimal codebook
and extracting ⌈Tk ⌉ vectors corresponding to its
⌈Tk ⌉ codewords. We then apply a weighted average
pooling on them using a softmax function:

Ŵj =
expWj

∑⌈T
k
⌉

l=1 expWl

, j = 1, .., ⌈Tk ⌉ (1a)

e =

⌈T
k
⌉∑

j=1

[Bc ⊙ Ŵ]j (1b)

where W ∈ R⌈T
k
⌉×d is a learnable weight matrix

as well as the codebook B. The total number of pa-
rameters required for this pooling transformation is
(⌈Tk ⌉+2k)× d. This can be much smaller than the
N × d parameters required for standard PLMs that
use a one-to-one mapping between tokens and em-
beddings, where N = |V | ≫ (⌈Tk ⌉+2k). Figure 3
shows the overview of the Pool process.

Additive Approach (Add) Different to the Pool
method that uses a universal codebook, we cre-
ate T different codebooks {B1,B2, ...,BT }, each

Figure 3: HASHFORMER-Pool.

containing two learnable embedding vectors corre-
sponding to codewords 0 and 1 respectively. We
get a T -bits vector τ ∈ {0, 1}T for each token,
where each element in the vector τ is treated as
a codeword. We look up each codeword in their
corresponding codebook to obtain T vectors and
add up them to compute the token embedding e:

e =
T∑

j=1

Bj
τj

/
γ (2)

where Bj ∈ R2×d, j = 1, .., T , γ is the scaling
factor.3 Hence, the total number of parameters the
additive transformation approach requires is 2 ×
T × d. Similar to the Pool approach, the number of
parameters required is smaller than the vocabulary
size: 2× T × d ≪ N = |V |.

Projection Approach (Proj) Finally, we propose
a new simpler approach compared to Pool and Add.
We create T learnable random initialized vectors
as T pseudo-axes to trace the orientation of each T -
bits vector τ corresponding to the token t. Given a
token bit vector τ , the jth element in the embedding
e is computed as the Pearson’s correlation coeffi-
cient (PCC) between τ and the learnable vector wj

3Instead of averaging (γ = T), we set γ =
√
T which we

found to perform better in early experimentation.

7865

Figure 4: HASHFORMER-Add.

corresponding to j.

ej =
⟨τ − τ̄ ,wj − w̄j⟩

∥τ − τ̄∥ � ∥wj − w̄j∥
, j = 1, ..., d

e = (e1, ..., ed)

(3)

wj ∈ Rd, j = 1, .., T , hence, the total number of
parameters the projection transformation approach
requires is only T × d ≪ N = |V |. Figure 5
depicts an overview of our HASHFORMER-Proj
model.

3.5 Hashing for Compressed Embeddings
Similar to the embedding based HASHFORMERS-
Emb, our embedding compression-based models
also consider the same two hash approaches (MD
and LSH) for generating the T -bit vector of each
token.

MD5: We directly map the tokens to its 128-bits
output b with a universal secret key.

LSH: We repeat the same morphological feature
extraction step to obtain a feature vector x corre-
sponding to each token t. However, rather than
using 2T random hyperplanes that require storing
vectors of size R2T , we simply use T random hyper-
planes similar to Ravi (2019); Sankar et al. (2021b).
Each bit in b represents which side of the corre-
sponding hyperplane r ∈ Rd the feature vector x
is located: bj = sgn(sgn(x · ri) + 1), j = 1, ..., T .
This allows an on-the-fly computation without stor-
ing any vector (Ravi, 2019).

3.6 Pre-training Objective
Since our models support an arbitrary number of
unique tokens, it is intractable to use a standard
Masked Language Modeling (Devlin et al., 2019)
pre-training objective. We opted using SHUFFLE +

Figure 5: HASHFORMER-Proj.

RANDOM (S+R), a computationally efficient three-
way classification objective introduced by Yam-
aguchi et al. (2021) for predicting whether tokens
in the input have been shuffled, replaced with ran-
dom tokens or remain intact.

4 Experimental Setup

4.1 Baseline Models

We compare HASHFORMERS against the fol-
lowing baselines: (i) a BERT-base model (De-
vlin et al., 2019) with BPE tokenization and
an MLM objective (BERT-MLM); (ii) another
BERT-base model with BPE tokenization and a
Shuffle+Random objective (BERT-S+R); (iii) CA-
NINE-C4 (Clark et al., 2022) a vocabulary-free pre-
trained PLM on Unicode character sequences; (iv)
PROFORMER5 (Sankar et al., 2021b) a vocabulary-
free LSH projection based transformer model with
two encoder layers that is not pre-trained but only
trained from scratch on the task at hand.

4.2 Implementation Details

Model Architecture Following the architecture
of BERT-base, we use 12 transformer layers,
an embedding size of 768 and a maximum se-
quence length of 512.6 For HASHFORMERS-
LSH, we set T = 128 to make it comparable to
HASHFORMERS-MD, as MD5 produces a 128-
bit hash value. For HASHFORMER-MD-Pool and
HASHFORMER-LSH-Pool, we choose k = 10 to
keep the number of total parameters for the embed-
dings relatively small. We also experiment with

4We use the off-the-shelf CANINE-C from https://
huggingface.co/google/canine-c.

5ProFormer is not open-source, hence we have re-
implemented it following the description of the model in the
paper.

6We note that the transformer encoder could easily be
replaced with any other encoder.

7866

https://huggingface.co/google/canine-c
https://huggingface.co/google/canine-c

two sizes of the embedding matrix of HASHFORM-
ERS-Emb for MD and LSH hashing. The first uses
an embedding matrix of 50K, the same number of
embedding parameters as BERT-base, while the
second uses 1K which is closer to the size of the
smaller Pool, Add and Proj models.

Hyperparameters Hyperparameter selection de-
tails are in Appendix A.

Pre-training We pre-train all HASHFORMERS,
BERT-MLM and BERT-S+R on the English
Wikipedia and BookCorpus (Zhu et al., 2015) from
HuggingFace (Lhoest et al., 2021) for up to 500k
steps with a batch size of 128. For our HASH-
FORMER models, we use white space tokenization
resulting into a vocabulary of 11,890,081 unique
tokens. For BERT-MLM and BERT-S+R, we use
a 50,000 BPE vocabulary (Liu et al., 2019).

Hardware For pre-training, we use eight
NVIDIA Tesla V100 GPUs. For fine-tuning on
downstream tasks, we use one NVIDIA Tesla V100
GPU.

4.3 Predictive Performance Evaluation
We evaluate all models on GLUE (Wang et al.,
2018) benchmark. We report matched accuracy
for MNLI, Matthews correlation for CoLA, Spear-
man correlation for STS, F1 score for QQP and
accuracy for all other tasks.

4.4 Efficiency Evaluation
Furthermore, we use the following metrics to mea-
sure and compare the memory and computational
efficiency of HASHFORMERS and the baselines.

Memory Efficiency Metrics We define the three
memory efficiency metrics together with a perfor-
mance retention metric to use it as a point of refer-
ence:

• Performance Retention Ratio: We compute
the ratio between the predictive performance
of our target model compared to a baseline
model performance. A higher PRR indicates
better performance.

PRR =
scoremodel

scorebaseline
(4)

• Parameters Compression Ratio (All): We
compute use the ratio between the total num-
ber of parameters of our target model and that
of the baseline to measure the memory effi-
ciency of the target model compared to the

baseline. A higher PCRAll score indicates bet-
ter memory efficiency for the entire model.

PCRAll = 1− #ModelParams

#baselineParams
(5)

• Parameters Compression Ratio (Emb): We
also use the ratio between the number of pa-
rameters required by a target model for repre-
senting embeddings and that of the baseline.
A higher PCREmb score indicates better mem-
ory efficiency for the embedding representa-
tion.

PCREmb = 1− #ModelEmbParams

#baselineEmbParams
(6)

• Proportion of Embedding Parameters: We
also use the proportion of parameters of em-
beddings out of the total parameters of each
model to show the memory footprint of the
embedding space on each model.

PoEP =
#EmbParams

#TotalParams
(7)

Ideally, we expect a smaller PoEP, indicating
that the embedding parameters occupy as little
memory as possible out of the total number of
parameters of a model.

For number of parameters calculations, please
see Appendix B.

Computational Efficiency Metrics We also
measure the computational efficiency for pre-
training (PT) and inference (Infer). Each pre-
training step is defined as a forward pass and a
backward pass. The inference is defined by a sin-
gle forward pass.

• Time per Sample (Time) This measures the
average time of a sample completing a PT
or Infer step. It is measured in milliseconds
(ms)/sample. Lower PT and Infer time indi-
cates a more computational efficient model.

• Speed-up Rate We finally measure the
model’s computation speed-up rate against a
baseline. It is defined as:

Speed-upRate = 1

/
Timemodel

Timebaseline
(8)

5 Results

5.1 Predictive Performance Comparison
Table 1 presents results on GLUE for our HASH-
FORMERS models and all baselines. We first ob-
serve that both the performance of our HASH-
FORMERS-Emb models (MD and LSH) are compa-
rable to the two BERT variants (MLM and S+R)

7867

Model Token MNLI QNLI QQP RTE SST MRPC CoLA STS Avg.

BERT-MLM subword 81.9 88.9 86.7 60.4 92.0 85.7 54.5 86.0 79.5(0.4)
BERT-S+R subword 79.9 88.7 86.7 64.6 88.6 85.6 55.6 86.8 79.6(0.3)
CANINE-C unicode 77.7 87.6 82.8 62.0 85.7 81.4 2.3 83.9 70.4(1.3)
ProFormer word 45.2 59.1 71.4 53.9 82.1 71.2 9.7 22.1 51.8(0.5)

HashFormers-MD (Ours)
Emb (50K) word 79.6 88.4 86.9 66.4 88.0 86.8 57.3 86.1 79.9(0.3)
Emb (1K) word 67.9 80.5 81.0 55.8 72.9 78.4 19.0 79.0 66.8(0.9)
Pool word 75.6 84.9 84.9 59.7 86.7 82.7 45.7 82.0 75.3(0.2)
Add word 76.2 86.3 85.2 60.2 86.6 81.9 47.4 82.2 75.7(0.5)
Proj word 76.0 85.8 84.8 60.9 87.3 83.0 45.9 82.1 75.7(0.3)

HashFormers-LSH (Ours)
Emb (50K) word 76.1 86.5 85.5 65.5 83.6 84.2 42.7 83.7 76.0(0.3)
Emb (1K) word 65.6 80.1 80.0 56.4 71.3 78.1 5.2 76.9 64.2(0.8)
Pool word 78.0 87.7 86.4 65.6 88.1 84.2 55.3 85.6 78.9(0.3)
Add word 78.6 88.2 86.0 63.1 88.0 84.0 57.7 85.9 78.9(0.2)
Proj word 79.2 88.7 86.5 63.4 88.9 84.6 56.2 85.5 79.1(0.3)

Table 1: Results on GLUE dev sets with standard deviations over three runs in parentheses. Bold values denote best
performing method in each task.

and CANINE-C on average GLUE score (79.9 and
76.0 vs. 79.5, 79.6 and 70.4 respectively). Surpris-
ingly, the more sophisticated HASHFORMER-LSH-
Emb that takes morphological similarity of tokens
into account does not outperform HASHFORMER-
MD-Emb that uses a random hashing. We be-
lieve that HASHFORMER-MD generally outper-
forms HASHFORMER-LSH mainly due to its abil-
ity to map morphologically similar tokens to dif-
ferent vectors. This way it can distinguish tenses
etc.. On the other hand, HASHFORMER-LSH con-
fuses words with high morphological similarity
(e.g. play, played) because it assigns them to the
same embedding.

However, LSH contributes to the performance
improvement of smaller HASHFORMERS with
compressed embedding spaces compared to their
MD variants, i.e. Add (78.9 vs. 75.3), Add (78.9 vs.
75.7) and Proj (79.1 vs. 75.7). The best perform-
ing compressed HASHFORMER-LSH-Proj model
obtains 79.1 average GLUE score, which is only
0.4 lower than the BERT baselines. Reducing the
number of embedding vectors in Emb (1K) models
is detrimental to performance and leads to drastic
drops between 11.8% and 13.1%. This indicates
that the model size plays a more important role
than the choice of tokenization approach (i.e. white
space or BPE) or the vocabulary size (i.e. 12M vs.
50K). At the same time, comparing to Emb, the
Pool, Add and Proj approaches do not suffer from

predictive accuracy degradation, i.e. 0.4-4.2%.
All our HASHFORMERS show clear advantages

comparing to the LSH based PROFORMER which
is not pre-trained across the majority of tasks (i.e.
MNLI, QNLI, QQP, MRPC, CoLA and STS). Al-
though PROFORMER shows that for a relatively
simpler sentiment analysis task (SST), pre-training
might not be necessary.

5.2 Memory Efficiency Comparison

Table 2 shows the results on memory efficiency and
performance retention (%) on GLUE using BERT-
MLM as a baseline. Notably, Pool, Add and Proj
models provide large compression to the total num-
ber of embeddings parameters compared to Emb
as well as CANINE-C and BERT variants. This is
approximately a 30% PCRAll and 97-99% PCREmb
compared to BERT. These models also achieve
very high performance retention (from 94.7% to
99.5%) which highlights their efficiency. In one
case, HASHFORMER-LSH-Add outperforms the
BERT-MLM baseline on CoLA with a retention
ratio of 105.9% using only 197.4K parameters for
token embeddings.

Proj variants, the smallest of HASHFORMERS

achieve the highest performance retention (95.2%
with MD, 99.5% with LSH) compared to Pool
(94.7% with MD, 99.2% with LSH) and Add
(95.2% with MD, 99.2% with LSH). Overall, they
only have a negligible drop in performance reten-

7868

Emb. MNLI QNLI QQP RTE SST MRPC CoLA STS GLUE Avg.
#Total
Params

#Emb
Params

PCR
(All)

PCR
(Emb)

PoEP

CANINE-C 94.9 98.5 95.5 102.6 93.2 95.0 4.2 97.6 88.6 121.0M 12.3M 2.9 68.1 10.2
ProFormer 55.2 66.5 82.4 89.2 89.2 83.1 17.8 25.7 65.2 15.1M 322.6K 87.9 99.2 2.1

HashFormers-MD (Ours)
Emb (50K) 97.2 99.4 100.2 109.9 95.7 101.3 105.1 100.1 100.5 124.6M 38.6M 0.0 0.0 31.0
Emb (1K) 82.9 90.6 93.4 92.4 79.2 91.5 34.9 91.9 84.0 86.8M 797.2K 30.3 97.9 1.0
Pool 92.3 95.5 97.9 98.8 94.2 96.5 83.9 95.3 94.7 86.8M 797.2K 30.3 97.9 1.0
Add 93.0 97.1 98.3 99.7 94.1 95.6 87.0 95.6 95.2 86.2M 197.4K 30.8 99.5 0.2
Proj 92.8 96.5 97.8 100.8 94.9 96.8 84.2 95.5 95.2 86.1M 99.1K 30.9 99.7 0.1

HashFormers-LSH (Ours)
Emb (50K) 92.9 97.3 98.6 108.4 90.9 98.2 78.3 97.3 95.6 124.6M 38.6M 0.0 0.0 31.0
Emb (1K) 80.1 90.1 92.3 93.4 77.5 91.1 9.5 89.4 80.8 86.8M 797.2K 30.3 97.9 1.0
Pool 95.2 98.7 99.7 108.6 95.8 98.2 101.5 99.5 99.2 86.8M 797.2K 30.3 97.9 1.0
Add 96.0 99.2 99.2 104.5 95.7 98.0 105.9 99.9 99.2 86.2M 197.4K 30.8 99.5 0.2
Proj 96.7 99.8 99.8 105.0 96.6 98.7 103.1 99.4 99.5 86.1M 99.1K 30.9 99.7 0.1

Table 2: Memory efficiency metrics and performance retention (%) on GLUE for HASHFORMER models, CANINE-
C and ProFormer using BERT-MLM as a baseline.

Model
PT

Time
(ms/samp)

PT
Speed-up

Rate

Infer
Time

(ms/samp)

Infer
Speed-up

Rate

BERT
-MLM 24.9 1.0 4.6 1.0
-S+R 11.6 2.1x 4.6 1.0x

CANINE-C - - 6.9 0.6x

HASHFORMERS (Ours)
-Emb 11.6 2.1x 2.0~4.6 1.0x~2.4x
-Pool 12.0 2.1x 2.0~4.6 1.0x~2.3x
-Add 11.7 2.1x 2.0~4.6 1.0x~2.4x
-Proj 10.6 2.4x 1.8~4.6 1.0x~2.6x

Table 3: Results on pre-training speed and inference
speed under different embedding compression strate-
gies. We use BERT-MLM as the baseline model. The
sequence length is fixed to 512 for pre-training. For
inference, sequence length is equal to the length of the
longest sequence in the batch.

tion (0.5%) while they are extremely more memory
efficient. Proj uses a substantially smaller num-
ber of embedding parameters (99.1K) compared
to CANINE-C and BERT variants (i.e., 12.3M and
38.6M respectively). In general, Pool, Add and
Proj models lead to a 30% reduction in the total
number of parameters (around 30.0M) compared
to the baseline model and make their embedding
footprint minimal, i.e. 0.1-1% PoEP. On the other
hand, CANINE-C has a larger embedding footprint
(10.2% PoEP) but with similar or smaller perfor-
mance retention compared to HASHFORMERS.

HASHFORMERS-Emb have an embedding ma-
trix of equal size (i.e. 50K embeddings) as BERT.
However, BERT only supports a vocabulary of
50K tokens, while HASHFORMERS-Emb supports

an unlimited vocabulary, e.g. 12M unique tokens
in our pre-training corpora. Using a smaller em-
bedding matrix (i.e. 1K), the performance reten-
tion drops 20%~26%. Despite the fact that HASH-
FORMERS-Emb (1K) has a similar number of em-
bedding parameters as the embedding compression
approaches (i.e. Pool, Add, Proj), it falls far behind
those models, i.e. between 8.5% and 14.3% for
both MD and LSH variants. This demonstrates the
effectiveness of our proposed embedding compres-
sion approaches.

Although, the more lightweight ProFormer
with only two transformer layers consists of
15.1M parameters in total (approximately a 87.9%
PCRAll), its performance7 fall far behind our worst
HASHFORMER-MD-Pool with a difference of
29.5% PRR on GLUE Avg. score. Nevertheless,
ProFormer requires more bits for hashing the to-
kens, resulting in more parameters for representing
token embeddings (322.6K) comparing to HASH-
FORMERS-Add and HASHFORMERS-Proj (197.4K
and 99.1K). Such memory efficiency gains substan-
tially sacrifice model’s predictive performance.

5.3 Computational Efficiency Comparison

Table 3 shows the pre-training (PT) and inference
(Infer) time per sample for HASHFORMERS, CA-
NINE-C, BERT-S+R using BERT-MLM as a base-
line for reference. We note that HASHFORMERS

have comparable pre-training training time (PT) to
7The predictive performance of ProFormer does not im-

prove, even if we train it for four times more epochs (20
epochs). We report the results when trained for a maximum
of five epochs.

7869

the fastest BERT model (BERT-S+R). This high-
lights that the complexity of the pre-training objec-
tive is more important than the size of the embed-
ding matrix for improving computational efficiency
for pre-training.

During inference, we observe that the speed-up
obtained by HASHFORMERS is up to 2.6x com-
pared to both BERT models. However, this is due
to the tokenization approach. HASHFORMERS op-
erate on the word level, so the sequence length
of the input data is smaller, leading to inference
speed-ups. Finally, we observe that CANINE-C has
a slower inference time compared to both BERT
models and HASHFORMERS. This might be due to
its relatively more complex approach for process-
ing the long Unicode character input sequence.

6 Conclusions

We have proposed HASHFORMERS, a family of
vocabulary-independent hashing-based pre-trained
transformers. We have empirically demonstrated
that our models are computationally cheaper and
more memory efficient compared to standard pre-
trained transformers, requiring only a fraction of
their parameters to represent token embeddings.
HASHFORMER-LSH-Proj variant needs 99.1K pa-
rameters for representing the embeddings com-
pared to millions of parameters required by state-of-
the-art models with only a negligible performance
degradation. For future work, we plan to explore
multilingual pre-training with HASHFORMERS and
explore their ability in encoding linguistic proper-
ties (Alajrami and Aletras, 2022).

Limitations

We experiment only using English data to make
comparisons with previous work easier. For lan-
guages without explicit white spaces (e.g. Chinese
and Japanese), our methods can be applied with
different tokenization techniques, e.g. using a fixed
length window of characters.

Acknowledgments

This project made use of time on Tier 2 HPC facil-
ity JADE2, funded by EPSRC (EP/T022205/1). We
would like to thank Miles Williams and the anony-
mous reviewers for their invaluable feedback.

References
Ahmed Alajrami and Nikolaos Aletras. 2022. How does

the pre-training objective affect what large language
models learn about linguistic properties? In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 131–147, Dublin, Ireland. Association
for Computational Linguistics.

Hyung Won Chung, Thibault Fevry, Henry Tsai, Melvin
Johnson, and Sebastian Ruder. 2021. Rethinking em-
bedding coupling in pre-trained language models. In
International Conference on Learning Representa-
tions.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an Efficient
Tokenization-Free Encoder for Language Represen-
tation. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, Pierre Zweigenbaum, and Jun’ichi Tsu-
jii. 2020. CharacterBERT: Reconciling ELMo and
BERT for word-level open-vocabulary representa-
tions from characters. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 6903–6915, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Kuzman Ganchev and Mark Dredze. 2008. Small sta-
tistical models by random feature mixing. In Pro-
ceedings of the ACL-08: HLT Workshop on Mobile
Language Processing, pages 19–20, Columbus, Ohio.
Association for Computational Linguistics.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali
Khan, Yin Yang, Hassan Sajjad, Preslav Nakov, Dem-
ing Chen, and Marianne Winslett. 2021. Compress-
ing large-scale transformer-based models: A case
study on BERT. Transactions of the Association for
Computational Linguistics, 9:1061–1080.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations.

7870

https://aclanthology.org/2022.acl-short.16
https://aclanthology.org/2022.acl-short.16
https://aclanthology.org/2022.acl-short.16
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://aclanthology.org/W08-0804
https://aclanthology.org/W08-0804
https://doi.org/10.1162/tacl_a_00413
https://doi.org/10.1162/tacl_a_00413
https://doi.org/10.1162/tacl_a_00413
https://openreview.net/forum?id=rkgNKkHtvB

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Prafull Prakash, Saurabh Kumar Shashidhar, Wenlong
Zhao, Subendhu Rongali, Haidar Khan, and Michael
Kayser. 2020. Compressing transformer-based se-
mantic parsing models using compositional code em-
beddings. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4711–
4717, Online. Association for Computational Lin-
guistics.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5582–5591, Florence, Italy. Asso-
ciation for Computational Linguistics.

Anand Rajaraman and Jeffrey David Ullman. 2011.
Mining of massive datasets. Cambridge University
Press.

Sujith Ravi. 2019. Efficient on-device models using
neural projections. In International Conference on
Machine Learning, pages 5370–5379. PMLR.

Ronald Rivest and S Dusse. 1992. The MD5 message-
digest algorithm.

Chinnadhurai Sankar, Sujith Ravi, and Zornitsa
Kozareva. 2021a. On-device text representations ro-
bust to misspellings via projections. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 2871–2876, Online. Association for
Computational Linguistics.

Chinnadhurai Sankar, Sujith Ravi, and Zornitsa
Kozareva. 2021b. ProFormer: Towards on-device
LSH projection based transformers. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 2823–2828, Online. Association for
Computational Linguistics.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020. Green AI. Communications of the
ACM, 63(12):54–63.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Qinfeng Shi, James Petterson, Gideon Dror, John Lang-
ford, Alex Smola, Alex Strehl, and SVN Vish-
wanathan. 2009. Hash kernels. In Artificial intel-
ligence and statistics, pages 496–503. PMLR.

Raphael Shu and Hideki Nakayama. 2018. Compress-
ing word embeddings via deep compositional code
learning. In International Conference on Learning
Representations.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari
Asai, Jia Li, Philip Yu, and Caiming Xiong. 2020.
Adv-BERT: BERT is not robust on misspellings!
Generating nature adversarial samples on BERT.
arXiv preprint arXiv:2003.04985.

Dan Svenstrup, Jonas Hansen, and Ole Winther. 2017.
Hash embeddings for efficient word representations.
Advances in neural information processing systems,
30.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2022.
Charformer: Fast character transformers via gradient-
based subword tokenization. In International Con-
ference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages

7871

https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2020.findings-emnlp.423
https://doi.org/10.18653/v1/2020.findings-emnlp.423
https://doi.org/10.18653/v1/2020.findings-emnlp.423
https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/2021.eacl-main.250
https://doi.org/10.18653/v1/2021.eacl-main.250
https://doi.org/10.18653/v1/2021.eacl-main.246
https://doi.org/10.18653/v1/2021.eacl-main.246
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Atsuki Yamaguchi, George Chrysostomou, Katerina
Margatina, and Nikolaos Aletras. 2021. Frustratingly
simple pretraining alternatives to masked language
modeling. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3116–3125, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny
Zhou. 2021. Extremely small BERT models from
mixed-vocabulary training. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2753–2759, Online. Association for Computa-
tional Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

7872

https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/2021.emnlp-main.249
https://doi.org/10.18653/v1/2021.emnlp-main.249
https://doi.org/10.18653/v1/2021.emnlp-main.249
https://doi.org/10.18653/v1/2021.eacl-main.238
https://doi.org/10.18653/v1/2021.eacl-main.238

A Hyperparameters

The hyperparameters used in pre-training are listed
in Table 4.

Hyperparameter Pretraining

Maximum train epochs 10 epochs
Batch size (per GPU) 16 instances
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.9999
Sequence length 512
Peak learning rate 1e-4 for MLM, 5e-5 for others
Learning rate schedule linear
Warmup steps 10000
Weight decay 0.01
Attention Dropout 0.1
Dropout 0.1

Table 4: Details of hyperparameters used in pre-training.

The hyperparameters used in fine-tuning are
listed in Table 5.

Hyperparameter Pretraining

Maximum train epochs 5 epochs
Batch size (per GPU) 32 instances
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Peak learning rate 3e-5
Learning rate schedule cosine with hard restarts
Warmup steps first 6% steps
Weight decay 0
Attention Dropout 0.1
Dropout 0.1
Evaluation steps 2455 for MNLI, 655 for QNLI,

2275 for QQP, 48 for RTE,
421 for SST, 69 for MRPC,
162 for CoLA and 108 for STS

Table 5: Details of hyperparameters used in fine-tuning.

B Model Parameter Counts

We count the total number of parameters of each
model on a binary classification task. This is com-
puted by counting all learnable variables used for
the task (including those in the classification head)
without freezing any weights. For all BERT vari-
ants and our HASHFORMERS, we adopt the same
setting of BERT-Base by setting Dimhidden =
768, Dimintermediate = 3072 with 12 hidden
layers and 12 attention heads. For CANINE-
C, we use the default base-sized model whose
Dimhidden = 768, Dimintermediate = 3072 and
has 12 hidden layers and attention heads.

We only count the number of parameters which
are used for retrieving or generating the embed-
dings of any tokens (excluding those special tokens
e.g. <PAD>) and we also exclude those for position
embeddings. Specifically, #[Model]EmbParams are
computed as the follow:

• BERT variants:

#BERT = |V | × d (9)

• CANINE-C:

#CANINE−C = #HashBuckets × d (10)

CANINE-C employs 16,000 hash buckets
(Clark et al., 2022).

• PROFORMER:

#ProFormer = #LSHDigestSize × d (11)

PROFORMER hashes each token into a 420-bit
vector (Sankar et al., 2021b).

• HASHFORMERS-Emb:

#HashFormers − Emb = N × d (12)

• HASHFORMERS-Pool:

#HashFormers − Pool = (⌈T
k
+ 2k⌉)× d

(13)
• HASHFORMERS-Add:

#HashFormers −Add = 2× T × d (14)

• HASHFORMERS-Proj:

#HashFormers − Proj = T × d (15)

C HASHFORMERS with BPE
Tokenization

Table 6 presents results on GLUE for our HASH-
FOMERS with BPE tokenization. In general, we
observe that using BPE tokinization, the perfor-
mance of HASHFOMERS slightly drops.

7873

Model Token MNLI QNLI QQP RTE SST MRPC CoLA STS Avg.

HashFormers-MD
Emb (50K) subword 78.6 87.7 86.0 65.6 88.5 85.1 51.2 85.0 78.5(0.4)
Emb (50K) word 79.6 88.4 86.9 66.4 88 86.8 57.3 86.1 79.9(0.3)
Proj subword 74.6 84.8 83.7 58.7 85.5 80.7 44.6 80.1 74.1(0.5)
Proj word 76.0 85.8 84.8 60.9 87.3 83.0 45.9 82.1 75.7(0.3)

HashFormers-LSH
Emb (50K) subword 62.6 80.2 80.8 59.3 71.3 80.2 18.3 75.5 66.0(0.2)
Emb (50K) word 76.1 86.5 85.5 65.5 83.6 84.2 42.7 83.7 76.0(0.3)
Proj subword 78.2 87.5 86.3 64.3 88.6 85.5 51.2 85.1 78.3(0.1)
Proj word 79.2 88.7 86.5 63.4 88.9 84.6 56.2 85.5 79.1(0.3)

Table 6: Results on GLUE dev sets with standard deviations over three runs in parentheses using BPE tokenization.

7874

