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Abstract

Despite the success of neural machine transla-
tion models, tensions between fluency of opti-
mizing target language modeling and source-
faithfulness remain as challenges. Previ-
ously, Conditional Bilingual Mutual Informa-
tion (CBMI), a scoring metric for the impor-
tance of target sentences and tokens, was pro-
posed to encourage fluent and faithful trans-
lations. The score is obtained by combining
the probability from the translation model and
the target language model, which is then used
to assign different weights to losses from sen-
tences and tokens. Meanwhile, we argue this
metric is not properly normalized, for which
we propose Normalized Pointwise Mutual In-
formation (NPMI). NPMI utilizes an additional
language model on source language to approxi-
mate the joint likelihood of source-target pair
and the likelihood of the source, which is then
used for normalizing the score. We showed that
NPMI better captures the dependence between
source-target and that NPMI-based token-level
adaptive training brings improvements over
baselines with empirical results from En-De,
De-En, and En-Ro translation tasks.

1 Introduction

Neural machine translation (NMT) models have
achieved remarkable performance since Vaswani
et al. (2017) introduced encoder-decoder architec-
ture with self- and cross-attention mechanisms.
However, they were also reported to generate hal-
lucinations (Lee et al., 2018; Raunak et al., 2021)
in some cases, failing to balance the dual goals of
improving fluency while preserving faithfulness to
the source.

Conditional Bilingual Mutual Information
(CBMI), a metric for target tokens and sentences
computed as the log quotient of the translation and
the target-side language model probability, was

∗Work done during internship at Kakao Enterprise.
†Corresponding author.

Figure 1: An example from IWSLT14 De-En train set.
While our proposed sentence-level NPMI assigns a large
score (near the upper bound 1) to the faithful source-
target pair and a small score (near zero, which indicates
neutrality) to a rather noisy pair, sentence-level CBMI
scores for the two pairs are unable to achieve that. Note
that the joint log likelihood values from the two pairs
are comparable, while target lengths differ a lot.

proposed by Zhang et al. (2022) to guide the trans-
lation model with additional signal of importance
of each target token or sentence, in combination
with token-level adaptive training (Gu et al., 2020)
in order to achieve this goal.

While CBMI score is devised to pursue this joint
goal of translation, we argue that it does not take
source context into account which leads to its fail-
ure to provide a reliable measure of relevance for
some cases. For example, Figure 1 illustrates faith-
ful and noisy translations, where the former is ex-
pected to have a higher score. However, sentence-
level CBMI score, which is defined as aggregated
token-level CBMI scores simply divided by the
length of the target sentence, fails to capture that
the first pair is much more strongly connected in
terms of the content than the second one.

We argue that this is because CBMI has a ten-
dency to assign higher values for noisy or unlikely
examples and vice versa due to the nature of point-
wise mutual information (PMI) with an unbounded
range.

Inspired by normalized pointwise mutual infor-
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mation (NPMI), we propose to normalize by joint
log likelihood (denoted as logP (src, tgt) in Fig-
ure 1). Our derivation of using NPMI for sentence-
and token-level weighting leads to a combination
of log quotients of probabilities from translation
model and source and target language models, un-
like existing methods not considering the source-
side language model. Figure 1 shows that our en-
hanced scoring, with a more founded derivation
of paired normalization, can distinguish between
faithful and noisy translations more clearly.

Our method is validated with WMT and IWSLT
benchmarks with diverse language pairs and shows
consistent improvements in COMET (Rei et al.,
2020), a pretrained neural network based evaluation
framework that reportedly correlates highly with
human evaluation (Kocmi et al., 2021), as well as
the widely-used BLEU scores.

2 Method

We first overview the concept of PMI and
CBMI (Zhang et al., 2022) along with its proposed
normalization. We then motivate why a new, and
more systematic normalization is needed, and de-
rive our proposed method.

2.1 Preliminary: PMI and adaptive training

Given two random variables X and Y , the point-
wise mutual information (PMI) between the obser-
vations x and y is

PMI(x; y) = log

(
p(x, y)

p(x)p(y)

)
, (1)

which is not bounded below and has an upper
bound of − log p(x, y).

Token-level adaptive training, inspired by earlier
approaches to fighting class imbalance problem in
classification tasks, aims to assign static or dynamic
weights to each of the tokens to further guide the
translation model (Gu et al., 2020).

L(x,y; θ) =
∑

j

wj log p(yj |x,y<j ; θ) (2)

2.2 Baseline: CBMI

Token-level CBMI, which is used to determine
weights of loss from each target token, is the PMI
between the target token considered and the whole
source sentence x, conditioned on the partially con-

structed target prefix y<j .

CBMIt(x; yj) := PMI(x; yj |y<j) (3)

= log
p(x, yj |y<j)

p(x |y<j)p(yj |y<j)

= log
p(yj |x,y<j)

p(yj |y<j)
= log

pTM(j)

ptLM(j)

where pTM(j) = p(yj |x,y<j ; θTM) is the transla-
tion model’s output probability on the j-th target
token and similarly ptLM(j) = p(yj |y<j ; θtLM) is
the target-side language model’s prediction on the
same token.

For sentence-level scoring, token-level scoring is
aggregated then normalized by the target sentence
length |y| as follows:

CBMIs(x;y) :=
1

|y|PMI(x;y) (4)

=
1

|y|
∑

j

CBMI(x; yj). (5)

Note that unlike token-level CBMI defined simply
as the PMI between the source sentence and the
target token considered by equation (3), sentence-
level CBMI is defined as the PMI between the
source and the target sentence divided by the tar-
get sentence length in equation (4). The derivation
of (5) can be found in the appendix, or the reader
might refer to the original paper (Zhang et al.,
2022).

Then, to translate CBMI scores into token and
sentence weights for adaptive training, CBMIt

and CBMIs are further normalized by inter-token
and inter-sentence statistics collected from a mini-
batch, such as the mean µ and standard deviation
σ of token and sentence scores in the batch, scaled
by hyperparameter λ:

wt
j = max

(
0, 1 + λt ·

(
CBMI(x; yj)− µt

)
/σt

)

sentence-level weight ws is similarly determined
from µs, σs and λs, then aggregated into the final
token weights wj as follows:

wj = wt
j · ws

2.3 Motivation: normalization
Our critiques for their proposed normalization are
as follows:

• Source-agnostic: When the pair of the source
and the target has relatively low (or high) like-
lihood, both token- and sentence-level CBMI
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scores can be over- (or under-) estimated as
Figure 1 shows. While target length is (nega-
tively) correlated with target sentence likeli-
hood, it may diverge from the joint likelihood
in some cases, resulting in faithful transla-
tions with relatively longer targets penalized
and noisy translations with relatively shorter
targets not penalized.

• Mapping: λ and σ together determine how
much the final weights of tokens with differ-
ent CBMI scores will diverge, while the for-
mer is an empirically determined constant and
the latter may vary across batches, or over
time as training proceeds and the model out-
put changes.

3 Proposed: Source-aware Normalization

We first propose an alternative normalization, in-
spired by NPMI, then discuss how this score guides
adaptive training.

3.1 Balanced normalization

Our first contribution is to propose a better founded
normalization used in Bouma (2009), which nor-
malizes PMI with the absolute value of the loga-
rithm of the joint probability.

−1 < NPMI(x; y) =
PMI(x; y)

− log p(x, y)
≤ 1.

This normalization bounds scoring within the range
(−1, 1] and the sign of scoring can also be inter-
preted: 0 for independence, 1 for complete co-
occurrence, and −1 for no co-occurrence. How-
ever, this requires the estimation of p(x, y), which
we derive to obtain from the source-side language
model (sLM) as below:

NPMIs(x;y) =
log (p(x,y)/p(x)p(y))

− log p(x,y)

=
log (p(y |x)p(x)/(p(x)p(y)))

− log (p(y |x)p(x))

=
log (p(y |x)/p(y))
− log (p(y |x)p(x))

=
log p(y |x)− log p(y)

− (log p(y |x) + log p(x))

=

∑
j log ptLM(j)−∑

j log pTM(j)∑
i log psLM(i) +

∑
j log pTM(j)

In the same way, we can derive token-level NPMI:

NPMIt(x; yj) = NPMI(x; yj |y<j)

=
PMI(x; yj |y<j)

− log p(x, yj |y<j)

=
log p(yj |x,y<j)− log p(yj |y<j)

− log p(x, yj |y<j)

=
−(log pTM(j)− log ptLM(j))

log p(yj |x,y<j) + log p(y<j |x) + log p(x)
p(y<j)

=
−q(j)

log pTM(j) +
∑
i
log psLM(i) +

∑
k<j

q(k)

where q(j) := log pTM(j)− log ptLM(j).
While this derivation is more complex than that

of CBMI, it can still be computed efficiently in one
forward pass.

3.2 Adaptive training

With NPMI normalization bounding its range to
±1, we no longer require λ or σ for rescaling, but
simply multiplying source- and token-level relative
scores:

wt
j =

NPMIt(x; yj)+

µt

ws =
NPMIs(x; yj)+

µs

where x+ := max (x, 0), to honor the design of
“positive” NPMI values, by selectively weighing
pairs with cooccurrences, and µ is the average of
positive NPMI values that helps center the weights
at 1.

The weight wj , relying on translation and lan-
guage models themselves, is less reliable in earlier
stages of training, when it can be better off resort-
ing to unweighted loss. This estimation gradually
gets better in later stages.

We thus adopt dynamic smoothing, between
weighting all tokens as 1, and by wj , where c in-
crease over time during training.

w′
j = (1− c) + c · wt

j · ws

Compared to CBMI, which solved the same prob-
lem through training the translation and the lan-
guage model for some steps with the unweighted
negative log-likelihood loss then applying the
weighting of tokens to the translation model af-
terward, we increased the value of c over training
steps so that it exponentially approaches a targeted
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value. The former approach of skipping the weight-
ing in the earlier stage of training can be viewed
as setting c = 0 for some steps then fixing c = 1
for the rest. In contrast, by gradually increasing the
ratio c, the model is allowed to be guided by the
faithfulness measure relatively earlier in training,
preventing it from being fully affected by detrimen-
tal training examples. We also note that mixing the
unweighted and weighted loss with time-varying
ratio c essentially has an effect of dynamically ma-
nipulating the scale hyperparameter λ in CBMI.

We only use language models for assisting the
translation model during the training, that is, at
inference time only the translation model is used
for decoding.

4 Experiments

4.1 Datasets

We conducted experiments on three translation
datasets, namely (1) WMT14 English-German (En-
De) dataset which consists of approximately 4.5M
training examples, (2) WMT16 English-Romanian
(En-Ro) dataset comprising of about 610k exam-
ples, and (3) IWSLT14 De-En dataset for spoken
language, which comes with 160k training exam-
ples. Following previous work, we used joined
vocabulary of size 32k constructed using byte-pair
encoding (Sennrich et al., 2016) for WMT14 En-
De. We used BPE joined vocabulary of size 40k
for WMT16 En-Ro and 10k for IWSLT14 De-En.

4.2 Results

Table 1 shows the tokenized BLEU scores with
compound split following previous work (Vaswani
et al., 2017; Zhang et al., 2022) and COMET (Rei
et al., 2020) scores on the three translation bench-
marks. Our method shows improvements over base-
lines, with larger margins under relatively low re-
source settings. We provide the detailed configura-
tion for all experiments in the appendix A.

5 Analysis

Here we present more detailed analyses of our
method regarding how the different levels of
weighting and dynamic weight smoothing over
time affected the performance. All the results are
from experiments conducted on IWSLT14 De-En
and evaluated on the test set.

5.1 Ablation study

Method COMET
Transformer 40.58
+ sentence-level NPMI 40.63
+ token-level NPMI 41.14
+ both 41.40

Table 2: Effect of token- and sentence-level weights.

First, we inspect the effects of token- and sentence-
level weighting separately. Table 2 shows that
jointly using the two together leads to synergy,
which gives the best result.

Method COMET
CBMI 40.04
CBMI + weight smoothing 37.49
NPMI − weight smoothing 41.26
NPMI 41.40

Table 3: Effect of weight smoothing on token-level
adaptive training.

Next, we examine the effect of dynamic weight
smoothing on CBMI and NPMI. Table 3 shows
the effect of dynamic weight smoothing applied to
CBMI and removed from NPMI. CBMI performs
worse with weight smoothing added; we conjecture
that this is because the unstable (highly variant) na-
ture of CBMI values is especially harmful to adap-
tive training in the very beginning. Though CBMI
scores might fit with other strategies of scheduling
the mix ratio c, we leave it as an open problem.
Meanwhile, the score drop on NPMI shows that
dynamic smoothing is effective at preventing the
model from being affected by noisy examples and
NPMI can provide more reliable, helpful weights
even if language models are yet to be converged.

5.2 Training with single LM

Method COMET
NPMI (two LMs) 41.40
NPMI (shared LM) 41.26

Table 4: Effect of single LM training for NPMI.

We present the option for training with a single,
unified LM that models both the source and the
target language if the vocabulary is constructed
jointly as done in our experiments. Table 4 shows
that our method maintains comparable performance
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Dataset WMT14 En→De WMT16 En→Ro IWSLT14 De→En
Model BLEU COMET BLEU COMET BLEU COMET
Transformer 27.95 49.10 34.41 56.02 35.27 40.58
CBMI (Zhang et al., 2022) 28.10 49.29 34.56 56.67 35.16 40.04
NPMI (ours) 28.09 49.30 34.62 57.32∗ 35.28 41.40∗

Table 1: BLEU and COMET scores on translation tasks. ∗ refers to statistical significance.

in this setting. While the perplexity of the shared
language model on both train and validation set was
slightly higher than that of the separate language
models, due to the well-equipped normalization
scheme its detrimental effect on the performance
was limited.

6 Related work

6.1 Leveraging target-side LMs

Under encoder-decoder seq2seq framework, the de-
coder is responsible for both capturing the embed-
ded content of the source sequence and generating
a fluent target sequence that faithfully reflects the
captured information. As an example of work tried
to relieve this burden through the use of LM on the
target language, Stahlberg et al. (2018) combined
the prediction of the NMT model and the language
model through elementwise product to separate
the role of the models so that NMT model could
focus on modeling the source sequence faithfully
while the language model accounts for the fluency.
Target-side LMs may be used for measuring impor-
tance of target tokens and sentences, as described
in the following paragraph.

6.2 Token-level adaptive training in NMT

Inspired by previous work in vision field, Gu et al.
(2020) suggested a token-level adaptive objective,
weighting loss of each token differently based on
frequency, to fight data imbalance which is basi-
cally to help the model to learn embeddings of rare
tokens. One can reappropriate the aforementioned
approach of leveraging additional target-side LM
in NMT to help the translation model distinguish
which tokens require source context heavily and
which tokens do not, then weight their losses based
on that score as Miao et al. (2021) first suggested
to consider the difference (‘margin’) between the
output probabilities of translation model and the
target-side language model. Zhang et al. (2022)
made a similar approach, adjusting the importance
of each target token or sentence according to the

pointwise mutual information between the source
sequence and target token, conditioned on the tar-
get prefix. Our distinction is to pose the necessity
and also to present the advantage of introducing
source-side LM to training of translation models
from scratch.

7 Conclusion

In this paper, we propose a source-aware metric
for target tokens and sentences based on normal-
ized pointwise mutual information (NPMI) that
effectively captures the dependence between the
source and the target for translation task. With this
score, the model can figure out how much specific
tokens require the source context for proper trans-
lation and how faithful a given source-target pair
is, thereby putting more focus on examples with
higher adequacy or importance. We also devise a
new token-level adaptive training strategy based on
NPMI score, which dynamically adjusts the par-
ticipation of weighted loss over time to gracefully
overcome the limitation of imprecise approxima-
tion of model output probabilities in the earlier
training stage.

Experimental results on translation benchmarks
show that our proposed NPMI, combined with dy-
namic weight smoothing, performs well over var-
ious datasets and languages. We also validated
through ablation experiments that our methods of-
fer the best results when they are used together. We
leave (1) the search for the best way of scheduling
for weight smoothing and (2) leveraging powerful
pretrained language models, rather than language
models trained from scratch as future work.
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Limitations

Assuring that the model pays more attention to
the source sequence when necessary might not be
enough for successful translation. Our model some-
times generated word-for-word translations, which
are firmly rooted in the source sequence but not
necessarily revealing the true meaning of the id-
iomatic phrase it contained. Hopefully, it might be
alleviated given access to additional training data.

Also, due to the additional source-side LM, our
method requires additional GPU memory, which
could be a burden. In the case of using joined
vocabulary, this can be relieved via using a unified
language model for both the source and the target
language, with minimal performance degradation
as described in 5.2.
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A Experimental Settings in Detail

Here we provide the detailed experimental settings.
We used the same configuration including vocab-
ulary for the translation model and the language
models.

We tokenize all the datasets with byte-pair en-
coding (BPE), with the dictionary being jointly
constructed upon both the source and the target
language. The resulting vocabulary size was 10k
for IWSLT, 32k for WMT14 En-De and 35k for
WMT16 En-Ro. Label smoothing with ϵ = 0.1
was applied for all experiments. Also, we used
Adam optimizer with β1 = 0.9, β2 = 0.98, and
ϵ = 10−9 and the inverse_sqrt learning rate
scheduler with default learning rate 7 · 10−4, initial
learning rate 10−7, and warm-up steps 4000 for all
tasks, with the sole exception of using the default
learning rate of 5 · 10−4 for IWSLT experiments.
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For IWSLT, we used transformer_iwslt_de_
en architecture, which has 6 layers in both the en-
coder and the decoder with embedding size 512,
feed-forward network hidden dimension of 1024,
4 attention heads and applied dropout rate of 0.3.
Lastly, we used batch size of 4k.

For the others, we used transformer (base) ar-
chitecture, which has 6 layers, embedding size of
512, feed-forward network hidden dimension of
2048 and 8 attention heads. Dropout rate of 0.1
was used for WMT14 En-De while 0.3 was used
for WMT16 En-Ro. Following the original settings
from Zhang et al. (2022), we also applied atten-
tion dropout and activation dropout of rate 0.1 for
training CBMI model on WMT14 En-De. We used
effective batch size of 32k for these datasets.

We applied compound split to compute the (tok-
enized) BLUE scores for reporting performance on
the test sets, and used detokenized BLEU scores for
validation and choosing the best checkpoints. We
used the average checkpoint over the 5 last check-
points for WMT14 En-De and the 5 best check-
points for others for evaluation. Following legacy
settings, beam search was adopted as the decoding
strategy with the beam size of 4 along with length
penalty of 0.6 for WMT14 En-De, and beam size
of 5 and length penalty of 1.0 for others.

For training CBMI models, we used the same
scale hyperparameters λs = 0.3 and λt = 0.1 as
suggested by Zhang et al. (2022), and ran experi-
ments with different number of training steps for
the pretraining stage with a fixed total number of
training steps set as the same as the other models,
then chose the best performing one.

For weight smoothing, we used the following
formula to increase the value of c towards a fixed
targeted value c0 exponentially:

c(t) = (1− rt/τ ) · c0

where t is the training step. We set c0 as 0.3 for
WMT14 En-De and 0.6 for the others. Then, we
searched for the value of r and τ which basically de-
termines how fast we want the weighted loss to par-
ticipate in training, especially in earlier stage. Since
increasing r and lowering τ have the same effect
and vice versa, we fixed r = 0.99 and searched for
τ . The values chosen were τ = 4000 for WMT14
En-De, τ = 400 for WMT16 En-Ro, and τ = 800
for IWSLT14 De-En.

B Complete Results

WMT14 En→De BLEU COMET
Transformer 27.95± .01 49.10± .27
CBMI 28.10± .07 49.29± .07
NPMI 28.09± .09 49.30± .30

WMT16 En→Ro BLEU COMET
Transformer 34.41± .10 56.02± .14
CBMI 34.56± .11 56.67± .41
NPMI 34.62± .06 57.32± .16

IWSLT14 De→En BLEU COMET
Transformer 35.27± .03 40.58± .30
CBMI 35.16± .05 40.04± .18
NPMI 35.28± .04 41.40± .12

Table 5: The complete results including standard error
for each of the values presented previously in Table 1.

C Changes in NPMI Values During
Training

As training proceeds, translation and language mod-
els produce better approximations for the probabil-
ities of unknown true data distribution. We em-
pirically observed that the average NPMI values
determined by the model (for the training samples)
increase over time. Similarly, for the examples in
the validation set, mean NPMI values tend to in-
crease then saturate or start to decrease over time,
which we believe to be another signal indicating
overfitting other than the rebound in validation loss.
The peak mean sentence-level NPMI values on the
validation set for IWSLT14 De-En was approxi-
mately 0.44. This behavior was consistent among
different settings for scheduling the c value, and the
peak value did not tend to fluctuate a lot. This can
be viewed as models with slightly different config-
urations reach a sort of consensus on how faithful
examples a given dataset provides are, which im-
plies that although we are using relatively smaller
models trained from scratch on a smaller dataset,
the estimated probabilities are quite reliable and
that our proposed NPMI has potential as a met-
ric for evaluating source-target faithfulness to be
used for purposes other than token-level adaptive
training.

D Derivation of sentence-level CBMI

Here we repeat the proof from Zhang et al. (2022)
that the pointwise mutual information between the
source and the target sentences PMI(x,y) equals
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the sum of the pointwise mutual information be-
tween the source sentence and each target token
conditioned on the target prefix preceding that to-
ken PMI(x, yj |y<j).

CBMIs(x;y) :=
1

|y|PMI(x;y)

=
1

|y| log
p(x,y)

p(x) · p(y)

=
1

|y| log
p(y |x) ·HHHp(x)
HHHp(x) · p(y)

=
1

|y| log
∏

j

p(yj |x,y<j)

p(yj |y<j)

=
1

|y|
∑

j

log
p(yj |x,y<j)

p(yj |y<j)

=
1

|y|
∑

j

PMI(x, yj |y<j)

=
1

|y|
∑

j

CBMIt(x; yj).

Division by sentence length was adopted as an
attempt to fight the variance of CBMI, since PMI is
not bounded below and has a moving upper bound
that increases as joint probability decreases. PMI is
affected not only by the ‘tendency to co-occur’ but
also by how likely the two observations are, which
is the reason why CBMI values of different tokens
and sentences may exhibit high variance, thereby
hindering mapping them to weights. Although di-
vision by target length did work to some extent in
mitigating this variance, as described in subsection
2.3, there are cases where this correlation is vio-
lated where putting the source into consideration
together can solve the issue.

E Examples Generated from Trained
Models

We present some examples from IWSLT14 En-De
test set.

Source: er hatte die erfahrung gehabt.
Reference: he had had the experience.
NPMI: he had had the experience.
CBMI: he had experience.

Source: einige sind gekommen und gegangen.
Reference: some have come and gone.
NPMI: some have come and gone.
CBMI: some came and went.

Source: eine fast identische struktur.
Reference: an almost identical structure.
NPMI: an almost identical structure.
CBMI: it’s an almost identical structure.

Source: ich komme nun zum ende.
Reference: so, i’m going to wrap up now.
NPMI: i’ll end now.
CBMI: i’ll come to the end now.

Source: er sagte: » was ist denn los mit dir? nun
trink doch was. «
Reference: he said, “what’s wrong with you? have
some beer.”
NPMI: he said, “what’s going on with you? well,
drink something.”
CBMI: he said, “what about you? what’s going
on?”

Source: da frage ich, wie fachlich kompetent war
diese diagnose?
Reference: then my question is, how professionally
competent was this diagnosis?
NPMI: i’m asking, how professionally competent
was this diagnosis?
CBMI: and i’m asking, how was this diagnostic?

Source: da sollte also besser eine neun am anfang
meiner todeszahl stehen.
Reference: so there better be a nine at the beginning
of my death number.
NPMI: so there should be a nine at the beginning
of my death number.
CBMI: so there should be better a nine at the begin-
ning of my death row.
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