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Abstract

Online forms are widely used to collect data
from human and have a multi-billion market.
Many software products provide online ser-
vices for creating semi-structured forms where
questions and descriptions are organized by pre-
defined structures. However, the design and
creation process of forms is still tedious and
requires expert knowledge. To assist form de-
signers, in this work we present FormLM to
model online forms (by enhancing pre-trained
language model with form structural informa-
tion) and recommend form creation ideas (in-
cluding question / options recommendations
and block type suggestion). For model training
and evaluation, we collect the first public online
form dataset with 62K online forms. Experi-
ment results show that FormLM significantly
outperforms general-purpose language models
on all tasks, with an improvement by 4.71 on
Question Recommendation and 10.6 on Block
Type Suggestion in terms of ROUGE-1 and
Macro-F1, respectively.

1 Introduction

Online forms are widely used to collect data in ev-
eryday scenarios such as feedback gathering (Ilieva
et al., 2002), application system (Sylva and Mol,
2009), research surveys (Yarmak, 2017), etc. With
a multi-billion market (Research and Markets,
2021), many software products – such as Survey
Monkey (Abd Halim et al., 2018), Google (Mondal
et al., 2018) and Microsoft Forms (Rhodes, 2019) –
provide services to help users create online forms
which consist of multiple blocks (e.g., Figure 1).

However, there are obstacles preventing the cre-
ation of well-designed online forms, which could
hurt response rate and quality (Krosnick, 2018).
For each form question, form designers need to
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Option 1

Choice

Add option

Team Building Questionnaire
Please fill out this form to allow us to better understand our employees‘ 

interests, strengths, and real feelings.

Suggested: Employee ID 

Your answer

Text Field

Full Name

Your answer

Question 

Recommendation

Options 

Recommendation

How happy are you with your current job?

Block Type 

Suggestion

Suggested options:   Add all | Yes   No

Do you feel you and your manager get along?

Add rating score

Rating

TODO

Figure 1: An Example Online Form with the Three
Tasks of Intelligent Form Creation Ideas.

write an informative title, specify its type, and pro-
vide other required components. This process is
tedious and time-consuming even for experienced
users. Also, non-experts may be unsure about what
question to add or which question type to choose.
To improve the experience and efficiency of form
composing, it is desirable that online form services
could recommend creation ideas to form designers.

To address the above demands, in §3 we identify
three machine learning (ML) tasks of Form Cre-
ation Ideas, including Question Recommendation,
Block Type Suggestion, and Options Recommenda-
tion. For example, in Figure 1, when one adds a
text field block as the second block, the Question
Recommendation suggests “Employee ID” for the
question based on the existing content (form title,
description, and the first question “Full Name”).
When editing the third choice question block, the
Options Recommendation suggests “Yes” and “No”
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as candidate options. Finally, if the user types
“How happy are you with your current job?” for the
fourth block but hasn’t selected a block type yet,
the Block Type Suggestion predicts it as a rating
type block.

The above tasks require a specifically designed
model to understand semi-structured forms, where
natural language (NL) text is organized by prede-
fined structures. A form is composed of a title, a de-
scription, and a series of blocks. For each block, its
subcomponents also follow unique structures. For
example, a Choice block contains a list of options
which serve as candidate answers to the question
displayed in the block title. Existing pre-trained
language models (PLMs) focus on general-purpose
free-form NL text (Devlin et al., 2019; Yang et al.,
2019). They may provide a good starting point
to model the rich semantic information within NL
contents of a form. However, they cannot directly
handle the extra structural information of the form.
Is it possible to infuse a PLM with structural infor-
mation of online forms?

In this paper, we propose FormLM to model
both the semantic and structural information of on-
line forms. As we will discuss in §4, there are three
key parts of FormLM. First, the form serialization
procedure, which represents a form as a tree and
converts it into a token sequence without informa-
tion loss. Second, inheriting existing PLM with a
small number of additional parameters: FormLM
inherits the parameters of BART (Lewis et al.,
2020) to leverage its language modelling capabili-
ties. Also, by adding extra biases to the attention
layers, FormLM explicitly handles the structural
information. Third, continual pre-training with col-
lected online forms: for better downstream appli-
cation: We propose two structure-aware objectives
– Span Masked Language Model and Block Title
Permutation – to continually pre-train FormLM on
top of the inherited and additional parameters.

We evaluate FormLM on Form Creation Ideas
tasks using our OOF (Open Online Forms) dataset.
This dataset (see §2.2) is created by crawling and
parsing public forms on the Web. Comparing
to PLMs such as BART, FormLM improves the
ROUGE-1 score from 32.82 to 37.53 on Question
Recommendation, and the Macro-F1 score from
73.3 to 83.9 on Block Type Suggestion.

In summary, our main contributions are:

• We put forward the problem of online form
modeling and formally define a group of tasks

on Form Creation Ideas. To the best of our
knowledge, these problems have not been sys-
tematically studied before.

• FormLM is proposed by us to model both
the semantic and structural information by en-
hancing PLM with form serialization, struc-
tural attention and continual pre-training.

• The public OOF dataset with 62k forms is con-
structed by us. To the best of our knowledge,
this is the first public online form dataset.
OOF dataset, FormLM code and models are
also open sourced at https://github.com/
microsoft/FormLM.

• Comprehensive experiments – especially base-
line comparisons, ablation studies, design
choices and empirical studies – are designed
and run by us to evaluate the effectiveness of
FormLM on the tasks of Form Creation Ideas
with the form dataset.

2 Preliminaries

In this section, we further elaborate the predefined
structure in online forms, and introduce our col-
lected dataset.

2.1 Online Form Structure

Modern online form services usually allow users
to create a form by piling up different types of
blocks. There are eight common block types: Text
Field, Choice, Time, Date, Likert, Rating, Upload,
and Description. Each block type has a predefined
structure (e.g., the options of a choice block) and
corresponds to a specific layout shown in the user
interface (e.g., bullet points or checkboxes of the
options). The order of the blocks in a form usually
matters because they are designed to organize ques-
tions in an easy-to-understand way, and to collect
data from various related aspects. For example, in
Figure 1, easier profile / fact questions are asked
before the preference / opinion questions.

As shown at the top of Figure 3, an online
form can be viewed as an ordered tree. The
root node T represents the form title, and its
children nodes Ch(T ) = (Desc, B1, ..., BN )
represent the form description and a series of
blocks. The subtree structure of Bi depends
on its type. For Choice and Rating blocks,
Ch(Bi) = (Typei,Titlei,Desci, C

(1)
i , ..., C

(ni)
i )

where C
(k)
i are the options or scores; For
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Likert (Johns, 2010) blocks, Ch(Bi) =

(Typei,Titlei,Desci, R
(1)
i , ..., R

(mi)
i , C

(1)
i , ..., C

(ni)
i )

where R
(j)
i are rows and C

(k)
i are

columns; For the remaining block types,
Ch(Bi) = (Typei,Titlei,Desci). All description
parts (Desc) are optional.

Text Field

57.3%

Date

2.1%

Rating

1.9%

Upload

1.9%

Likert

0.8%

Time

0.3%

Description

7.2%

Choice

28.5%

Figure 2: Distribution of Block Types in Online Forms.

2.2 Online Form Dataset

Since there is no existing dataset for online forms,
we construct our own OOF (Open Online Forms)
dataset by crawling public online forms created
on a popular online form website. We filter out
forms with low quality and only consider English
forms in this work. In total, 62K public forms are
collected across different domains, e.g., education,
finance, medical, community activities, etc.

Due to the semi-structured nature of online
forms, we further parsed the crawled HTML pages
into JSON format by extracting valid contents and
associating each block with its type. Figure 2
shows the distribution of block types in our col-
lected dataset. More details of the dataset construc-
tion and its statistics can be found in Appendix A.

3 Form Creation Ideas

As illustrated in Figure 1, when adding a new block,
one needs to specify its type and title in the first
step. Then, other required components – such as
a list of options for a Choice block – are added
according to the block type. In this paper, we focus
on the following three tasks which provide Form
Creation Ideas to users in the first and later steps.
Question Recommendation The Question Rec-
ommendation aims at providing users with a rec-
ommended question based on the selected block
type and the previous context. Formally, the
model needs to predict Titlei based on T , Desc,
B1, ..., Bi−1 and Typei. For example, in Figure 1,
it is desirable that the model could recommend
“Employee ID” when the form designer creates a
Text Field block after the first block.
Block Type Suggestion Different from the sce-
nario of Question Recommendation, sometimes

form designers may first come up with a block ti-
tle without clearly specifying its block type. The
Block Type Suggestion helps users select a suit-
able type in this situation. For example, for the last
block of Figure 1, the model will predict it as a
Rating block and suggest adding candidate rating
scores if the form designer has not appointed the
block type himself / herself. Formally, given Titlei
and the available context (T,Desc, B1, ..., Bi−1),
the model should predict Typei in this task.
Options Recommendation As Figure 2 shows,
Choice blocks are frequently used in online forms.
When creating a Choice block, one should addition-
ally provide a set of options, and the Options Rec-
ommendation helps in this case. Given the previ-
ous context (T,Desc, B1, ..., Bi−1) and Titlei, the
model predicts C

(1)
i , ..., C

(ni)
i if Typei = Choice.

In this work, we expect the model to recommend a
set of possible options at the same time, so the de-
sired output of this task is C(1)

i , ..., C
(ni)
i concate-

nated with a vertical bar. For example, in Figure 1,
the model may output “Yes | No” to recommend
options for the third block.

4 Methodology

As discussed in §1, we propose FormLM to model
forms for creation ideas. We select BART as the
backbone model of FormLM because it is widely
used in NL-related tasks and supports both gener-
ation and classification tasks. In the rest of this
section, we will describe the design and training
details of FormLM as demonstrated in Figure 3.

4.1 Form Serialization

As discussed in §2.1, an online form could be
viewed as an ordered tree. In FormLM we seri-
alize the tree into a token sequence which is com-
patible with the input format of common PLMs.
Figure 3(A) depicts the serialization process which
utilizes special tokens and separators. First, a spe-
cial token is introduced for each block type to ex-
plicitly encode Typei. Second, the vertical bar “|”
is used to concatenate a list of related items within
a block – options / scores C(k)

i of a Choice / Rating
block, and rows R(j)

i or columns C(k)
i of a Likert

block. Finally, multiple subcomponents of Bi are
concatenated using <sep>. Note that there is no
information loss in the serialization process, i.e.,
the hierarchical tree structure of an online form can
be reconstructed from the flattened sequence.
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Your answer
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Yes
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ChoiceDo you feel you and your manger get along?

Team Building Questionnaire
Please fill out this form to allow us to better understand our employees‘ interests, 
strengths, and real feelings.

Encoder (Self Attention)

Decoder (Self Attention + Cross Attention)

Team Building Questionnaire <sep> … <sep> <text> Full name <text> Employee ID <choice> Do you feel … Options: Yes | No

Block Title Permutation

Span Masked Language Model

(C) Continual Pre-training Objectives

Corrupt

(A) Form Serialization

(B) Structural Attention
Learnable structural attention biases: 𝐿[type ⋅ , type(⋅)] (Token Type Bias) 

+ 𝜇𝑒−𝜆dist(⋅,⋅) (Block Distance Bias)

We maintain separate 𝐵, λ, 𝜇 for each 

attention layer.

Shift Right Uncorrupted 

Inputs for Teacher Forcing

Form View Tree View

…

…
T Desc / B0 B1

FormTitle SepToken FormDesc SepToken BlockType SepTokenToken Type
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Full name No

T

Team Building Questionnaire

Desc

Please fill out 

this form…

B1

Type1

Text Field

Title1

B2

Employee ID

Type2

Text Field

Title2

B3

Choice

Type3

Do you feel …

Title3

Yes

𝐶3(1) 𝐶3(2)

Team Building Ques… <sep> <sep> <text> <mask> <mask>…

Figure 3: The Overview of FormLM Methodology. (A) Form Serialization (§4.1) serializes an online form by
adding block type tokens and separate tokens to preserve the tree structure. (B) Structural Attention (§4.2) encodes
the token type and block-level distance by adding structural biases to each attention layer. Different colors in the
attention bias matrix denote different items in the lookup table and the number inside each circle represents the
block-level distance of a token pair. (C) Continual Pre-training (§4.3) requires the model to recover the input
sequence corrupted by SpanMLM and BTP. We use the cross-entropy loss between the decoder’s output and the
uncorrupted sequence for model optimization.

4.2 Structural Attention

Beyond adding structural information into the in-
put sequence, in FormLM we further enhance its
backbone PLM with specially designed Structural
Attention (StructAttn). Our intuition is that the at-
tention calculation among tokens should consider
their different roles and locations in a form. E.g.,
tokens within a question title seldom correlates
with the tokens of an option from another question;
tokens in nearby blocks (or even the same block)
are usually stronger correlated with each other than
those from distant blocks.

As illustrated in Figure 3(B), StructAttn en-
codes the structural information of an online form
by adding two bias terms based on the token
type (i.e., the role that a token plays in the flat-
tened sequence) and the block-level position. For
each attention head, given the query matrix Q =
[q1, · · · ,qn]

⊤ ∈ Rn×dk , the key matrix K =
[k1, · · · ,km]⊤ ∈ Rm×dk , and the value matrix
V = [v1, · · · ,vm]⊤ ∈ Rm×dv , the original out-
put is calculated by

Â =
QK⊤
√
dk

,Attn(H) = softmax(Â)V (1)

In FormLM, we add two biases to Â and the
attention head output of StructAttn is calculated by

Aij = Âij + L[type(qi), type(kj)] + µe−λ d(qi,kj)

Attn(H) = softmax(A)V
(2)

In Equation (2), the token type bias is calculated
based on a learnable lookup table L[·, ·] in each
attention layer, and the lookup key type(·) is the
type of the corresponding token within the form
structure. Specifically, in our work, type(·) is cho-
sen from 9 token types: FormTitle, FormDesc,
BlockTitle, BlockDesc, Option, LikertRow,
LikertColumn, BlockType, SepToken. If Q or
K corresponds to the flattened sequence given by
form serialization, type(·) can be directly obtained
from the original form tree; otherwise, in genera-
tion tasks, Q or K may correspond to the target,
and we set type(·) as the expected output token
type, i.e., BlockTitle when generating the ques-
tion and Option when generating the options.

Another bias term in Equation (2) is calculated
by an exponential decay function to model the rela-
tive block-level position, where d(qi,kj) is the
block-level distance between the corresponding

8136



tokens of qi and kj on the form tree. To make
d(qi,kj) well-defined for each token pair, we set
Desc as the 0-th block (B0) and specify d(qi,kj)
as 0 if type(qi) or type(kj) is equal to FormTitle.
Note that there are two parameters λ, µ in this term.
We make them trainable and constrain their val-
ues to be positive to ensure tokens in neighboring
blocks give more attention to each other.

We apply StructAttn to three parts of FormLM,
self attentions of FormLM encoder, self attentions
and cross attentions of FormLM decoder. Q,K,V
of encoder self attentions and K,V of decoder
cross attentions correspond to the source sequence;
while Q,K,V of decoder self attentions and Q of
decoder cross attentions correspond to the target
sequence. In classification, both the source and the
target are the flattened form; while in generation,
the target is the recommended question or options.

In §5.5, we will prove the effectiveness of Struc-
tAttn through ablation studies and comparing alter-
native design choices of StructAttn.

4.3 Continual Pre-training

Note that it is difficult to train a model for online
forms from scratch due to the limited data. To
effectively adapt FormLM to online forms, we con-
duct continual pre-training on the training set of
our collected dataset (see §2.2) with the following
two structure-aware objectives.
Span Masked Language Model (SpanMLM)
We adapt the masked language model (MLM) to
forms by randomly selecting and masking some
nodes on the form tree within the masking bud-
get. Compared to SpanBERT (Joshi et al., 2020)
which improves the MLM objective by masking a
sequence of complete words, we do the masking
in a higher level of granularity based on the form
structure. Our technique masks a block title, op-
tion, etc., instead of arbitrarily masking subword
tokens. The latter was proven suboptimal in Joshi
et al. (2020); Zhang et al. (2019). Specifically, we
use a masking budget of 15% and replacing 80% of
the masked tokens with <MASK>, 10% with random
tokens and 10% with the original tokens.
Block Title Permutation (BTP) As discussed in
§2.1, each block can be viewed as a subtree. We
introduce the block title permutation objective by
permuting block titles in a form and requiring the
model to recover the original sequence with the
intuition that the model needs to understand the
semantic relationship between Bi and Ch(Bi) to

solve this challenge. We randomly shuffle all the
block titles to construct the corrupted sequence.

Following the pre-training process of BART, we
unify these two objectives by optimizing a recon-
struction loss, i.e., we input the sequence corrupted
by SpanMLM and BTP and optimize the cross-
entropy loss between the decoder’s output and the
original intact sequence.

5 Experiments

5.1 Evaluation Data and Metrics
We evaluate FormLM and other models on the three
tasks of Form Creation Ideas (§3) with our OOF
dataset (§2.2). The 62k public forms are split into
49,904 for training, 6,238 for validation, and 6,238
for testing. For each task, random sampling is fur-
ther performed to construct an experiment dataset.
Specifically, for each task, we randomly select no
more than 5 samples from a single form to avoid
sample bias introduced by those lengthy forms. For
Question Recommendation and Block Type Sug-
gestion, each sample corresponds to a block and
its previous context (see §3). 239,544, 29,558 and
29,466 samples are selected for training, validation
and testing, respectively. For Options Recommen-
dation, each sample corresponds to a Choice block
with context. 124,994, 15,640 and 15,867 samples
are selected for training, validation, and testing.

For Question and Options Recommendations,
following the common practice in natural language
generation research, we adopt ROUGE1 (Lin,
2004) scores with the questions/options composed
by human as the ground truth. During option rec-
ommendation, because the model is expected to
recommend a list of options at once, we concate-
nate options with a vertical bar (described in §4.1)
for the comparison of generated results and ground
truths. Since it is difficult to have a thorough eval-
uation of the recommendation quality through the
automatic metric, we further include a qualitative
study in Appendix D and conduct human evalu-
ations for these two generation tasks (details in
Appendix E). For Block Type Suggestion, both ac-
curacy and Macro-F1 are reported to take account
of the class imbalance issue.

5.2 Baselines
As there was no existing system or model
specifically designed for forms, we compare

1We use the Hugging Face implementation to calculate the
ROUGE score, https://huggingface.co/metrics/rouge.
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Question Recommendation Options Recommendation Block Type Suggestion

R1 R2 RL R1 R2 RL Macro-F1 Accuracy

RoBERTa - - - - - - 73.7±0.02 85.8±0.46

GPT-2 22.82±0.22 9.71±0.04 22.37±0.20 17.84±0.10 11.38±0.05 16.94±0.10 74.2±0.16 85.6±0.06

MarkupLM - - - - - - 79.8±0.27 88.6±0.13

BARTBASE 31.48±0.16 15.89±0.18 30.91±0.16 43.53±0.32 31.81±0.21 41.5±0.29 73.4±0.31 85.6±0.17

BART 32.82±0.05 17.06±0.20 32.18±0.05 46.12±0.12 33.74±0.08 43.85±0.12 73.3±0.28 85.3±0.08

FormLMBASE 35.9±0.08 18.27±0.10 35.23±0.04 44.14±0.06 32.39±0.16 42.21±0.10 83.0±0.06 90.7±0.09

↑ BARTBASE 4.42 2.38 4.32 0.61 0.58 0.71 9.6 5.1

FormLM 37.53±0.07 19.70±0.15 36.78±0.12 47.24±0.02 34.65±0.14 44.91±0.08 83.9±0.11 91.0±0.08

↑ BART 4.71 2.64 4.6 1.12 0.91 1.06 10.6 5.7

Table 1: Results of FormLM and the Baseline Models on the Tasks of Form Creation Ideas. Note that RoBERTa and
MarkupLM are encoder-only models, thus cannot be directly applied to generation tasks. We leave their results
blank for Question and Options Recommendations where ROUGE scores (R1, R2, RL) are used to evaluate these
two generation tasks. Both the averaged metric and its standard deviation (as subscript) are reported for each result
over 3 runs. The two gray rows (with up arrow ↑) show the improvement of FormLM over its backbone model.

FormLM with three general-purposed PLMs –
RoBERTa (Liu et al., 2020), GPT-2 (Radford et al.,
2019) and BART (Lewis et al., 2020), which
represent widely-used encoder, decoder, encoder-
decoder based models, respectively. To construct
inputs for these PLMs, we concatenate NL sen-
tences in the available context (see §3).

MarkupLM (Li et al., 2022), a recent model for
web page modeling, is also chosen as a baseline
since forms can be displayed as HTML pages on
the Internet. To keep accordance with the original
inputs of MakupLM, we remove the tags without
NL text (e.g., <script>, <style>) in the HTML
file in OOF dataset.

The number of parameters of each model can be
found in Appendix B.

5.3 FormLM Implementation

We implement FormLM using the Transform-
ers library (Wolf et al., 2020). FormLM and
FormLMBASE are based on the architecture and pa-
rameters of BART2 and BARTBASE

3 respectively.
For continual pre-training, we train FormLM for

15k steps on 8 NVIDIA V100 GPUs with the total
batch size of 32 using the training set of the OOF
dataset. For all the three tasks of Forms Creation
Ideas, we fine-tune FormLM and all baseline mod-
els for 5 epochs with the total batch size of 32 and
the learning rate of 5e-5. More pre-training and
fine-tuning details are described in Appendix C.

2https://huggingface.co/facebook/bart-large
3https://huggingface.co/facebook/bart-base

In the rest of this paper, each experiment with
randomness is run for 3 times and reported with
averaged evaluation metrics.

5.4 Main Results

For FormLM and the baseline models (see §5.2),
Table 1 shows the results on the Form Creation
Ideas tasks. FormLM significantly outperforms the
baselines on all tasks.

Compared to its backbone BART model (well-
known for conditional generation tasks), FormLM
further improves the ROUGE-1 scores by 4.71 and
1.12 on Question and Options Recommendations.
Human evaluation results in Appendix E also con-
firm the superiority of FormLM over other base-
line models in these two generation tasks. Fig-
ure 4 shows questions recommended by BART
and FormLM on an example form from the test
set. FormLM’s recommendations (e.g., “Destina-
tion”, “Departure Date”) are more specific and
more relevant to the topic of this form, while
BART’s recommendations (e.g., “Name”, Special
Requests”) are rather general. Also, after users
create B1, B2, B3, B4 and select B5 as a Date
type block, FormLM recommends “Departure Date”
while BART recommends “Name” which is obvi-
ously not suitable to B5.

On Block Type Suggestion, FormLM improves
the Macro-F1 score by 10.6. The improvement of
FormLM over BART (↑ rows in Table 1) shows
that our method is highly effective. We will further
analyze this in §5.5.

Note that MarkupLM is a very strong baseline
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Travel Purpose & Special Interests

Business School Educational Cruise Others

Departure
Please let us know your departure city or airport.

Your answer

Amount of Travelers
Please let us know how many travelers are there in your group.

1 2 More than 10…

Return Date
Please let us know your specific return date, so that we can help … 

Flight
Please let us know your preference of the flight.

I prefer non-stop flights Other…

Your answer

Destination

Departure Date

3 Stars Hotel Other…4 Stars Hotel

Accommodation, Part 1.

Beach Other…Family-friendly

Accommodation, Part 2.

Suggested question

BART: Name

FormLM: Departure Date

Suggested question

BART: Special Requests

FormLM: 

Type of Accommodation

Suggested question

BART: Room Types

FormLM:

Accommodation, Part 2.

Text Field

Text Field

Choice

Suggested question

BART: First Name

FormLM: Destination

Choice

Choice

Choice

Choice

B1

B2

B3

B4

B5

B6

B7

B8

B9

Date

Date

Request Form
Can’t find what you’re looking for? Please fill out the information below and we 
will be happy to assist you.

Please let us know your destination, so that we can help you plan your trip.

Please let us know your specific departure date, so that we can …

Please let us know your preference for the hotel.

Please let us know your preference of the Theme/type for the hotel.

Figure 4: Sample Outputs by FormLM and BART for
Question Recommendation. FormLM’s recommended
questions are more relevant to the topic and more suit-
able to the selected block type.

for Block Type Suggestion. This model can partly
capture the structural information by parsing the
form as a DOM (Wood et al., 1998) tree. However,
since MarkupLM is not specifically designed for
online forms, it is still 4.1 points worse in Macro-F1
than FormLM on this task.

5.5 Analysis of FormLM Designs

Question Options Type
R2 R2 F1

Full Model 19.70 34.65 83.9
− Decoder StructAttn 18.90 34.36 83.7
− Encoder StructAttn 19.58 34.41 77.9
− Form Serialization 17.43 33.83 75.5
− Previous Context 12.67 27.65 71.8

Table 2: Ablation Studies on Form Serialization and
Structural Attention. “−” means the corresponding
component is sequentially removed from FormLM. “−
Previous Context” means that the closest block title is
the only input.

To further investigate the effectiveness of the
design choices in FormLM, we conduct ablation
studies and controlled experiments (which are fine-

Question Options Type
R2 R2 F1

w/o Type Info 17.96 33.97 81.5
w/ Type Info 19.70 34.65 83.9

Table 3: Performance of FormLM “w/” and “w/o” In-
corporating the Block Type Information.

tuned under the same settings as described in §5.3)
on the following aspects.
Form Serialization For Form Creation Ideas, it
is important to model the complete form context
(defined in §3). Row “− Previous Context” of
Table 2 shows that there is a large performance
drop on all the tasks if block title is the only input.4

Therefore, we also study the effect of form seri-
alization (see §4.1) which flattens the form context
while preserving its tree structure. A naive way of
serialization is directly concatenating all available
text as NL inputs. Results in this setting (row “−
Form Serialization” of Table 2) are much worse
than the results of FormLM with form serialization
technique. On Block Type Suggestion, the gap is
as large as 8.4 on Macro-F1.
Block Type Information A unique characteris-
tic of online forms is the existence of block type
(see §2.1). To examine whether FormLM can lever-
age the important block type information, we run
a controlled experiment where block type tokens
are replaced by with a placeholder token <type>
during form serialization (while other tokens are
untouched). As shown in Table 3, removing block
type tokens hurts the model performance on all
three tasks, which suggests that FormLM can effec-
tively exploit such information.
Structural Attention FormLM enhances its
backbone PLM with StructAttn (§4.2). As the row
“− Encoder StructAttn” of Table 2 shows, when
we ablate StructAttn from FormLM, the Macro-
F1 score of Block Type Suggestion drops from
83.9 to 77.9 and the performance on the generation
tasks also drops. In FormLM, we apply StructAttn
to both encoder and decoder parts. We compare
it with the setting without modifying the decoder
(row “− Decoder StructAttn”) and find applying
StructAttn to both the encoder and decoder yields
uniformly better results, which may be due to better
alignment between the encoder and decoder.

4For ablation studies in Table 2, the components are se-
quentially removed because StructAttn depends on the tree
structure preserved in form serialization and both techniques
become meaningless if we don’t model the form context.
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Figure 5: Results of FormLM Using Different Design
Choices of StructAttn. (Averaged over 3 runs with std.)

Question Options Type
R2 R2 F1

w/o Pre-training 18.82 33.78 82.2
BTP 19.35 34.18 83.3
SpanMLM 19.42 33.94 83.3
SpanMLM + BTP 19.70 34.65 83.9

Table 4: Ablation Study of Different Continual Pre-
training Objectives. (Averaged over 3 runs.)

There are alternative design choices of Struc-
tAttn for us to experiment. As Equation (2) shows,
there are two bias terms to model the token type and
the block-level distance. We compare this design
choice (“Hybrid” in Figure 5) with adding only the
token type bias (“Type”) and only the distance bias
(“Dist”). Note that “Hybrid” encodes block-level
distance through the exponential decay function,
we also compare it with another intuitive design
(“Hybrid*”) where we use a learnable bias to indi-
cate whether two tokens are within the same block.
Besides adding biases, another common practice of
modifying attentions is masking. We experiment
this design choice (“Mask”) by restricting atten-
tions to those tokens in the same node or parent and
grandparent nodes within the tree structure. The
comparison results are demonstrated in Figure 5.
“Mask” performs uniformly worse than adding bi-
ases. Among the rest of design choices, “Hybrid”
shows slightly better performance on Options Rec-
ommendation and Block Type Suggestion.
Continual Pre-training Objectives We design
two objectives (§4.3), SpanMLM and BTP, to con-

tinually pre-train FormLM on OOF dataset for bet-
ter domain adaptation. Table 4 shows the ablation
results of different objectives. We find FormLM
trained with both SpanMLM and BTP performs the
best. This suggests SpanMLM which focuses more
on the recovery of a single node on the tree and
BTP which focuses more on the relationship be-
tween different nodes can complement each other.

6 Related Work

(Semi-)Structured Data Modeling In this paper,
we mainly focus on modelling parsed form data.
They follow well-defined structure and are usually
created by software such as online services men-
tioned in §1. Existing works (Wang et al., 2022a;
Xu et al., 2021; Li et al., 2021; Appalaraju et al.,
2021; Aggarwal et al., 2020; He et al., 2017) focus
on another type of forms, scanned forms (e.g., pho-
tos and scanned PDF files of receipts or surveys),
and process multi-modal inputs (text, image). This
type of forms requires digitization and parsing be-
fore passing to any downstream tasks, which are
very different from forms studied in this paper.

To the best of our knowledge, the modelling of
parsed forms has not been studied before. Exist-
ing (semi-)structured data modelling works mainly
focus on tables (Yin et al., 2020; Wang et al.,
2021), documents (Wan et al., 2021; Liu and La-
pata, 2019; Wang et al., 2019), web pages (Wang
et al., 2022b), etc. Some works represent the (semi-
)structured data as a graph and use graph neural net-
work (GNN) for structural encoding (Wang et al.,
2020; Cai et al., 2021). Some other works convert
(semi-)structured data into NL inputs to directly
use PLMs (Gong et al., 2020) or modify a cer-
tain part of transformer models – e.g., embedding
layers (Herzig et al., 2020), attention layers (Eisen-
schlos et al., 2021; Yang et al., 2022), the encoder
architecture (Iida et al., 2021). Although it is pos-
sible to convert online forms to HTML pages to
use models like MarkupLM (Li et al., 2022), the
results are suboptimal as shown in §5.4 because the
unique structural information of online forms are
not fully utilized.
Intermediate Pre-training In §4.3 we discussed
in FormLM how we adapt a general PLM to the
form domain through continual pre-training. Inter-
mediate pre-training of a PLM on the target data
(usually in a self-supervised way) has been shown
efficient on bridging the gap between PLMs and
target tasks (Gururangan et al., 2020; Rongali et al.,
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2020). Many domain specific models (Xu et al.,
2019; Chakrabarty et al., 2019; Lee et al., 2020), in-
cluding those for (semi-)structured data (Yin et al.,
2020; Liu et al., 2022), are built with this tech-
nique. Following the previous approaches, we de-
sign form-specific structure-aware training objec-
tives for the continual pre-training process.

7 Conclusion

In this paper, we present FormLM for online form
modeling. FormLM jointly consider the semantic
and structural information by leveraging the PLM
and designing form serialization and structural at-
tention. Furthermore, we continually pre-train
FormLM on our collected data with structure-aware
objectives for better domain adaptation. An exten-
sive set of experiments show that FormLM out-
performs baselines on Form Creation Ideas tasks
which assist users in the form creation stage.

Limitations

In this work, we conduct research on online form
modeling for the first time. While effective in the
proposed tasks of Form Creation Ideas, FormLM
has some limitations. First, FormLM is designed to
assist form designers by recommending questions /
options and suggesting the block type. We believe
there are more to explore in recommending creation
ideas and we plan to design more tasks for Form
Creation Ideas, like recommending a whole block,
auto-completion, etc., to fully exploit FormLM in
the form creation stage. Also, since FormLM per-
forms exceptionally well on Block Type Sugges-
tion, it is worthwhile to consider more fine-grained
block types. Second, FormLM only models the
form content and leaves out the collected responses.
Although form content itself is very informative, it
is an important research direction to jointly model
online forms and their collected responses for they
are useful to other stages of the online form life
cycle, especially the form analyzing stage. Fur-
thermore, our collected OOF dataset is limited to
English forms and doesn’t have manual labels. We
hope to enlarge our dataset with non-English forms
and investigate the possibility of adding supervised
labels to this dataset in the future to further facili-
tate the study of online forms.

Ethics Statement

Datasets In this work, we collect the public OOF
dataset for the research community to facilitate fu-

ture study of online forms. We believe there is no
privacy issue related to this dataset. First, the data
sources are public available on the Internet, and
are anonymously accessible. We complied with
the Robots Exclusion Standard during the data col-
lection stage. Second, our dataset only contains
form contents and there are no responses or per-
sonal information involved. A checklist has been
completed at the researchers’ institution to ensure
the collected dataset does not have ethical issues.

Risks and Limitations Our work proposes
FormLM to model online forms and recommend
creation ideas to users in the form designing stage.
FormLM uses a pre-trained language model, BART,
as the backbone. PLMs have a number of ethical
concerns in general, like generating biased or dis-
criminative text (Weidinger et al., 2021) and in-
volving lots of computing power in pre-training
or fine-tuning (Strubell et al., 2019). The primary
risk of our work is that we formulated Question
Recommendation and Options Recommendation
as generation tasks, but did not include the post-
processing of the generated texts in our pipeline.
We suggest post-processing the outputs of FormLM
to sift out biased or discriminative text before rec-
ommending them to the users when applying our
technique to online form services. Designing good
post-processing technique is also an interesting av-
enue for future work.

Another limitation we see from an ethical point
of view is that we only consider online forms which
use English as the primary language. We are trying
to collect online forms in other languages and leave
it as a future work to provide a multilingual version
of FormLM to assist more users in different parts
of the world.

Computational Resources The experiments in
our paper require computational resources. How-
ever, compared with other LMs pretrained from
scratch, FormLM inherits the parameters of its
backbone and is continually pre-trained with only
50K online forms. It takes around 8 hours to com-
plete the continual pre-training with 8 NVIDIA
V100 GPUs. Despite this, we recognize that not all
researchers have access to this resource level, and
these computational resources require energy. No-
tably, all GPU clusters within our organization are
shared, and their carbon footprints are monitored
in real-time. Our organization is also consistently
upgrading our data centers in order to reduce the
energy use.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:

Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Dafang He, Scott Cohen, Brian Price, Daniel Kifer, and
C Lee Giles. 2017. Multi-scale multi-task fcn for
semantic page segmentation and table detection. In
2017 14th IAPR International Conference on Docu-
ment Analysis and Recognition (ICDAR), volume 1,
pages 254–261. IEEE.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. TABBIE: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456, Online. Association
for Computational Linguistics.

Janet Ilieva, Steve Baron, and Nigel M Healey. 2002.
Online surveys in marketing research. International
Journal of Market Research, 44(3):1–14.

Rob Johns. 2010. Likert items and scales. Survey ques-
tion bank: Methods fact sheet, 1(1):11.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Jon A Krosnick. 2018. Questionnaire design. In The
Palgrave handbook of survey research, pages 439–
455. Springer.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Songfang
Huang, Fei Huang, and Luo Si. 2021. StructuralLM:
Structural pre-training for form understanding. In

8142

https://doi.org/10.18653/v1/2020.emnlp-main.314
https://doi.org/10.18653/v1/2020.emnlp-main.314
https://doi.org/10.18653/v1/N19-1054
https://doi.org/10.18653/v1/N19-1054
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493


Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6309–
6318, Online. Association for Computational Lin-
guistics.

Junlong Li, Yiheng Xu, Lei Cui, and Furu Wei. 2022.
MarkupLM: Pre-training of text and markup lan-
guage for visually rich document understanding. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6078–6087, Dublin, Ireland. As-
sociation for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: Table pre-training via learning a neural SQL
executor. In International Conference on Learning
Representations.

Yang Liu and Mirella Lapata. 2019. Hierarchical trans-
formers for multi-document summarization. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5070–
5081, Florence, Italy. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Himel Mondal, Shaikat Mondal, Tania Ghosal, and
Sarika Mondal. 2018. Using google forms for medi-
cal survey: A technical note. Int J Clin Exp Physiol,
5(4):216–218.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Urša Reja, Katja Lozar Manfreda, Valentina Hlebec, and
Vasja Vehovar. 2003. Open-ended vs. close-ended
questions in web questionnaires. Developments in
applied statistics, 19(1):159–177.

Research and Markets. 2021. Global online survey
software market research report (2021 to 2026) - by
industry and region. Accessed: 2022-06-14.

Jeffrey M Rhodes. 2019. Creating a survey solution
with microsoft forms, flow, sharepoint, and power bi.
In Creating Business Applications with Office 365,
pages 99–103. Springer.

Subendhu Rongali, Abhyuday Jagannatha, Bhanu
Pratap Singh Rawat, and Hong Yu. 2020. Contin-
ual domain-tuning for pretrained language models.
arXiv preprint arXiv:2004.02288.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Hella Sylva and Stefan T Mol. 2009. E-recruitment: A
study into applicant perceptions of an online applica-
tion system. International Journal of Selection and
Assessment, 17(3):311–323.

Hui Wan, Song Feng, Chulaka Gunasekara,
Siva Sankalp Patel, Sachindra Joshi, and Luis
Lastras. 2021. Does structure matter? encoding
documents for machine reading comprehension.
In Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 4626–4634, Online. Association
for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Jiapeng Wang, Lianwen Jin, and Kai Ding. 2022a. LiLT:
A simple yet effective language-independent layout
transformer for structured document understanding.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7747–7757, Dublin, Ireland.
Association for Computational Linguistics.

Jingwen Wang, Hao Zhang, Cheng Zhang, Wenjing
Yang, Liqun Shao, and Jie Wang. 2019. An effective
scheme for generating an overview report over a very
large corpus of documents. In Proceedings of the
ACM Symposium on Document Engineering 2019,
DocEng ’19, New York, NY, USA. Association for
Computing Machinery.

Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xi-
aojun Quan, and Dongfang Liu. 2022b. Webformer:
The web-page transformer for structure information
extraction. In Proceedings of the ACM Web Confer-
ence 2022, pages 3124–3133.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021. Tuta: Tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 1780–1790.

8143

https://doi.org/10.18653/v1/2022.acl-long.420
https://doi.org/10.18653/v1/2022.acl-long.420
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/P19-1500
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.globenewswire.com/news-release/2021/09/29/2305358/28124/en/Global-Online-Survey-Software-Market-Research-Report-2021-to-2026-by-Industry-and-Region.html
https://www.globenewswire.com/news-release/2021/09/29/2305358/28124/en/Global-Online-Survey-Software-Market-Research-Report-2021-to-2026-by-Industry-and-Region.html
https://www.globenewswire.com/news-release/2021/09/29/2305358/28124/en/Global-Online-Survey-Software-Market-Research-Report-2021-to-2026-by-Industry-and-Region.html
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/2021.naacl-main.367
https://doi.org/10.18653/v1/2021.naacl-main.367
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2022.acl-long.534
https://doi.org/10.18653/v1/2022.acl-long.534
https://doi.org/10.18653/v1/2022.acl-long.534
https://doi.org/10.1145/3342558.3345394
https://doi.org/10.1145/3342558.3345394
https://doi.org/10.1145/3342558.3345394


Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
et al. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve
Byrne, Mike Champion, Scott Isaacs, Ian Jacobs,
Gavin Nicol, Jonathan Robie, Robert Sutor, et al.
1998. Document object model (dom) level 1 specifi-
cation. W3C recommendation, 1.

Robert F Woolson. 2007. Wilcoxon signed-rank test.
Wiley encyclopedia of clinical trials, pages 1–3.

Hu Xu, Bing Liu, Lei Shu, and Philip Yu. 2019. BERT
post-training for review reading comprehension and
aspect-based sentiment analysis. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2324–2335, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou.
2021. LayoutLMv2: Multi-modal pre-training for
visually-rich document understanding. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2579–2591, Online.
Association for Computational Linguistics.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 528–537,
Dublin, Ireland. Association for Computational Lin-
guistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Olga Yarmak. 2017. Online surveys in sociology: Op-
portunities, drawbacks and limitations. In 11th In-
ternational Conference on Computer Science and

Information Technologies CSIT, volume 4, pages 476–
477.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426, On-
line. Association for Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1441–1451, Florence, Italy. Association for Compu-
tational Linguistics.

8144

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139


A Details of Open Online Forms Dataset

Figure 6: Frequent Words Among Titles of Forms in
OOF Dataset.

OOF (Open Online Forms) dataset consists of
62K public forms collected on the Web, covering
a wide range of domains and purposes. Figure 6
shows some frequent words among titles of the
collected data.

A.1 Dataset Preprocessing

We crawled 232,758 forms created by a popular
online form service on the Internet and filter the
crawled data using the following constraints: (1)
have at least one question block; (2) have no du-
plicate question blocks; (3) detected as “en”5 by
Language Detection API of Azure Cognitive Ser-
vice for Language6. Finally, 62,380 forms meet all
constraints. We randomly split them into 49,904 for
training, 6,238 for validation and 6,238 for training.

As introduced in §2.2, we parsed the crawled
HTML pages into JSON format according to
the online form structure. Specifically, each
JSON file contains keys of “title”, “description”
and “body” which correspond to form title (T ),
form description (Desc), and an array of blocks
({B1, · · · , Bn}). Each block contains keys of “ti-
tle”, “description” and “type”. For Choice type
blocks and Rating type blocks, they further contain
the key of “options”; for Likert type blocks, they
further contain keys of “rows” and “columns”. For
Description block, we only keep the plain NL text
and remove possible information of other modali-
ties (i.e, image, video) because only around 0.1%
of Description blocks contain video and 2.0% con-
tain image. When parsing the HTML pages into
JSON format, we also remove non-ASCII charac-
ters within the form.

5https://en.wikipedia.org/wiki/List_of_ISO_
639-1_codes

6https://docs.microsoft.com/en-us/
azure/cognitive-services/language-service/
language-detection/overview

A.2 Form Length Distribution
We define the length of an online form as the num-
ber of blocks within it. Around 80% of collected
forms have a form length no greater than 20. The
detailed distribution of form length is shown in Fig-
ure 7. As we have discussed in §5.1, we further
perform random sampling to construct our experi-
ment dataset to avoid sample biases introduced by
those lengthy forms.

Figure 7: Form Length Distribution of Forms in OOF
Dataset.

B Model Configurations

We compare FormLM with four baseline mod-
els, RoBERTa, GPT-2, MarkupLM, and BART.
FormLM adds a small number of additional param-
eters to its backbone model (278K for FormLM and
208K for FormLMBASE) to encode structural infor-
mation in attention layers (§4.2). Table 5 shows
model configurations of FormLM and baselines in
our experiments.

Model #Params #Layers

RoBERTa 124M 12
GPT-2 124M 12
MarkupLM 135M 12
BARTBASE 139M 6+6
BART 406M 12+12
FormLMBASE 139M 6+6
FormLM 406M 12+12

Table 5: Model Configurations of FormLM and Base-
lines.

C More Implementation Details

Continual Pre-training Details We conduct con-
tinual pre-training on the training set of the OOF
dataset using SpanMLM and BTP objectives (§4.3).
We adopt a masking budget of 15% in SpanMLM
and do BTP on all training samples. We train
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FormLM for 15K steps on 8 NVIDIA V100 GPUs
with 32G GPU memory. We set the total batch size
as 32 and the max sequence length as 512. We use
AdamW optimizer (Loshchilov and Hutter, 2019)
with β1 = 0.9, β2 = 0.999 and the learning rate
of 5e-5. It takes around 8 hours to complete the
continual pre-training on our machine.
Fine-tuning Details Among our downstream
tasks, Next Question Recommendation and Op-
tions Recommendation are formulated as condi-
tional generation tasks. We use the form serial-
ization procedure (§4.1) to convert the available
context into model inputs. We fine-tune FormLM
for 5 epochs with the total batch size of 32, the
max source sequence length of 512, and the max
target sequence length of 64. We load the best
model which has the highest ROUGE-2 score on
the validation set in the training process. During
generation, we do beam search and set the beam
size as 5. Block Type Classification is formulated
as a sequence classification task. We follow the
original implementation of BART by feeding the
same input into the encoder and decoder and pass-
ing the final hidden state of the last decoded token
into a multi-class linear classifier for classification.
We fine-tune FormLM with 5 epochs with the total
batch size as 32 and load the best model which has
the highest Macro-F1 score on the validation set
during the fine-tuning process.

D Qualitative Study

Online forms, as a special format of questionnaires,
are mainly used to collect information, i.e., demo-
graphic information, needs, preferences, etc. (Kros-
nick, 2018). As shown in Figure 6, the online forms
in the OOF dataset are more about objective top-
ics like “Application” and “Registration” because
these information collection scenarios prevail in
the daily usage. To collect information effectively,
a good questionnaire should include questions re-
lated to the topic and these questions must be log-
ically connected with each other. Also, for those
close-ended questions (the majority of them are
Choice type questions), they are expected to of-
fer all possible answers for respondents to choose
from but not include off-topic options which may
cause confusion (Reja et al., 2003). These crite-
ria of good questionnaires restrict the searching
space of online form composition, thus making
the automatic recommendation of creation ideas
conceptually possible.

In §5.4, Figure 4 shows some questions rec-
ommended by FormLM. FormLM is able to rec-
ommend questions like “Destination”, “Departure
Date”, “Type of Accommodation” which are highly
related to the topic of travelling and can help collect
meaningful information for the travel agency. For
Options Recommendation, FormLM can accurately
identify polar questions and recommend “Yes”,
“No” as candidate options. Also, since FormLM is
continually pre-trained on a large amount of online
forms, it has no difficulty recommending options
for those frequently asked questions, e.g., “Gen-
der”, “Current Educational Qualifications”, etc..
More interestingly, we notice that FormLM can pro-
vide accurate recommendation for questions which
are related to their previous contexts. Figure 8 gives
two sample outputs by FormLM for Options Rec-
ommendation. In the left sample, FormLM gives
concrete suggestions which are based on the form
title; in the right sample, the recommended loca-
tions are all related to school, and they accord well
with the domain of this form. We assume that such
good performance can be attributed to the effective
understanding of form structure and context.

E Human Evaluation

Apart from reporting automatic evaluation results
using ROUGE scores, we further conduct human
evaluations for Question Recommendation and Op-
tions Recommendation. We randomly choose 50
samples from the test sets of the two task and col-
lect the recommended question / options from 5
models (GPT-2, BARTBASE, BART, FormLMBASE,
FormLM). We use an HTML website (actually an
online form service) to collect the manual labels.
Human evaluation instructions are shown in Fig-
ure 9 and Figure 10. Eight experts familiar with
online form software products participate in the ex-
periment. For each sample of a task, we construct a
Likert question containing the 5 outputs (randomly
shuffled and anonymized) of the models. For each
sample, three experts compare the 5 outputs using
a rating scale of 1 to 5 (the higher, the better) at the
same time to achieve better comparison and anno-
tation consistency across different outputs. So in
total, we collect 150 expert ratings for each model
on each task.

The evaluation results are shown in Table 6 and
Table 7. We can see FormLM and FormLMBASE
outperform all baseline models on both Question
and Options Recommendation when manually eval-
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Option 1

Add option

I am a … Choice

Suggested options:   Add all | Youth Participant   Adult Participant

RSE Youth and Adult Participant Registration
Event Basics:

Dates: June 10-13, 2018 (June 10 - 4:30pm-8:30pm, June 11-13 - 7:00am-8:00pm, Concert 

June 13, 8:00pm)

…

Last Name

Your answer

First Name

Your answer

Are you registering with a church?
If you are, please enter church name and city.  If you are coming with a friend type in the 

name of their church.  Otherwise just type "None".

Your answer

Gender

Male Female

Option 1

Add option

Where did the incident happen? Choice

Suggested options:   Add all | Classroom Hallway   Cafeteria   

Restroom   Bus   Online

Online Bully Report
Choosing to help someone in need is very brave. If you see this happening again, please report 

it. Together we can stop bullying.

Name of victim(s)

Your answer

Name of Student(s) bullying

Your answer

Select a School

Bay High School Bay - Waveland Middle School …

Date of this incident (as close as possible)

Figure 8: Sample Outputs by FormLM for Options Recommendation. The suggested options are highlighted in
blue.

Rating 5 4 3 2 1 Avg. ≥4 ≥3 ≤2

GPT-2 16 22 23 20 69 2.31 38 61 89
BARTBASE 28 21 12 23 66 2.48 49 61 89
BART 26 23 25 18 58 2.61 49 74 76
FormLMBASE 63 47 13 15 12 3.89 110 123 27
FormLM 72 41 16 9 12 4.01 113 129 21

Table 6: Summary of Human Evaluation Ratings for
Question Recommendation.

Rating 5 4 3 2 1 Avg. ≥4 ≥3 ≤2

GPT-2 16 10 6 9 109 1.77 26 32 118
BARTBASE 63 28 17 14 28 3.56 91 108 42
BART 68 30 23 9 20 3.78 98 121 29
FormLMBASE 71 35 18 9 17 3.89 106 124 26
FormLM 89 29 14 7 11 4.19 118 132 18

Table 7: Summary of Human Evaluation Ratings for
Options Recommendation.

uated by the experts, which is in accordance with
the automatic evaluation results.

We further conduct Wilcoxon signed-rank
test (Woolson, 2007) which is a non-parametric
hypothesis test for the matched-pair data to check
statistical significance of the comparison between
FormLM, FormLMBASE and their backbone mod-
els. At 95% confidence level, when comparing
FormLM with BART and comparing FormLMBASE
with BARTBASE, both p-values from Wilcoxon test
are less than 0.005. These results show that our

models have better performance on these two gen-
eration tasks than their backbone PLMs which are
well-known for conditional generation.
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Background 
Online forms are widely used to collect data in everyday scenarios and many software products 
provide services to help users create online forms which consist of multiple blocks. However, for 
each form question, form designers need to write an informative title, specify its type, and 
provide other required components. Such a process is time-consuming.  Therefore, we want to 
design a model to recommend creation ideas and suggestions to online form designers. 

Question Recommendation 
Question Recommendation aims at providing users with a recommended question based on the 
selected block type and the previous context (form title, form description, previous blocks). 

In this study, you will evaluate 10 sets of questions recommended by 5 different models. (Model 
outputs have been randomly shuffled.) The evaluation interface is as follows: 

 

For each sample, you need to 

Step 1: Click the link behind “context:” to see the previous context of the form. 

Step 2: Check the block type marked in bold black.  

Step 3: Score the recommendations. Each row in the Likert table refers to a model output. You 
can score each output with the relative score ranging from 1 to 5 (higher score indicates better 
recommended question).  Note that your score should consider three parts: 

• Whether the question has clear meaning. 
• Whether the question is suitable to the form context (relevant to the form title, non-

overlap with previous questions, logically coherent with previous questions, etc.). 
• Whether the question suits the selected block type. 

Figure 9: Human Evaluation Instructions. (Page 1 / 2)
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Options Recommendation 
Choice blocks are frequently used in online forms. When creating a Choice block, one should 
additionally provide a set of options. Options Recommendation aims recommending a set of 
options to users based on the current block title and all the previous context (form title, form 
description, previous blocks). 

In this study, you will evaluate 10 sets of questions recommended by 5 different models. (Model 
outputs have been randomly shuffled.) The evaluation interface is as follows: 

 

For each sample, you need to 

Step 1: Click the link behind “context:” to see the previous context of the form and the choice 
block title that models will make recommendations for. 

Step 2: Score the recommendations. Each row in the Likert table refers to a model output. Note 
that we expect models to recommend a set of options, and we concatenate the options with a 
vertical bar “|”. You can score each output with the relative score ranging from 1 to 5 (higher 
score indicates better recommended options). Note that your score should consider three parts: 

• Whether each option has clear meaning and whether it is a suitable answer to the Choice 
block title. 

• Whether this set of options are logically related to each other and non-overlapped. 
• Whether this set of options are reasonable when considering the previous form context. 

 

Figure 10: Human Evaluation Instructions. (Page 2 / 2)
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