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Abstract

Although remarkable progress on the neural
table-to-text methods has been made, the gen-
eralization issues hinder the applicability of
these models due to the limited source tables.
Large-scale pretrained language models sound
like a promising solution to tackle such issues.
However, how to effectively bridge the gap
between the structured table and the text in-
put by fully leveraging table information to
fuel the pretrained model is still not well ex-
plored. Besides, another challenge of integrat-
ing the deliberation mechanism into the text-
to-text pretrained model for solving the table-
to-text task remains seldom studied. In this
paper, to implement the table-to-text genera-
tion with pretrained language model, we pro-
pose a table structure understanding and text
deliberating approach, namely TASD. To be
specific, we devise a three-layered multi-head
attention network to realize the table-structure-
aware text generation model with the help of
the pretrained language model. Furthermore,
a multi-pass decoder framework is adopted to
enhance the capability of polishing generated
text for table descriptions. The empirical stud-
ies, as well as human evaluation, on two public
datasets, validate that our approach can gen-
erate faithful and fluent descriptive texts for
different types of tables.

1 Introduction

The task of learning to generate natural language
descriptions from non-linguistic input, which is
referred to as data-to-text, is important for many
applications, such as weather forecast genera-
tion (Mei et al., 2016), sports news writing (Wise-
man et al., 2017), biography writing (Lebret et al.,
2016), market comments writing (Murakami et al.,
2017) and automatic question-answering (Li et al.,
2021b). The input data can be in various forms

∗ This work was done when the first author was an intern
at Baidu Research under the supervision of the second author.

for data-to-text though, here we focus on the text
generation task that takes the table as input.

Inspired by neural machine translation models,
previous studies on table-to-text tasks mainly adopt
traditional seq2seq methods to generate table de-
scriptions (Lebret et al., 2016; Wiseman et al.,
2017; Liu et al., 2018; Gong et al., 2019b; Wang
et al., 2020; Li et al., 2021a). Despite generating
text with high fluency, lacking numerous source
tables leads to lower generalizability of the table-
to-text model. Recent progress in the pretrained
language model (Devlin et al., 2019; Radford et al.,
2019) shows remarkable performance in solving
natural language processing tasks. The model pre-
trained on large-scale data possesses rich knowl-
edge, which inspires us with the potential for solv-
ing generalization issues of the text generation task.

To exploit the expressive power of the pretrained
model for the table-to-text task, it is necessary to
serialize the input table effectively. Several works
have put efforts to bridge this gap, such as serial-
izing the table into a token sequence (Zhang et al.,
2020; Suadaa et al., 2021; Xing and Wan, 2021),
or introducing an extra task to control the table
representation (Gong et al., 2020). However, none
of these leveraged the table structure information
effectively. Furthermore, the text-to-text pretrained
model decodes and generates a sequence in a one-
pass forward process, which means it cannot per-
ceive the future words in advance on the target side.
Recently, the deliberation mechanism (Niehues
et al., 2016; Geng et al., 2018) implemented by
the multi-pass decoder is proposed to tackle this
problem. However, how to adapt this approach for
text-to-text pretraining, which can be further ap-
plied to the table-to-text task, is another challenge.

To this end, we propose a table structure under-
standing and text deliberating approach, namely
TASD, to solve the table-to-text task with the pre-
trained language model enhanced by the deliber-
ation mechanism. Specifically, we first serialize
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the table input with customized templates which
do not acquire the target cells to be labeled. Then,
we employ the multi-head attention in a hierarchi-
cal way to learn the table representation that is
aware of table structure and apply it to guide the
fine-tuning of the text-to-text pretrained model. Af-
terward, we adopt the multi-pass decoder to realize
text deliberation. More specifically, we treat the
above table-structure-aware fine-tuned model as
the first-pass decoder and adopt another pretrained
model as the second-pass decoder to further polish
the descriptive text. In the second-pass decoding
phase, the table representation can be conveniently
leveraged as the “original text” in the text deliber-
ation mechanism. The main contributions of this
work can be summarized as follows:
• We propose a novel table-to-text generation

approach (i.e., TASD) to assimilating the com-
plete table information with the help of table
structure distillation, the pretrained language
model, and the text deliberation.

• We devise a table-structure-aware text gen-
eration model (TASATG) via the hierarchi-
cal multi-head attention network, which can
realize the content selection automatically.
And we develop an effective text deliberation
method dedicated to the table-to-text task.

• Extensive experiments conducted on two dif-
ferent datasets demonstrate that TASD out-
performs comparable baselines in terms of
various metrics.

2 Related Work
2.1 Table-to-Text Generation
Encouraged by the success of seq2seq methods
in machine translation and text summarization, re-
searchers proposed to formulate the input table as a
sequence of records (Lebret et al., 2016; Wiseman
et al., 2017), and further improve the performance
of table-to-text methods based on seq2seq by mod-
eling table representation (Liu et al., 2018; Gong
et al., 2019a). Introducing auxiliary tasks to enrich
the table representation (Tian et al., 2019; Li et al.,
2021a) is another promising paradigm to address
the table-to-text problem. Moreover, there have
been studies focusing on how to disaggregate the
table-to-text pipeline effectively to generate more
faithful and fluent text, e.g. leveraging content
selection and planning (Puduppully et al., 2019;
Trisedya et al., 2020; Bai et al., 2021), combin-
ing autoregressive and non-autoregressive meth-

ods (Wang et al., 2021). In addition, recent Trans-
formers were also applied to solve the table-to-text
task (Gong et al., 2019b; Wang et al., 2020; Obeid
and Hoque, 2020). However, current table-to-text
methods may fail to tackle the overfitting problem
aroused by the lack of diversity in small datasets.

Fine-tuning the model pretrained in a large cor-
pus and adapting to a specific task is an effective
approach to tackling the generation issues disturbed
by small data and large parameters (Radford et al.,
2019). (Kale and Rastogi, 2020) explored the feasi-
bility of applying the text-to-text pretrained model
to the table-to-text task, (Gong et al., 2020) applied
multi-task learning to solve the table-to-text task
with pretrained language model, and (Suadaa et al.,
2021) leveraged pretrained language model for fact
inference in numerical table contents. However,
these approaches seldom perceived and integrated
the complete table information into the fine-tuning
of the pretrained model. A table-to-text pretrained
model (Xing and Wan, 2021) was proposed though,
the large and diversified table corpus is often un-
available. In addition, recent works on fact verifica-
tion taking tabular as input (Yin et al., 2020; Dong
and Smith, 2021) have suggested the effectiveness
of the table-structure-aware pretrained model.

2.2 Text Deliberation
The encoder-decoder framework has been widely
applied to neural machine translation, while the
subsequent words are often invisible on the target
side when decoding a sequence. To alleviate this, re-
searchers proposed to decode and refine the output
sequence in multiple passes, like human cognitive
behavior when polishing an article. Studies have
been made on text deliberation, such as the solu-
tion with two separate stages (i.e., generating and
polishing) (Niehues et al., 2016), combining two
separate stages as one framework (Xia et al., 2017),
and deliberating generated text in multiple passes
adaptively via reinforcement learning (Geng et al.,
2018) or customized evaluating architecture (Li
and Yao, 2021). To the best of our knowledge, we
are the first to apply the deliberation mechanism to
the table-to-text problem.

3 Preliminaries
3.1 Problem Formulation
Our table-to-text problem takes a table as input,
and we formulate a table as a sequence of records:
T = {τ1,1, τ1,2, · · · , τi, j, · · · , τm,n}, where m and n
denote the number of rows and columns of T , re-

8200



Figure 1: The framework overview of TASD.

spectively. Then, we aim to generate a document Y
containing words Y = y1y2 · · · yl that can describe
the content of T precisely, where l is the document
length. Formally, given a table T , the table-to-text
model is excepted to generate a descriptive docu-
ment Y in an auto-regressive way

yi = arg max P(yi | T, y1y2 · · · yi−1; Θ), i = 1, · · · , l
where Θ is the set of model parameters.

3.2 Data

NumericNLG Dataset. The numericNLG dataset
was released by (Suadaa et al., 2021). In this
dataset, the tables demonstrate experimental re-
sults in research papers, thus, most of the table
contents are numerical values. We use this dataset
to evaluate the accuracy and smoothness of the
generated descriptions for the table with numerical
content. In particular, for each table of numer-
icNLG, <table_id> acts as the pronoun of the
table, and <caption> is the descriptive text of the
table. Moreover, for each cell of a table, there are
<metric>, (row and column) <header>, and
<value> as different views of a cell.
Totto Dataset. The Totto dataset (Parikh
et al., 2020) is an open-domain table-to-text
dataset collected from Wikipedia. The table
contents are mainly in text form. The metadata
of the Totto dataset includes <page_title>,
<section_title> and <section_text>. In
detail, each cell of a table has corresponding
<header> and <value>. Unlike numericNLG,
textual content in our Totto dataset accounts for
62.4%, which can evaluate the text generation
effectiveness for the tables with textual records.

4 Methodology

In this section, we introduce the proposed frame-
work in detail. As shown in Fig. 1, our framework
mainly consists of three components, i.e., template-
based table serialization, table-structure-aware

fine-tuning, and text deliberation. Specifically, we
first produce a sequence describing the table con-
tents with customized templates. The templates we
adopted do not require the target cells to be labeled.
Then, to generate informative text, we adopt full ta-
ble representation learning to guide the description
generation, such that the outcome text is capable
of emphasizing and delineating the facts in the ta-
ble from a macroscopic perspective. Finally, we
employ and adapt the multi-pass decoder to our
data-to-text problem, which can further fine-tune
the generated table description. Technical details
for all three modules will be introduced separately
in the following subsections.

4.1 Template-based Table Serialization
To well harness the expressive power of the text-to-
text pretrained model for the input table, it is nec-
essary to serialize the raw table first. The template-
based representation offers us a simple yet effective
linearization approach to generating descriptive
texts which can reflect the facts in a table without
yielding an intractable downstream model.

In particular, the templates we adopted in this
work are devised to mention all the available facts
in the table without knowing the emphasized cells
in advance, which is different from (Suadaa et al.,
2021). The template for describing facts consists
of two parts:

1. The title or descriptive text that comes with
the table.

2. A series of expressions, in which each one
describes the content of a cell.

More specifically, for the numericNLG dataset,
we apply the following template:

<table_id> shows <caption>. <metric1,1
> of <header1,1> is <value1,1>, · · · , <me
trici, j> of <headeri, j> is <valuei, j>, · · · .

For the Totto dataset, we apply another template:

As <page_title> <section_title>, <se
ction_text>. <header1,1> is <value1,1>,
· · · , <headeri, j> is <valuei, j>, · · · .

The second part of the template enumerates all the
cells in the table. This preliminary table represen-
tation, denoted by TS , covers all the available facts
in a raw table. Note that, the templates we adopt
may encounter the content selection problem. In
table-to-text applications, target cells in the input
table are often not highlighted and the generated
table description should emphasize certain cells.
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Figure 2: The architecture of table-structure-aware text
generation model (i.e., TASATG).

4.2 Table-Structure-Aware Text Generation
A text-to-text pretrained model can take the large-
scale corpus as input to possess vast knowledge
and generate texts in an unsupervised way so that
it has been widely applied to text-generation tasks.
When handling a specific text generation task, it is
effective to fine-tune the pretrained model on new
data. However, for the table-to-text task, some hid-
den information, like table structure, is most likely
to be overlooked, though the drafted TS mentions
all the available facts in the table. Thus, we pro-
pose to exploit table structure information to guide
fine-tuning of the text-to-text pretrained model.

As shown in Fig. 2, we first encode the table
content in a multi-view fashion. To be specific,
given a cell τi, j in a table T , it can be viewed from
different perspectives, such as the value of τi, j, the
row header of τi, j, and the column header of τi, j,
etc. Then, we treat the k-th view of τi, j as a to-
ken sequence which is denoted by x(k)

i, j . Afterward,

we pad x(k)
i, j with placeholders (if necessary) and

concatenate these token sequences as follows:

xi, j = x(1)
i, j ⊛ x(2)

i, j ⊛ · · · , (1)

where ⊛ denotes the concatenation operator, and
the multi-viewed representation of a table T is de-
noted as X = [x1,1, · · · , xi, j, · · · , xm,n]. Each to-
ken of x(k)

i, j can be encoded as a d-dimensional em-
bedding by looking up the text-to-text pretrained
model and updated accordingly when fine-tuning
the pretrained model. In this way, we can obtain
the semantic representation of table T , which is
denoted by E(0) ∈ Rm×n×s×d, where s is the length
of concatenated sequence xi, j.

To realize TASATG for table-to-text, we pro-

pose to employ multi-head attention (Vaswani et al.,
2017) to guide fine-tuning of the text-to-text pre-
trained model. In particular, we adopt three multi-
head attention (MHA) layers to interactively extract
the information in the table in a hierarchical way.
Specifically, the MHA layer is defined as:

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i

head i = Attention (Qi,Ki,Vi) = softmax
(

QiK⊤i√
d

)
Vi,

MHA(Q,K,V) = [ head 1, · · · , head h] WO,

where Q, K, V represent the query, key and value
in the attention mechanism, respectively.

As illustrated in Fig. 2, in the first MHA layer,
we add a cell text position embedding (E(ctpe) ∈
Rs×d) to each cell of the aforementioned E(0), and
feed it to the multi-head attention to implement cell
text self-attention,

Ẽ0 = E(0) ⊕ E(ctpe),

E(1) = MHA(Ẽ(0), Ẽ(0), Ẽ(0)),

E(1) =
1
s

s∑

i=1

(E(1)[:, :, i, :]) ,

(2)

where ⊕ denotes the element-wise addition opera-
tion. Consequently, E(1) ∈ Rm×n×d can be deemed
as an initial aggregated table representation. Next,
in the second MHA layer, we add a table position
embedding (E(tpe) ∈ Rm×n×d) to E(1) to implement
table structure self-attention,

Ẽ(1) = E(1) ⊕ E(tpe),

E(2) = MHA(Ẽ(1), Ẽ(1), Ẽ(1)).
(3)

E(2) ∈ Rm×n×d is the table-structure-aware represen-
tation. Moreover, in the third MHA layer, we ap-
ply a multi-head cross-attention to take the hidden
state of the text-to-text pretrained model (denoted
by H ∈ Rs×d) as the attention query, such that we
can focus on the important cells of the table,

H̃ = MHA(H,E(2),E(2)) ⊕ H. (4)

This new hidden state H̃ guided by the table repre-
sentation will replace the original hidden state H
in the text-to-text pretrained model to generate the
probability of the next word.

Note that, the cross attention weights on differ-
ent table cells based on the previous words can
realize the content selection automatically. In ad-
dition, we implement the text-to-text pretrained
model with GPT2 (Radford et al., 2019), which
adopts a decoder-only Transformer architecture.
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(a) Training. (b) First and second fine-tuning of TASATG with vali-
dation data.

(c) Testing.

Figure 3: Training, validation and testing procedures of the proposed TASD approach.

4.3 Text Deliberation
The encoder-decoder framework applied in many
sequence generation tasks often adopts a one-pass
process while decoding a sequence. Though effi-
cient, the one-pass decoder cannot perceive future
context for further text deliberation. Multi-pass de-
coder extends the capability of generating more
refined text by exploring global information in the
sequence (Niehues et al., 2016; Xia et al., 2017).

For the text-to-text pretrained model, due to the
huge amount of parameters of the pretrained lan-
guage model, it is unwise to directly combine the
models in different passes. A common solution is
to concatenate the original serialized table content
and the text generated in the previous pass to fine-
tune the pretrained model in the next-pass decoding.
However, in this way, the length of input text prob-
ably exceeds the limit of the text-to-text pretrained
model, and the time complexity is too high.

To effectively implement the fine-tuning of the
text-to-text pretrained model in multiple passes,
as shown in Figs. 3a and 3b, we take the table
representation as the “original text” and feed the
text generated in the first-pass fine-tuning plus
the table representation to the second-pass fine-
tuning. Note that, as shown in Fig. 3a, we sep-
arately fine-tune the table-to-text generation task
and the text-to-text deliberation task with two inde-
pendent TASATG models, and each of them takes
a text-to-text pretrained model as the backbone.

5 Experiments

5.1 Experimental Settings
Data. We conducted experiments on the aforemen-
tioned datasets, i.e., numericNLG and Totto. The
statistics of the numericNLG dataset can be found
in (Suadaa et al., 2021). Besides, the size of the
original Totto dataset is 120K, which is much larger
than the numericNLG dataset. To evaluate differ-
ent methods for table-to-text with comparable data
size, for the Totto dataset, we filtered out the tables

with fewer rows and columns, i.e., #rows < 8 and
#columns < 8, such that the filtered Totto dataset
contains 1.8K tables. Then, we randomly selected
1.2K1 tables to generate the new Totto dataset.
Evaluation Metrics. We calculated BLEU (from
gram-1 to gram-4) (Papineni et al., 2002), ROUGE-
L (Lin, 2004) and METEOR (Denkowski and
Lavie, 2014) to evaluate the quality of the gen-
erated text. The BLEU-n with a small value of n
measures the accuracy of the word level, and the
BLEU-n with a large n can measure the fluency
of the sentence. The ROUGE-L measures the re-
call rate based on the longest common sequence
between source and target texts. The METEOR is
based on the harmonic mean of unigram precision
and recall, with recall weighted higher than preci-
sion. These metrics are widely used to measure the
accuracy and fluency of the generated sentence.
Baselines. We compare TASD with the following
baselines.

• Template-based Table Serialization. We use
the template designed for table serialization
as a baseline. Note that, the token sequence
generated by the template-based method is
denoted as TS .

• Pointer Generator (See et al., 2017). This
is a seq2seq model with the attention and
copy mechanism. We take TS as input for
the pointer generator model.

• TRM. We implemented a simplified version
of the proposed TASD that omits the pos-
sessed knowledge in the pretrained language
model and removes text deliberation for focus-
ing on table representation modeling, namely
TRM. In particular, TRM adopts the architec-
ture of GPT2 but initializes the parameters
randomly and trains 100 epochs at most for
fine-tuning. Besides, TRM takes TS plus the
table structure representation as input and is
fed with TS in the inference phase.

1The size of numericNLG data is 1.3K.
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Table 1: Performance comparisons of the automatic evaluation on the numericNLG dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Template-based Method 10.28 5.52 2.83 1.14 11.31 11.49
Pointer Generator 5.10±0.59 2.71±0.19 1.16±0.17 0.56±0.04 7.82±0.15 15.21±0.14
TRM 14.16±0.97 6.05±0.50 2.11±0.13 0.80±0.12 9.72±0.94 12.72±0.80
Fine-tuned GPT2 16.13±0.56 9.02±0.31 4.68±0.22 2.20±0.22 10.14±0.32 17.48±0.36
TableGPT 18.69±0.39 8.21±0.24 3.31±0.19 1.51±0.14 11.06±0.18 16.90±0.27

TASD w/o TAS 18.20±2.40 9.74±1.01 4.38±0.31 1.98±0.39 10.64±0.86 19.29±1.77
TASD w/o D 18.02±0.50 10.06±0.25 5.20±0.13 2.47±0.20 10.99±0.29 18.57±0.27
TASD w/o 1st-TAS 20.07±1.94 10.35±0.69 4.67±0.35 2.05±0.34 11.52±0.80 20.10±0.62
TASD 21.81±1.13 11.03±0.11 4.92±0.22 2.15±0.39 11.87±0.40 20.40±0.80

Table 2: Performance comparisons of the automatic evaluation on the Totto dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Template-based Method 0.84 0.43 0.23 0.09 4.59 1.51
Pointer Generator 11.34±1.57 2.05±0.83 0.45±0.27 0.35±0.13 5.38±0.78 14.46±1.46
TRM 10.21±1.79 3.44±0.88 1.21±0.48 0.54±0.25 9.30±1.16 11.52±2.03
Fine-tuned GPT2 9.53±0.51 3.65±0.34 1.18±0.37 0.40±0.26 9.89±0.39 10.69±0.27
TableGPT 6.80±0.26 3.51±0.22 1.33±0.21 0.76±0.12 11.10±0.42 11.73±0.44

TASD w/o TAS 13.70±0.90 4.44±0.69 1.28±0.47 0.65±0.35 10.79±0.83 14.47±1.11
TASD w/o D 10.03±0.39 4.42±0.29 1.64±0.36 0.71±0.38 10.29±0.49 10.67±0.34
TASD w/o 1st-TAS 13.90±0.60 5.07±0.61 1.68±0.52 0.79±0.25 10.98±0.40 14.88±0.71
TASD 14.19±1.08 5.17±0.38 1.71±0.32 0.78±0.21 11.65±0.71 14.96±1.10

• Fine-tuned GPT2 (Radford et al., 2019). We
take the concatenation of TS and Y as the in-
put for fine-tuning. In the inference phase,
we only feed TS to the model to generate Y
starting after the last token of TS .

• TableGPT (Gong et al., 2020). TableGPT is
a state-of-the-art table-to-text method. To im-
prove the text fidelity and exploit the struc-
tural information at the same time, TableGPT
employs a multi-task learning paradigm con-
sisting of two auxiliary tasks, that is, one task
reconstructs the table structure from represen-
tations of GPT2, and the other aligns the tables
and the information in the generated text.

Implementation Details. The split settings for
training, validation and, testing were 1084:136:135
2 for the numericNLG dataset and 960:120:120
for the Totto dataset, respectively. Regarding auto-
matic evaluation, all results of deep models were
obtained by conducting experiments on a Linux
machine with Nvidia A100 GPU, and the averaged
results of 5 runs were reported. Besides, an Adam

2This setting follows the experiments of (Suadaa et al.,
2021).

optimizer was utilized (with an initial learning rate
of 3e-5) for GPT2 fine-tuning, and the training was
iterated in 20 epochs at most. A beam search algo-
rithm was adopted when decoding a sequence and
the beam width was set to 5 3.

5.2 Automatic Evaluation

The comparisons of automatic evaluation results
between TASD and other baselines can be found
in Tables 1 and 2. In general, TASD outperforms
the baselines for all the metrics on two datasets. In
particular, compared to the reported best result of
all the baselines, TASD achieves improvements of
3.12 for BLEU-1 (18.69→ 21.81), 2.01 for BLEU-
2 (9.02→ 11.03), 0.24 for BLEU-3 (4.68→ 4.92),
0.56 for METEOR (11.31→ 11.87), and 2.92 for
ROUGE-L (17.48→ 20.40) on the numericNLG
dataset, and 2.85 for BLEU-1 (11.34 → 14.19),
1.52 for BLEU-2 (3.65→ 5.17), 0.38 for BLEU-3
(1.33 → 1.71), 0.02 for BLEU-4 (0.76 → 0.78),
0.55 for METEOR (11.10→ 11.65), and 0.50 for
ROUGE-L (14.46 → 14.96) on the Totto dataset.

3Our implementation is available at https://github.
com/ramber1836/TASD.
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In other words, for different types of source tables,
TASD generates better descriptive texts w.r.t. accu-
racy at the word level, recall of the sequence, and
fluency of sentences.

Besides, we have the following observations: 1)
The template-based method performs much bet-
ter on the numericNLG dataset compared to the
Totto dataset, since the referenced table descrip-
tions in numericNLG were collected from scientific
papers, however, the table summaries in the Totto
dataset are more diverse. 2) In the Totto dadaset,
the pointer generator model tends to cover more
words in descriptive text and generate more fluent
sentences than the template-based method, as the
contents in source tables of the Totto dataset are
mostly linguistic. This can also explain why the
pointer generator performs worse than the template-
based method on the numericNLG dataset w.r.t.
BLEU and METEOR. 3) Fine-tuned GPT2 can
generate more faithful and fluent text than other
baselines (refer to Tables 1 and 2) most of the time,
which validates the effectiveness of the pretrained
language model. 4) In general, TableGPT performs
better, and even the best, among all the baselines.
In the numericNLG dataset, the headers of the
input tables (a.k.a. the attributes of records for
TableGPT) are more diverse, which may explain
why the performance of TableGPT is not promising
as expected on the numericNLG dataset. 5) TRM
can generate comparable, or even better descriptive
text as fined-tuned GPT2, which further suggests
the effectiveness of table structure understanding.

5.3 Ablation Analysis
Moreover, to verify the effectiveness of different
modules, we compare TASD with its variants.

• After generating text with fine-tuned GPT2,
we fed the generated text concatenated with
TS to another fine-tuned GPT2 to realize the
second-pass decoder without table structure
representation.

• We implemented TASD without deliberating
on the outcome text, which means that we
realized TASATG based on GPT2 in a one-
pass forward process.

• TASD w/o 1st-TAS. We removed table struc-
ture modeling in the first-pass decoding from
TASD, which was implemented by taking the
fine-tuned GPT2 as the first-pass decoder and
the table-structure-aware fine-tuned GPT2 as
the second-pass decoder.

As can be seen in Tables 1 and 2, TASD w/o TAS
performs worse than TASD under all metrics, since
the table structure modeling can benefit the fine-
tuning of GPT2. This can also be validated by com-
paring fine-tuned GPT2 to TASD w/o D. Besides,
the effectiveness of deliberating text can be proven
by comparing TASD w/o D to TASD (this can also
be validated by comparing fine-tuned GPT2 to
TASD w/o TAS). While text deliberation may harm
sentence fluency as depicted by the results of these
methods w.r.t. BLEU-3 & 4 in Table 1. In addition,
TASD w/o 1st-TAS outperforms TASD w/o TAS under
all metrics suggesting that taking the table repre-
sentation as the “original text” in the deliberation
mechanism is also effective.

5.4 Qualitative Analysis
Figs. 4(a) and (b) show two selected source ta-
bles and corresponding descriptive texts (i.e., cap-
tion and section_text) in numericNLG and Totto
datasets. Fig. 4(c) demonstrates the generated de-
scriptions by different methods. The text that cor-
rectly reflects the facts of the source table is in
green, the erroneous text is in red, and the con-
fusing text is in blue. We can see that, there are
many grammatical errors in the text produced by
the pointer generator. Fine-tuned GPT2 tends to
repeat phrases and sentences due to the limited
knowledge about the input table, which can also
explain why the fine-tuned GPT2 can obtain a false
high score in BLEU-n as n grows. Thanks to the
semantic knowledge brought by pretraining, fine-
tuned GPT2 can generate more natural descriptions,
in which, however, perplexing factual errors ex-
ist. Compared to fine-tuned GPT2, the description
generated by TASD is more relevant to the table
contents. Since the target cells are not known in
advance, the generated text may miss the empha-
sized points described in the reference. The text
generated by TableGPT is also fluent, though coun-
terfactual descriptions may exist.

5.5 Human Evaluation
We randomly selected 30 samples from the test set
in numericNLG and Totto datasets, respectively,
and invited 10 volunteers to evaluate the quality of
the outcome text by considering three criteria, i.e.,
grammar, coherence & concise, and factual per-
spective (correct and relevant). Each criterion has
scores of five degrees, ranging from 1 (the worst) to
5 (the best). The averaged scores were reported in
Table 3, which show that TASD can generate more
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Figure 4: Two examples of the generated table descriptions.

Table 3: Result of Human Evaluation

Dataset Method Grammar Coherence
& Concise

Factual per-
spective

nu
m

er
ic

N
L

G

Pointer Genera-
tor 3.16±0.99 2.73±1.20 1.54±0.69

Fine-tuned
GPT2 3.42±0.56 3.11±0.58 2.51±0.45

TASD w/o D 3.72±0.61 3.48±0.55 2.82±0.45
TASD 4.17±0.72 3.98±0.64 3.15±0.73

To
tto

Pointer Genera-
tor 2.03±0.71 1.89±0.82 1.56±0.55

Fine-tuned
GPT2 2.60±0.55 2.36±0.64 1.85±0.46

TASD w/o D 2.63±0.52 2.46±0.60 1.89±0.46
TASD 3.4±0.66 3.18±0.70 2.25±0.69

readable and coherent texts, and describe more
correct facts. Moreover, the pretrained models con-
sistently achieve better scores than the pointer gen-
erator on grammar and coherence because of the
expressive power learned from the large-scale cor-
pus. In the Totto dataset, the improvement of the
table structure modeling is smaller than that of the
polishing mechanism, which is consistent with the
automatic evaluation results in Table 2.

6 Discussion

In our work, we devised a two-pass decoder frame-
work dedicated to the table-to-text task with the
help of the table-structure-aware text generation
model (i.e., TASATG). However, the effectiveness
of the text deliberation for the table-to-text task
should be further explored and integrated into the
table-structure-aware modeling in a more harmonic

Figure 5: Table reconstruction for table-structure-aware
modeling enhancement.

manner. To discuss the limitation of the text de-
liberation of TASD, we additionally developed a
table content reconstruction loss and integrate it
into TASD in a multi-task learning fashion.

Specifically, given the table-structure-aware em-
bedding E(2) generated with Eq. (3), we randomly
mask certain cells of the input table and yield a
partially corrupted embedding of the input table,
denoted by Ê(2). Then, a two-layer MLP (i.e., multi-
layer perceptron) is adopted to restore the table-
structure-aware embedding. Afterward, an MSE
(i.e., mean square error) loss is adopted to mea-
sure the effectiveness of table reconstruction and
further integrated into the TASD framework in the
multi-task learning paradigm. The process of table
reconstruction is demonstrated in Fig. 5.

We carried out a series of experiments to evalu-
ate the performance of TASD w/ and w/o the help
of table reconstruction loss (i.e., TRLoss) on nu-
mericNLG and Totto datasets in terms of BLEU-n
(1 to 4), METEOR, and ROUGE-L. The results can
be found in Tables 4 and 5.
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Table 4: The performances of TASD w/ and w/o the table reconstruction on the numericNLG dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

TASD w/o D 18.02±0.50 10.06±0.25 5.20±0.13 2.47±0.20 10.99±0.29 18.57±0.27
TASD w/o D w/ TRLoss 20.56±0.25 11.57±0.21 5.90±0.23 2.98±0.17 12.00±0.48 20.50±0.39
TASD w/ TRLoss 19.29±0.38 10.12±0.24 5.32±0.25 2.62±0.22 12.18±0.90 18.95±0.69
TASD w/ TRLoss in 1st pass 18.23±0.68 9.39±0.52 4.64±0.26 2.36±0.24 11.51±0.78 18.13±0.45
TASD w/ TRLoss in 2nd pass 19.38±2.21 10.33±1.34 5.11±0.73 2.40±0.38 11.35±0.92 18.69±1.05
TASD 21.81±1.13 11.03±0.11 4.92±0.22 2.15±0.39 11.87±0.40 20.40±0.80

Table 5: The performances of TASD w/ and w/o the table reconstruction on the Totto dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

TASD w/o D 10.03±0.39 4.42±0.29 1.64±0.36 0.71±0.38 10.29±0.49 10.67±0.34
TASD w/o D w/TRLoss 9.94±0.43 4.35±0.31 1.63±0.31 0.75±0.13 10.37±0.22 10.62±0.60
TASD w/ TRLoss 14.57±0.87 5.22±0.42 1.70±0.49 0.89±0.38 11.79±0.77 15.28±0.86
TASD w/ TRLoss in 1st pass 14.00±0.82 5.31±0.27 1.72±0.25 0.75±0.13 11.02±0.77 14.74±0.51
TASD w/ TRLoss in 2nd pass 13.89±0.58 4.78±0.61 1.47±0.14 0.52±0.20 11.07±0.66 14.73±0.79
TASD 14.19±1.08 5.17±0.38 1.71±0.32 0.78±0.21 11.65±0.71 14.96±1.10

According to the results reported on the nu-
mericNLG dataset, the TRLoss is helpful in en-
hancing the capability of table comprehension
though, the best performance is achieved by TASD
w/o D w/TRLoss. It seems that the performance im-
provement gained by the table comprehension en-
hancement is sacrificed after the text deliberation
is adopted. Meanwhile, on the Totto dataset, TASD
with the table reconstruction (i.e., TASD w/TRLoss)
does achieve the best performance in terms of
BLEU-1, BLEU-2, METEOR, and ROUGE-L,
though the improvement is not remarkable. The
contents of the input tables are mainly linguistic
and the table structures are not too diverse might
be able to explain the performance improvement
of TASD w/TRLoss on the Totto dataset. With the
above comparisons, we can conclude that, for the
input tables with diverse structures, the limitation
of the current text deliberation mechanism cannot
be neglected if one aims to enhance the capability
of table comprehension for the table-to-text task.
Moreover, this also suggests that the generalization
capability of text deliberation of TASD should be
improved in the future.

Limitations. In this work, long tables in the
Totto dataset are removed since the efficiency and
performance of TASD on large tables could be low-
ered. In the future, the capability of handling long
tables for table-to-text models should be further ex-
plored. Besides, a large-scale and more exhaustive

human evaluation is necessary. We plan to recruit
more volunteers to conduct the human annotation.

7 Conclusion

In this paper, to realize table-to-text with the pre-
trained language model, we proposed a table struc-
ture understanding and text deliberating approach,
namely TASD. The table structure understanding
was realized by developing a hierarchical multi-
head attention network, which can benefit the fine-
tuning of the text-to-text pretrained model. The
fully represented table information benefits not
only the pretrained language model but also the
text deliberation process since the structure infor-
mation with rich semantics could be fed into the
second-pass decoding naturally. We carried out ex-
tensive experiments on two public datasets with
different table types. Automatic and human-based
evaluations, as well as qualitative analysis, vali-
date the effectiveness of our approach to generating
faithful and fluent table descriptions. In the future,
we will improve text deliberation by devising a
unified framework to integrate the multi-pass de-
coder and refine the descriptive text paying more
attention to sentence fluency.
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A Human Evaluation Settings
The criteria adopted in our human-based evaluation
are (1) Grammar (e.g., is this paragraph grammat-
ical?), (2) Coherence & Concise (e.g., is this para-
graph coherent and contextually consistent? does
it repeat redundant information?), and (3) Factual
perspective (e.g., are the facts that this paragraph
describes correct? are these facts related to refer-
ences and tables?). More specifically, we list the
detailed justifications on how to score the generated
text in each criterion as follows.
Grammar

• 1 It is more like garbled code than a paragraph.
• 2 There are many obvious grammatical mis-

takes.
• 3 There are a few obvious grammatical mistakes.
• 4 There are few grammatical mistakes.
• 5 There are no grammatical mistakes.

Coherence & Concise

• 1 The logic of text expression is chaotic and
nonsense.

• 2 There are a lot of logical inconsistencies or
redundant information.

• 3 There are some logical inconsistencies or re-
dundant information.

• 4 There are a few logical inconsistencies or
redundant information, but it does not affect
browsing.

• 5 The logic of the text is smooth without redun-
dant information.

Factual Perspective

• 1 The paragraph does not coincide with the ref-
erence or table, and it is full of information
inconsistent with the facts.

• 2 The paragraph describes the facts incorrectly
and has a low correlation with reference, but is
related to the information in the table.

• 3 The paragraph description is incorrect, but it
is highly coincident with the reference.

• 4 The paragraph description is basically correct,
and the coincidence with the reference is low,
but it also describes the information in the table.
• 5 The paragraph description is correct and

highly coincident with the reference.

B Illustrative Examples of Generated
Descriptions

We additionally selected another two examples of
the generated table descriptions from the numeric-
NLG and Totto datasets, respectively. The results
are shown in Figs. 6 and 7. From these four ex-
amples, we can see that TASD can generate more
accurate and fluent descriptive texts. While incor-
rect descriptions can be found in the outcome texts
generated by different models for cases D and F,
which suggests that generating faithful descriptions
for open-domain tables is much more challenging
and requires more powerful and, thus larger, pre-
trained language models.

C Extra Implementation Details
The learning rate of GPT2 was searched from {3e−
4, 3e − 5, 3e − 6}. In the evaluation of discussing
the limitation of text deliberation (see Section 6),
a trade-off parameter for balancing the GPT2 fine-
tuning loss and the TRLoss was adopted, then the
trade-off parameter was searched from {1e−1, 5e−
2, 1e − 2, 5e − 3, 1e − 3}, and 1e-2 was selected for
the reported performance. Besides, the reported
results in Tables 4 and 5 were averaged in 3 runs.
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Figure 6: Generated table descriptions on cases C and D.

Figure 7: Generated table descriptions on cases E and F.
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