@inproceedings{svete-etal-2022-algorithms,
title = "Algorithms for Acyclic Weighted Finite-State Automata with Failure Arcs",
author = "Svete, Anej and
Dayan, Benjamin and
Cotterell, Ryan and
Vieira, Tim and
Eisner, Jason",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.567",
doi = "10.18653/v1/2022.emnlp-main.567",
pages = "8289--8305",
abstract = "Weighted finite-state automata (WSFAs) arecommonly used in NLP. Failure transitions area useful extension for compactly representingbackoffs or interpolation in n-gram modelsand CRFs, which are special cases of WFSAs.Unfortunately, applying standard algorithmsfor computing the pathsum requires expand-ing these compact failure transitions. As aresult, na ̈{\i}ve computation of the pathsum inacyclic WFSAs with failure transitions runs inO(|Q|2|Σ|) (O(|Q||Σ|) for deterministic WF-SAs) while the equivalent algorithm in normalWFSAs runs in O(|E|), where E representsthe set of transitions, Q the set of states, andΣ the alphabet. In this work, we present moreefficient algorithms for computing the pathsumin sparse acyclic WFSAs, i.e., WFSAs with av-erage out symbol fraction s ≪ 1. In those,backward runs in O(s|Q||Σ|). We proposean algorithm for semiring-weighted automatawhich runs in O(|E| + s|Σ||Q||Tmax| log |Σ|),where |Tmax| is the size of the largest con-nected component of failure transitions. Ad-ditionally, we propose faster algorithms fortwo specific cases. For ring-weighted WF-SAs we propose an algorithm with complex-ity O(|E| + s|Σ||Q||{\mbox{$\pi$}}max|), where |{\mbox{$\pi$}}max| de-notes the longest path length of failure transi-tions stemming from q and Σ(q) the set of sym-bols on the outgoing transitions from q. Forsemiring-weighted WFSAs whose failure tran-sition topology satisfies a condition exemplifiedby CRFs, we propose an algorithm with com-plexity O(|E| + s|Σ||Q| log |Σ|).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="svete-etal-2022-algorithms">
<titleInfo>
<title>Algorithms for Acyclic Weighted Finite-State Automata with Failure Arcs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anej</namePart>
<namePart type="family">Svete</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Dayan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Vieira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Eisner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Weighted finite-state automata (WSFAs) arecommonly used in NLP. Failure transitions area useful extension for compactly representingbackoffs or interpolation in n-gram modelsand CRFs, which are special cases of WFSAs.Unfortunately, applying standard algorithmsfor computing the pathsum requires expand-ing these compact failure transitions. As aresult, na ̈ıve computation of the pathsum inacyclic WFSAs with failure transitions runs inO(|Q|2|Σ|) (O(|Q||Σ|) for deterministic WF-SAs) while the equivalent algorithm in normalWFSAs runs in O(|E|), where E representsthe set of transitions, Q the set of states, andΣ the alphabet. In this work, we present moreefficient algorithms for computing the pathsumin sparse acyclic WFSAs, i.e., WFSAs with av-erage out symbol fraction s ≪ 1. In those,backward runs in O(s|Q||Σ|). We proposean algorithm for semiring-weighted automatawhich runs in O(|E| + s|Σ||Q||Tmax| log |Σ|),where |Tmax| is the size of the largest con-nected component of failure transitions. Ad-ditionally, we propose faster algorithms fortwo specific cases. For ring-weighted WF-SAs we propose an algorithm with complex-ity O(|E| + s|Σ||Q||πmax|), where |πmax| de-notes the longest path length of failure transi-tions stemming from q and Σ(q) the set of sym-bols on the outgoing transitions from q. Forsemiring-weighted WFSAs whose failure tran-sition topology satisfies a condition exemplifiedby CRFs, we propose an algorithm with com-plexity O(|E| + s|Σ||Q| log |Σ|).</abstract>
<identifier type="citekey">svete-etal-2022-algorithms</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.567</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.567</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>8289</start>
<end>8305</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Algorithms for Acyclic Weighted Finite-State Automata with Failure Arcs
%A Svete, Anej
%A Dayan, Benjamin
%A Cotterell, Ryan
%A Vieira, Tim
%A Eisner, Jason
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F svete-etal-2022-algorithms
%X Weighted finite-state automata (WSFAs) arecommonly used in NLP. Failure transitions area useful extension for compactly representingbackoffs or interpolation in n-gram modelsand CRFs, which are special cases of WFSAs.Unfortunately, applying standard algorithmsfor computing the pathsum requires expand-ing these compact failure transitions. As aresult, na ̈ıve computation of the pathsum inacyclic WFSAs with failure transitions runs inO(|Q|2|Σ|) (O(|Q||Σ|) for deterministic WF-SAs) while the equivalent algorithm in normalWFSAs runs in O(|E|), where E representsthe set of transitions, Q the set of states, andΣ the alphabet. In this work, we present moreefficient algorithms for computing the pathsumin sparse acyclic WFSAs, i.e., WFSAs with av-erage out symbol fraction s ≪ 1. In those,backward runs in O(s|Q||Σ|). We proposean algorithm for semiring-weighted automatawhich runs in O(|E| + s|Σ||Q||Tmax| log |Σ|),where |Tmax| is the size of the largest con-nected component of failure transitions. Ad-ditionally, we propose faster algorithms fortwo specific cases. For ring-weighted WF-SAs we propose an algorithm with complex-ity O(|E| + s|Σ||Q||πmax|), where |πmax| de-notes the longest path length of failure transi-tions stemming from q and Σ(q) the set of sym-bols on the outgoing transitions from q. Forsemiring-weighted WFSAs whose failure tran-sition topology satisfies a condition exemplifiedby CRFs, we propose an algorithm with com-plexity O(|E| + s|Σ||Q| log |Σ|).
%R 10.18653/v1/2022.emnlp-main.567
%U https://aclanthology.org/2022.emnlp-main.567
%U https://doi.org/10.18653/v1/2022.emnlp-main.567
%P 8289-8305
Markdown (Informal)
[Algorithms for Acyclic Weighted Finite-State Automata with Failure Arcs](https://aclanthology.org/2022.emnlp-main.567) (Svete et al., EMNLP 2022)
ACL