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Abstract

Adversarial training is one of the most powerful
methods to improve the robustness of pre-
trained language models (PLMs). However,
this approach is typically more expensive
than traditional fine-tuning because of the
necessity to generate adversarial examples via
gradient descent. Delving into the optimization
process of adversarial training, we find that
robust connectivity patterns emerge in the early
training phase (typically 0.15 ∼ 0.3 epochs),
far before parameters converge. Inspired by
this finding, we dig out robust early-bird tickets
(i.e., subnetworks) to develop an efficient
adversarial training method: (1) searching for
robust tickets with structured sparsity in the
early stage; (2) fine-tuning robust tickets in
the remaining time. To extract the robust
tickets as early as possible, we design a ticket
convergence metric to automatically terminate
the searching process. Experiments show
that the proposed efficient adversarial training
method can achieve up to 7× ∼ 13× training
speedups while maintaining comparable or
even better robustness compared to the most
competitive state-of-the-art adversarial training
methods.

1 Introduction

Pre-trained language models (PLMs) have achieved
great success in NLP (Devlin et al., 2019a),
but they are vulnerable to adversarial examples
crafted by performing subtle perturbations on
normal examples (Ren et al., 2019; Garg and
Ramakrishnan, 2020). Recent studies have shown
the prevalence of adversarial vulnerability in NLP
tasks (Wallace et al., 2019; Zhang et al., 2021; Lin
et al., 2021). Various defense strategies have been
proposed to improve the robustness of the model
and maintain high accuracy on both normal and
adversarial examples (Zhu et al., 2020; Wang et al.,
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Figure 1: A high-level overview of adversarial training
methods and the proposed EarlyRobust. MHA means
multi-head attention and FFN means feed-forward
network. Structured pruning removes attention heads
and intermediate neurons of each transformer layer in
BERT. Our method achieves up to 7× ∼ 13× training
speedups compared to adversarial training methods.

2021). Adversarial training is one of the most
widely used and strongest defense methods (Madry
et al., 2018).

One of the main challenges of adversarial
training in real-world applications is its high com-
putational cost, as they require multi-step gradient
descents to generate adversarial examples (Wong
et al., 2020; Andriushchenko and Flammarion,
2020). Some work on this topic found that
replacing strong adversarial examples with weaker
and cheaper ones does not significantly change the
resulting robustness (Wong et al., 2020). Zhang
et al. (2019) remove redundant calculations during
backpropagation for additional speedup. FreeAT
(Shafahi et al., 2019) and FreeLB (Zhu et al.,
2020) utilize a “free” strategy to generate diverse
adversarial examples at a negligible additional cost.

8318



However, these methods are only alleviating the
huge expense of generating adversarial samples,
and still require optimizing the adversarial loss
objective throughout the training period.

The recently proposed robust lottery ticket
hypothesis (Fu et al., 2021; Zheng et al., 2022b)
suggests that a deep network contains robust tickets
(i.e., subnetworks) that maintain matching accuracy
but better robustness than the original network
when trained individually. However, robust tickets
have to be searched through a tedious process
under the guidance of the adversarial loss objective
(Zheng et al., 2022b). Moreover, these robust
tickets consider unstructured sparsity, which only
reduces storage but does not reduce computational
overhead (Prasanna et al., 2020).

In this work, we propose a novel robust early-
bird ticket with structured sparsity for efficient
adversarial training. We delve into the optimization
process of adversarial training, and find that the
robust connectivity patterns converge with few
training iterations. As shown in Figure 1, we
can extract robust tickets at the early stage of
adversarial training by pruning the self-attention
heads and intermediate neurons that contribute
least to accuracy and robustness. A highly
robust model can be easily obtained by fine-
tuning the proposed robust tickets in the remaining
time. In addition, we use a generic ticket
convergence metric to automatically terminate
the search process without going through each
search moment. Experimental results show that
the proposed method achieves up to 7× ∼ 13×
training speedups while maintaining comparable
or even better adversarial robustness compared
with traditional adversarial training. Our codes are
publicly available at Github1. The contributions of
this work can be summarized as:

• We analyze the optimization process of ad-
versarial training and reveal that the robust
connectivity patterns emerge in the early
training phase.

• We propose a novel robust early-bird ticket for
efficient adversarial training, which consists
of two stages: (1) searching for robust tickets
using adversarial training in the early stage;
and (2) fine-tuning the robust tickets during
the remaining time.

• Compared with previous efficient adversarial
1https://github.com/WooooDyy/EarlyRobust

training methods, the proposed approach
provides a new pathway based on model
pruning and robust architecture searching.

2 Related Work

2.1 Textual Adversarial Attack and Defense

Textual adversarial attacks try to fool NLP models
with adversarial examples which are constructed
by substituting some parts of sentences with their
counterparts. Typically, the adversarial examples
hold a high similarity with clean ones in semantics
or embedding space (Li et al., 2019; Ren et al.,
2019; Jin et al., 2020; Li et al., 2020). To
improve the robustness of NLP models against
textual adversarial attacks, many defense methods
have been proposed (Li et al., 2021; Zheng et al.,
2022a; Liu et al., 2022). As the most popular one,
adversarial training (AT) solves a robust min-max
optimization problem by adding norm-bounded
perturbations to word embeddings (Madry et al.,
2018; Zhu et al., 2020; Li and Qiu, 2021). Likewise,
some regularization methods have been proved
beneficial to model robustness (Jiang et al., 2020;
Wang et al., 2021).

2.2 Efficient Adversarial Training Methods

Adversarial training, represented by PGD (Pro-
jected Gradient Descent, Madry et al. (2018)),
costs much more computational resources than
traditional training due to the need to construct
adversarial examples. Therefore, some recent
works attempt to improve its efficiency. FreeAT
(Shafahi et al., 2019) and YOPO (Zhang et al.,
2019) simplify the calculation of gradients to
get speedups. Zhu et al. (2020) introduce the
above accelerating methods to NLP and propose
FreeLB, which adds adversarial perturbations to
word embeddings. Our method shapes structured
robust tickets in the early adversarial training stage,
so it is orthogonal to the above methods.

2.3 Lottery Ticket Hypothesis

Lottery Ticket Hypothesis (LTH) suggests that
there exist certain sparse subnetworks (i.e., winning
tickets) at initialization that can be trained to
achieve competitive performance compared to
the full model (Frankle and Carbin, 2019). In
NLP, previous work has found that matching
subnetworks exist in Transformers, LSTMs, and
PLMs (Yu et al., 2020; Renda et al., 2020; Chen
et al., 2020). Prasanna et al. (2020) find structured
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tickets for BERT, which are efficient in training
and inference, by pruning attention heads and MLP
layers. Recently, You et al. (2020) and Chen et al.
(2021) pioneer to identify Early-Bird tickets at
the early stage of training. Fu et al. (2021) and
Zheng et al. (2022b) find unstructured robust tickets
in neural networks and thus the robust LTH is
proposed. However, the search process for winning
robust tickets is tedious. A concurrent work in
CV jointly identifies and trains unstructured Flying
Bird tickets with PGD-AT(Chen et al., 2022), while
we explore the convergence of robust connectivity
patterns in NLP. Particularly, we identify robust
early-bird tickets with structured sparsity and apply
them to fine-tuning.

3 Methodology

In this section, we first revisit the robust lottery
ticket hypothesis (Sec.3.1). Next, we describe
the early emergence of structured robust tickets
(Sec.3.2). Based on this key finding, we propose
the EarlyRobust method for efficient adversarial
training (Sec.3.3). Finally, we make a brief review
and discuss how our method accelerates adversarial
training (Sec.3.4).

3.1 Revisiting Robust Lottery Ticket
Hypothesis

For a network f(θ0) initialized with parameters
θ0, we can identify a binary mask m which has
the same dimension as θ0, such that a subnetwork
f(m ⊙ θ0)

2 can be shaped. Robust lottery ticket
hypothesis articulates that, there exists certain
subnetwork that can be trained to have matching
performance and better robustness compared to
the full model following the same training protocol
(Zheng et al., 2022b). Such a subnetwork f(m⊙θ0)
is a so-called robust winning ticket, including both
the mask m and the initialization θ0.

3.2 Early Emergence of Robust Tickets with
Structured Sparsity

In previous work, robust tickets with unstructured
sparsity in PLMs are extracted after a tedious
training process. However, when applying a
structured pruning strategy, we observe that robust
tickets with structured sparsity emerge in the
early training stage. The structured pruning
strategy aims at pruning self-attention heads and
intermediate neurons of each transformer layer in

2⊙ is the Hadamard product operator.

BERT. Through visualizing the normalized mask
distance between different training steps (You et al.,
2020) in Figure 2, we learn that the structure of
a robust ticket can be identified at a very early
adversarial training stage. Inspired by this finding,
we propose an efficient adversarial training method
that draws robust early-bird tickets at the early
adversarial training stage and then fine-tunes these
tickets to achieve better robustness.

3.3 Robust Early-bird Tickets
Our method consists of two steps: 1) Searching
Stage; 2) Drawing and Fine-tuning Stage.

3.3.1 Searching Stage
BERT is constructed by a stack of transformer
encoder layers (Vaswani et al., 2017), and the
structure of each layer is identical: a multi-head
self-attention (MHA) block followed by a feed-
forward network (FFN), with residual connections
around each. In each layer, the MHA with Nh

heads takes an input x and outputs:

MHA(x) =

Nh∑

i=1

AttW i
K ,W i

Q,W i
V ,W i

O
(x), (1)

where W i
K , W i

Q, W i
V ∈ Rdh×d, W i

O ∈ Rd×dh ,
and they denote the query, key, value and output
matrices in the l-th attention head. Here d denotes
the hidden size (e.g., 768) and dh = d/Nh denotes
the output dimension of each head (e.g., 64).

Next comes an FFN parameterized by WU ∈
Rd×df and WD ∈ Rdf×d:

FFN(x) = gelu(XWU ) ·WD, (2)

where df = 4d.
Learnable Importance Coefficients Recent re-
search reveals that MHAs and FFNs in transform-
ers are redundant (Michel et al., 2019; Voita et al.,
2019). Therefore, we adopt the modified network
slimming (Liu et al., 2017; Chen et al., 2021),
which assigns learnable importance coefficients
to self-attention heads and intermediate neurons,
to determine which components are essential for
robustness:

MHA(x) =

Nh∑

i=1

ciH ·AttW i
K ,W i

Q,W i
V ,W i

O
(x), (3)

FFN(x) = cF · gelu(XWU ) ·WD, (4)

where cH denotes the coefficients for heads, i is the
index of head, and cF denotes the coefficients for
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(a) IMDB MHA (b) SST-2 MHA (c) AG NEWS MHA

(d) IMDB FFN (e) SST-2 FFN (f) AG NEWS FFN

Figure 2: Visualization of mask difference in Hamming distance between different training steps. Top: mask
distance in self-attention heads. Bottom: mask distance in intermediate neurons. The axes represent the numbers of
training steps finished and the color stands for the normalized distance between different masks. The darker the
color, the smaller the distance. The masks for attention heads and intermediate neurons both converge early.

the FFN. Then, we can jointly train BERT with the
importance coefficients but with a regularizer:

R(c) = λH∥cH∥1 + λF∥cF∥1, (5)

where c = {cH, cF}, λH and λF denote regular-
ization strength for the two kinds of coefficients
respectively.
Adversarial Loss Objective To identify substruc-
tures that are responsible for adversarial robustness,
we introduce the adversarial loss objective:

min
θ,c

E(x,y)∼D max
∥δ∥≤ϵ

L (f(x+ δ; θ, c), y)

︸ ︷︷ ︸
Ladv(θ,c)

,
(6)

where (x, y) is a data point from dataset D, δ is the
perturbation that is constrained within the ϵ ball.
The inner max problem tries to generate worst-
case perturbation towards inputs and maximize the
model’s classification loss, while the outer min
problem is to optimize the model on the perturbed
data.3

Then, by integrating the adversarial training
objective and the sparsity regularizerR(c), we can
describe our loss objective as follow:

min
θ,c
Ladv(θ, c) +R(c). (7)

3See more details about how to solve the inner max
problem in Appendix A.1.

After the joint training, we draw robust tickets,
reset the parameters and then train the tickets with
traditional fine-tuning.

3.3.2 Drawing and Fine-tuning Stage
Early-stopping Strategy As mentioned before,
robust tickets with structured sparsity can be
identified in the early adversarial training stage.
However, it is difficult to determine the exact search
termination time. The difficulty lies mainly in
the following two aspects: (1) the termination
time varies among datasets; (2) the termination
moments of MHA and FFN in the same model
are different. Therefore, we design a termination
metric that measures the normalized mask distance
between consecutive miniepochs (each miniepoch
consists of 0.05 epochs). When the termination
metric is smaller than the threshold γ both for
MHA and FFN, we extract robust early-bird tickets.
Similar termination metrics are widely used for
the extraction of subnetworks (You et al., 2020).
To ensure the consistency of convergence, we end
the subnetwork search stage when the termination
metric is satisfied five times in a row.
Pruning Strategy At the end of the search process,
we prune the unimportant parts according to the
magnitudes of the learned importance coefficients.
The attention heads and intermediate neurons with
the smallest importance coefficients are considered
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Algorithm 1: EarlyRobust Method
Input: model parameters θ, learnable

importance coefficients c, learning
rate η and the fine-tuning epoch N .

1 Procedure ROBUST TICKETS SEARCHING

Initialize θ, c;
2 repeat
3 θ = θ − η∇θ(Ladv(θ, c) +R(c));
4 c = c− η∇c(Ladv(θ, c) +R(c));
5 until the convergence condition in Sec.3.3.2

is satisfied;
6 Procedure DRAWING AND FINE-TUNING

Extract robust winning tickets
parameterized by θticket;

7 for epoch← 1...N do
8 θticket ← θ − η∇θticketLCE ;
9 end

to contribute the least to robustness and should be
removed. For attention heads, we not only remove
them from the computation graph, but also remove
the corresponding WO (see Eqn. (3)). We adopt
a modified global approach to prune the heads
and ensure that at least one head survives in each
layer.4 As for intermediate neurons, pruning them
is equivalent to reducing the size of WU and WD in
Eqn. (4). We prune intermediate neurons globally
as there is a large number of neurons in each FFN
layer and empirical analysis suggests that global
approach brings better performance.
Efficient Robust Fine-tuning After pruning atten-
tion heads and intermediate neurons, we then reset
the weights to the pre-trained weights and utilize
traditional fine-tuning to train the robust tickets.

3.4 A Brief Review

The proposed method searches for the key connec-
tivity patterns for robustness , draws the winning
tickets and trains them with traditional fine-tuning.
We summarize it in Algorithm 1.
How does EarlyRobust accelerate adversarial
training? Firstly, the method draws robust tickets
with structured sparsity, which reduces the size
of models and speeds up training and inference.
Secondly, the early-stopping strategy prevents the

4The attention heads in some layers may be completely
removed if we use a global pruning approach, leaving the
network un-trainable. While our experiments (see Sec.5.6)
show that global pruning is more effective than layer-wise
pruning. The modified global approach is a trade-off between
trainability and effectiveness.

tedious searching process for robust tickets. Finally,
the method trains the robust early-bird tickets
with traditional fine-tuning instead of adversarial
training methods, getting rid of the time-consuming
process to construct adversarial examples.

4 Experimental Settings

4.1 Backbone Model and Datasets

We take BERTBASE (12 transformer layers, 12
attention heads, 3,072 intermediate neurons per
layer, hidden size 768 and 110M parameters in
total) as the backbone model. We follow the BERT
implementation in (Devlin et al., 2019b; Wolf et al.,
2019). Mainly, we evaluate the proposed method
on three text classification datasets, including
IMDB (Maas et al., 2011), SST-2 (Socher et al.,
2013), and AG NEWs (Zhang et al., 2015). We
also include other datasets of more tasks in GLUE
(Wang et al., 2019) as a supplement, such as QNLI
and QQP.

4.2 Baselines

We compare our method with fine-tuned BERT,
EarlyBERT, and several strong robust baselines.
Fine-tune (Devlin et al., 2019b): Training full
BERT on downstream tasks. EarlyBERT (Chen
et al., 2021): A framework that draws early-bird
tickets from BERT for efficient fine-tuning. PGD
(Madry et al., 2018): An adversarial training
algorithm that minimizes the empirical loss on
worst-case adversarial examples. FreeLB (Zhu
et al., 2020): An enhanced PGD-based adversarial
training method for natural language understanding.
InfoBERT (Wang et al., 2021): A framework that
improves model’s robustness from an information-
theoretic perspective. RobusT (Zheng et al.,
2022b): An approach that identifies robust tickets
from the original PLMs through learning binary
masks.

4.3 Evaluation Settings

Robust Evaluation We apply three popular textual
attack methods (Li et al., 2021) to evaluate
the model’s defensive capability. TextBugger
(Li et al., 2019) generates misspelled words by
using character-level and word-level perturbations.
TextFooler (Jin et al., 2020) constructs adversarial
examples by substituting the most important words
in a sentence with synonyms. BERT-Attack (Li
et al., 2020) employs BERT to generate adversarial
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Dataset Method Speedup Params Clean% TextFooler TextBugger BERT-Attack
Aua% #Query Aua% #Query Aua% #Query

IMDB

Fine-tune† 9.4× 85M 92.05 11.8 922.4 23.2 695.2 7.8 1187.0
EarlyBERT† 15.6× 58M 91.9 3.4 874.9 12.6 649.7 0.8 1099.9
PGD‡ 1.0× 85M 93.2 30.2 1562.8 41.6 905.8 21.8 2114.6
FreeLB‡ 1.2× 85M 93.2 35.0 1736.9 53.0 1110.9 29.0 2588.8
InfoBERT‡ 0.3× 85M 93.3 49.6 1932.3 53.8 1070.4 47.2 3088.8
RobusT‡ 0.4× 68M 91.8 58.6 1994.7 63.6 1153.3 58.0 3120.2
EarlyRobust 12.6× 58M 91.8 63.8 2012.8 63.8 1107.1 63.0 3125.6

SST-2

Fine-tune† 10.1× 85M 92.2 17.9 123.4 40.6 53.4 13.3 158.3
EarlyBERT† 18.6× 63M 92.3 13.4 111.5 37.7 52.9 9.9 138.9
PGD‡ 1.0× 85M 93.2 18.1 118.5 44.2 56.0 13.4 151.3
FreeLB‡ 1.4× 85M 91.7 29.4 152.6 49.7 58.6 23.8 174.7
InfoBERT‡ 0.6× 85M 92.4 18.3 126.8 42.4 54.6 15.0 160.4
RobusT‡ 0.4× 60M 90.9 28.6 149.8 43.1 53.9 20.8 169.2
EarlyRobust 13.7× 63M 92.8 28.8 142.8 46.3 61.9 22.7 187.1

AG NEWS

Fine-tune† 6.8× 85M 94.6 28.6 383.3 45.2 192.5 17.6 556.0
EarlyBERT† 7.2× 69M 94.5 32.8 392.3 46.6 195.4 21.2 571.1
PGD‡ 1.0× 85M 95.0 36.8 414.9 56.4 201.8 21.6 616.1
FreeLB‡ 1.3× 85M 95.0 34.8 408.5 54.2 210.3 20.4 596.2
InfoBERT‡ 0.4× 85M 94.5 33.8 395.6 49.6 194.1 23.4 618.9
RobusT‡ 0.4× 60M 94.9 35.2 415.6 49.0 206.9 21.8 617.5
EarlyRobust 7.0× 69M 94.4 41.0 416.2 50.0 216.4 32.2 620.1

Table 1: Experimental results of adversarial robustness evaluation. The best performance is marked in bold and
underline; the second is marked in bold. Speedup means training speedup, which is reported against adversarial
training method PGD. Params is the number of model parameters.5Methods labeled by † are fine-tuning baselines
without considering adversarial robustness, and methods labeled by ‡ are adversarial defense baselines. Our method
achieves high adversarial robustness while maintaining a low computational and storage consumption.

texts, and thus the semantic consistency and the
language fluency are preserved.

We adopt three evaluating metrics as follows:
Clean accuracy (Clean%) is the model’s accuracy
on the clean test set. Accuracy under attack
(Aua%) denotes the model’s prediction accuracy
under certain adversarial attack methods. Number
of Queries (#Query) refers to the average attempts
an attacker queries the model, and the larger the
number of queries is, the more difficult the model
is to be fooled.
Training Time Measurement Protocol We mea-
sure the training time of each method on GPU and
exclude the time for data I/O. To get rid of random-
ness, we run each method five times and report the
average time. Notably, the training time of LTH-
based methods (e.g., EarlyRobust, EarlyBERT, and
RobusT) includes both the searching stage and the
fine-tuning stage.

4.4 Implementation Details
We re-implement baseline methods based on their
open-source codes and the results are competitive.
We employ FreeLB to implement the adversarial

5We exclude embedding matrices when calculating the
number of parameters following previous work.

loss objective in the searching stage of EarlyRobust
because compared to standard K-step PGD, it
accumulates gradients of parameters in multiple
forward passes and passes gradients backward once.
Clean% is tested on the whole test set. Aua% and
#Query are evaluated on the whole test dataset for
SST-2, and 500 randomly chosen samples for other
datasets. We set the early-stopping threshold γ to
0.1 and fine-tune EarlyRobust tickets 10 epochs.
For fine-tuning, EarlyBERT, and other adversarial
training methods, we also set the training epoch
to 10, which is a trade-off between training cost
and performance. The sparsity for EarlyBERT
is the same as that of EarlyRobust. We prune
40%, 30%, 20%, 30% and 30% intermediate
neurons on IMDB, SST-2, AG NEWS, QNLI and
QQP, respectively; the pruning ratio for attention
heads is 1/6. More implementation details and
hyperparameters can be found in Appendix A.2.

5 Experimental Results and Discussion

In this section, we illustrate the effectiveness and
efficiency of our method with experimental results.

8323



Dataset Method Speedup Params Clean% Aua%

QNLI

Fine-tune† 9.6× 85M 91.6 5.8

PGD‡ 1.0× 85M 91.2 12.2

FreeLB‡ 1.3× 85M 90.5 12.8

EarlyRobust 12.2× 63M 91.4 18.8

QQP

Fine-tune† 9.8× 85M 91.3 24.8

PGD‡ 1.0× 85M 91.2 27.0

FreeLB‡ 1.3× 85M 91.2 27.4

EarlyRobust 13.6× 63M 90.9 32.6

Table 2: Experimental results on QNLI and QQP. Aua%
is obtained after using TextFooler attack. Our method
brings robustness improvement and training speedups
on different tasks.

5.1 Main Results

The main results of EarlyRobust and other base-
lines are summarized in Table 1. We can observe
that: 1) Our method achieves high robustness with
a little sacrifice in accuracy. It performs slightly
worse than FreeLB on SST-2, but achieves the
best robustness on both IMDB and AG NEWS,
suggesting that the subnetworks shaped by our
method own inborn robustness which can be
exerted through traditional fine-tuning. 2) Our
method achieves sizable training accelerations
compared to robust baselines. This proves our
method can deliver highly robust models under
different kinds of adversarial attacks with limited
computational resources. Though EarlyBERT
and fine-tuning are also fast, they do not take
robustness into account and thus have weak
defensive capabilities. 3) Our method also brings
storage savings, and thus robust early-bird tickets
are suitable to be deployed on mobile devices and
edge devices.

We evaluate our method on paraphrase and
inference tasks to verify its generality. Results in
Table 2 show that our method consistently performs
well on more difficult tasks.

5.2 Ablation Study

To investigate the contribution of different com-
ponents to our method, we perform ablation
experiments by removing adversarial loss objective
(Adv) and sparsity-inducing regularizer. We also
evaluate the performance of randomly pruned
tickets. Results in Table 3 show that: 1) Adversarial
loss objective is important for robustness, but not
for clean accuracy. 2) There exists degradation
in both accuracy and robustness if we remove
the regularizer, indicating that the sparsity it

Dataset Method Clean% Aua%

IMDB

EarlyRobust 91.8 63.8

w/o Adv 92.0 6.4

w/o Regularizer 87.5 31.2

Random Tickets 91.1 6.2

SST-2

EarlyRobust 92.8 28.8

w/o Adv 92.2 13.9

w/o Regularizer 91.3 8.5

Random Tickets 90.9 9.1

AG NEWS

EarlyRobust 94.4 41.0

w/o Adv 94.6 31.0

w/o Regularizer 92.5 31.2

Random Tickets 94.0 19.4

Table 3: Ablation study. Aua% is obtained after using
TextFooler attack. Results of randomly pruned tickets
are the average of 5 trials with different random seeds.
Both Adversarial loss objective and sparsity-inducing
regularizer play a fundamental role for high-quality
tickets. Random tickets suffer a large degradation in
robustness, indicating that robust tickets are non-trivial.

0.05 0.08 0.1 0.15 0.2 0.3 0.4 0.5
Early-stopping Threshold

10

20

30

40

50

60

Au
a%

IMDB
SST-2
AG NEWS

Figure 3: Influence of different early-stopping
thresholds (i.e., γ) on model robustness. Aua% is
obtained after using TextFooler attack and the results are
obtained from 5 trials of different random seeds. Model
robustness converges when γ decreases to around 0.1.

induces is indispensable for high-quality tickets.
3) Randomly pruned tickets have a competitive
accuracy performance, which is also observed by
(Prasanna et al., 2020). However, random tickets
consistently suffer a large drop in robustness, which
proves that robust tickets are non-trivial.

5.3 Different Early-stopping Thresholds

Here we study how different early-stopping thresh-
olds affect the model’s robustness. Results
in Figure 3 show that the model’s robustness
converges when γ is reduced to around 0.1.
Considering training efficiency, we think 0.1 is a
reasonable threshold.
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Dataset Method Clean% Aua%

IMDB

EarlyRobust 91.8 63.8

w/o Initialization 82.4 0.0

w/o Structure 89.2 4.0

SST-2

EarlyRobust 92.8 28.8

w/o Initialization 81.5 0.8

w/o Structure 88.4 20.0

AG NEWS

EarlyRobust 94.4 41.0

w/o Initialization 92.2 0.6

w/o Structure 94.4 36.6

Table 4: Importance of EarlyRobust ticket initialization
and structure. Aua% is obtained under TextFooler
attack. The pre-trained initialization and the structure
are both indispensable for EarlyRobust tickets. The
pre-trained initialization seems more important than the
structure.

5.4 Importance of EarlyRobust Tickets
Initialization and Structure

According to LTH, the winning tickets can not be
trained effectively without original initialization
and the ticket structure also plays a role (Frankle
and Carbin, 2019). Therefore, we follow a
similar way in (Zheng et al., 2022b) to study the
importance of the initialization and the structure of
EarlyRobust tickets. Specifically, we re-initialize
the weights of EarlyRobust tickets to exclude the
effect of the initialization. We employ the full
BERT and re-initialize the weights which are not
contained in the robust tickets to exclude the effect
of the structure while preserving the effect of the
initialization. Table 4 demonstrates that the pre-
trained initialization and the structure are both
fundamental for model performance. Another
observation is that without the initialization, robust
tickets suffer a greater performance drop than
without the structure.

5.5 Impact of Sparsity

In our method, structured sparsity can not only
bring speedups but also save the storage. Figure 4
illustrates that as the sparsity (both for heads and
neurons) increases, the accuracy shows a gradually
decreasing trend, but the robustness is different.
The robustness first increases and then degrades
sharply as sparsity grows, which is similar to the
observations in (Fu et al., 2021). To extract high-
quality tickets, 1/6 ∼ 1/4 and 20% ∼ 40% are
suitable pruning ratio ranges for heads and neurons,
respectively. We also visualize the sparsity patterns
in Appendix A.3.
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Figure 4: Impact of Sparsity on Clean% and Aua%.
Aua% is obtained under TextFooler attack.

Clean% Heads-L Heads-G
Aua%

Neurons-L 91.5 91.6

1.2 35.4

Neurons-G 91.4 91.7

56.0 63.8

Table 5: Influence of global and layer-wise pruning
on model performance on IMDB. -L means layer-
wise while -G means global. Aua% is obtained under
TextFooler attack. Global pruning outperforms layer-
wise pruning in terms of robustness.

5.6 Global Pruning vs. Layer-wise Pruning

As mentioned in Sec.3.3.2, we prune self-attention
heads and intermediate neurons separately with
global approach. Here we study how global
pruning and layer-wise pruning influence model
performance. Table 5 demonstrates the results
on IMDB.6 We can observe that: 1) Layer-
wise pruning performs as well as global pruning
in accuracy, but it induces a degradation in
robustness, revealing that different layers have
different degrees of contribution to robustness.
So different layers should not be pruned with
the same ratio. 2) The model’s robustness
drops more dramatically when we use layer-wise
pruning for neurons than for heads, suggesting that
intermediate neurons are more sensitive to pruning
approaches.

6See Appendix A.4 for more results.
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6 Conclusion

In this paper, we delve into the optimization
process of adversarial training on BERT, and
observe the early convergence of robust con-
nectivity patterns. Based on this, we propose
EarlyRobust, a method that shapes structured
robust early-bird tickets under the guidance of the
adversarial loss objective and then utilizes efficient
fine-tuning to train them. Experiments on various
datasets demonstrate that our method achieves
competitive or even better robustness compared
to other strong baselines while maintaining a very
low computational and storage consumption.

Limitation

In this work, we propose a method to draw
structured robust early-bird tickets, which can
be used as an efficient alternative to adversarial
training. However, there are still limitations to
be explored in future work: 1) Model robustness
drops sharply when the pruning ratio is too large,
so our robust tickets do not have high sparsity. We
expect to compress the robust early-bird tickets
to a smaller size while maintaining a high quality
in the future. 2) We draw the robust early-bird
tickets from pre-trained models, and future work
includes searching for robust early-bird tickets
from randomly initialized networks.

Ethics Statement

Our method is proposed for efficient adversarial
training, so it is environmental-friendly. It
achieves up to 7× ∼ 13× speedups compared to
standard adversarial training, saving computational
resources by a significant margin. Moreover, the
proposed robust early-bird tickets with structured
sparsity bring savings in storage, so it is easy to
deploy them on mobile devices and edge devices.
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A Appendix

A.1 Solving the Inner Max Problem of
Adversarial Loss Objective

We solve the inner max problem(generate the worst-
case perturbation, i.e., Ladv(θ, c)) with K-step
projected gradient descent strategy (Madry et al.,
2018), and the (k + 1)-th perturbation is defined as
:

δk+1 =
∏

∥δ∥≤ϵ

(
δk + η

g(δk)

∥g(δk)∥

)
, (8)

where g(δk) = ∇δkL(f(x + δk; θ, c), y) is the
gradient of the loss with respect to δ, and

∏
∥δ∥≤ϵ(·)

performs a projection onto the ϵ-ball, which is a
Frobenius normalization ball.

A.2 Implementation Details

A.2.1 Details for Adversarial Attack

We adopt textattack (Morris et al., 2020) to
implement adversarial attack methods. Aua% and
#Query are evaluated on all 872 test examples
for SST-2, 500 randomly selected test samples for
IMDB, AG NEWS, QNLI and QQP. For BERT-
Attack, we set the neighbor vocabulary size to 50,
and set the sentence similarity to 0.2; for the other
two attack methods, we use the default parameters
of third-party libraries.

A.2.2 Hardware Details

Experiments on SST-2, QNLI and QQP are run
on seven 1080Ti GPUs and the sequence length
is set to 128, while experiments on AG NEWS
and IMDB are run on eight 2080Ti GPUs and the
sequence length is set to 256.

A.2.3 Hyperparameters

There are four hyperparameters introduced by the
adversarial loss objective: the initial magnitude of
perturbations ϵ0, the number of gradient descent
steps for adversary s, the perturbation step size τ ,
and we do not constrain the bound of perturbations.
We report the learning rate η and the learning rate
is the same at both the searching and fine-tuning
stages. Moreover, we report the regularization
penalties λH and λF. We list the hyperparameters
used for each task in Table 6.

Datasets ϵ0 s τ η λH λF

IMDB 0.05 5 0.01 2e− 5 1e− 5 2e− 4
SST2 0.05 5 0.02 2e− 5 1e− 4 3e− 4

AGNEWS 0.05 5 0.01 2e− 5 3e− 4 5e− 5
QNLI 0.05 5 0.01 2e− 5 2e− 4 3e− 4
QQP 0.05 5 0.01 2e− 5 1e− 5 1e− 5

Table 6: Hyperparameters in the proposed method.

A.3 Sparsity Pattern
Figure 5 illustrates the sparsity pattern of robust
tickets on three datasets. We can observe that
for different datasets, the sparsity pattern varies
greatly. So we speculate that it is dataset-
dependent. Another interesting finding is that on a
given dataset, the pruning for attention heads and
intermediate neurons is concentrated in different
layers, i.e., if attention heads are pruned centrally in
some layers, the pruning on intermediate neurons
is concentrated in other layers. For example, on
SST-2, our method prunes heads mainly in bottom
layers, while pruning intermediate neurons mainly
in top layers.

A.4 More Results of Global Pruning vs.
Layer-wise Pruning

Table 7 and Table 8 show the results on SST-2 and
AG NEWS, respectively. We can consistently find
that global pruning performs better than layer-wise
pruning in terms of robustness.

Clean%
Heads-L Heads-G

Aua%

Neurons-L
90.1 91.5

11.7 12.0

Neurons-G
91.6 92.8

24.3 28.8

Table 7: Global Pruning vs. Layer-wise Pruning on
SST-2.

Clean%
Heads-L Heads-G

Aua%

Neurons-L
94.5 94.6

36.8 38.4

Neurons-G
94.4 94.5

39.6 41.0

Table 8: Global Pruning vs. Layer-wise Pruning on AG
NEWS.
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Figure 5: Sparsity pattern of EarlyRobust tickets. For each figure, cells in the left give the average number of
random seeds where a given head survives; cells in the right give the average percentage of surviving weights across
10 random seeds. We can observe that the sparsity pattern is dataset-dependent and interestingly, on a given dataset,
the pruning for heads and intermediate neurons is concentrated in different layers.
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