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Abstract

Knowledge about outcomes is critical for com-
plex event understanding but is hard to ac-
quire. We show that by pre-identifying a par-
ticipant in a complex event, crowdworkers are
able to (1) infer the collective impact of salient
events that make up the situation, (2) anno-
tate the volitional engagement of participants
in causing the situation, and (3) ground the
outcome of the situation in state changes of
the participants. By creating a multi-step in-
terface and a careful quality control strategy,
we collect a high quality annotated dataset
of 8K short newswire narratives and ROCSto-
ries with high inter-annotator agreement (0.74-
0.96 weighted Fleiss Kappa). Our dataset,
POQue (Participant Outcome Questions), en-
ables the exploration and development of mod-
els that address multiple aspects of semantic
understanding. Experimentally, we show that
current language models lag behind human
performance in subtle ways through our task
formulations that target abstract and specific
comprehension of a complex event, its out-
come, and a participant’s influence over the
event culmination.

1 Introduction

Situations that people experience or describe can
be complex, and developing a computational under-
standing of these situations is not straightforward.
Consider the short narrative from Fig. 1:

After a decade as renters, [the Brofmans] were
finally able to buy a small house here four years
ago. But if the Argentine government yields to
[IMF] pressure to rescind emergency legislation
meant to protect ordinary families like the Brof-
mans, the couple stand to lose their home and the
$32,000 they have paid for it so far.

Across multiple, interwoven events with multiple
participants, this narrative describes part of the pro-
cess of losing one’s house. A possible ending (the
loss of a home) is suggested, which is the result
of a confluence of these events. This ending can

be semantically grounded in various changes of
state that the participants experience, though note
how the use of counterfactual considerations, condi-
tional statements (“if the Argentine government...”),
and varying levels of certainty over whether events
have actually happened (e.g., realis vs. irrealis)
contribute to the difficulty in understanding this
complex event (Herman, 2002; Ryan, 1991).

Knowledge about how event outcomes affect
individual participants can help identify salient
events in a narrative, fill in implicit missing infor-
mation (LoBue and Yates, 2011) and chain events
that lead to improved understanding of complex
events (Graesser et al., 1994). To infuse AI mod-
els with similar knowledge, narrative comprehen-
sion research has focused on learning event rela-
tionships (Mostafazadeh et al., 2016; Chambers
and Jurafsky, 2008; O’Gorman et al., 2016; Caselli
and Vossen, 2016), using temporal (Pustejovsky
et al., 2003), causal (Mirza et al., 2014) and dis-
course (Prasad et al., 2008) relationships in text.
However, as Dunietz et al. (2020) and Piper et al.
(2021) argue, for a more useful, generalizable, and
robust comprehension, we need to take a holistic
view of complex events. In this paper, we tackle an
understudied notion of this holistic view and exam-
ine knowledge of post-conditions based in states to
support inferences of the form “who did what to
whom and with what end result.”

A core insight we make is that viewing com-
plex events through the lens of a single partici-
pant at a time, either from an agent (how the par-
ticipant affects others) or a patient (how the par-
ticipant is affected) view, can help mitigate the
complexities we have discussed. In this we build
on cross-disciplinary research that shows that hu-
mans mentally structure events along single par-
ticipants (Black and Bower, 1980; Morrow et al.,
1989), and that participant-based event and out-
come analysis improves complex event understand-
ing (Dijk and Kintsch, 1983; Liveley, 2019). We
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Figure 1: Our approach to understanding state change outcome of complex events. Our four step annotation
process involves describing abstractly what a story is about; writing an endpoint for the story; identifying and
describing the changes that are a result of the endpoint, and identifying the salient sub-events that lead or support
to those changes. To mitigate this complexity, we focus annotator’s attention on one particular participant, and
how that participant either causes or experiences the identified changes. This process has resulted in 4k annotated
documents.

also note that a complex event is not exhaustively
described by what is stated in the text: it is well
known that speakers often omit narrative steps that
can be inferred (Grice, 1975), including outcomes
and effects of a narrative that are often left implicit.

We present POQue, a dataset with post-
conditional knowledge about complex events. We
identify cumulative outcome-oriented endpoints of
the stories caused by related events and the conse-
quences or post-conditions of those events as state-
based changes in participants. Seen in Fig. 1, in a
storyline involving a participant ("the Brofmans"),
we identify an ending outcome for the complex
event (the Endpoint, "the brofmans might lose their
home and payments"), with salient events that lead
to this (Factors Leading to the Endpoint). We relate
a participant’s involvement in the complex event
(as a "patient" who "Very Likely" experienced the
ending outcome) and the changes of state occurring
as a result of the complex event (the changes in pos-
session and location experienced by the Brofmans
and other families, and the change in possession by
the Argentine government and IMF).

To facilitate high quality annotations we de-
signed a multi-stage crowd sourcing solution to
acquire, monitor, assess and curate annotations at
scale. We collected 7772 annotations across 4001
stories and assessed a random 1545 annotations
(20%) in a multistage pipeline to obtain a highly
curated test set. Using POQue, we test current lan-

guage models on reasoning about complex events
in narratives: we formulate challenge tasks to iden-
tify and generate post-conditions from a story, and
evaluate how well trained models predict a partici-
pant’s involvement in enabling a complex event.

We summarize our contributions as follows:
(1) we introduce a new annotation scheme focus-
ing on complex events from the point of view of
a single participant. (2) We create a new dataset
of complex events from three collections of every-
day stories, using free form text to obtain insight
into implied outcomes. (3) We obtain high quality
annotations from crowd workers without the use
of requester generated qualification tests. (4) We
formulate challenge tasks aimed at evaluating the
ability of language models to perform richer com-
plex event comprehension, specifically: a) gener-
ating a process summary of the complex event b)
generating an endpoint of the complex event, c)
generating the outcome of a complex event based
on a participant’s semantic role d) identifying a
participant’s involvement in a complex event, and
e) generating post-conditions or changes caused by
a complex event. Our dataset and code are publicly
available at https://github.com/saiumbc/POQue.

2 Related Work

Narrative texts communicate experiences and situ-
ations by connecting related events (Brooks, 1984;
Mateas and Sengers, 1999) through events involv-
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ing participants (Bal, 1997; Eisenberg and Fin-
layson, 2017; Liveley, 2019). Previous works,
viewing narratives as sequences of events, anno-
tated event pairs for event coreference, temporal,
and causal relationships (O’Gorman et al., 2016;
Caselli and Vossen, 2016; Mirza and Tonelli, 2016;
Mostafazadeh et al., 2016). Newer works have stud-
ied event groups using predicate hierarchies (Qi
et al., 2022) and temporal graphs (Li et al., 2021).
However, these approaches focus on event-event re-
lationships, without diving deeply into participant
or entity analysis. Unsupervised methods assume
narratives are coherent and learn partially ordered
event chains (Chambers and Jurafsky, 2008; Bala-
subramanian et al., 2013) or sub event relationships
(Yao et al., 2020) but these are limited to what oc-
curs in the text itself, which can lead to well-known
issues of bias or evaluation limitations (Gordon and
Van Durme, 2013; Rudinger et al., 2015).

Caselli and Inel (2018) obtain crowd annota-
tions of causal relationships between events and
assess their quality by relating them to expert an-
notations. PeKo (Kwon et al., 2020) uses crowd
annotations of precondition relationships and fine
tunes a language model for finding such relation-
ships. However, both works limit their study to
event pairs in short text snippets. The ESTER
dataset (Han et al., 2021) consists of more com-
prehensive relationships in a story, though limited
to within-text (i.e., stated) mentions of events only.
GLUCOSE (Mostafazadeh et al., 2020) provides
elaborate causal relationships for several event di-
mensions for each event in a story. However, in
contrast to our effort, these works address direct
causal relationships between within-text events and
do not focus on participants.

Understanding complex events has long attracted
cross-disciplinary attention. For example, theo-
retical linguistics and cognitive science work has
shown that humans understand a narrative text us-
ing simulative inference (Kaplan and Schubert,
2000; Boella et al., 1999; Schubert and Hwang,
2000). Prior work has also shown how observing
participants’ events and the resulting consequences
can lead to improved understanding of events (Dijk
and Kintsch, 1983; Zwaan and Radvansky, 1998).

3 Knowledge Representation

As an underlying motivation for our efforts, we
posit that for language models to be able to reason
about complex events from narratives, they should

be able to identify a likely ending of that complex
event, component events that lead to that ending,
and the state changes that result from that ending.
However, this type of knowledge is complex and
has been computationally understudied, leading
to a scarcity of sizable datasets. In our efforts to
correct this, we appeal to classic, cognitively- and
linguistically-backed results.

First, inspired by the idea from Kintsch and van
Dijk (1978) that text comprehension involves re-
ducing relevant details into an abstract coherent
semantic text, our targeted annotations include an
abstract high level summary and the minimal set
of salient events that make up the complex event.
Second, we extend the idea of thematic roles for
verbal arguments (Dowty, 1991) to a generalized
semantic role for the complex event. Specifically,
Dowty showed that easily verifiable characteris-
tics and properties, such as volitional participation
in an event or whether a participant underwent a
change of state because of a particular event, can
be used to define predicate-level prototypical se-
mantic roles. Inspired by this, we characterize the
roles of complex events through the intentional en-
gagement in changes of state of participants. As
such, our targeted annotations account for both the
intentional involvement of the participants in the
complex event and the cumulative impact of all the
events that make up the complex event.

Story and Participant Stories in our dataset are
either a ROCStory or heuristically salient portions
of newswire (first 100-150 tokens).1 For more in-
formation on story processing see §4.1. We define a
participant as an entity that was mentioned several
times in the story. See §4.1 for more on participant
selection. Multiple entities are considered a single
Participant if these entities are mentioned together
and participate together in all the events. In Fig. 1,
"the Brofmans" are a Participant.

3.1 Targeted Knowledge Annotations

Given a story S, a participant P , and P taking on a
agent-like or patient-like cumulative semantic role,
PR, we obtain the following annotations.

Process Summary (PS): A high-level, free-form
description of the situation, which provides the
topical context for the complex event. For example,
“Losing home and payments” for the story in Fig. 1.

1While we acknowledge they have important differences,
we use “narrative” and “story” interchangeably.
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Endpoint Description (ED): A free-form de-
scription of the inference of what happened or is
likely to happen in the story, conditioned on the
process summary. It is the result of an aggregate of
story events that leads to state changes for partici-
pants. For the story in Fig. 1, the endpoint is “The
Brofmans might lose their home and payments.”

Endpoint Anchoring (EA): An endpoint may
be (inferentially) stated in the text, or it may be
implied/suggested. We judge this via a three-way
choice (stated, implied, unsure). For the story in
Fig. 1, the endpoint is stated by the text.

Participant Involvement (PI): Whether the par-
ticipant caused the endpoint, or experienced it, indi-
cated with a 5 point Likert scale, from very unlikely
to have caused [experienced] the endpoint, to very
likely to have caused [experienced] it. For the story
in Fig. 1, the complex event maximally affects P .
Hence this rating is a “very likely.”

Change Summary (CS): A templated text de-
scription of state changes caused or experienced by
participants as a result of the endpoint. In Fig. 1,
this is “The Argentine government might cause the
Brofmans to lose their home and payment.”

Change Modes ((c1, c2, .., ck)): The various
ways in which participants experience changes.
These change modes are: change in existence, feel-
ing, location, possession, some other way, or no
changes. This list was inspired by classic linguis-
tics, c.f., Dowty (1991), though refined during early
examination of our stories.

Factors ((f1, f2, .., fn)): Salient events that lead
to the endpoint and state changes where each factor
captures an event in a phrase comprising of at least
a subject and verb. For the story in Fig. 1, “‘if
the Argentine government yields to International
Monetary Fund,” is one of the factors leading to
the Endpoint.

3.2 Crowd Annotations
We created a human intelligence task (HIT), de-
ployed on Amazon Mechanical Turk (AMT). The
HIT consists of a story with highlighted partici-
pant mentions displayed in the left column and
four annotation steps in the right column which
vary slightly for the agent and patient views. The
protocol was IRB approved.

Crowd workers were instructed to read the story,
focus on the highlighted participant, and provide

annotations. We provide several annotated exam-
ples, general instructions for completing the HIT,
and specific instructions for each step suggesting
a template to follow for some steps. More details
and the layout of the HIT are in Appendix B.

The annotation task consists of 4 steps and
each story is assigned to two workers, one where
the highlighted participant is assigned the role of
“agent” and another with the assigned role as “pa-
tient.” Step 1 asks for a high level description of
the story, a process summary of the situation de-
scribed. Step 2 of the HIT asks for a description
of an endpoint in the story. We assume a story’s
endpoint typically signifies a state change caused
by a complex event. Step 3 asks for a summary of
changes caused by the complex event in the story
participants and also asks to identify the type of
changes. Step 4 of the HIT asks an annotator to
identify the salient events, or factors, that lead up
to the complex event and changes from it.

4 Dataset

We selected stories from three narrative English
language datasets – the ESTER dataset (Han et al.,
2021), the ROC stories dataset (Mostafazadeh et al.,
2016) and passages from the Annotated New York
Times newswire dataset (Sandhaus, 2008). We se-
lected these given the prominence the underlying
documents have in the broader NLP community
(the ESTER documents are a subset of the Tem-
pEval3 (TE3) workshop dataset (UzZaman et al.,
2013). We included ROC stories because they of-
ten contain a single situation with mostly salient
information. We noticed these stories help crowd
workers easily focus on salient events, providing
cues for factors and state changes. Meanwhile, ES-
TER and the selected Newswire stories provide a
variety of complex situations and discourse text.
Additionally, by selecting subsets of these well-
known datasets, we hope that future efforts may
be able to aggregate our annotations with existing
ones, enabling richer phenomena to be examined.

4.1 Story Preparation

We sampled stories from the Annotated New York
Times (ANYT) corpus, ROCStories, and ESTER.
We then identified participants via an automatic en-
tity coreference system. We heuristically selected
relevant and annotable excerpts of the document
by identifying “continuant story lines” (see Ap-
pendix A). After identifying a participant and a
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# Stories # Agent # Patient
Total 4001 3896 3876
ROC 1383 1364 1356
ESTER 1275 1237 1218
NYT 1343 1295 1302

Table 1: Document-level data statistics. Note that the
number of stories refers to the number of unique sto-
ries annotated, while the agent and patient numbers
refer to the number of instances annotated on those
documents. Additionally, 260 of the ROCStories are
from the CATERS (Mostafazadeh et al., 2016) collec-
tion. CATERS stories and ESTER stories containing
subevents are useful for relating causal and composi-
tional events in a complex event.

Avg. process summary length 5.7 words
Avg. endpoint length 9.4 words
Endpoint stated/implied/unsure % 68.5%/28.9%/2.6%
Avg. change descr. length 8.9 words
Avg. likelihood of causing change
(agent)

4.0 (likely)

Avg. likelihood of experiencing
change (patient)

4.1 (likely)

Avg. # of factors 3.7
Avg. factor length 8.0 words

Table 2: Additional statistics about POQue.

continuant story line, we randomly selected 4001
stories for annotation; see Table 1 for details.

4.2 Dataset Annotation & Pricing

Our dataset has 4001 stories, annotated by 163
different crowd workers. The average number of
stories annotated per worker is 43. When possible,
we annotated from both an agent and a patient view
for a participant, so in total we obtained 7773 anno-
tations. Workers were paid an average of $0.50 for
annotating a single HIT, either an agent or a patient
view of the story. For more detailed information on
payment and training see Appendix B.3. We tackle
the positivity bias in AMT work (Matherly, 2018)
using a thorough initial verification and training
(see Appendix B) and ensured workers understood
the task and provided quality annotations.

4.3 Dataset Statistics

For most stories we obtained two annotations, with
the two participant semantic roles. We show high-
level document statistics in Table 1. Annotations
for the two different roles of the highlighted par-
ticipant are shown in separate columns. We show
more detailed annotation statistics in Table 2, and
examine the frequency of change modes in Fig. 2.
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Figure 2: Count of change modes, shown for each
of the agent and patient roles, and broken out across
the originating datasets our annotated narratives come
from.

4.4 Dataset Quality and Analysis
We noticed that the nature of the stories and the task
steps elicit a variation in the text style and format,
even from the same worker. Our experiments (§6)
and ablation studies (§7) did not uncover any easy
biases attributable to a small number of workers
producing most of the annotations. Due to space
limitations we explain our process for evaluating
1545 random annotations in Appendix C.2.

5 Tasks for State Change Knowledge

Based upon our collected dataset, we propose sev-
eral tasks. These tasks are designed to test vari-
ous aspects of comprehension involving complex
events, their participants, and outcomes.

5.1 Task 1: Generating Process Summaries
Categorizing stories based on the type of situation
they describe is necessary for generalization. For
this, we fine-tune models to generate an abstract
and high level process summary of the complex
action described in a story. Because we annotated
salient events for the story, i.e., the factors, we have
two task formulations. We fine-tune models to gen-
erate PS either given S or (f1, f2, .., fn). Both
are standard summarization tasks which we com-
pare with a baseline where the process summary is
assumed to be “About P .”

5.2 Task 2: Generating Complex Event
Endpoints and Salient Events

Understanding a story involves the identification
and decomposition of salient events that lead to an
endpoint, for the described complex event. We test
this understanding with two complementary formu-
lations where we generate either the endpoint de-
scription or the salient events, i.e., factors. For gen-
erating ED we have two sub formulations where
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we fine-tune models either on S or (f1, f2, .., fn).
For generating (f1, f2, .., fn) we fine-tune models
on (S,ED). These are all standard summarization
tasks which we compare with a baseline where ED
is assumed to be the last sentence of the story.

5.3 Task 3: Generating Changes Resulting
from a Complex Event

Knowing the changes caused by a complex event
gives us an insight into its importance and the in-
tentions (addressed in Task 5) behind it. In this
task, we generate changes caused by a complex
event through the lens of the semantic role tracking
we have employed throughout our effort. Using
standard summarization, we fine-tune models to
generate CS given (S,ED,PR).

5.4 Task 4: Identifying Types of Changes
Grounding the impact of a complex event in the var-
ious change modes a participant undergoes helps
in understanding the importance of new situations
by relating them to known situations with similar
post-conditions. We formulate this as a multi-label
binary classification and fine-tune models to iden-
tify k = 5 change modes (c1, c2, .., ck) given S.

5.5 Task 5: Assessing Participant’s
Involvement in the Complex Event

Besides the story context, the participant’s seman-
tic role heavily influences our decision of whether
the participant intended or enabled the complex
event or the changes caused by it. In this binary
classification task, we predict the participant in-
volvement rating PI given (S,ED,PR). This
prediction demonstrates a model’s ability to iden-
tify a participant’s intentional engagement and en-
ablement of the complex event and its impact.

6 State Change Benchmark Experiments

We benchmark the performance of current encoder-
decoder transformer language models, T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020), which
are effective for both text generation and classi-
fication. We compare fine-tuned base and large2

models with multiple automated metrics and crowd
sourced human evaluation. We use bootstrap for
calculating statistical significance via the mlxtend
library (Raschka, 2018).

2We found that training a bart-large model was finicky,
with some training runs not converging. For these cases,
we do not include results for the bart-large model. See
https://github.com/huggingface/transformers/issues/15559.

6.1 Automated Evaluation

We use the classic metrics of ROUGE (Lin,
2004), BLEU (Papineni et al., 2002), and ME-
TEOR (Lavie and Agarwal, 2007), and the more re-
cent BertScore (Zhang et al., 2020). Due to space
limitations, we present ROUGE-L and BertScore in
the main paper, and additional ROUGE-1, ROUGE-
2, METEOR, and BLEU scores in the appendix
(Appendix F). We use standard metrics used for
single and multi-label classification: Accuracy
and macro F1. In multi-label classification, we
calcuate Subset Accuracy and macro F1 using
sklearn and a Hamming Score which is computed
as 1

nΣn
i=1

Yi∩Zi
Yi∪Zi

, where Y and Z are true and pre-
dicted labels for n examples.

6.2 Human Study of Model Generations

We perform a human evaluation of the generation
tasks (1, 2, and 3) using 50 randomly selected
generations for each model and the corresponding
human annotations. We obtained qualitative rat-
ings from 3 crowd workers experienced in annotat-
ing our HITs and measured IAA using a weighted
Fleiss’s Kappa as in Appendix C. For each sum-
mary, workers are presented with the story and the
summary and asked to rate the summary on aspects
that relate to the task such as abstractness, factual-
ity and salience using a 5-point Likert scale. See
Appendix D for more information on these aspects
and the HITs used for evaluation.

6.3 Task 1: Generating Process Summaries

To test whether a model generates a more focused
process summary when trained on salient informa-
tion, we compare pre-trained models fine-tuned on
S and (f1, f2, .., fn) with an easy baseline process
summary of “About P ,” where P is the partici-
pant. Less than 1% of the process summaries in
dataset and model generations contain this baseline
format. Results from this task training are listed
partially in Table 3 and fully in Table 11. For all
models, Rouge, BLEU and METEOR scores show
less lexical overlap, but BertScore indicates a high
similarity between the model generated and ref-
erence summaries. Inspired by previous work in
measuring abstractiveness (See et al., 2017; Dreyer
et al., 2021; Gao et al., 2019; Narayan et al., 2018),
we compare average number of tokens (Len) across
all summaries, the percentage of exactly matched
trigram spans in the story (Ext), and the average of
Abstractness Likert scores (Abstr.) from the evalua-
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Model Len Ext. (↓) RougeL BertScr Abstr.
Reference 3.6 .13* - 3.57*
About P 1.7 .27 10.43 83.86 2.37

Story
Bart-base 4.0 .46 21.43 86.70 2.77
T5-base 10.0 .60 19.50 85.99 2.32
T5-large 6.9 .63 20.30 86.15 2.13

Fact.
Bart-base 4.2 .33 23.81 87.66 3.22
T5-base 9.9 .56 18.29 86.10 2.73

Table 3: Generating Process Summaries (Task 1). See
appendix Table 11 for the full results. Bart-large is not
included because we were unable to get it to properly
converge. The best scores are bolded. We use * to
indicate a significantly higher value than other values
in the column with a p value between 0.001 and 0.0001
(except for Bart-base trained on Factors where the p
value is 0.13). Len value for Reference is considered
the best as the baseline value is not meaningful.

tion HIT (see Fig. 17) for process summaries. We
provide Len, Ext and Abstr. values to help contex-
tualize scores. While a lower value of Ext does not
necessarily mean a better generation, it does mean
there is less direct copying of length-3 phrases.
Discussion: BART generations are brief, less ex-
tractive and more abstractive, whereas T5 genera-
tions are longer, less abstractive and more directly
drawing upon spans of story text. The Reference
summaries are brief, significantly less extractive
and at a significantly higher abstractness score
compared to all the models. Models fine-tuned
only on the factors produce more abstractive sum-
maries. However, this increase in the abstractness
for the BART model increased the factual errors, in
line with previous observations (Cao et al., 2017;
Kryscinski et al., 2019; Dreyer et al., 2021). The
significantly higher brevity and abstractness of the
Reference summaries point to a substantial gap
between human and LMs’ ability at capturing com-
plex actions in a brief, high-level, abstract phrase.

6.4 Task 2: Generating Endpoints & Factors
To test how well models generate endpoints, mod-
els are fine-tuned to generate ED, given S or
(f1, f2, .., fn) and compared with the baseline ver-
sion where the ED is assumed to be the story’s last
sentence. Partial results for this task formulation
are listed in Table 4 and the full results in Table 12
for the trained models. We also compare models
trained on the complementary task of generating
(f1, f2, .., fn) given (S, ED). A special token sep-
arates factors in all the task formulations involving
factors. Partial results for this complementary task
are listed in Table 5 with the full results in Table 13.

For all models, Rouge, BLEU and METEOR
scores show higher lexical overlap, and BertScore

Model Len Ext↓ RougeL BertScr Fact. Sal.
Reference 7.9 .27 - 4.15 3.46
Last sent. 23.3 .79 21.82 85.60 4.49 3.35

Story

Bart-base 11 .72 25.43 87.61 4.66 3.97
Bart-large 10.3 .63 24.74 87.62 4.59 3.81
T5-base 13.6 .70 24.07 87.19 4.71* 4.03
T5-large 12.9 .67 25.71 87.54 4.71* 4.23*

Fact.
Bart-base 7.3 .49 24.09 87.93 4.11 3.28
T5-base 10.4 .47 22.01 87.07 3.99 3.02

Table 4: Generating Endpoints for stories and factors
(Task 2a). See appendix Table 12 for the full results.
The best scores are bolded. * indicates the value is
significantly higher than the Reference value with a p
value of .002 for Factuality and .0008 for Salience.

Model # fact. Len RougeL BertS Brev. Fact. Sal.
Reference 3.6 8.3 - 3.35* 3.25 3.04
Bart-base 3.5 14.0 45.28 88.06 2.54 3.49 3.57
Bart-large 3.6 13.7 45.98 88.10 2.12 3.2 3.31
T5-base 2.6 19.6 43.31 87.74 3.23 3.69 4.01*
T5-large 3.7 13.9 47.96 88.44 2.85 3.80* 3.96*

Table 5: Generating Factors from stories and their end-
points (Task 2b). See appendix Table 13 for the full re-
sults. The best scores are bolded. * indicates the value
is significantly higher than the Reference value for Fac-
tuality and Salience with a p value of .0001. The Ref-
erence value for Brevity is significantly higher than all
values in the column with a p value of .0001.

indicates a high similarity between the generated
and reference summaries. We compare the average
of the Factuality and Salience scores (Fact. and
Sal., resp.) from the endpoint summary evaluation
HIT (see Fig. 18) along with the average number of
tokens (Len) across all summaries and the percent-
age of exactly matched trigram spans in the story
(Ext). We also compare the average of the Brevity,
Factuality and Salience scores (Brev., Fact., and
Sal.) from the evaluation HIT (see Fig. 20) for fac-
tors along with the average number of factors (#
fact.) across all stories and the average number of
tokens (Len) across all factors and stories.
Discussion: Scores are significantly higher for LM
generations than Reference endpoint descriptions
on both Factuality and Salience. We looked at a
random 100 Reference endpoint descriptions and
the corresponding model generations. The first au-
thor of this paper identified which of the endpoints
were not directly stated in the story, but rather im-
plied by the story, and which ones were not-factual.
As shown in Fig. 3, very few of the model gen-
erations are implied endpoints and a third of the
Reference endpoints contain implied descriptions.
Our HIT instructions asked workers to annotate
not only explicit endpoints but also the ones im-
plied by the story and they identified 29% of them
as implied. Evaluators lowered their scores both
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Figure 3: Non-factual and implied endpoint types.

for factuality and salience for these implied end-
points as the description may be a possible but not
strictly entailed outcome. Models trained on factors
generated more implied endpoint descriptions but
these implied endpoints contained more factual er-
rors possibly because of less available context. We
conclude that LMs try to generate stated endpoint
descriptions unless challenged by limited context.

Fine-tuning on stories and endpoints generates
salient factors, indicated by the high assessment
scores. However, the generated factors on average
contain multiple facts making them less concise
and focused than human written factors.

6.5 Task 3: Generating Change Summaries

We compare model generations of state changes,
by fine-tuning models to generate CS conditioned
on (ED,PR). Given the pair (S, t), where t is ei-
ther “P caused this: ED” if PR=“agent” or “P ex-
perienced this: ED” if PR=“patient”, fine-tuned
models generate CS. Partial results for this task are
listed in Table 6, and the full results in Table 14. For
all models, Rouge, BLEU and METEOR scores
show high lexical overlap and BertScore indicates
a high similarity between model generations and
Reference summaries. We compare the average of
the Factuality and Salience Likert scores (Fact. and
Sal. resp.) from the evaluation HIT (see Fig. 19)
which measures whether the generated text con-
tains change(s) resulting from the complex action.
Discussion: T5 models generate change sum-
maries that are significantly more factual and
salient than the BART models. While T5 genera-
tions score higher than Reference summaries, the
difference is not significant. To explain these re-
sults, we inspected the 50 evaluated stories and
found that less than 10% of the stories have no
changes even though annotators indicated “no
changes” for 25% of the stories in these 50 (and
in the entire dataset). To see if crowd workers

Model RougeL BertScr Fact. Sal.
Reference - 3.36 3.32
Bart-base 34.79 88.39 3.03 2.93
Bart-large 32.80 88.23 2.99 3.05
T5-base 26.81 87.20 3.74 3.23
T5-large 27.14 87.38 3.81 3.53

Table 6: Generating changes resulting from a complex
event (Task 3). See appendix Table 14 for the full re-
sults. The best scores are bolded.

Model Subset Acc Hamming Score macro F1
Bart-base 64.6 71.7 61.2
T5-base (Enc Only) 59.4 66.1 50.3
T5-base (Enc-Dec) 65.8 67.3 62.0

Table 7: Results for identifying various Change Modes
in Participants (Post Conditions) resulting from the end-
point of a complex action (Task 4).

can identify these no-change stories, we ran a HIT
where the change summary for these 50 stories was
set to no-changes. From the results of this HIT we
found that human evaluators also think there are 3
times as many stories with no-changes. Workers
missed subtle changes in a story especially when
they relate to changes in cognition. T5 was able
to identify story text that contained subtle changes
while the BART models seem to be learning the
data distribution from the training data. BART gen-
erations also contain a higher number of factual
errors leading to its subpar performance.

6.6 Task 4: Identifying Types of Changes

We fine-tune base models on a multi-label (n=5) bi-
nary classification task and assign change mode la-
bels, (c1, c2, .., ck), for an input context consisting
of two sentences: story S, and (PI, c, ED) where
c is a connector phrase. The value of c is “caused
this:” when PR=“agent,” and “experienced this:”
when PR=“patient.” The results from this classifi-
cation are reported in Table 7 and consist of Subset
accuracy, Hamming Score and Macro F1. The Enc
Only models consists of a T5 encoder model with a
classification head on top. The classification head
consists of the following sequence of transforma-
tions: Dropout (p = 0.3) –> Linear(768x 512) –>
tanh() –> Dropout (p = 0.3) –> Linear(512 x 5)
–> sigmoid(). We also fine-tuned a pretrained T5
encoder-decoder model in a text-to-text multi-label
RTE setting.
Discussion: These results indicate that while the
fine-tuned models are good at generating change
summaries, assigning the various change model
labels is a challenging task for these LMs.
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Combined Agent Patient
Model Acc./F1 Acc./F1 Acc./F1
Bart-base 82.7/76.8 80.7/ 75.2 84.2 /76.4
Bart-large 76.0/43.2 75.5/49.1 79.2/50.8
T5-base 82.6/76.5 80.1/73.2 84.2/77.4
T5-large 83.0/77.4 80.3/74.3 84.5/78.1

Table 8: Identifying Participant’s involvement (Task 5).
The best results are bolded. The different folds of the
Bart-large models converge at different checkpoints re-
sulting in lower average scores but the best scores for
any fold are comparable to the Bart-base model.

6.7 Task 5: Assessing Participant
Involvement

We turn the 5-point Likert scale for PI into a bi-
nary class: the first two options (unlikely to be
involved) make up the negative class and the latter
three (neutral to likely to be involved) are the pos-
itive class. We formulate participant involvement
and enablement of changes as entailment: the story
S is the premise and the hypothesis is framed as
the P ’s involvement in the changes of state indi-
cated by CS.3 We fine-tuned models on all story
annotations; only annotations where P ’s semantic
role is “agent”; and only the annotations where P ’s
semantic role is “patient.” Results are in Table 8.
Discussion: While all the models are able to clas-
sify a participant’s involvement and enablement
of changes with high accuracy there is still room
for improvement. Error analysis indicated mod-
els are not able to identify enablement when there
are no state changes. This usually happens when
the complex action is a hypothetical situation or
the changes involve subtle cognition (discussed in
Task 3). In T5 models, we noticed some errors
contradicted the hypothesis statement; these may
be due to the model’s external knowledge from
pre-training, but this requires further study.

7 Effect of Discourse Text on Models

We study the effect of discourse text on model
generations of endpoint descriptions using the
two story types we annotated: ROCStories and
newswrire stories. ROCStories are simpler with
short, concise and focused salient events, while
newswire are more complex, containing more text
not always salient to the complex action we anno-
tated. We wish to answer the following questions:
(1) How does training domain affect endpoint gen-

3We formulate agent-based hypotheses as “What the ac-
tions of P caused was this: CS,” and patient-based hypotheses
as “What happened to P was this: CS.”

Train-on Model Test-on Len Ext↓ Fact. Sal.

ROC

Bart-base ROC 5.6 .55 4.43 4.25
T5-base ROC 8.4 .55 4.43 4.24
Bart-base News 9.8 .39 3.98 3.59
T5-base News 23.8 .64 4.46 4.01

News

Bart-base ROC 6.2 .89 4.55 4.09
T5-base ROC 9.0 .74 4.45 3.43
Bart-base News 11.5 .77 4.62 4.01
T5-base News 15.5 .75 4.59 3.95

Table 9: Comparing Endpoint generations of models
trained on ROCStories and on Newswire stories. See
appendix Table 15 for the full results.

eration? (2) Are the endpoint generations more/less
concise, varied, focused and factual for the story
context? (3) Do models trained on one type of
stories transfer their learnt knowledge to generate
equally good endpoints for the other type?

We fine-tuned BART and T5 base models sepa-
rately on ROCStories vs. Newswire, and evaluated
them on test sets for both story types. We calculated
human scores from the endpoint evaluation HIT.
From Table 9, we observe the following: (1) ROC-
Stories models generate shorter, more varied and
abstract descriptions. (2) Newswire generations
are longer and more extractive. (3) ROC-trained
BART has significantly lower salience when tested
on Newswire stories. News-trained BART does
not suffer from poorer salience. News-trained T5
has lower salience when tested on ROCStories,
while ROC-trained T5 does not result in signifi-
cantly lower salience. (4) BART generations are
less factual than T5, possibly because of higher
abstractness (Dreyer et al., 2021). (5) ROC-trained
T5 and News-trained BART obtain similar high
scores for factuality and salience.

8 Conclusions

We have argued that a deeper understanding of
complex events can be achieved by examining their
cumulative outcomes, grounded as changes of state.
By focusing on a specific participant in a complex
event, and a broad notion of its semantic role, we
developed a crowdsourcing protocol to obtain 7.7k
annotations about complex events and participant
state change across 4k stories. We validated 20%
of the annotations, with high inter-annotator agree-
ment. We have formulated five challenge tasks that
stress model’s understanding of story outcomes,
state changes and complex event understanding.
Our evaluations suggest that additional modeling
advances are needed to achieve this understanding;
we hope that our dataset spurs this future work.
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9 Limitations

We acknowledge the following limitations of our
approach:

• Though the documents we base our annotations
on come from well known data sources, our ef-
forts focus on more formal levels of written En-
glish. Generation and classification abilities can
vary as the formality, style, or language change.

• Though our work is heavily grounded in inter-
disciplinary literature, we adopt a limited two-
argument view of complex event participants:
either they are an “agent” or a “patient.” Expand-
ing to other types, or finer-grained notions, of
arguments requires more investigation.

• We use large, pre-trained language models in
our experiments. While powerful, they can echo
biases, either implicitly or explicitly. We do not
attempt to control for these in this work.
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A Additional Details on Data
Preparation

In this section, we expand on data processing de-
scribed in §4.1.

Document Selection From the Annotated New
York Times (ANYT) newswire articles, we found
that stories from the Financial, National and For-
eign desks contained the type of complex events
that were most reliable to annotate: those with
focused discourse text that required less external,
societal, or cultural knowledge to understand the
story. We did not specifically target obituaries as
they could lead to less varied endpoint and cumula-
tive state changes. The ROCStories were randomly
sampled, and we subsampled stories from ESTER
that had subevent annotations in that dataset.

Participant Identification We used spanBERT
(Joshi et al., 2019) to resolve coreferent mentions
in the text, and selected the largest cluster of men-
tions. To find clusters containing a valid participant,
we selected the shortest text span from all the men-
tions in the cluster making sure that it is atleast
3 characters long and matched it with the names
database published by the SSA. This ensured that
the "participant or prop" we selected is a person,
place, group or organization. In ROCStories and
ESTER, the largest cluster is always a person, place
or group and did not require this name filtering.

Continuant Story Lines We selected the first
few lines containing approximately 100 tokens,
which resulted in stories similar in length to pre-
vious work (Han et al., 2021; Glavaš et al., 2014;
O’Gorman et al., 2016). We highlighted mentions
of the participant to outline a “continuant” story-
line, i.e., a set of related events that lead to a co-
herent story involving the participant. Focusing on
the events in a continuant story line helps an anno-
tator observe a complex action and its effects. By
identifying and highlighting a single participant we
limit the scope of possible valid endpoints an anno-
tator might consider. Assigning a semantic role to
the participant, of an agent, or a patient, helps cue
the annotator to identify a participant’s role in the
complex action, and the changes resulting from it.
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B Additional Details on Crowd
Annotation

B.1 Worker Qualifications
We did not use requester generated qualification
tests to filter out workers because we target the
understanding of everyday reported events, not do-
main or expert-level matter. However, we used
community standard quality criteria, such as requir-
ing a 98% or greater HIT acceptance rate and the
completion of 1000 approved HITs. In addition,
we required the worker’s stated location to be in
the USA, UK, Canada, Australia, or New Zealand.
Given the language-dependent semantic phenom-
ena we pursue in this work, this location require-
ment was used for avoiding language-based arti-
facts. While qualification tests can filter for spam,
initial misunderstandings could exclude capable
workers who benefit from additional feedback. By
providing positive and constructive feedback to en-
sure workers understood the task, we were able to
retain workers who improved over time and pro-
vided quality annotations, a requirement for any
crowdsourced task.

B.2 Annotation HIT Streamlining
Our initial development tested selection of
textspans vs. free form text and noticed workers
preferred one over the other for some of the steps.
To reduce annotation time, we refined the HIT to
prime workers to hone in on the salient information
in the story, provided functionality that allowed for
a quick highlight and paste of relevant text when
needed. We encouraged free form text in steps 1
and 2., an easy to fill in template for step 3, and
highlight and paste for step 4.

Despite instructions to be concise, early anno-
tations suggested that some workers would try to
include as much information as possible into the
free form text fields, resulting in lengthy descrip-
tions that provided too much detail (e.g., going
beyond immediate outcomes, or providing explana-
tion/justification for why those changes happened).
To address this issue, we implemented two-tiered
length limitations on the free form text. The first
tier was a “soft constraint”: if, e.g., a worker typed
in a endpoint greater than 8 words, they were
prompted to consider revising, but they did not
have to. The second tier was a “hard constraint”:
if, e..g, the endpoint was greater than 15 words,
they were prevented from submitting until they
rephrased and satisfied the hard constraint limit.

These limits were set based on the examination of
early annotations.

In addition, in each HIT batch, we included a
mix of the lengthier Newswire and short ROCStory
texts to reduce the monotony of annotation. From
the alpha run annotation times, and internal anno-
tation timing, we estimated the average annotation
time for a HIT completion to be under 2 minutes.
The bulk of annotations for our HITs were com-
pleted within 5 minutes, with a median and mean
of approximately 2.5 minutes.

B.3 Worker Training and Pay

Our HITs were priced to target an hourly pay of
$10-$12. We carefully tracked and analyzed the
user response times across pilot runs to arrive at
the HIT pricing. For each worker, we carefully
examined the first 10-30 annotations to check task
understanding, providing feedback and a bonus
as appropriate to compensate for the time spent
on communication. We initially had an additional
26 crowd workers who attempted the HIT, but we
removed their annotations from the dataset for ob-
vious bad-faith efforts (10 workers) and for benefit-
of-the-doubt good faith efforts but where the work-
ers (16 workers) did not follow instructions even
with repeated feedback. Anyone construed to have
completed the annotation in good faith was paid,
even when their responses were not included in our
dataset.

B.4 Annotation Quality Checking

Our cursory visual check of the annotation and an
automatic lexical check of a list of novel unigrams
that are not part of the story ensured the annotation
content was focused on the story. We gave iterative
feedback to workers not following task instructions
and excluded them with a qualification type when
there was no improvement.

Additional Data Analysis In Fig. 4 we show the
distribution of crowd workers for our annotation
effort.

B.5 Annotation HITs

The HIT for acquiring story annotations from
crowd workers displays two different views based
on participant’s semantic role in the story. General
and specific instructions for Step 1-3 are different
in two views.
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Figure 4: Distribution of story annotations completed
by workers

C Quality Assessment of Crowd
Annotations

In the initial phases of data collection the first two
authors of this paper evaluated both the agent and
patient views of 50 random stories (= 100 annota-
tions) to ensure annotator responsiveness and qual-
ity. After collecting all the data, 3 crowd workers
evaluated a random 1545 annotations and an expert
evaluated a random 100 of these annotations (equal
agent and patient views) for comparison. Table 10
lists the inter-rater reliability (IRR) measured us-
ing weighted Fleiss’s Kappa (Marasini et al., 2016)
with the weighting scheme used by (Bastan et al.,
2020), which penalises each dissimilar class by an
amount based on the distance between classes (e.g.,
an item with responses of “very likely” and “very
unlikely” will be penalized more heavily than with
responses of “very likely” and “somewhat likely”).

Our evaluation consisted of 4 validation HITs,
where 3 crowd workers rated the various annotation
steps (see Appendix C.2). The results from this
evaluation are listed in Table 10. The IRR scores
suggest substantial-to-high agreement. Notably,
these demonstrate that we can obtain high quality
process and change of state summaries, endpoint
descriptions and enabling sub-event factors.

C.1 Evaluation Set Curation
From the 1545 validated annotations we selected
annotations where the average score of the crowd
workers for each of the 4 validation HITs is at
least 3.0. This curation resulted in 1196 carefully
produced annotations for a given story. The test
data set is made up of these curated annotations and

Evaluations Crowd C+E Experts
1. Process Sum. 0.81 0.81 0.90
2. Endpoint Desc. 0.81 0.80 0.89
3. Change Sum. 0.81 0.80 0.76
4. Change Modes 0.74 0.78 0.82
5. Factors’ Salience 0.77 0.85 0.84

Table 10: Inter-rater Agreement scores using weighted
Fleiss’s Kappa (Marasini et al., 2016). C+E shows the
IRR for the crowd and expert on 100 annotations. See
Appendix C.2 for the various evaluations and what we
looked for in the evaluation.

the training data set is made up of the remaining
validated and unvalidated annotations.

C.2 Validation HITs
The various annotation steps are validated using 4
HITs. 3 workers evaluate the following using a 1-5
Likert scale with the options: Strongly Disagree,
Somewhat Disagree, Neutral, Somewhat Agree and
Strongly Agree.

1. Whether the Process Summary is a valid high
level summary of the story.

2. Whether the endpoint description describes a
valid endpoint for the complex action in the
story.

3. Whether the change summary describes
changes that happened as result of the com-
plex event described in the story.

4. Whether the categorization of changes into
the five change modes is consistent with the
changes inferred from the story.

5. Whether the factors are salient to the complex
event’s endpoint.

D HITs for Human Evaluation of
Generated Summaries and Factors

Here, we show sample UIs for the human eval-
uation we performed in §6.2 for reference, base-
line and model-generated process (Fig. 17), end-
point (Fig. 18), change summaries (Fig. 19) and
factors (Fig. 20) . These HITs are used to eval-
uate the following aspects of a summary using a
1-5 likert scale with the options Strongly Disagree,
Somewhat Disagree, Neutral, Somewhat Agree and
Strongly Agree.

1) Abstractness (Task 1): Whether the summary
is a brief, high level, abstract description that faith-
fully captures the complex action in the story.

2) Validity (Tasks 2 and 3): Whether the sum-
mary is a valid ending for the situation described in
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Figure 5: Instructions provided for the Agent view of the annotation HIT. The distinguishing aspect that makes
it the Agent view is in step 3, where changes are attributable to what the participant or prop caused. In 7, 8, 10
and 12 we show the interface for each of the steps.

Figure 6: Instructions provided for the Patient view of the annotation HIT. The distinguishing aspect that makes
it the Patient view is in step 3, where we ask about changes the participant or prop likely experienced. In 7, 9, 11
and 12 we show the interface for each of the steps.
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Figure 7: Steps 1 and 2 of the Agent view of the annotation HIT. The Patient view for these steps is similar except
for the title of the HIT.

Figure 8: Steps 3a & 3b of the Agent view of the annotation HIT.

Figure 9: Steps 3a & 3b of the Patient view of the annotation HIT.
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Figure 10: Step 3c of the Agent view of the annotation HIT.

Figure 11: Step 3c of the Patient view of the annotation HIT.

Figure 12: Step 4 of the Agent view of the annotation HIT. The Patient view for this step is similar except for the
title of the HIT.
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Figure 13: HIT for Validating Process Summaries

Figure 14: HIT for Validating Endpoint Descriptions

Figure 15: HIT for Validating Change Summaries
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Figure 16: HIT for Validating Factors

the story for task 2. In task 2, when evaluating fac-
tors, we check whether each factor contains story
related information. For task 3, we check whether
the summary mentions a change that is consistent
with the details in the story. A blank summary is
valid, if the story does not contain any changes.

3) Salience (Tasks 2 and 3): Whether the sum-
mary is a valid ending for the situation described in
the story for task 2. In task 2, when evaluating fac-
tors, we check whether each factor is necessary for
understanding the situation. For task 3, we check
whether the summary mentions a change that is
consistent with the details in the story. When a
story does not contain any changes, the annotation
of no-changes is considered salient.

E Model Training

To perform early development experiments, we
used 5-fold cross validation for 2 epochs. We found
that while the evaluation loss plateaued after train-
ing for an epoch, recall improved with further train-
ing for another epoch. Classification results are
the average of the 5-fold cross validation after 2
epochs for T5 and 1 epoch for BART for the sin-
gle label classification in Task 5. The Multi-label
binary classification for Task 4 was trained for 5
epochs for the BART models, 10 epochs for the
T5 Encoder Only and the Encoder-Decoder model.
For the summarization tasks, we trained models on
the entire training set without subsequent hyperpa-
rameter tuning for 2 epochs for all tasks.

F Expanded Results

In this section we present expanded results from
§6. In addition to average number of tokens in a
summary or factor (Len) and percentage of extrac-
tive trigrams from the story text (Ext), ROUGE-
L (longest word sequences) and BertScore that
were reported in the paper, we use the ROUGE
scores based on unigrams (ROUGE-1) and bi-
grams (ROUGE-2), corpus and sentence level
BLEU, and METEOR. Unlike the lexical- and
ontological-based metrics of ROUGE, BLEU and
METEOR, BertScore aims to provide a modern,
embedding-based approach for handling semantic
equivalence/similarity even when the texts being
compared have different surface forms (e.g., dif-
ferent words are used). These automated scores
are calculated using all the test data where as
the human evaluation scores are for the 50 ran-
domly selected data items for evaluation. The
automated scores of ROUGE, BLEU, METEOR
and BertScore are not reported for the reference
summaries, as these summaries were used as gold
references when calculating automated scores for
the baseline and model generations. For the hu-
man evaluation we report the IAA by crowd work-
ers. The difference in IAA for the crowd + expert
scores and the crowd scores was < 0.1. The metrics
reported on the left of the double line are calculated
for all the test data.The best value for each score
category are bolded and those that are significantly
higher than all other values are marked with a *.
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Figure 17: HIT for Evaluating Reference, Baseline and Generated Process Summaries

Figure 18: HIT for Evaluating Reference, Baseline and Generated Endpoint Summaries

Figure 19: HIT for Evaluating Reference and Generated Change Summaries
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Figure 20: HIT for Evaluating Reference and Generated Factors

Rouge MET- BLEU Bert Abstractness
Model Len Ext↓ 1 2 L EOR sent. corpus Score AvgLS IAA %Abs
Reference 3.6 .13* - 3.57∗ .82 72
About P 1.7 .27 10.55 4.22 10.43 0.07 0.35 2.70 83.86 2.37 .48 16

Story
Bart-base 4.0 .46 22.43 8.34 21.43 15.26 7.89 4.27 86.70 2.77 .86 42
T5-base 10 .60 21.14 7.48 19.50 18.43 5.55 2.81 85.99 2.32 .72 28
T5-large 6.9 .63 21.73 8.47 20.30 17.59 7.78 4.16 86.15 2.13 .77 20

Fact.
Bart-base 4.2 .33 25.17 9.05 23.81 17.61 6.73 4.89 87.66 3.22 .76 54
T5-base 9.9 .56 19.94 6.39 18.29 17.47 4.19 2.63 86.10 2.73 .69 36

Table 11: Generating Process Summaries for stories and factors+endpoint (Task 1). The best scores are bolded.
* indicates the Reference value for Abstractness is significantly higher than other values in the column with a p
value between 0.001 - 0.0001 (except for Bart-base trained on Factors where the p value is 0.13). Len value for
Reference is considered the best as the baseline value is not meaningful. The column AvgLS is the average of 3
crowd worker 1-5 Likert scores, and the column % Abs is percentage of instances with a score ≥ 3.

Rouge MET- BLEU Bert Factuality Salience
Model Tok Ext↓ 1 2 L EOR sent. corpus Score AvgLS IAA %Abs AvgLS IAA %Abs
Reference 7.9 .27 - 4.15 .87 80 3.46 .76 68
Last sent. 23.3 .79 24.08 12.33 21.82 24.62 0.58 6.59 85.60 4.49 .82 90 3.35 .82 62

Story

Bart-base 11 .72 27.83 13.05 25.43 22.88 11.12 8.31 87.61 4.66 .73 96 3.97 .69 80
Bart-large 10.3 .63 27.00 12.51 24.74 21.44 10.82 8.30 87.62 4.59 .78 96 3.81 .72 74
T5-base 13.6 .70 26.66 11.79 24.07 22.69 9.79 6.62 87.19 4.71* .75 96 4.03 76 82
T5-large 12.9 .67 28.36 13.15 25.71 24.31 10.93 7.83 87.54 4.71* .77 100 4.23* 72 90

Fact.
Bart-base 7.3 .49 26.26 10.86 24.09 18.28 9.15 7.32 87.93 4.11 .77 80 3.28 .76 52
T5-base 10.4 .47 24.74 9.52 22.01 18.53 7.31 5.69 87.07 3.99 .72 82 3.02 69 44

Table 12: Generating Endpoints for stories and factors (Task 2a). The best scores are bolded. * indicates the value
is significantly higher than the Reference with a p value of .002 for Factuality and .0008 for Salience. The column
AvgLS is the average of 3 crowd worker 1-5 Likert scores, and the column % Abs is percentage of instances with
a score ≥ 3.
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Factors Rouge MET- BLEU Bert Brevity Factuality Salience
Model Num Len 1 2 L EOR sent. corpus Score AvgLS IAA %Abs AvgLS IAA %Abs AvgLS IAA %Abs
Reference 3.6 8.3 3.35 .73 90 3.25 .67 52 3.04 .73 42
Bart-base 3.5 14.0 49.90 37.35 45.28 43.04 0.42 25.18 88.06 2.46 .62 .60 3.49 .69 59 3.57 .76 63
Bart-large 3.6 13.7 50.51 38.11 45.98 43.63 0.44 25.32 88.10 2.88 .65 67 3.2 .68 50 3.31 .73 52
T5-base 2.6 19.6 47.89 35.86 43.31 44.12 0.38 24.61 87.74 1.77 .66 38 3.69 .76 68 4.01* .79 79
T5-large 3.7 13.9 52.26 40.57 47.96 46.83 0.40 26.8 88.44 2.15 .65 48 3.80* .70 71 3.96 .77 78

Table 13: Generating Factors from stories and their endpoints (Task 2b). The best scores are bolded. The * for
factuality and salience indicates the value is significantly higher than the Reference with a p value of .0001. The
Reference value for Brevity is significantly higher than all values in the column with a p value of .0001. The
column AvgLS is the average of 3 crowd workers’ 1-5 Likert scores, and the column % Abs is percentage of
instances with a score ≥ 3.

Model Rouge MET- BLEU Bert- Factuality Salience
1 2 L EOR sent. corpus Score AvgLS IAA %Abs AvgLS IAA %Abs

Reference - 3.36 .78 60 3.32 .76 64
Bart-base 39.56 23.66 34.79 28.68 7.97 5.29 88.39 3.03 .69 48 2.93 .71 50
Bart-large 39.28 20.68 32.80 27.87 7.10 6.91 88.23 2.99 .72 44 3.05 .74 48
T5-base 32.82 14.74 26.81 24.62 5.91 6.73 87.20 3.74 .75 52 3.23 .66 66
T5-large 34.40 15.53 27.14 24.65 6.11 7.07 87.38 3.81 .70 70 3.53 .70 72

Table 14: Generating changes resulting from a complex event (Task 3). The best scores are bolded. The column
AvgLS is the average of 3 crowd workers’ 1-5 Likert scores, and the column % Abs is percentage of instances with
a score ≥ 3.

Trained- Rouge MET- BLEU Bert Factu- Sali-
on Model Test-on Len Ext 1 2 L EOR Sent. corpus Score uality ence

ROC

Bart-base ROC 5.6 .55 42.54 21.13 39.16 31.20 18.54 12.37 91.46 4.43 4.25
T5-base ROC 8.4 .55 43.13 20.66 38.53 33.35 16.56 9.77 90.83 4.43 4.24
Bart-base News 9.8 .39 22.53 8.25 20.49 16.27 6.46 4.97 87.17 3.98 3.59
T5-base News 23.8 .64 23.60 10.03 20.60 24.54 6.99 4.64 86.44 4.46 4.01

News

Bart-base ROC 6.2 .89 39.39 18.80 36.41 29.64 15.55 10.95 90.46 4.55 4.09
T5-base ROC 9.0 .74 35.42 14.41 31.39 26.94 11.75 7.01 90.26 4.45 3.43
Bart-base News 11.5 .77 25.28 11.58 23.12 20.77 10.16 7.78 86.95 4.62 4.01
T5-base News 15.5 .75 22.94 9.69 20.51 20.22 8.05 5.48 86.51 4.59 3.95

Table 15: Comparing Endpoint generations of models trained on ROCStories and models trained on Newswire
stories
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G Computing Infrastructure &
Processing information

Infrastructure We trained our models on a sin-
gle RTX 8000 with 48GB of GPU memory. Ap-
proximate run time was 1 hour.

Model Parameters In addition to the number of
parameters in each of the models we consider (e.g.,
Bart-Base, T5-base, T5-large), each of our fine-
tuned classification models has a separate classifier
layer. This layer takes in a D dimension embed-
ding from the encoder and uses a single linear layer
to compute K dimensional logits (therefore, an ad-
ditional DxK parameters). The value of D will
depend on the model, and the value of K will de-
pend on the number of label types that could be
predicted. For the generation tasks, we do not add
any additional parameters to the models.

Hyperparameters For all experiments we used
AdamW (Loshchilov and Hutter, 2017) optimizer,
a learning rate of 10− 4, a weight decay of 10−4
and a random seed of 11. We applied manual tuning
and tried various learning rates from .001 to .00001
as suggested for the BART and T5 models. For the
generation we used Top-K sampling with a beam
size of 2. These parameters worked well for all the
models and this was selected based on accuracy for
the classification tasks and Rouge scores for the
summarization tasks.

Results statistics With our 5-fold cross-
validation, the automated metrics for summariza-
tion and the accuracy/F1 values for classification
varied by less than 3 percent.
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