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Abstract

Word-level quality scores on input source sen-
tences can provide useful feedback to an end-
user when translating into an unfamiliar target
language. Recent approaches either require
training custom models on synthetic data or re-
peatedly invoking the translation model. We
propose a simple approach based on compar-
ing probabilities from two language models.
The basic premise of our method is to reason
how well each source word is explained by the
generated translation as against the preceding
source language words. Our approach provides
between 2.2 and 27.1 higher F1 score and is
significantly faster than state of the art meth-
ods on three language pairs. Also, our method
does not require training any new model. We
release a public dataset on word omissions and
mistranslations on a new language pair. 1

1 Introduction

Neural Machine Translations exhibit human-
like fluency and accuracy over many language
pairs (Läubli et al., 2018), and are increasingly get-
ting embedded in several end-user applications. A
hindrance to their deployment in safety-critical ap-
plications such as healthcare and diplomacy, is that
unlike human translators, a machine translation sys-
tem does not provide reliable feedback when parts
of a source sentence are misrepresented in the gen-
erated translation. Recent studies have discovered
that NMT sentences while fluent are often incon-
sistent with the source (Maynez et al., 2020; Wang
and Sennrich, 2020). On the target side, calibrated
confidence with the generated output is a standard
way to give quality feedback to the user (Kumar
and Sarawagi, 2019; Lu et al., 2022). However,
when a user is unfamiliar with the target language,
word-level confidence in the generated translation
is not actionable. We instead propose that words in

1Our code is available at this link https://github.com/
jain-priyesh/target-lift.git

the source sentence be assigned indicators of the
loss of fidelity, so end-users could reformulate the
input for possibly better translation, much like the
way a human translator could ask for clarification
on misunderstood words.

As a step in this direction, we attempt to solve
the following problem: Given a source sentence
x with words x1, . . . xn and its translation ŷ from
a translation model, assign each word xi in x a
score q(xi) that when low indicates that the word
xi is either omitted or mistranslated in ŷ. Figure 1
shows an example with a source English sentence
and its translation to German. The words in the
source sentence that are omitted or mis-translated
are assigned relatively small scores.

Two categories of approaches have been ex-
plored so far. The first category (Zhou et al., 2021)
train a supervised model to score words using
synthetically inserted errors in parallel translation
datasets. Vamvas and Sennrich (2022) show that
such synthetic training fails to identify real cases
of omissions. They instead propose a contrastive
conditioning approach on the premise that the likeli-
hood of the target ŷ will be largest when the source
is stripped off the words not well translated in ŷ. In
addition to requiring that the stripped sentence be
well-formed (enforced in the paper via a constituent
parser), we show that their scoring is not as good at
detecting omission and mistranslations compared
to a more direct approach that we propose here.

Our contributions We propose a new approach
called Target-lift for assigning quality scores to
source words. The basic premise of our approach
is to reason how well the generated translation ŷ
explains each source word in x. We implement
this reasoning by simply comparing the conditional
probability of the source word from a reverse trans-
lation model, with the unconditional probability
from a source language model. Both of these are
off-the-shelf models that do not require any cus-
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Figure 1: Quality scores on source English sentence x and a German translation ŷ where the word redress is
dropped. The quality scores are very low (0.00030) for the dropped word.

tom training. Experiments on three tasks show that
our scheme Target-lift achieves between 2.2 and
27.1 higher F1 score than state-of-the-art methods,
while being significantly faster. Our experiments
are over two existing benchmarks (En-De, Zh-En)
and a new language pair (En-Hi) that we release in
this paper. We are also a factor of 4 to 8 faster than
the best existing method.

2 Related Work

Word-level quality metrics Recently several
studies have reported the propensity of modern
NMT models to generate outputs that are fluent but
inconsistent with the input (Maynez et al., 2020;
Martindale et al., 2019; Wang and Sennrich, 2020).
This has raised interest in a more nuanced evalua-
tion of translation outputs than standard sentence-
level evaluation metrics like BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004). Lommel et al.
(2014) developed a Multidimensional Quality Met-
rics(MQM) framework for evaluation which in-
cludes word-level metrics for omission and mis-
translation of source words and addition of hallu-
cinated words in the target. Freitag et al. (2021)
provides word-level annotations of such errors on
the Chinese-English and English-German machine
translation dataset of WMT 2020 news-translation
tasks (Barrault et al., 2020). Several studies (Spe-
cia et al., 2020; Fonseca et al., 2019; Specia et al.,
2018) observe omission of source words as being
the most frequent type of error (Zheng et al., 2018).

Detecting Word-level Errors Post-facto estima-
tion of the quality of translation systems is a long-
standing area of interest (Kim et al., 2017) but only
recently has the interest shifted to detecting word-
level errors in the source or target. Some prior work
have proposed to detect word-level errors based on

comparison with a gold reference sentence (Kong
et al., 2019; Li et al., 2021). Our focus in this
work is reference-free approaches where a user is
informed, during translation, of possibly mishan-
dled source words in the target. Two categories of
methods have been developed for this space. The
first category (Zhou et al., 2021; Tuan et al., 2021)
train special models to score words by synthetically
inserting errors in a gold parallel dataset.

The second category recently proposed by Vam-
vas and Sennrich (2022) assign omission scores by
deleting each omission candidate in the source x
and evaluating the probability of the target (ŷ) on
each partial source. If the probability of the target
is higher when conditioned on a partial source than
the full source, the corresponding deleted words
are marked as omissions. This method, called
Contrastive Conditioning, has been shown in Vam-
vas and Sennrich (2022) to be more effective on
real datasets than the first category of approaches
trained on synthetic data. However, the approach
of (Vamvas and Sennrich, 2022) requires as many
invocations of the translation model as the num-
ber of deletion candidates. Our proposed method
also falls in the second category but is significantly
faster and more accurate than all existing methods.

3 Our approach

The key idea of our approach for detecting words in
a source sentence x incorrectly handled in the gen-
erated translation ŷ, is to check how well a reverse
translation model with ŷ as input, explains each
xi in x. We assume the availability of a standard
auto-regressive encoder-decoder NMT model that
can translate sentences from the target language
to the source language. With the recent popular-
ity of many-to-many multilingual translation mod-
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Task Method Detection of omissions Inference
Precision Recall F1 Time (ms)

En-De

Supervised baseline 40.3± 5.2 6.1± 0.1 10.6± 0.2 25
Contrastive conditioning 22.3 18.8 20.4 397
Target-lift (Our) 20.0 28.8 23.6 80

Zh-En

Supervised baseline 49.6± 0.6 9.4± 1.0 15.9± 1.4 25
Contrastive conditioning 25.6 62.3 36.3 750
Target-lift(Our) 25.9 75.0 38.5 81

En-Hi
Contrastive conditioning 75.5 10.8 18.9 390
Target-lift(Our) 38.1 58.1 46.0 90

Table 1: Omission error detection accuracy on English-German and Chinese-English dataset (sentence-level), and
English-Hindi (word-level). The standard deviation of the supervised method is due to averaging over three models
trained on synthetic data with different random seeds. Last column shows inference time in milliseconds. Whole
dataset is evaluated on Nvidia RTX A6000 GPU, the total time is divided by the number of instances. In all cases
our method is significantly more accurate than existing methods while being a factor of 4–9 faster than the
best existing method.

els such bi-directional translations are often easily
available (Aharoni et al., 2019). Using a standard
auto-regressive encode-decoder architecture, the
probability of each word xi in the source x can be
obtained from the reverse model as:

Pr(x|ŷ) =
n∏

i=1

Pr(xi|ŷ,x<i) (1)

A simple baseline is to use Pr(xi|ŷ,x<i) as a mea-
sure of the quality of word xi. However, this score
does not adequately indicate if ŷ contains a valid
translation of xi since probability Pr(xi|ŷ,x<i)
could be high just because xi is a frequent next
word after x1, . . . , xi−1 in the source language, ir-
respective of ŷ. We propose a simple method of
disentangling this dependence: compare the con-
ditional probability Pr(xi|ŷ,x<i) with the uncon-
ditional language model probability Pr(xi|x<i).
Accordingly, we define the score of each word xi
as the lift that the conditional model offers beyond
the unconditional model as:

q(xi) = Pr(xi|ŷ,x<i)− Pr(xi|x<i) (2)

When the lift q(xi) is high ŷ likely contains a cor-
rect translation of xi since the unconditional LM
does not support xi. When q(xi) is low, the con-
ditional model finds xi unlikely, indicating that
ŷ has omitted or mistranslated xi. Thus, by sim-
ply thresholding on the q(xi) scores we can iden-
tify words that are poorly represented in a gener-
ated translation ŷ. We call this method Target-lift.
When a word is segmented into subwords, we take
the first subword as the probability of the word.
Figure 1 presents an example.

The unconditional probability Pr(xi|x<i) can
be obtained from any off-the-shelf causal lan-
guage model. However, since the models used
to compute the two probabilities could in general
be uncomparable, we recalibrate the probabilities
Pr(xi|x<i) from the unconditional model. We use
the temperature scaling method (Platt, 1999) where
the temperature is chosen based on a validation
dataset. Temperature scaling changes the skew-
ness of a probability distribution Pr(xi) as follows:
PT (xi) ∝ Pr(xi)

1
T . Large values of T causes the

distribution to be less skewed and has been found
by several previous studies to correct the ill-effects
of over-fitting in modern deep networks (Kumar
and Sarawagi, 2019).

Empirical evaluation show that this simple score
provides significant gains over existing methods
while relying entirely on off-the-shelf models. The
running time is also significantly lower since we
require only two invocations of sequence models
unlike (Vamvas and Sennrich, 2022).

4 Experiments

We evaluate our method on three datasets and com-
pare with two existing methods.

Datasets We used English-German and Chinese-
English machine translations from the WMT 2020
news translation task Barrault et al. (2020) along
with annotations made by Freitag et al. (2021).
The train and test splits are exactly the same as
in Vamvas and Sennrich (2022).We introduce a
new English-Hindi dataset of error tagged source
words on 2000 sentences chosen from the IITB
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Figure 2: The ROC curves on testset of the language pairs English-German, Chinese-English and English-Hindi
where the unconditional probabilities are re-calibrated with temperatures 3.5, 4.0 and 1.5 respectively.

English-Hindi Parallel corpus (Kunchukuttan et al.,
2018) and translated using Marian NMT model
(Junczys-Dowmunt et al., 2018). More details of
the sentence selection and human annotation pro-
cess appear in the Appendix. A summary of the
statistics of all three datasets appear in Table 5 in
the Appendix.

Methods compared We compare our method
Target-lift against these two recent methods.
Supervised baseline:(Zhou et al., 2021; Tuan et al.,
2021) that assigns word-scores using a custom
model trained on synthetic data. We reproduce the
numbers from Vamvas and Sennrich (2022) that
implements these models following the predictor-
estimator model in (Kim et al., 2017).
Contrastive Conditioning:(Vamvas and Sennrich,
2022) We use the author’s implementation.

Setup We use mBART50, a seq-to-seq Trans-
former pre-trained (Tang et al., 2021) on 50 lan-
guages and fine-tuned for multilingual machine
translation. The one-to-many2 variant is used if En-
glish is the source language and the many-to-one3

variant if English is the target. We use a mBART50
model4 pretrained for the causal language mod-
elling task to compute unconditional probability.
Before softmax, we scale the logits vector of the
causal model using a temperature selected using
the validation set of that pair.

4.1 Overall Results

Table 1 presents the overall results. For En-De
and Zh-En we report sentence-level F1 scores of
omission detection following earlier work. For

2https://huggingface.co/facebook/
mbart-large-50-one-to-many-mmt

3https://huggingface.co/facebook/
mbart-large-50-many-to-one-mmt

4https://huggingface.co/docs/transformers/
v4.19.4/en/model_doc/mbart#transformers.
MBartForCausalLM

EN-DE ZH-EN EN-HI

20

30

40

F1
Contrastive conditioning Conditional Probability
Target-lift(un-calibrated) Target-lift

Figure 3: F1 with different variants of our method com-
pared against SOTA Contrastive Conditioning method.
Variants are: (1) Only conditional probabilities from a
reverse translation model and (2) Uncalibrated version
of our method (Section 4.2).

En-Hi we report word-level errors since 82% test
sentences in the dataset contains word errors unlike
the other two where less than 16% have errors. Ob-
serve that on all three datasets our method provides
significantly higher F1 than existing methods. On
En-Hi, where we measure word-level F1, the differ-
ences are particularly striking. Figure 2 shows the
ROC curves for all the language pairs and shows
that Target-lift dominates Contrastive conditioning
across different values of thresholds. Table 1 shows
that in terms of running time Target-lift that scores
all words in two calls to language models, is signif-
icantly faster than Contrastive Conditioning, that
requires as many calls to the translation model as
the number of omission source candidates. In the
Appendix we present anecdotes to further demon-
strate the working of Target-lift.

4.2 Ablation study

Effect of Calibration We also compare our
method with ablations on the different compo-
nents of its design. (1) Scoring purely based on
reverse conditional probability Pr(xi|ŷ,x<i) and
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(2) Not calibrating the unconditional probability.
Figure 3 shows that both variants are much worse
than Target-lift. Interestingly, in all cases the Con-
trastive Conditioning method is even worse than
simply scoring on reverse conditional probability.

Method of Aggregating subword probabilities
We compare different subword aggregation meth-
ods: (1) First subword probability (default), (2)
Product of subword probabilities, and (3) Minim-
ium of subword probabilities in Table 2. We find
that our approach of using the First subword pro-
vides best performance overall, possibly because
the probability of subsequent subwords are often
strongly dependent on the first subword.

Language Aggregation Prec- Rec- F1Pair Method ision all

En-De
First 24.7 46.8 32.4
Product 21.1 43.6 28.5
Minimum 21.8 46.8 29.7

En-Hi
First 22.5 41.2 29.1
Product 21.8 43.1 29.0
Minimum 22.2 42.0 29.0

Table 2: Precision Recall and F1 values of language
pairs English-German and English-Hindi on Devset for
different subword probabilities aggregation methods.
For Chinese there was no need for subword aggregation
since it was a character-level model.

Langu- Comparison Prec- Rec- F1age Pair Method ision all

En-De Difference 24.7 46.8 32.4
Relative difference 24.7 39.4 30.3
Ratio of Probabilities 19.9 42.6 27.1

En-Zh Difference 27.9 70.3 39.9
Relative difference 27.6 66.0 38.9
Ratio of Probabilities 28.2 64.9 39.3

Table 3: Precision Recall and F1 values of language
pairs English-German and Chinese-English on Devset
for different methods of comparing probabilities.

Method of comparing probabilities In Table 3
we evaluate alternative methods of comparing the
conditional and unconditional probabilities: differ-
ence (default), ratio, relative difference. We found
the best results with the difference of probabilities
as used in Equation 2.

Masking multiple words One concern we had
with Target-lift was that if a word xi is strongly
dependent on xi−1 then both conditional and un-
conditional probabilities will be similar irrespective
of the quality of translation. To address this, we

explored another variant where we masked word
xi−1 too when calculating both conditional and un-
conditional probabilities. Comparing results of this
method in Table 4 with those of our default in
Table 1 show that simple masking of the preceding
words does not work, and more evolved strategies
may need to be explored in the future.

Language Pairs Precision Recall F1
En-De 9.6 75.3 17.1
Zh-En 18.0 81.0 29.5
En-Hi 18.8 69.1 29.6

Table 4: Precision Recall and F1 of all language pairs
on Testset when xi−1 word is also masked while calcu-
lating both conditional and unconditional probabilities.

4.3 Discussion of Limitations

Our method could mishandle idiomatic phrases
and we show one example in Figure 4. Although
"lucky escape" is correctly translated Target-lift
still tags it but not "lucky". Another limitation of
any word-based method is that subtle mistakes in
placement of prepositions and other connectives
may be missed. In example 2 of Figure 4, the
sense of "to set [] in place" is missed.

Figure 4: English-Hindi sentence pairs where Target-lift
fails on some cases.

5 Conclusions and Limitations

We presented a simple method of assigning qual-
ity scores to source words in a translation model
as the lift of the conditional probability from a
reverse translation model, over the unconditional
probability from the language model. In spite of its
simplicity, our method is more accurate and faster
than state-of-the-art methods, and does not require
training any special models. We also release a new
dataset of word-level omissions and mistranslations
on a new language pair.
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6 Appendix

Dataset split
Number of segments

With an
Total omission error

En-De Dev 1418 187
En-De Test 4839 484
Zh-En Dev 1999 516
Zh-En Test 8851 1569
En-Hi Dev 500 350
En-Hi Test 1500 1233

Table 5: Statistics for the three datasets used in our
experiments. The validation-test splits for the first two
datasets are the same as in (Vamvas and Sennrich, 2022).
The English-Hindi dataset is introduced by us in this
paper.

English-Hindi Dataset Annotations From the
En-Hi IITB parallel corpus we filtered 2000 sen-
tences according to length (8-24 words) and num-
ber of un-aligned words (5 and more) over align-
ments computed using Awesome align Dou and
Neubig (2021). The selected sentence pairs along
with generated translation(using Marian NMT) are
given to two human annotators. They tagged omit-
ted and mistranslated words as erroneous. The first
500 sentences are set as validation set and rest used
as test set.

6.1 Examples of Errors predicted by
Target-lift
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