@inproceedings{han-etal-2022-towards,
title = "Towards Compositional Generalization in Code Search",
author = "Han, Hojae and
Hwang, Seung-won and
Lu, Shuai and
Duan, Nan and
Choi, Seungtaek",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.737",
doi = "10.18653/v1/2022.emnlp-main.737",
pages = "10743--10750",
abstract = "We study compositional generalization, which aims to generalize on unseen combinations of seen structural elements, for code search. Unlike existing approaches of partially pursuing this goal, we study how to extract structural elements, which we name a template that directly targets compositional generalization. Thus we propose CTBERT, or Code Template BERT, representing codes using automatically extracted templates as building blocks. We empirically validate CTBERT on two public code search benchmarks, AdvTest and CSN. Further, we show that templates are complementary to data flow graphs in GraphCodeBERT, by enhancing structural context around variables.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2022-towards">
<titleInfo>
<title>Towards Compositional Generalization in Code Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hojae</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-won</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuai</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nan</namePart>
<namePart type="family">Duan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seungtaek</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study compositional generalization, which aims to generalize on unseen combinations of seen structural elements, for code search. Unlike existing approaches of partially pursuing this goal, we study how to extract structural elements, which we name a template that directly targets compositional generalization. Thus we propose CTBERT, or Code Template BERT, representing codes using automatically extracted templates as building blocks. We empirically validate CTBERT on two public code search benchmarks, AdvTest and CSN. Further, we show that templates are complementary to data flow graphs in GraphCodeBERT, by enhancing structural context around variables.</abstract>
<identifier type="citekey">han-etal-2022-towards</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.737</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.737</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>10743</start>
<end>10750</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Compositional Generalization in Code Search
%A Han, Hojae
%A Hwang, Seung-won
%A Lu, Shuai
%A Duan, Nan
%A Choi, Seungtaek
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F han-etal-2022-towards
%X We study compositional generalization, which aims to generalize on unseen combinations of seen structural elements, for code search. Unlike existing approaches of partially pursuing this goal, we study how to extract structural elements, which we name a template that directly targets compositional generalization. Thus we propose CTBERT, or Code Template BERT, representing codes using automatically extracted templates as building blocks. We empirically validate CTBERT on two public code search benchmarks, AdvTest and CSN. Further, we show that templates are complementary to data flow graphs in GraphCodeBERT, by enhancing structural context around variables.
%R 10.18653/v1/2022.emnlp-main.737
%U https://aclanthology.org/2022.emnlp-main.737
%U https://doi.org/10.18653/v1/2022.emnlp-main.737
%P 10743-10750
Markdown (Informal)
[Towards Compositional Generalization in Code Search](https://aclanthology.org/2022.emnlp-main.737) (Han et al., EMNLP 2022)
ACL
- Hojae Han, Seung-won Hwang, Shuai Lu, Nan Duan, and Seungtaek Choi. 2022. Towards Compositional Generalization in Code Search. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10743–10750, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.