@inproceedings{ge-etal-2022-edgeformer,
title = "{E}dge{F}ormer: A Parameter-Efficient Transformer for On-Device Seq2seq Generation",
author = "Ge, Tao and
Chen, Si-Qing and
Wei, Furu",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.741",
doi = "10.18653/v1/2022.emnlp-main.741",
pages = "10786--10798",
abstract = "We introduce EdgeFormer {--} a parameter-efficient Transformer for on-device seq2seq generation under the strict computation and memory constraints. Compared with the previous parameter-efficient Transformers, EdgeFormer applies two novel principles for cost-effective parameterization, allowing it to perform better given the same parameter budget; moreover, EdgeFormer is further enhanced by layer adaptation innovation that is proposed for improving the network with shared layers.Extensive experiments show EdgeFormer can effectively outperform previous parameter-efficient Transformer baselines and achieve competitive results under both the computation and memory constraints. Given the promising results, we release EdgeLM {--} the pretrained version of EdgeFormer, which is the first publicly available pretrained on-device seq2seq model that can be easily fine-tuned for seq2seq tasks with strong results, facilitating on-device seq2seq generation in practice.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ge-etal-2022-edgeformer">
<titleInfo>
<title>EdgeFormer: A Parameter-Efficient Transformer for On-Device Seq2seq Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Ge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Si-Qing</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Furu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce EdgeFormer – a parameter-efficient Transformer for on-device seq2seq generation under the strict computation and memory constraints. Compared with the previous parameter-efficient Transformers, EdgeFormer applies two novel principles for cost-effective parameterization, allowing it to perform better given the same parameter budget; moreover, EdgeFormer is further enhanced by layer adaptation innovation that is proposed for improving the network with shared layers.Extensive experiments show EdgeFormer can effectively outperform previous parameter-efficient Transformer baselines and achieve competitive results under both the computation and memory constraints. Given the promising results, we release EdgeLM – the pretrained version of EdgeFormer, which is the first publicly available pretrained on-device seq2seq model that can be easily fine-tuned for seq2seq tasks with strong results, facilitating on-device seq2seq generation in practice.</abstract>
<identifier type="citekey">ge-etal-2022-edgeformer</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.741</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.741</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>10786</start>
<end>10798</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EdgeFormer: A Parameter-Efficient Transformer for On-Device Seq2seq Generation
%A Ge, Tao
%A Chen, Si-Qing
%A Wei, Furu
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F ge-etal-2022-edgeformer
%X We introduce EdgeFormer – a parameter-efficient Transformer for on-device seq2seq generation under the strict computation and memory constraints. Compared with the previous parameter-efficient Transformers, EdgeFormer applies two novel principles for cost-effective parameterization, allowing it to perform better given the same parameter budget; moreover, EdgeFormer is further enhanced by layer adaptation innovation that is proposed for improving the network with shared layers.Extensive experiments show EdgeFormer can effectively outperform previous parameter-efficient Transformer baselines and achieve competitive results under both the computation and memory constraints. Given the promising results, we release EdgeLM – the pretrained version of EdgeFormer, which is the first publicly available pretrained on-device seq2seq model that can be easily fine-tuned for seq2seq tasks with strong results, facilitating on-device seq2seq generation in practice.
%R 10.18653/v1/2022.emnlp-main.741
%U https://aclanthology.org/2022.emnlp-main.741
%U https://doi.org/10.18653/v1/2022.emnlp-main.741
%P 10786-10798
Markdown (Informal)
[EdgeFormer: A Parameter-Efficient Transformer for On-Device Seq2seq Generation](https://aclanthology.org/2022.emnlp-main.741) (Ge et al., EMNLP 2022)
ACL