@inproceedings{murrugarra-llerena-etal-2022-improving,
title = "Improving Embeddings Representations for Comparing Higher Education Curricula: A Use Case in Computing",
author = "Murrugarra-Llerena, Jeffri and
Alva-Manchego, Fernando and
Murrugarra-LLerena, Nils",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.776/",
doi = "10.18653/v1/2022.emnlp-main.776",
pages = "11299--11307",
abstract = "We propose an approach for comparing curricula of study programs in higher education. Pre-trained word embeddings are fine-tuned in a study program classification task, where each curriculum is represented by the names and content of its courses. By combining metric learning with a novel course-guided attention mechanism, our method obtains more accurate curriculum representations than strong baselines. Experiments on a new dataset with curricula of computing programs demonstrate the intuitive power of our approach via attention weights, topic modeling, and embeddings visualizations. We also present a use case comparing computing curricula from USA and Latin America to showcase the capabilities of our improved embeddings representations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="murrugarra-llerena-etal-2022-improving">
<titleInfo>
<title>Improving Embeddings Representations for Comparing Higher Education Curricula: A Use Case in Computing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeffri</namePart>
<namePart type="family">Murrugarra-Llerena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fernando</namePart>
<namePart type="family">Alva-Manchego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Murrugarra-LLerena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an approach for comparing curricula of study programs in higher education. Pre-trained word embeddings are fine-tuned in a study program classification task, where each curriculum is represented by the names and content of its courses. By combining metric learning with a novel course-guided attention mechanism, our method obtains more accurate curriculum representations than strong baselines. Experiments on a new dataset with curricula of computing programs demonstrate the intuitive power of our approach via attention weights, topic modeling, and embeddings visualizations. We also present a use case comparing computing curricula from USA and Latin America to showcase the capabilities of our improved embeddings representations.</abstract>
<identifier type="citekey">murrugarra-llerena-etal-2022-improving</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.776</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.776/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>11299</start>
<end>11307</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Embeddings Representations for Comparing Higher Education Curricula: A Use Case in Computing
%A Murrugarra-Llerena, Jeffri
%A Alva-Manchego, Fernando
%A Murrugarra-LLerena, Nils
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F murrugarra-llerena-etal-2022-improving
%X We propose an approach for comparing curricula of study programs in higher education. Pre-trained word embeddings are fine-tuned in a study program classification task, where each curriculum is represented by the names and content of its courses. By combining metric learning with a novel course-guided attention mechanism, our method obtains more accurate curriculum representations than strong baselines. Experiments on a new dataset with curricula of computing programs demonstrate the intuitive power of our approach via attention weights, topic modeling, and embeddings visualizations. We also present a use case comparing computing curricula from USA and Latin America to showcase the capabilities of our improved embeddings representations.
%R 10.18653/v1/2022.emnlp-main.776
%U https://aclanthology.org/2022.emnlp-main.776/
%U https://doi.org/10.18653/v1/2022.emnlp-main.776
%P 11299-11307
Markdown (Informal)
[Improving Embeddings Representations for Comparing Higher Education Curricula: A Use Case in Computing](https://aclanthology.org/2022.emnlp-main.776/) (Murrugarra-Llerena et al., EMNLP 2022)
ACL