
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 11548 - 11562
December 7-11, 2022 ©2022 Association for Computational Linguistics

Diverse Parallel Data Synthesis for Cross-Database Adaptation of
Text-to-SQL Parsers

Abhijeet Awasthi Ashutosh Sathe Sunita Sarawagi
Indian Institute of Technology Bombay, India

{awasthi,absathe,sunita}@cse.iitb.ac.in

Abstract

Text-to-SQL parsers typically struggle with
databases unseen during the train time. Adapt-
ing parsers to new databases is a challeng-
ing problem due to the lack of natural lan-
guage queries in the new schemas. We present
REFILL, a framework for synthesizing high-
quality and textually diverse parallel datasets
for adapting a Text-to-SQL parser to a tar-
get schema. REFILL learns to retrieve-and-
edit text queries from the existing schemas
and transfers them to the target schema. We
show that retrieving diverse existing text, mask-
ing their schema-specific tokens, and refill-
ing with tokens relevant to the target schema,
leads to significantly more diverse text queries
than achievable by standard SQL-to-Text gen-
eration methods. Through experiments span-
ning multiple databases, we demonstrate that
fine-tuning parsers on datasets synthesized us-
ing REFILL consistently outperforms the prior
data-augmentation methods.

1 Introduction

Natural Language interface to Databases (NLIDB)
that translate text queries to executable SQLs is
a challenging task in the field of Semantic Pars-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Berant et al., 2013). In addition
to understanding the natural language and gener-
ating an executable output, Text-to-SQL also re-
quires the ability to reason over the schema struc-
ture of relational databases. Recently, datasets such
as Spider (Yu et al., 2018) comprising of parallel
(Text,SQL) pairs over hundreds of schemas have
been released, and these have been used to train
state-of-the-art neural Text-to-SQL models (Wang
et al., 2020; Scholak et al., 2021a; Rubin and
Berant, 2021; Scholak et al., 2021b; Xu et al.,
2021). However, several studies have indepen-
dently shown that such Text-to-SQL models fail
catastrophically when evaluated on unseen schemas
from the real-world databases (Suhr et al., 2020;

Lee et al., 2021; Hazoom et al., 2021). Adapting
existing parsers to new schemas is challenging due
to the lack of parallel data for fine-tuning the parser.

Synthesizing parallel data, that is representative
of natural human generated queries (Wang et al.,
2015; Herzig and Berant, 2019), is a long-standing
problem in semantic parsing. Several methods
have been proposed for supplementing with syn-
thetic data, ranging from grammar-based canoni-
cal queries to full-fledged conditional text genera-
tion models (Wang et al., 2015; Herzig and Berant,
2019; Zhong et al., 2020; Yang et al., 2021; Zhang
et al., 2021; Wang et al., 2021). For Text-to-SQL,
data-augmentation methods are primarily based on
training an SQL-to-Text model using labeled data
from pre-existing schemas, and generating data in
the new schemas. We show that the text gener-
ated by these methods, while more natural than
canonical queries, lacks the rich diversity of natu-
ral multi-user queries. Fine-tuning with such data
often deteriorates the model performance since the
lack of diversity leads to a biased model.

We propose a framework called REFILL (§ 2)
for generating diverse text queries for a given SQL
workload that is often readily available (Baik et al.,
2019). REFILL leverages parallel datasets from
several existing schemas, such as Spider (Yu et al.,
2018), to first retrieve a diverse set of text paired
with SQLs that are structurally similar to a given
SQL q (§ 2.1). Then, it trains a novel schema trans-
lator model for converting the text of the training
schema to the target schema of q. The schema
translator is decomposed into a mask and fill
step to facilitate training without direct parallel
examples of schema translation. Our design of
the mask module and our method of creating la-
beled data for the fill module entails non-trivial
details that we explain in this paper (§ 2.2). RE-
FILL also incorporates a method of filtering-out
inconsistent (Text,SQL) pairs using an independent
binary classifier (§ 2.3), that provides more useful

11548



quality scores, than the cycle-consistency based fil-
tering (Zhong et al., 2020). Our approach is related
to retrieve-and-edit models that have been used
for semantic parsing (Hashimoto et al., 2018), dia-
logue generation (Chi et al., 2021), translation (Cai
et al., 2021), and question answering (Karpukhin
et al., 2020). However, our method of casting the
"edit" as a two-step mask-and-fill schema transla-
tion model is different from the prior work.

We summarize our contributions as follows:
(i) We propose the idea of retrieving and editing
natural text from several existing schemas for trans-
ferring it to a target schema, obtaining higher text
diversity compared to the standard SQL-to-Text
generators. (ii) We design strategies for masking
schema-specific words in the retrieved text and
training the REFILL model to fill in the masked
positions with words relevant to the target schema.
(iii) We filter high-quality parallel data using a bi-
nary classifier and show that it is more efficient
than existing methods based on cycle-consistency
filtering. (iv) We compare REFILL with prior data-
augmentation methods across multiple schemas
and consistently observe that fine-tuning Text-to-
SQL parsers on data generated by REFILL leads to
more accurate adaptation.

2 Diverse data synthesis with REFILL

Our goal is to generate synthetic parallel data to
adapt an existing Text-to-SQL model to a target
schema unseen during training. A Text-to-SQL
model M : X ,S 7→ Q maps a natural language
question x ∈ X for a database schema s ∈ S,
to an SQL query q̂ ∈ Q. We assume a Text-
to-SQL model M trained on a dataset Dtrain =
{(xi, si, qi)}Ni=1 consisting of text queries xi for a
database schema si, and the corresponding gold
SQLs qi. The train set Dtrain typically consists of
examples from a wide range of schemas si ∈ Strain.
For example, the Spider dataset (Yu et al., 2018)
contains roughly 140 schemas in the train set. We
focus on adapting the model M to perform well
on a target schema s different from the training
schemas in Strain. To achieve this, we present a
method of generating synthetic data Dsyn of Text-
SQL pairs containing diverse text queries for the
target schema s. We fine-tune the model M on
Dsyn to adapt it to the schema s. Our method is
agnostic to the exact model used for Text-to-SQL
parsing. We assume that on the new schema s we
have a workload QWs of SQL queries. Often in

Algorithm 1: Data Synthesis with REFILL

1 input: QWs,M, Dtrain
2 Dsyn ← ϕ
3 for q ← SampleSQLQueries (QWs) do
4 {qr, xr} ← RetrieveRelatedPairs(q,Dtrain)

5 {xmasked
r } ← MaskSchemaTokens({qr, xr})

6 {xq
r} ← EditAndFill({q, xmasked

r })
7 Dsyn ← Dsyn ∪ Filter(q, {xq

r})
8 Mnew ← fine-tune(M,Dsyn)

existing databases a substantial SQL workload is
already available in the query logs at the point a DB
manager decides to incorporate the NL querying
capabilities (Baik et al., 2019). The workload is
assumed to be representative but not exhaustive. In
the absence of a real workload, a grammar-based
SQL generator may be used (Zhong et al., 2020;
Wang et al., 2021).

Figure 1 and Algorithm 1 summarizes our
method for converting a workload QWs of SQL
queries into a synthetic dataset Dsyn of Text-SQL
pairs containing diverse text queries. Given an
SQL query q ∈ QWs for the target schema s,
our method first retrieves related SQL-Text pairs
{qr, xr}Rr=1 from Dtrain on the basis of a tree-edit-
distance measure such that the SQLs {qr}Rr=1 in
the retrieved pairs are structurally similar to the
SQL q (§ 2.1). We then translate each retrieved text
query xr so that its target SQL changes from qr to
q on schema s (§ 2.2). We decompose this task into
two steps: masking out schema specific tokens in
xr, and filling the masked text to make it consistent
with q using a conditional text generation model B
like BART (Lewis et al., 2020). The translated text
may be noisy since we do not have direct super-
vision to train such models. Thus, to improve the
overall quality of the synthesized data we filter out
the inconsistent SQL-Text pairs using an indepen-
dent binary classifier (§ 2.3). Finally, we adapt the
Text-to-SQL model M for the target schema s by
fine-tuning it on the diverse, high-quality filtered
data Dsyn synthesized by REFILL.

2.1 Retrieving related queries
Given an SQL q ∈ QWs sampled from SQL work-
load, we extract SQL-Text pairs {qr, xr} ∈ Dtrain,
from the train set such that the retrieved SQLs
{qr} are structurally similar to the SQL q. We uti-
lize tree-edit-distance (Pawlik and Augsten, 2015,
2016) between the relational algebra trees of SQLs
q and qr — smaller distance implies higher struc-
tural similarity. Since the retrieved SQLs come

11549



(SQL,Text) pairs from
existing datasets

(e.g. spider)

Query workload of the
new database 

SELECT country,
COUNT(*) FROM

singer GROUP BY
country

SELECT denomination,
COUNT(*) FROM school
GROUP BY denomination 

SELECT country_id,
COUNT(*) FROM

locations GROUP BY
country_id

SELECT location,
COUNT(*) FROM cinema
GROUP BY location 

SELECT nationality,
COUNT(*) FROM host

GROUP BY nationality

SELECT country,
COUNT(*) FROM member

GROUP BY country 

For each denomination,
return the denomination and

count of schools with that
denomination

Give the country ID and
corresponding count of cities

in each country

Show each location and the
number of cinema there

How many hosts does each
nationality have? List

nationality and the count

Show the different countries
and the number of members

from each

Retrieved (SQL,Text) pairs based on Tree Edit Distance
 

For each <mask>, return the
<mask> and count of

<mask> with that <mask>

Give the <mask> <mask>
and corresponding count of

<mask> in each <mask>

Show each <mask> and the
number of <mask> there

How many <mask> does
each <mask> have? List
<mask> and the <mask>

Show the different <mask>
and the number of <mask>

from each

Masked Texts
 

For each country, return the
country and count of singers

with that country

Give the country name and
corresponding count of
singers in each country

Show each country and the
number of singers there

How many singers does each
country have? List country

and the count

Show the different countries
and the number of singers

from each

Generated Diverse Text
 

Synthesized parallel
data with diverse text

queries for new
database

Binary
Classifier

1

2

Retrieval
Masking

Fill masks using
BART

Filtering using
binary classifier 

4

BART 3

Figure 1: Diverse parallel data synthesis by retrieving-and-editing existing examples using REFILL. Given an SQL
q from a new schema, REFILL (1) Retrieves SQL-Text pairs from an existing dataset (§ 2.1) where the SQLs are
structurally similar to q (indicated by dashed lines). (2) Since the retrieved text come from a different schema, we
mask-out the schema-specific words (§ 2.2). (3) The masked text and the SQL q are then translated into the target
schema via an Edit and Fill step that uses a conditional text generation model like BART (§ 2.2). In this way, we
transfer the text from multiple existing schemas to generate diverse text for the new schemas. (4) Finally, we use a
binary classifier as a filtering model to retain only the consistent Text-SQL pairs in the output dataset (§ 2.3).

=
0.0

≤
0.05

≤
0.1

≤
0.2

≤
0.5

≤
1.0

Mean Tree Edit Distance

0.00

0.25

0.50

0.75

F
ra

ct
io

n
of

to
ta

l
S

Q
L

s

Figure 2: Frequency distribution of average tree-edit-
distance between SQLs and their three nearest neigh-
bours from other schemas within Spider’s train set.

from different schemas, we modify the tree-edit-
distance algorithm to ignore the schema names and
the database values. The tree-edit-distance is fur-
ther normalized by the size of the larger tree. We
only consider the {qr, xr} pairs where the SQLs
{qr} have a distance of less than 0.1 w.r.t. the SQL
q. Within datasets like Spider that span hundreds
of schemas, it is often possible to find several SQLs
structurally similar to a given SQL q. For exam-
ple, in Spider we found that 76% of the train SQLs
contain at least three zero-distance (structurally
identical) neighbours in other schemas. In Figure 2,
we present more detailed statistics.

2.2 Translating text of related queries
Our next goal is to translate the retrieved xr from
being a text for SQL qr to a text x̂ for SQL q ,
where q ≈ qr structurally. However, we do not
have a readily labeled dataset to learn a model that
translates xr to x̂ while being consistent with q. We
therefore decompose this task into two steps: 1) A
simpler task of masking schema-specific tokens in
xr to get a template xmasked

r and 2) A conditional
text generation model that maps (xmasked

r , q) to the
text x̂ consistent with q, by filling the masked posi-
tions in xmasked

r as per q. We re-purpose Dtrain to get
indirect supervision for training the text generation
model. We now present each step in detail.

Masking the retrieved text Converting the re-
trieved text queries {xr} to masked templates
{xmasked

r } is a critical component of REFILL’s
pipeline since irrelevant tokens like references to
schema elements of the original database can po-
tentially misguide the text generation module. Our
initial approach was to mask tokens based on a
match of text tokens with schema names and man-
ually refined schema-to-text linked annotations as
in Lei et al. (2020). However, this approach failed
to mask all schema-related terms since their occur-
rences in natural text often differed significantly
from schema names in the database. Table A7
shows some anecdotes. Consequently, we designed

11550



a simple frequency-based method of masking that
is significantly more effective for our goal of us-
ing the masked text to just guide the diversity. For
each word that appears in the text queries of the
train set, we count the number of distinct databases
where that word gets mentioned at least once. For
example, common words like {‘show’, ‘what’,
‘list’, ‘order’} get mentioned in more than
90% of the schemas, and domain specific words
like {‘countries’, ‘government’} occur only
in text queries of a few schemas. We mask out
all the words that appear in less than 50% of the
schemas. The words to be masked are replaced by a
special token MASK, and consecutive occurrences of
MASK are collapsed into a single MASK token. Thus
we obtain masked templates {xmasked

r } retaining
minimal information about their original schema.

Editing and Filling the masked text Given a
masked template xmasked

r , and an SQL query q,
we wish to edit and fill the masked portions in
xmasked
r to make it consistent with the SQL q. We

utilize a conditional text generation model B like
BART (Lewis et al., 2020) for this purpose. We
first convert q into a pseudo-English representation
qEng similar to Shu et al. (2021), to make it easier
for B to encode q. In addition, we wrap the table,
column, or value tokens in qEng with special tokens
to provide explicit signals to the text generation
model B that such tokens are likely to appear in
the output text x̂. Next, we concatenate the tokens
in xmasked

r and qEng for jointly encoding them as
an input to B. The output of B’s decoder is text x̂,
which is expected to be consistent with the SQL q.

Since we do not have direct supervision to fine-
tune B for this task, we present a method of re-
purposing Dtrain for fine-tuning B. Dtrain contains
SQL-Text pairs (qi, xi) from various schemas si.
A Naïve way to train B is to provide [xmasked

i |qEng
i ],

the concatenation of xmasked
i and q

Eng
i as an input

to the encoder and maximize the likelihood of xi
in the decoder’s output. This way the decoder of
B learns to refill the masked tokens in xmasked

i by
attending to q

Eng
i to recover xi in the output. While

useful for learning to refill the masked positions,
this Naïve method of training B is mismatched
from its use during inference in two ways: (i) For a
given SQL q, REFILL might fail to retrieve a sim-
ilar structure neighbour of qi from Dtrain. In such
cases, B should be capable of falling back to pure
SQL-to-Text generation mode to directly translate
q into x̂. (ii) During inference, xmasked

r and q come

from different schemas. However, during Naïve
training, the masked text xmasked

i and the SQL qi
are derived from the same example (qi, xi). To
address these two limitations, we train B in a more
Robust manner as follows: (a) For a random one-
third of the train steps we train B in the Naïve way,
allowing B to learn the filling of the masked tokens
using q

Eng
i . (b) For another one-third, we pass only

q
Eng
i as an input and maximize the likelihood of xi.

This ensures that model is capable of generating the
text from the q

Eng
i alone, if the templates xmasked

i

are unavailable or noisy. (c) For the remaining one-
third, we first retrieve an SQL-Text pair (qj , xj),
from a different schema such that the SQL qj is
structurally similar to qi (§ 2.1), and the word edit
distance between the masked templates xmasked

i and
xmasked
j is also small. We can then replace xmasked

i

with xmasked
j and encode [xmasked

j |qEng
i ] as an input

to B and maximize the likelihood of xi in the de-
coder’s output. This step makes the training more
consistent with the inference, as xmasked

j and q
Eng
i

now come from different schemas. In § 5.4, we jus-
tify training Robustly compared to Naïve training.

2.3 Filtering the Generated Text

Since the data synthesized using REFILL is used
to fine-tune a downstream Text-to-SQL parser, we
learn a Filtering model F : (X ,Q) 7→ R to discard
inconsistent examples from the generated dataset.
F assigns lower scores to inconsistent Text-SQL
pairs. For each SQL q ∈ QWs, we select the top-5
sentences generated by REFILL and discard all the
sentences that are scored below a fixed threshold
as per the filtering model. Existing work depended
on a trained Text-to-SQL parser M to assign cycle-
consistency scores (Zhong et al., 2020). However,
we show that cycle-consistency filtering favors text
on which M already performs well, and hence does
not result in a useful dataset for fine-tuning M.

We instead train a filtering model F as a binary
classifier, independent of M. The Text-SQL pairs
{(xi, qi)} in the training set Dtrain, serve as pos-
itive (consistent) examples and we synthetically
generate the negative (inconsistent) examples as
follows: (i) Replace DB values in the SQL qi with
arbitrary values sampled from the same column of
the database. (ii) Replace SQL-specific tokens in
qi with their corresponding alternates e.g. replace
ASC with DESC, or ‘>’ with ‘<’. (iii) Cascade previ-
ous two perturbations. (iv) Replace the entire SQL
qi with a randomly chosen SQL qj from the same

11551



schema. (v) Randomly drop tokens in the text query
xi with a fixed probability of 0.3. (vi) Shuffle a
span of tokens in the text query xi, with span length
set to 30% of the length of xi. Thus, for a given
Text-SQL pair (xi, qi) we obtain six corresponding
negative pairs {(xnj , qnj )}6j=1. Let si be the score
provided by the filtering model for the original pair
(xi, qi) and {sj}6j=1 be the scores assigned to the
corresponding negative pairs {(xnj , qnj )}6j=1. We
supervise the scores from the filtering model us-
ing a binary-cross-entropy loss over the Sigmoid
activations of scores as in Equation 1.

Lbce = − log σ(si)−
6∑

j=1

log σ(1− sj) (1)

To explicitly contrast an original pair with its cor-
responding negative pairs we further add another
Softmax-Cross-Entropy loss term.

Lxent = − log
exp(si)

exp(si) +
∑6

j=1 exp(sj)
(2)

3 Related Work

SQL-to-Text generation Many prior works per-
form training data augmentation via pre-trained
text generation models that translate SQLs into nat-
ural text (Guo et al., 2018; Zhong et al., 2020; Shi
et al., 2020; Zhang et al., 2021; Wang et al., 2021;
Yang et al., 2021; Shu et al., 2021). For example,
Wang et al. (2021) fine-tune BART (Lewis et al.,
2020) on parallel SQL-Text pairs to learn an SQL-
to-Text translation model. Shu et al. (2021) pro-
pose a similar model that is trained in an iterative-
adversarial way along with an evaluator model. The
evaluator learns to identify inconsistent SQL-Text
pairs, similar to our filtering model. To retain high
quality synthesized data Zhong et al. (2020) ad-
ditionally filter out the synthesized pairs using a
pre-trained Text-to-SQL model based on cycle con-
sistency, that we show to be sub-optimal (§ 5.5).
The SQL workload in most of the prior work
was typically sampled from hand-crafted templates
or a grammar like PCFG induced from existing
SQLs, or crawling SQLs from open-source reposi-
tories Shi et al. (2020). However, database practi-
tioners have recently drawn attention to the fact that
SQL workloads are often pre-existing and should
be utilized (Baik et al., 2019).

Retrieve and Edit Methods Our method is re-
lated to the retrieve-and-edit framework, which has

been previously applied in various NLP tasks. In
Semantic Parsing, question and logical-form pairs
from the training data relevant to the test-input
question are retrieved and edited to generate the
output logical forms in different ways (Shaw et al.,
2018; Das et al., 2021; Pasupat et al., 2021; Gupta
et al., 2021). In machine translation, memory
augmentation methods retrieve-and-edit examples
from translation memory to guide the decoder’s
output (Hossain et al., 2020; Cai et al., 2021). Our
editing step — masking followed by refilling is
similar to style transfer methods that minimally
modify the input sentence with help of retrieved ex-
amples corresponding to a target attribute (Li et al.,
2018). In contrast to learning a retriever, we find
simple tree-edit distance to be an effective metric
for retrieving the relevant examples for our task.

4 Experimental Set-up1

We adapt pretrained Text-to-SQL parsers on multi-
ple database schemas unseen during the train time.
Here, we describe the datasets, models, and evalua-
tion metrics used in our experiments.
Datasets: We primarily experiment with the Spi-
der dataset (Yu et al., 2018). Spider’s train split
contains 7000 Text-to-SQL examples spanning
140 database schemas, and the dev split contains
roughly 1000 examples spanning 20 schemas2.
Since individual schemas in the dev split typically
contain less than 50 examples, to evaluate on a
larger set of examples we adapt and evaluate the
Text-to-SQL parser on groups of similar schemas
instead of individual schemas. We create 4 groups,
with each group having database schemas from
a similar topic. For example, Group-1 consists
of databases {Singer, Orchestra, Concerts}.
We utilize all the available Text-SQL pairs in each
group for evaluation. In appendix Table A.1, we
provide detailed statistics about each group. On av-
erage, each group contains 69 unique SQLs and 131
evaluation examples. To simulate a query workload
QWs for each group, we randomly select 70% of
the available SQLs and replace the constant-values
in the SQLs with values sampled from their corre-
sponding column in the database. We also evaluate
on query workloads of size 30% and 50% of the
available SQL queries. The SQL queries in the
workload are translated using REFILL or an SQL-
to-Text model, and the resulting Text-SQL pairs are

1 Code: github.com/awasthiabhijeet/refill
2Spider’s test-split is inaccessible as of 10/26/2022

11552

https://github.com/awasthiabhijeet/refill


Group 1 Group 2 Group 3 Group 4 Average
Method EM EX EM EX EM EX EM EX EM EX
BASE-M 80.9 84.3 64.8 67.2 64.0 65.9 45.8 35.8 63.8 63.3
L2S (Wang et al., 2021) 88.7 87.8 61.3 62.1 62.8 61.0 42.5 35.0 63.8 61.4
GAZP (Zhong et al., 2020) 85.2 85.2 58.9 66.9 70.1 60.5 52.5 40.8 66.6 63.3
SNOWBALL (Shu et al., 2021) 85.2 87.8 59.7 60.5 64.0 65.9 44.2 38.3 63.2 63.1
REFILL (Ours) 88.7 87.0 69.7 73.8 73.2 70.1 55.8 45.0 71.8 68.9

Table 1: Results for finetuning a base semantic parser (SMBOP) on Text-SQL pairs generated using various
SQL-to-Text baselines and REFILL (§ 5.1). REFILL provides consistent gains over the base model across all the
database groups, while gains from other methods are often negative or small.

then used to fine-tune a base Text-to-SQL parser.
We further experiment with four datasets out-

side Spider in Section 5.6. We work with Geo-
Query (Zelle and Mooney, 1996), Academic (Li
and Jagadish, 2014), IMDB and Yelp (Navid Yagh-
mazadeh and Dillig, 2017). We utilize the pre-
processed version of these datasets open-sourced
by Yu et al. (2018). In appendix Table A2, we
present statistics about each of the four datasets.
Text-to-SQL parser: We experiment with SM-
BOP (Rubin and Berant, 2021) as our base Text-
to-SQL parser, and utilize author’s implementation.
The SMBOP model is initialized with a ROBERTA-
BASE model, followed by four RAT layers, and
trained on the train split of Spider dataset. The dev
set used used for selecting the best model excludes
data from the four held-out evaluation groups.
Edit and Fill model: We utilize a pre-trained
BART-BASE as our conditional text generation
model for editing and filling the masked text. The
model is fine-tuned using the train split of Spider
dataset as described in Section 2.2
Filtering Model: We train a binary classifier based
on a ROBERTA-BASE checkpoint on Spider’s
train split to filter out inconsistent SQL-Text pairs
as described in Section 2.3.
Baselines: For baseline SQL-to-Text generation
models, we consider recently proposed models like
L2S (Wang et al., 2021), GAZP (Zhong et al.,
2020), and SNOWBALL (Shu et al., 2021). All
the baselines utilize pre-trained language models
like BART (Lewis et al., 2020) or BERT (Devlin
et al., 2018) for translating SQL tokens to natural
text in a standard seq-to-seq set-up. The baselines
mostly differ in the way of encoding SQL tokens
as an input to the language model. In Section 3, we
reviewed the recent SQL-to-Text methods.
Evaluation Metrics We evaluate the Text-to-SQL
parsers using the Exact Set Match (EM), and the
Exection Accuracy (EX) Yu et al. (2018). The EM

metric measures set match for all the SQL clauses
and returns 1 if there is a match across all the
clauses. It ignores the DB-values (constants) in the
SQL query. The EX metric directly compares the
results obtained by executing the predicted query q̂
and the gold query q on the database.

We provide more implementation details includ-
ing the hyperparameter settings in appendix A.5.

5 Results and Analysis

We first demonstrate the effectiveness of the syn-
thetic data generated using REFILL for fine-tuning
Text-to-SQL parsers to new schemas. We compare
with the recent methods that utilize SQL-to-Text
generation for training-data augmentation (§ 5.1).
We then evaluate the intrinsic quality of the syn-
thetic data generated by different methods in terms
of the text diversity and the agreement of the gener-
ated text with the ground truth (§ 5.2). We demon-
strate that higher text diversity results in better per-
formance of the adapted parsers (§ 5.3). We then
justify the key design choices related to masking of
the retrieved text and training of the schema trans-
lator module that improves the quality of REFILL

generated text (§ 5.4). Finally, we demonstrate the
importance of using an independent binary classi-
fier over cycle-consistency filtering (§ 5.5).

5.1 Evaluating adapted parsers

In Table 1, we compare the performance of parsers
fine-tuned on Text-SQL pairs generated using RE-
FILL and other SQL-to-Text generation baselines.
We observe that fine-tuning on high-quality and
diverse text generated by REFILL provides consis-
tent performance gains over the base model across
all the database groups. On average, REFILL im-
proves the base model by 8.0 EM in comparison to
a gain of 2.8 EM by the best baseline (GAZP). We
observe that the gains from baseline methods are

11553



0.3 0.4 0.5 0.6 0.7

Fraction of query workload

60

62

64

66

68

70

72
E

M
on

te
st

se
t

L2S

Snowball

GAZP

ReFill

Figure 3: Average EM performance of Text-to-SQL
models on the four groups vs. the size of SQL work-
load (§ 5.1). Data generated by REFILL using 30% SQL
workload yields better performance than the data from
the existing best baseline utilizing 70% workload.

often small or even negative. REFILL continues
to yield positive gains even for smaller workload
sizes — In Figure 3, we plot the fraction of the total
SQL workload used on the x-axis and the EM of
the fine-tuned parsers averaged across all the four
groups, on the y-axis. When using the data syn-
thesized by REFILL, the performance of the parser
improves steadily with an increasing size of the
SQL workload. In contrast, the baseline SQL-to-
Text generation methods fail to provide significant
improvements. Interestingly, the data synthesized
by REFILL using the 30% SQL workload leads
to better downstream performance of the adapted
parsers than any of the baselines utilizing 70% SQL
workload for SQL-to-Text generation.

5.2 Quality and Diversity of generated text

We explain our gains over existing methods due
to the increased quality and diversity of the gen-
erated text. We measure quality using the BLEU
score of the set S(q) of generated text for an SQL
q, with the gold text of q as reference. To measure
diversity we utilize SelfBLEU (Zhu et al., 2018)
that measures the average BLEU score among text
in S(q). Lower SelfBLEU implies higher diver-
sity. We evaluate on all the gold SQL-Text pairs
available in the Spider’s dev set. In Table 2, we
compare the quality and diversity of the text gen-
erated using REFILL with prior SQL-to-Text gen-
eration methods. For each method we generate 10
hypotheses per SQL query, and pick the hypothesis
with the highest BLEU to report the overall BLEU

Method BLEU ↑ 100-SelfBLEU ↑
(Quality) (Diversity)

Gold-Ref 100 68.8
L2S 38.0 2.2
GAZP 38.8 2.0
SnowBall 40.2 2.8
REFILL 48.6 33.8

Table 2: Comparison of quality (BLEU) and diver-
sity (100-SelfBLEU) scores across various SQL-to-Text
models including REFILL (§ 5.2). Gold-Ref represents
the scores corresponding to the reference text.

2 4 6 8 10

Number of templates

50

60

70

80

90

E
M

on
te

st
se

t

Group 1 Group 2 Group 3 Group 4

Figure 4: Accuracy of fine-tuned parsers Vs. the number
of templates per SQL used by REFILL (§ 5.3).

scores. To allow baselines to generate more di-
verse text than the standard beam search, we utilize
beam-sampling (Fan et al., 2018; Holtzman et al.,
2019). For REFILL, the 10 hypothesis come from
using upto 10 retrieved-and-masked templates. We
observe that our method of masking and refilling
the natural text retrieved from existing datasets al-
lows REFILL to generate higher quality text (+8.4
BLEU) with naturally high text diversity.

5.3 Importance of Text Diversity

Retrieving and editing text from multiple existing
examples enables REFILL to generate diverse text.
In Figure 4, we show that increased diversity of
the generated text leads to improved performance
of the fine-tuned parser. We vary the number of
retrieved-and-masked templates on the x-axis and
plot the performance of the fine-tuned parsers on
the y-axis for each group. To maintain the num-
ber of synthesized examples the same, the product
of beam-samples and the number of retrieved tem-
plates is held constant. We observe that fine-tuning

11554



Naïve Train Robust Train
Schema-Match 37.2 41.8
Frequency 40.2 43.8

Table 3: Analyzing the impact of design choices related
to Schema Translation, by observing BLEU-4 scores of
the text generated by REFILL (§ 5.4). Frequency based
masking and Robust training leads to a higher quality
of the generated text.

the parser on more diverse data generated using 5
retrieved templates per SQL provides consistently
superior EM performance across all the four groups
than using less diverse data obtained by retrieving
just one or two templates per SQL. The consistent
drops in EM while increasing the retrieved tem-
plates from 5 to 10 is explained by the reduction
in text diversity. Using 5 retrieved templates yields
a 100 − SelfBLEU score of 46.7, while with 10
retrieved templates 100 − SelfBLEU reduces to
33.8. This reduction is due to the inclusion of more
similar templates as we increase their number from
5 to 10. Finally, the drop in REFILL’s performance
with reduced text diversity reconfirms the worse
performance of SQL-to-Text baselines reported in
Section 5.1 that do not offer enough text diversity.

5.4 Design choices of Schema Translator

In Section 2.2, we described two important design
choices: (1) Method of masking schema-relevant
tokens and (2) Method of training the Edit-and-Fill
model for editing and refilling the masked text. We
justify these design choices by comparing the qual-
ity of the generated text with each combination of
these choices in Table 3. Comparing across rows
(Schema-Match Vs Frequency), we observe that
Frequency based masking results in 2 to 3 point
improvements in BLEU compared to masking by
matching schema names. Table A7 shows specific
examples where the schema-match method fails
to mask sufficiently. In contrast, even though the
frequency-based method might over-mask it still
suffices for our goal of guiding the text generation
model. Comparing across columns (Naïve Train
Vs. Robust Train) we observe that specifically train-
ing the template filling model for being robust to
the input templates also improves quality of the
generated text by 3.6 to 4.6 points.

5.5 Importance of Filtering model

Cycle-consistency based filtering (Zhong et al.,
2020) rejects a synthesized SQL-Text pair (q, x)

EM EX
BASE-M 45.8 35.8
No Filtering 40.8 31.7
Cycle Consistent 29.2 22.5
Filtering Model 48.3 36.7

Table 4: Using an independent filtering model allows
us to retain more useful training examples than cycle
consistent filtering, leading to better performance of the
fine-tuned Text-to-SQL models (§ 5.5).

if the output SQL q̂ generated by the base Text-to-
SQL parser for the input text x does not match with
the SQL q. We argue that cycle-consistency based
filtering is sub-optimal for two reasons: (i) Data Re-
dundancy: Since the Text-to-SQL parser is already
capable of generating the correct output for the
retained examples, fine-tuning on these examples
does not offer much improvements. (ii) Data Loss:
If the base Text-to-SQL model is weak in parsing
text-queries for the target database, a large por-
tion of potentially useful training examples get fil-
tered out due to cycle-inconsistency. In response,
we train a Filtering model as described in Sec-
tion 2.3. Since our filtering model is independent
of the base parser, it retains many useful generated
examples that might otherwise be filtered out by
cycle-consistency filtering using a weak Text-to-
SQL parser. In appendix Table A6, we provide in-
stances of useful training examples that get filtered
because of cycle-inconsistency, but are retained by
our filtering model. In Table 4, we compare the
base Text-to-SQL parser, with models fine-tuned
without any filtering, with cycle-consistent filter-
ing, and with using our filtering model. We focus
on Group-4 where the base Text-to-SQL parser is
significantly weaker compared to other groups, and
use REFILL to synthesize data for the 30% query
workload. Not using any filtering, or using cycle-
consistent filtering results in worse performance,
while applying our filtering model offers significant
improvements over the base model.

5.6 Experiments on datasets outside Spider

We further validate our method on four single-
database datasets outside Spider, namely Geo-
Query (Zelle and Mooney, 1996), Academic (Li
and Jagadish, 2014), IMDB and Yelp (Navid Yagh-
mazadeh and Dillig, 2017). In Table 5, we first
report the performance of our base Text-to-SQL
parser and observe poor cross-database generaliza-
tion with an average EM of just 9.7. We adapt

11555



Method Geo Acad IMDB Yelp Average
BASE-M 9.8 2.8 19.3 7.2 9.7
L2S 27.9 14.4 24.8 19.8 21.7
GAZP 20.8 16.0 19.3 10.8 16.7
SNOWBALL 25.6 8.8 21.1 18.9 18.6
REFILL(Ours) 30.1 27.6 26.6 29.7 28.5

Table 5: Evaluation on datasets outside Spider. We
continue to observe that fine-tuning on data synthesized
by REFILL offers superior EM performance (§ 5.6).

the base parser by fine-tuning it on the synthetic
datasets generated by REFILL and other base-
lines utilizing 30% of the available SQL work-
load. Table 5 compares the EM accuracy of the
adapted parsers. We continue to observe that fine-
tuning on datasets synthesized by REFILL consis-
tently outperforms prior SQL-to-Text based data-
augmentation baselines. In appendix Table A4, we
provide results for 50% and 70% workload settings.

6 Conclusion

We presented REFILL, a framework for gener-
ating diverse and high quality parallel data for
adapting existing Text-to-SQL parsers to a target
database. REFILL translates a given SQL work-
load into a dataset of Text-SQL pairs containing
diverse text queries. To achieve higher diversity,
REFILL retrieves and edits examples from exist-
ing datasets and transfers them to a target schema.
Through extensive experiments across multiple
databases, we demonstrate that fine-tuning Text-to-
SQL parsers on datasets generated using REFILL

result in more accurate adaptation to target schemas.
Even with smaller SQL workloads REFILL often
outperforms the SQL-to-Text generation baselines
utilizing larger SQL workloads.

7 Limitations

This work focuses on synthesizing parallel data
containing diverse text queries for adapting pre-
trained Text-to-SQL models to new databases.
Thus, our current effort toward diverse text query
generation using REFILL is limited to the Text-to-
SQL semantic parsing task. Extending REFILL

for data-augmentation in other semantic parsing or
question-answering tasks is an exciting direction
we hope to explore as part of future work.

Our experimental set-up assumes a small work-
load of real SQL queries. As per Baik et al. (2019),
a small workload of real SQL queries is a reason-
able assumption since SQL query logs are often

available for existing in-production databases that
are to be supported by a Text-to-SQL service. Syn-
thesizing realistic SQL-query workloads for newly
instantiated databases is a challenging and promis-
ing direction but different from the diverse text-
query generation aspect of our work.

8 Ethical Considerations

Our goal with REFILL is to synthesize parallel data
for adapting Text-to-SQL parsers to new schemas.
We believe that the real-world deployment of Text-
to-SQL or any semantic parser trained on text gen-
erated by language models must go through a care-
ful review of any harmful biases. Also, the intended
users of any Text-to-SQL service must be made
aware that the answers generated by these systems
are likely to be incorrect. We do not immediately
foresee any serious negative implications of the
contributions that we make through this work.

9 Acknowledgements

We thank the reviewers from ACL rolling review
for their insightful and quality feedback. We grate-
fully acknowledge support from IBM Research,
specifically the IBM AI Horizon Networks-IIT
Bombay initiative. Abhijeet thanks Google for sup-
porting his research with Google PhD Fellowship.

References
Christopher Baik, H. V. Jagadish, and Yunyao Li. 2019.

Bridging the semantic gap with SQL query logs in
natural language interfaces to databases. In 35th
IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019, pages
374–385. IEEE.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

Deng Cai, Yan Wang, Huayang Li, Wai Lam, and
Lemao Liu. 2021. Neural machine translation with
monolingual translation memory. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7307–7318. Associ-
ation for Computational Linguistics.

Ethan A Chi, Caleb Chiam, Trenton Chang, Swee Kiat
Lim, Chetanya Rastogi, Alexander Iyabor, Yutong
He, Hari Sowrirajan, Avanika Narayan, Jillian Tang,
et al. 2021. Neural, neural everywhere: Controlled

11556

https://doi.org/10.18653/v1/2021.acl-long.567
https://doi.org/10.18653/v1/2021.acl-long.567


generation meets scaffolded, structured dialogue.
Alexa Prize Proceedings.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum.
2021. Case-based reasoning for natural language
queries over knowledge bases. arXiv preprint
arXiv:2104.08762.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian
Yin, Hong Chi, James Cao, Peng Chen, and Ming
Zhou. 2018. Question generation from sql queries
improves neural semantic parsing. arXiv preprint
arXiv:1808.06304.

Vivek Gupta, Akshat Shrivastava, Adithya Sagar,
Armen Aghajanyan, and Denis Savenkov. 2021.
Retronlu: Retrieval augmented task-oriented seman-
tic parsing. arXiv preprint arXiv:2109.10410.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and
Percy S Liang. 2018. A retrieve-and-edit framework
for predicting structured outputs. Advances in Neural
Information Processing Systems, 31.

Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021.
Text-to-SQL in the wild: A naturally-occurring
dataset based on stack exchange data. In Proceedings
of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021), pages 77–87.
Association for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2019. Don’t para-
phrase, detect! rapid and effective data collection for
semantic parsing. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3810–3820.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Nabil Hossain, Marjan Ghazvininejad, and Luke Zettle-
moyer. 2020. Simple and effective retrieve-edit-
rerank text generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2532–2538.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261–2273. Association
for Computational Linguistics.

Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei
Lu, Min-Yen Kan, and Tat-Seng Chua. 2020. Re-
examining the role of schema linking in text-to-SQL.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6943–6954. Association for Computational
Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics.

Fei Li and H. V. Jagadish. 2014. Constructing an in-
teractive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73–84.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to senti-
ment and style transfer. In NAACL-HLT.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Isil Dillig Navid Yaghmazadeh, Yuepeng Wang and
Thomas Dillig. 2017. Sqlizer: Query synthesis from
natural language. In International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, ACM, pages 63:1–63:26.

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 2021.
Controllable semantic parsing via retrieval augmen-
tation. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.

Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient
computation of the tree edit distance. ACM Transac-
tions on Database Systems (TODS), 40(1):1–40.

Mateusz Pawlik and Nikolaus Augsten. 2016. Tree edit
distance: Robust and memory-efficient. Information
Systems, 56:157–173.

11557

https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
http://doi.org/10.1145/3133887
http://doi.org/10.1145/3133887


Ohad Rubin and Jonathan Berant. 2021. Smbop: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Torsten Scholak, Raymond Li, Dzmitry Bahdanau,
Harm de Vries, and Christopher Pal. 2021a. Duorat:
Towards simpler text-to-sql models. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1313–1321.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021b. Picard - parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira dos
Santos, and Bing Xiang. 2020. Learning con-
textual representations for semantic parsing with
generation-augmented pre-training. arXiv preprint
arXiv:2012.10309.

Chang Shu, Yusen Zhang, Xiangyu Dong, Peng Shi,
Tao Yu, and Rui Zhang. 2021. Logic-consistency
text generation from semantic parses. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4414–4426.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021. Learning to synthesize data for
semantic parsing. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2760–2766.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332–1342, Beijing,
China. Association for Computational Linguistics.

Tomer Wolfson, Jonathan Berant, and Daniel Deutch.
2021. Weakly supervised mapping of natural lan-
guage to sql through question decomposition. ArXiv,
abs/2112.06311.

Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi
Tang, Chenyang Huang, Jackie Chi Kit Cheung, Si-
mon J.D. Prince, and Yanshuai Cao. 2021. Opti-
mizing deeper transformers on small datasets. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2089–
2102. Association for Computational Linguistics.

Wei Yang, Peng Xu, and Yanshuai Cao. 2021. Hier-
archical neural data synthesis for semantic parsing.
arXiv preprint arXiv:2112.02212.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, pages 1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, page
658–666, Arlington, Virginia, USA. AUAI Press.

Ao Zhang, Kun Wu, Lijie Wang, Zhenghua Li, Xinyan
Xiao, Hua Wu, Min Zhang, and Haifeng Wang.
2021. Data augmentation with hierarchical sql-to-
question generation for cross-domain text-to-sql pars-
ing. arXiv preprint arXiv:2103.02227.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869–
6882. Association for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,
pages 1097–1100.

11558

https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/2021.acl-long.163
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://dl.acm.org/citation.cfm?id=1864519.1864543
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558


A Appendix

A.1 Dataset Details

Group Number of queries by hardness
easy medium hard extra total examples unique SQLs

Group 1 24 60 25 6 115 62
• concert_singer 4 24 13 4 45 26
• singer 6 18 6 0 30 16
• orchestra 14 18 6 2 40 20
Group 2 14 58 16 36 124 65
• dog_kennels 10 36 10 26 82 42
• pets_1 4 22 6 10 42 23
Group 3 46 60 32 26 164 84
• students_transcripts_tracking 26 24 8 20 78 41
• course_teach 8 14 8 0 30 15
• network_1 12 22 16 6 56 28
Group 4 24 46 20 60 120 65
• world_1 24 46 20 60 120 65

Table A1: Number of schemas and statistics of query workload for each group. Related schemas were grouped
together in order to obtain larger evaluation sets per group.

Dataset Number of queries by hardness
easy medium hard extra total examples unique SQLs

Geoquery (Geo) 224 32 220 77 553 210
Academic (Acad) 20 29 25 107 181 176
IMDB 23 12 48 26 109 75
Yelp 13 29 25 24 111 98

Table A2: Statistics of queries in additional (non-spider) datasets. We utilize the pre-processed versions of these
datasets provided by Yu et al. (2018).

A.2 Results in low or medium SQL workload setting

Group 1 Group 2 Group 3 Group 4 Average
Method EM EX EM EX EM EX EM EX EM EX

Results with 30% SQL workload
BASE-M 80.9 84.3 64.8 67.2 64.0 65.9 45.8 35.8 63.8 63.3
L2S 82.6 84.3 60.5 65.3 61.6 63.4 26.7 26.7 57.8 59.9
GAZP 83.5 84.3 61.3 64.5 66.5 67.1 45.8 37.5 64.3 63.3
SNOWBALL 80.0 83.5 59.7 63.7 67.7 68.3 39.2 32.5 61.6 62.0
REFILL 86.1 86.1 65.6 65.6 68.3 67.1 48.3 36.7 67.1 63.8

Results with 50% SQL workload
BASE-M 80.9 84.3 64.8 67.2 64.0 65.9 45.8 35.8 63.8 63.3
L2S 89.6 88.7 66.1 68.5 57.9 58.5 41.7 35.8 63.8 62.8
GAZP 87.8 87.0 58.9 63.7 65.9 68.9 45.0 35.0 64.4 63.6
SNOWBALL 83.5 85.2 55.6 66.1 65.2 66.5 40.0 32.5 61.1 62.6
REFILL 88.7 91.3 67.2 69.7 70.7 67.1 45.8 38.3 68.1 66.6

Results with 70% SQL workload
BASE-M 80.9 84.3 64.8 67.2 64.0 65.9 45.8 35.8 63.8 63.3
L2S 88.7 87.8 61.3 62.1 62.8 61.0 42.5 35.0 63.8 61.4
GAZP 85.2 85.2 58.9 66.9 70.1 60.5 52.5 40.8 66.6 63.3
SNOWBALL 85.2 87.8 59.7 60.5 64.0 65.9 44.2 38.3 63.2 63.1
REFILL 88.7 87.0 69.7 73.8 73.2 70.1 55.8 45.0 71.8 68.9

Table A3: Evaluation on four groups of schemas held out from Spider’s dev set, for varying sizes of query workload
{30%, 50%, 70%} used for SQL-to-Text translation.

11559



Method Geo Acad IMDB Yelp Average
Results with 30% SQL workload

BASE-M 9.8 2.8 19.3 7.2 9.7
L2S 27.9 14.4 24.8 19.8 21.7
GAZP 20.8 16.0 19.3 10.8 16.7
SNOWBALL 25.6 8.8 21.1 18.9 18.6
REFILL 30.1 27.6 26.6 29.7 28.5

Results with 50% SQL workload
BASE-M 9.8 2.8 19.3 7.2 9.7
L2S 33.6 20.4 25.7 18.0 24.4
GAZP 21.5 11.1 23.9 14.4 17.7
SNOWBALL 26.0 24.3 18.3 27.9 24.1
REFILL 27.9 37.6 28.4 35.1 32.2

Results with 70% SQL workload
BASE-M 9.8 2.8 19.3 7.2 9.7
L2S 33.9 19.3 29.4 23.4 26.5
GAZP 25.4 13.8 22.0 15.3 19.1
SNOWBALL 30.9 20.9 20.1 35.1 26.7
REFILL 32.8 37.0 33.0 35.1 34.4

Table A4: EM evaluation on four additional datasets
outside Spider, for varying sizes of query workload
{30%, 50%, 70%} used for SQL-to-Text transla-
tion. Since the contents of Acad, IMDB, and Yelp
databases were not publicly accessible to us, we are
unable to report EX results on these databases. EX
results for GeoQuery appear in Table A5.

Fraction of SQL workload
Method 30% 50% 70%
BASE-M 27.2 27.2 27.2
L2S 30.4 35.1 37.5
GAZP 20.8 22.9 29.2
SNOWBALL 28.7 28.5 33.8
REFILL 33.0 34.2 38.9

Table A5: EX accuracy evaluation on GeoQuery
dataset, for varying sizes of query workload {30%,
50%, 70%}.

A.3 Examples rejected by cycle-consistency but retained by our filtering model

Generated text How many countries are governed by Islamic Emirate?
Gold SQL SELECT count(*) FROM country WHERE GovernmentForm = ’Islamic Emirate’
Predicted SQL SELECT COUNT(*) FROM country WHERE country.code NOT IN (SELECT

countrylanguage.countrycode FROM countrylanguage)
Generated text What is the number of languages that are official in Australia?
Gold SQL SELECT COUNT(*) FROM country AS T1 JOIN countrylanguage AS T2 ON T1.Code = T2.CountryCode

WHERE T1.Name = ’Australia’ AND IsOfficial = ’T’
Predicted SQL SELECT COUNT(*) FROM countrylanguage JOIN country ON countrylanguage.countrycode =

country.code WHERE country.name = ’Australia’
Generated text How many countries have both “Karen" and “Mandarin Chinese" languages?
Gold SQL SELECT COUNT(*) FROM (SELECT T1.Name FROM country AS T1 JOIN countrylanguage AS T2

ON T1.Code = T2.CountryCode WHERE T2.Language = ’Karen’ INTERSECT SELECT T1.Name FROM
country AS T1 JOIN countrylanguage AS T2 ON T1.Code = T2.CountryCode WHERE T2.Language
= ’Mandarin Chinese’)

Predicted SQL SELECT COUNT(*) FROM countrylanguage JOIN country ON countrylanguage.countrycode =
country.code WHERE countrylanguage.language = ’Karen’

Generated text Find the language of the country that has the head of state Salahuddin Abdul Aziz Shah Alhaj and is official.
Gold SQL SELECT T2.Language FROM country AS T1 JOIN countrylanguage AS T2 ON T1.Code

= T2.CountryCode WHERE T1.HeadOfState = ’Salahuddin Abdul Aziz Shah Alhaj’ AND
T2.IsOfficial = ’T’

Predicted SQL SELECT countrylanguage.language FROM countrylanguage JOIN country ON
countrylanguage.countrycode = country.code WHERE country.headofstate = ’Salahuddin
Abdul Aziz Shah Alhaj’

Generated text What are the names of countries with surface area greater than the smallest area of any country in Antarctica?
Gold SQL SELECT Name FROM country WHERE SurfaceArea > (SELECT min(SurfaceArea) FROM country WHERE

Continent = ’Antarctica’)
Predicted SQL SELECT country.name FROM country WHERE country.surfacearea > (SELECT

MAX(country.surfacearea) FROM country WHERE country.continent = ’Antarctica’)

Table A6: Consistent SQL-Text pairs rejected by cycle-consistency but retained by our filtering model. Predicted
SQL is the output of the Text-to-SQL model used for checking cycle consistency, and does not match the gold SQL
often due to minor errors.

11560



A.4 Examples of masking

SQL SELECT T1.template_type_code , count(*) FROM Templates AS T1 JOIN Documents AS T2 ON
T1.template_id = T2.template_id GROUP BY T1.template_type_code [Schema Name: Document
Template Management]

Reference Show all template type codes and the number of documents using each type.
Retrieved SQL T1.FacID , count(*) FROM Faculty AS T1 JOIN Student AS T2 ON T1.FacID = T2.advisor GROUP

BY T1.FacID [Schema Name: Faculty Student Activity]

Retrieved Text Show the faculty id of each faculty member, along with the number of students he or she
advises.

Sch-match
Mask

Show the MASK of each MASK member , along with the number of MASK he or she advises .

Filled Text Show the type code of each template member, along with the number of documents he or
she advises.

Freq Mask Show the MASK of each MASK , MASK with the number of MASK he or she MASK .
Filled Text Show the code of each template type, together with the number of documents correspond-

ing to it.
SQL SELECT T2.name , T2.capacity FROM concert AS T1 JOIN stadium AS T2 ON T1.stadium_id =

T2.stadium_id WHERE T1.year >= 2014 GROUP BY T2.stadium_id ORDER BY count(*) DESC LIMIT
1 [Schema Name: Concert Singer]

Reference Show the stadium name and capacity with most number of concerts in year 2014 or after.
Retrieved SQL SELECT T2.name , T1.team_id_winner FROM postseason AS T1 JOIN team AS T2 ON

T1.team_id_winner = T2.team_id_br WHERE T1.year = 2008 GROUP BY T1.team_id_winner ORDER
BY count(*) DESC LIMIT 1 [Schema Name: Baseball 1]

Retrieved Text What are the name and id of the team with the most victories in 2008 postseason?
Sch-match
Mask

What are the MASK and MASK of the MASK with the most victories in MASK

Filled Text What are the name and capacity of the stadium with the most victories in year 2014?
Freq Mask What are the MASK and MASK of the MASK with the most MASK in MASK
Filled Text What are the name and capacity of the stadium with the most concerts in 2014?

Table A7: Masking the text based on string matches Vs. our method of frequency based masking. Schema-relevant
words like ‘victories’, ‘members’, ‘advises’ that do not have a sufficient string match with any of the table or column
names of their schema, get left out when using string-match based matches. Thus failing to mask the words in the
original schema might lead to copying of the word in the target schema, thus making the generated text semantically
inconsistent. Words in blue are schema relevant words for the target database and should appear in the generated
output.

11561



A.5 Hyperparameters
Our Edit and Fill model (139.2M parameters) is
based on a pretrained BART-BASE (Lewis et al.,
2020) model. We fine-tune this model for 100
epochs with learning rate of 3×10−5, weight decay
of 0.01 and batch size of 64. The pretrained model
is obtained from HuggingFace3.

The proposed binary classifier (124.6M params)
is pretrained ROBERTA-BASE (Liu et al., 2020)
(obtained from HuggingFace4) fine-tuned for 100
epochs on our data with learning rate 10−5, weight
decay 0.01 and batch size 16 for 100 epochs.

For SMBOP experiments, we use a smaller SM-
BOP model with 4 RAT layers and ROBERTA-
BASE (Liu et al., 2020) encoder as a baseline. The
number of parameters in this model is 132.9M.
All the adaptation experiments use learning rate
of 5 × 10−6, learning rate of language model of
3× 10−6 and batch size of 8. All the models were
trained for 100 epochs.

All the experiments were performed on a single
NVIDIA RTX 3060 GPU. Training times for the
Edit-and-Fill model and binary classifiers were ≈
4.5 hrs and ≈ 6.5 hrs respectively. Each of the
fine-tuning experiment took 3− 4 hrs to complete.

A.6 Cost function for Tree Edit Distance

Group Value Cost
Equal Equal 0
Equal Unequal 0.5

Unequal Equal 0
Unequal Unequal 1

Table A8: Cost function of nodes n1 and n2 based on
their groups and value.

Group SQL elements
Aggregation MAX, MIN, AVG, COUNT, SUM
Order ORDERBY_ASC, ORDERBY_DESC
Boolean OR, AND
Set UNION, INTERSECT, EXCEPT
Leaf VAL_LIST, VALUE, LITERAL, TABLE
Similarity LIKE, IN, NOT_IN
Comparison >, ≥, <, ≤, =, ̸=

Table A9: Group definitions for TED calculation.

We use APTED library (Pawlik and Augsten,
2015, 2016) to compute TED between 2 parsed

3https://huggingface.co/facebook/bart-base
4https://huggingface.co/roberta-base

SQL trees. For every node in the tree, a group
is assigned according to table A9. Then the cost
for various combinations of node groups and node
values is described in table A8. If either of the
nodes does not belong to any of the groups in table
A9, their groups are considered to be “unequal"
and cost will be assigned based on their values.

A.7 Examples of TED neighbours

Table(SELECT)

Agg(COUNT)

Value(*)

Table(FROM)

Predicate(>)

Value(age) Value(56)

Table(head)

(a) SELECT count(*) FROM head WHERE age > 56

Table(SELECT)

Agg(COUNT)

Value(*)

Table(FROM)

Predicate(>)

Value(season) Value(2007)

Table(game)

(b) SELECT count(*) FROM game WHERE season > 2007

Figure 5: Example of tree pair with TED=0

Table(SELECT)

Agg(COUNT)

Value(*)

Table(county_public_safety)

(a) SELECT count(*) FROM county_public_safety

Table(SELECT)

Agg(AVG)

Value(Gross_in_dollar)

Table(film)

(b) SELECT avg(Gross_in_dollar) FROM film

Figure 6: Example of tree pair with non-zero(=0.125)
TED

11562

https://huggingface.co/facebook/bart-base
https://huggingface.co/roberta-base

