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Abstract
Pretrained language models (PLMs) have been
shown to accumulate factual knowledge dur-
ing pretraining (Petroni et al., 2019). Recent
works probe PLMs for the extent of this knowl-
edge through prompts either in discrete or con-
tinuous forms. However, these methods do
not consider symmetry of the task: object pre-
diction and subject prediction. In this work,
we propose Symmetrical Prompt Enhancement
(SPE), a continuous prompt-based method for
factual probing in PLMs that leverages the sym-
metry of the task by constructing symmetrical
prompts for subject and object prediction. Our
results on a popular factual probing dataset,
LAMA, show significant improvement of SPE
over previous probing methods.

1 Introduction

Prompt-based learning proposes to formulate dif-
ferent NLP tasks into language modeling problems
(Schick and Schütze, 2021). It is a novel paradigm
that effectively uses Pretrained Language Models
(PLMs) (Liu et al., 2022), and achieves comparable
or better performance than fine-tuning (Lester et al.,
2021). Prompt-based learning has also been used
for the task of factual knowledge probing in PLMs.
In this task, the goal is to predict the (masked) ob-
ject of factual tuples of type (subject, relation, ob-
ject) using PLMs. Prompting methods assume that
PLMs gather and store factual knowledge during
their pre-training, and cloze-style prompts can be
used to probe PLMs to gauge how much knowledge
they contain (Petroni et al., 2019). The prompts are
either handcrafted (Petroni et al., 2019; Bouraoui
et al., 2020) or automatically generated (Shin et al.,
2020; Haviv et al., 2021). For example, to probe
PLMs about their knowledge of geographic loca-
tion of Luxembourg, a prompt can be formed by
filling Luxembourg in the first blank of the fol-
lowing template: "____ is located in ____.". An

∗∗ Equal contribution.
†Work was done at MILA.

Prompt: Luxembourg is located in ____ .

Prediction Probability 
Germany          
France            
Europe              

<Subject: Luxembourg, Relation: location, Object: Europe> 

Prompt: ____ is located in Germany.

Luxembourg          

Template: ___ is located in ___ .

Prompt: ____ is located in France.

Luxembourg   

Prompt: ____ is located in Europe.

Luxembourg    

Germany          
France            
Europe              

Figure 1: Example of factual probing: Given a sub-
ject and relation, predict the object. SPE uses a fixed
template to generate a prompt for predicting object
given subject (green box) as well as several symmet-
rical prompts for predicting the subject given object
candidates (yellow boxes). The final prediction is ob-
tained using the likelihoods of the object candidates and
of the given subject as obtained using the symmetrical
prompts. Bars represent probabilities from BERT. SPE
is a continuous prompt method but we use natural lan-
guage prompts and template here for illustration.

effective prompt will probe the PLM to output Eu-
rope as the most likely prediction for the second
blank. Such methods are promising but brittle. Mi-
nor changes in the template can lead to significant
difference in the performance (Jiang et al., 2020).
Recent works have shown that continuous prompts
obtained via gradient-based learning, are more ef-
fective and robust than discrete prompts since there
are less restrictions on the search space (Liu et al.,
2021; Qin and Eisner, 2021; Zhong et al., 2021;
Liu et al., 2022; Newman et al., 2022).

Existing methods for learning prompts do not
leverage the symmetry inherent in the task’s defi-
nition. For example, while Luxembourg is located
in Europe, Europe contains Luxembourg. Similar
ideas have been used for learning prompts for rela-
tion classification (Han et al., 2021) and other NLP
tasks (Crawford et al., 1996; Kiddon and Domin-
gos, 2015; He et al., 2017; Tanchip et al., 2020).
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In this work, we propose Symmetrical Prompt En-
hancement (SPE)– a continuous prompting method
that learns prompt that incorporates the above men-
tioned symmetry. Specifically, in addition to gen-
erating a prompt to predict the object given the
subject, SPE also generates an additional symmet-
rical prompt to predict the subject given the object.
Using the first prompt (see green box in Fig. 1),
SPE obtains a few high-probability candidate ob-
jects like Germany, France, and Europe. There-
after, for each object candidate, it generates a sym-
metrical prompt (see yellow boxes), and obtains
the likelihood of the subject, Luxembourg. At the
heart of SPE is a prompt generation model that
is trained by maximizing the joint likelihood of
both the candidates as well as the subject (given
the candidates). Our experiments on the factual
probing dataset LAMA (Petroni et al., 2019) show
that SPE achieves significant improvement over
previous approaches and our analysis points to
sources of this performance gain. These experi-
ments demonstrate that like SPE, probing methods
should learn prompts that leverage the symmetry
of the task because that can help PLMs in produc-
ing better answers when they are being probed for
stored factual knowledge.

2 Symmetrical Prompt Enhancement

The goal of factual probing via prompt generation
is to output object O for given subject I and rela-
tion R by constructing a prompt P . Most methods
operate by assuming a template T , and generating
the prompt P from T , I and R. Fig. 1 shows an
example of Subject (Luxembourg), Relation (loca-
tion), Object (Europe), Template (____ is located
in ____.), and the corresponding Prompt (Luxem-
bourg is located in ____.). The figure shows a
natural language template and prompts for read-
ability. However, for continuous prompt methods
like ours, the template is a sequences of vectors
like [V ]1 . . . [V ]n ____ [V ]n+1 . . . [V ]n+m ____
[V ]n+m+1 . . . [V ]n+m+k, ∀[V ]i ∈ Rd. We refer to
the two blanks as BO and BI . The prompt, Porig,
is typically generated by learning these vectors and
filling the (representation of) I in BI . The prompts
are relation-specific (PR

orig) but here we refer to
them as Porig for simplicity. The model’s predic-
tion, Ô, is the most likely object candidate for the
BO as determined by the PLM using Porig.

Our proposed approach, Symmetrical Prompt En-
hancement (SPE), leverages the inherent symmetry

of the task. Specifically, in addition to learning
the original prompt Porig for predicting the object
given the subject, SPE also generates several sym-
metrical prompts, Psym, for predicting the subject
given the object. Like Porig, Psym is also gener-
ated from T except that this time BO is filled by
the (representation of) O. The prompt is used for
probing the PLM which outputs prediction for BI .

p(v|Porig) = PPLM(BO = v|Porig) (1)

p(v′|Psym) = PPLM(BI = v′|Psym) (2)

Here p(v|P) is the probability distribution of word
or phrases v in PLM given prompt P as input.The
model is trained by optimizing a linear combination
of the cross-entropy objectives of predicting the
object O and the subject I:

max
θ

log p(v = O|Porig) + λ log p(v′ = I|Psym),

(3)
where λ is a hyperparameter. θ, the parameters of
the prompt generation model, are learned.

For inference, SPE selects top K predictions CK:

CK = TopKv∈V p(v|Porig) (4)

and uses each prediction ck ∈ CK as a candidate
to generate the symmetrical prompt Pk

sym. Finally,
the model’s prediction Ô is:

Ô =arg max
ck∈CK

log p(v = ck|Porig)

+ λ log p(v′ = I|Pk
sym).

(5)

In practice, L and PPLM are normalized by input
length to account for inputs with multiple tokens.

3 Implementation Details

We conduct experiments on the fact retrieval part
of LAMA dataset (Petroni et al., 2019), which con-
sists of fact triples with single-token objects from
41 relations in Wikidata (Vrandečić and Krötzsch,
2014). We use the training set extended by Shin
et al. (2020). We choose masked language mod-
els BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) as PLMs, which are fixed during train-
ing to serve as static knowledge bases. For imple-
mentation, we use PLMs in Huggingface library
of Transformers (Wolf et al., 2020). We follow
Liu et al. (2021) for designing templates and the
prompt generation component of our model. In par-
ticular, we use BiLSTM (Graves et al., 2013) with
multilayer perceptron (MLP) for prompt generation
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Model BERT-base BERT-large RoBERTa-base

P@1 P@10 MRR P@1 P@10 MRR P@1 P@10 MRR

Manual (Petroni et al., 2019) 31.1 59.5 40.3 28.9 57.7 38.7 22.0 36.0 25.0

LPAQA (Jiang et al., 2020) 34.1 62.0 43.6 39.4 67.4 49.1 21.7 36.0 27.7

AutoPrompt (Shin et al., 2020) 43.3 73.9 53.9 41.3 69.3 50.6 40.0 68.3 49.9

OptiPrompt (manual) (Zhong et al., 2021) 48.6 79.0 58.9 50.6 79.2 60.7 40.3 65.7 48.9

SoftPrompt (mined) (Qin and Eisner, 2021) 48.8 79.6 59.4 51.0 81.4 59.6 40.6 75.5 53.0

P-tuning (Liu et al., 2021) 48.2 78.1 58.6 49.9 80.6 60.6 43.5 73.9 53.8

SPE 50.3 80.5 60.9 53.1 82.4 63.4 47.0 75.8 56.2

Table 1: SPE outperforms state-of-the-art discrete and continuous prompt approaches on the LAMA dataset.

Model P@1 P@10 MRR

P-tuning 48.2 78.1 58.6

SPE K=1 48.7 79.9 59.5
K=5 49.9 79.9 60.5
K=10 49.9 79.9 60.7
K=15 50.3 80.5 60.9

Table 2: Effect of varying size of candidate pool on
SPE’s performance. SPE outperforms P-tuning even
without reranking (K=1). A larger candidate pool helps
the model even further.

and use the following generic and relation-agnostic
format for template, T : [V ]1 [V ]2 [V ]3 ____ [V ]4
[V ]5 [V ]6 ____ [V ]7 [V ]8 [V ]9 ∀[V ]i ∈ Rd. The
model and the template are randomly initialized.

For I with multiple tokens, we mask them one
token at a time to generate Psym, and use the aver-
age of pseudo likelihoods from all Psyms to repre-
sent log p(v′ = I|Psym). In practice, we find that
masking one token at a time is better than masking
the entire phrase at once, and averaging the pseudo-
likelihood has better performance. The training
batch size is 8. We set K to be 15 during inference,
and λ to be 0.8 based on our experiments on the
development set. The results are evaluated by accu-
racy at top 1 (P@1) and top 10 (P@10) predictions,
and Mean Reciprocal Rank (MRR) as in Qin and
Eisner (2021). Appendix A includes more setup
details and discussion on choice of λ.

4 Results

We compare our results with both discrete and con-
tinuous prompt methods. Discrete prompt methods
include prompts from manually designed templates
(Petroni et al., 2019); LPAQA (Jiang et al., 2020),

which uses text mining based prompts; and Au-
toPrompt (Shin et al., 2020), which uses discrete
lexicalized trigger tokens for prompt generation.
Continuous prompt methods include P-tuning (Liu
et al., 2021), which uses a neural network to gen-
erate prompts; OptiPrompt (Zhong et al., 2021),
which uses manually initialized prompts; and Soft-
Prompt (Qin and Eisner, 2021), which ensembles
multiple prompts initialized with mined templates.

Quantitative Results: Table 1 shows the perfor-
mance of SPE and all baselines. The results show
that SPE outperforms all previous methods. Note
that, unlike OptiPrompt and SoftPrompt, SPE does
not make use of manually designed templates for
initialization. We also find that SPE outperforms
the baselines when the PLM parameters are up-
dated jointly with the prompt tokens on the training
data. See Table 5 in the Appendix B.2 for detailed
results. For the rest experiments, we consider P-
tuning as primary baseline since it is the best per-
forming model that is directly comparable to SPE.

Effect of candidates pool size: Table 2 shows
how SPE performs with different candidate pool
sizes. Comparing the first two rows we can see that
SPE outperforms our primary baseline, P-tuning,
even without reranking (K=1). Increasing the size
of the candidate pool leads to further improve-
ments. However, expanding the candidate pool
has a trade-off between performance and mem-
ory usage. Meanwhile, applying reranking on the
discrete prompt methods mentioned does not in-
troduce performance gain, mainly because their
prompt templates are selected or mined in favor of
object prediction only. We leave the investigation
of constructing discrete prompts that benefits from
the symmetry as future work.

Performance on Easy and Hard examples: The
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Relation Subject Top 5 Predictions (Prob. High −→ Low): Top - PT, Bottom - SPE Rank

P108
Spike Milligan

Microsoft IBM Google BBC ESPN 4
(employer) BBC Microsoft CBS ESPN Google 1

P364
Baaz

Turkish English French Arabic Persian 41
(original language) Hindi Urdu Punjabi Bengali Persian 1

P101
Richard Wagner

music history psychology opera linguistics 4
(field of work) opera music philosophy aesthetics art 1

P27
Rubens Barrichello

Belgium France Italy Spain Germany 15
(country of citizenship) Brazil Spain Argentina Portugal Uruguay 1

P30
Marshall Islands

Antarctica Asia Africa Oceania Europe 4
(continent) Asia Oceania Africa Antarctica Europe 2

P279
river

river stream tributary canal creek 1
(subclass of) tributary stream river creek tributaries 3

Table 3: Sample outputs of P-tuning (PT) and SPE. The ranks of correct answers (underlined) are in the last column.
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Figure 2: Frequencies of predictions of different meth-
ods. SPE can output answers that have low frequencies.

LAMA test set has also been split into LAMA-Easy
and LAMA-Hard where objects in the LAMA-Easy
split can be "guessed" by naive methods (Zhong
et al., 2021). We observe that SPE outperforms the
baselines in P@1 for both splits and its gain over
P-tuning for LAMA-Hard (4.2%) is larger than
LAMA-Easy (1.5%) (see Table 4 of Appendix B.1).
This indicates that the improvement of SPE does
not simply come from shallow pattern matching
and it performs well on hard examples.
Qualitative Results and Analysis: We include
some qualitative examples of top 5 predictions in
Table 3 from P-tuning (top half of each row) and
SPE (bottom half of each row). The correct an-
swers are underlined, and their ranks in the pre-
dicted lists are in the last column. We observe that
SPE’s top predictions are in the correct domain.
For example, SPE outputs BBC for the employer
of British-Irish actor Spike Milligan (as opposed

to Microsoft, IBM, and Google) as outputted by
P-tuning), and Hindi along with other Indian lan-
guages, when asked about the original language
of an Indian movie Baaz, rather than Turkish, a
non-Indian Language. Moreover, SPE correctly
identifies the country of citizenship for Rubens Bar-
richello as Brazil. Identifying objects for relations
like country of citizenship for individuals are chal-
lenging because documents with the individual’s
names in the pretraining corpus of PLMs might
contain mentions of multiple places he/she has
worked or lived or received education in. There-
fore, these co-occurrences might confuse PLMs. In
Appendix C, we identify such confusing relations
and conduct a close analysis on them.

We also find that SPE’s predictions (e.g. opera
for the field of work of Richard Wagner) are more
precise that P-tuning’s (music). In general, PLMs
predictions for a relation can get affected by related
high-frequency but incorrect object candidates. Pre-
vious prompt methods are found to suffer from
bias of the prompt and object distribution in the
dataset (Cao et al., 2021). To investigate this, we
identify a set of relations that are prone to such
spurious frequency-related associations (see Ap-
pendix C for the list of relations) and find that
SPE especially performs well on such relations
(see Figure 3 and Appendix C.1). We also plot
the mean (log10) token frequencies of top predic-
tions of different methods as well as the oracle for
these relations in Figure 2 (using word frequencies
from Speer et al. (2018)). We observe that SPE’s
predictions (green bars) have lower frequencies
than most baselines including P-tuning (red bars).
Meanwhile, the frequencies of SPE’s predictions
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are in general more similar to that of the oracle
(blue bars) than most baselines. This indicates that
even though the correct (and more precise) answers
have lower frequencies, SPE can output them as
answers while the baselines output the more fre-
quent alternatives as answers (see Appendix C.2
for examples). We further extend this analysis to
the top M predictions and observe similar behavior
(see Appendix C.3). Lastly, the outputs of SPE
are less affected by the most frequently occurring
objects in the dataset (see Appendix C.4).

5 Limitations

We note that SPE may not help if the correct objects
are broad concepts (e.g. "mathematics" vs "alge-
bra", "river" vs "tributary", "FIFA" vs "UEFA").
Typical relations with such objects include P279
subclass of, P361 part of and P463 member of. The
top 5 predictions by SPE (and also P-tuning) for
the subclass of relation are shown in Table 3. The
correct answer, river, is ranked 3rd by SPE and an
incorrect answer, tributary, is the top prediction.
P-tuning outputs the correct answer.

Also, in general, SPE can get affected by error
propagation because of its two-step inference pro-
cess that first predicts object candidates and then
ranks them.

Though the proposed symmetrical prompt
method improves knowledge probing, the utility of
the technique in other NLP tasks is not yet investi-
gated. Besides, the experiments are only conducted
for masked language models but there has been
recent progress in other types of language models
which are not explored in the paper. Lastly, the pro-
posed method requires additional computational
cost compared the baselines.

6 Conclusion

This work introduces Symmetrical Prompt En-
hancement (SPE) – a continuous prompt-learning
method for factual probing of PLMs by learning
prompts that utilize the inherent symmetry of the
task. Our experiments show that SPE outperforms
existing SOTA methods thereby helping us know
more about how much knowledge is stored in a
PLM. Future work could explore this idea of using
task symmetry for other NLP tasks. 1

1Code is available here.

7 Ethical Consideration

In this work, we propose SPE, which incorporates
the symmetrical nature of factual knowledge in
prompt methods. Our result shows the effective-
ness of SPE over several previous prompt base-
lines. Even though we work on the factual knowl-
edge dataset, we notice that current PLMs does not
have the awareness to distinguish between publicly-
available factual knowledge and private informa-
tion (which is not considered as knowledge) ei-
ther during the pre-training or inference, while the
memorizing information of PLMs in latter lead
to potential risk of privacy leakage (Carlini et al.,
2021). All the experiments are conducted on the
publicly available dataset, which is mainly based
on Wikidata.

References
Zied Bouraoui, Jose Camacho-Collados, and Steven

Schockaert. 2020. Inducing relational knowledge
from bert. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):7456–7463.

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021.
Knowledgeable or educated guess? revisiting lan-
guage models as knowledge bases. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1860–1874, Online.
Association for Computational Linguistics.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, Alina Oprea, and Colin Raffel. 2021. Ex-
tracting training data from large language models. In
USENIX Security Symposium.

Tyler A. Chang and Benjamin K. Bergen. 2022. Word
acquisition in neural language models. Transactions
of the Association for Computational Linguistics,
10:1–16.

James M. Crawford, Matthew L. Ginsberg, Eugene M.
Luks, and Amitabha Roy. 1996. Symmetry-breaking
predicates for search problems. In Proceedings of
the Fifth International Conference on Principles of
Knowledge Representation and Reasoning, KR’96,
page 148–159, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

11693

https://github.com/Nativeatom/SPE
https://doi.org/10.1609/aaai.v34i05.6242
https://doi.org/10.1609/aaai.v34i05.6242
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2012.07805
https://doi.org/10.1162/tacl_a_00444
https://doi.org/10.1162/tacl_a_00444
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages
315–323, Fort Lauderdale, FL, USA. PMLR.

Alex Graves, Abdel rahman Mohamed, and Geoffrey E.
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
pages 6645–6649.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. Ptr: Prompt tuning with rules
for text classification. ArXiv, abs/2105.11259.

Adi Haviv, Jonathan Berant, and Amir Globerson. 2021.
BERTese: Learning to speak to BERT. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3618–3623, Online. Association
for Computational Linguistics.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative dia-
logue agents with dynamic knowledge graph embed-
dings. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1766–1776, Vancouver,
Canada. Association for Computational Linguistics.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How Can We Know When Language
Models Know? On the Calibration of Language Mod-
els for Question Answering. Transactions of the As-
sociation for Computational Linguistics, 9:962–977.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Chloé Kiddon and Pedro M. Domingos. 2015.
Symmetry-based semantic parsing.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2022. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv. Just Accepted.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. ArXiv, abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Benjamin Newman, Prafulla Kumar Choubey, and
Nazneen Rajani. 2022. P-adapters: Robustly extract-
ing factual information from language models with
diverse prompts. In International Conference on
Learning Representations.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncertainty
in neural machine translation. In Proceedings of the
35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning
Research, pages 3956–3965. PMLR.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Robyn Speer, Joshua Chin, Andrew Lin, Sara Jewett,
and Lance Nathan. 2018. Luminosoinsight/wordfreq:
v2.2.

Chelsea Tanchip, Lei Yu, Aotao Xu, and Yang Xu. 2020.
Inferring symmetry in natural language. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2877–2886, Online. Association
for Computational Linguistics.

11694

https://proceedings.mlr.press/v15/glorot11a.html
https://aclanthology.org/2021.eacl-main.316
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://openreview.net/forum?id=DhzIU48OcZh
https://openreview.net/forum?id=DhzIU48OcZh
https://openreview.net/forum?id=DhzIU48OcZh
https://proceedings.mlr.press/v80/ott18a.html
https://proceedings.mlr.press/v80/ott18a.html
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.18653/v1/2020.findings-emnlp.259
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A Additional Implementation Details

Prompt Generation Model: The prompt genera-
tion model is based on work by Liu et al. (2021).
It consists of a two-layer BiLSTM and a two-layer
MLP on top of it. The MLP uses ReLU (Glorot
et al., 2011) as the activation function. The hid-
den size of LSTM and dimension of d are 768 for
BERT-base-cased and RoBERTa-base, and 1024
for BERT-large-cased. The max training epoch is
100, and training stops when development perfor-
mance does not increase for 20 epochs. The opti-
mizer is Adam with learning rate being 1e-5. Other
setting also follows Liu et al. (2021). The number
of parameters is determined by the PLMs: BERT-
base-cased (110M), BERT-large-cased (340M) and
RoBERTa-base (125M); and the prompt generation
model (14M). The experiments require 20 hours to
finish on a single Tesla V100 GPU.

Also, during our experiments, we experiment
with having separate prompt generation models
for generating Porig and Psym. However, we find
that training one prompt generation model for both
Porig and Psym led to better results.
Choice of λ: In our preliminary experiments on
the development set, we find λ = 0.8 to be the best
choice among [0, 1]. However, we observe that the
performance is not very sensitive to λ and λ > 0.4
generally gives a reasonable performance.

B Additional Results

B.1 Easy and Hard LAMA Examples

Zhong et al. (2021) points out that during factual
probing, a PLM’s predictions can be based on shal-
low patterns in the training data instead of the
knowledge stored in the PLM. To study this phe-
nomena, they propose an easy (LAMA-Easy) and
a hard (LAMA-Hard) split of the LAMA dataset
where objects in the LAMA-Easy subset can be
"guessed" by naive or non-pretrained models. We
compare SPE with the baselines on these two sub-
sets and report results in Table 4. We observe that,
in general, all methods achieves better performance
in LAMA-Easy that the complete testset but SPE
has the highest P@1. It is outperformed on P@10
and MRR only by Softprompt and Optiprompt but
they use manually designed templates. More impor-
tantly, SPE shows higher improvement in LAMA-
Hard compared to baselines especially with respect
to P-tuning (4.2% in P@1). This shows that the
improvement of SPE does not simply come from
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Figure 3: P@1 improvement of SPE under different relations in BERT-large-cased (scale of 100, darker color
represents higher value): P101 field of work (N-M), P19 place of birth (N-1), P20 place of death, P27 citizenship
(N-M), P364 original language of film or TV show (N-1), P495 country of origin (N-1), P1412 language spoken
(N-M), P937 work location (N-M), P30 continent (N-1), P140 religion (N-1), P413 position played (N-1), and P103
native language (N-1). The first, second and third row represents the P@1 improvement SPE has over Optiprompt,
SoftPrompt and P-tuning respectively. SPE outperforms all three probing methods for most relations.

shallow pattern matching and it is better at handling
more challenging knowledge probing cases.

B.2 Finetuning PLMs
In the experiments reported in the paper, the PLMs
are fixed during training and only the prompt gen-
eration model is being trained. We now experiment
with also finetuning the PLMs. We use BERT-
large-cased for this experiment. The results are
reported in Table 5 where we compare SPE with
the comparable gradient-based baselines. We can
see that SPE outperforms those baselines in this
setting also. The drop in P@10 of AutoPrompt
compared to its P@10 when PLM is fixed (see
Table 1) may be related to its discrete token sub-
stitution (non-gradient-descent) design, which is
harder to optimize.

C Analysis on Relations with Spurious
Associations

Recent works have shown that frequency bias exists
in maximal likelihood estimation training of lan-
guage models (Ott et al., 2018; Jiang et al., 2021)
and how a PLM’s learning of a word is related to
its frequency (Chang and Bergen, 2022). Cao et al.
(2021) observed that prompts for fact probing over-
fit the object distribution more than the relation. As

a result, in factual probing, PLM’s output might get
affected by the frequencies of output candidates.
This is especially true for relations that are prone to
spurious associations of the subject with candidate
objects or over-representation of candidate objects.
Below, we identify some such relations and then
analyze performance of SPE with respect to the
baselines on these relations.

R1 Relations with scope associations (P101
field of work). When probing factual knowledge
from PLMs, the object of a subject-relation pair
forms the correct answer. While there can be mul-
tiple reasonable answers, some are more precise
and so more desirable than others. For instance, for
describing the field that Richard Wagner worked in
(see Table 3), both opera and music seem to be rea-
sonable answers but opera is the more precise one.
In such relations, different object-candidates may
entail similar meanings but be of different scope.

R2 Relations with entity-type associations
(P19 place of birth, P20 place of death, P27 coun-
try of citizenship, P364 original language of film or
TV show, P495 country of origin, P1412 language
spoken, P937 work location). Some relations are
about objects with specific constraints. For exam-
ple, place of birth and place of death are the first
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Dataset LAMA-Easy LAMA-Hard

Model P@1 P@10 MRR P@1 P@10 MRR

Manual 40.2 70.7 47.9 27.1 54.2 35.1

LPAQA 46.0 71.7 52.6 27.3 55.7 35.3

AutoPrompt 58.2 85.7 66.2 28.6 60.9 39.5

Optiprompt 73.2 94.8 81.3 37.6 73.6 50.4

SoftPrompt 77.0 96.0 83.9 38.4 76.8 51.7

P-tuning 75.9 94.1 82.9 35.2 75.3 49.2

SPE 77.4 94.4 83.6 39.4 77.5 52.9

Table 4: SPE outperforms the baselines on both hard and easy examples with greater improvement on the hard ones.

Model P@1 P@10 MRR

AutoPrompt 41.3 61.6 50.6

Optiprompt 53.3 74.9 63.3

SoftPrompt 51.6 81.9 62.1

P-tuning 51.4 82.1 61.8

SPE 53.7 83.0 63.9

Table 5: Performance comparison of gradient-based
prompt methods when the PLM is finetuned. SPE out-
performs the baselines.

and last place in a person’s life. Those objects,
as well as other objects of same entity types that
do not match such constraints (e.g. general loca-
tion names), can co-occur with the subject in the
training corpora and get memorized by the pre-
trained models. Because of these co-occurrences,
PLMs may output incorrect objects that are of the
correct entity type but may not satisfy the desired
constraints. For example, when probed for place
of birth of an individual, they may output places
where the individual received education or worked
instead of where they were born. In the example
in Table 3, when probing for citizenship of famous
Brazilian Formula One player Rubens Barrichello,
P-tuning outputs a handful of countries listed on
his Wikipedia page where he participated compe-
titions, which are unrelated to the country of his
citizenship, Brazil.

R3 Relations with label distribution associa-
tions (P30 continent, P140 religion, P413 posi-
tion played, P103 native language) Zhong et al.
(2021) showed the label distribution effects prompt-
based methods. In particular, for relations with a
closed set of candidate objects, the task of factual
probing reduces to a classification problem with

fixed number of labels. When the correct label
(object) appears with very low frequency, PLM’s
output can get affected by label distribution in the
training set and it can output other labels that ap-
pear more frequently. For example, in P30 conti-
nent, 95.6% continent-type objects in the training
set are Antartica (majority class) and only 0.4%
are Oceania (minority class). P-tuning is probably
affected by this imbalance and outputs the majority
label, Antartica, as the continent that contains Mar-
shall Islands while Oceania, the correct answer,
appears at rank 4 (see Table 3).

C.1 Comparison of SPE with Baselines on
Relations with Spurious Associations

We observe that for R1, R2 and R3 category rela-
tions, SPE especially outperformed the baselines
in most cases (see Figure 3). The first, second and
third rows of the figure represent the correspond-
ing P@1 improvement (scale of 100) of SPE over
Optiprompt, SoftPrompt and P-tuning respectively
and a darker color means larger improvement.

C.2 Investigating Token Frequencies of Top-1
Predictions.

To further investigate these improvements, we ex-
plored the correlation between predictions of differ-
ent prompt approaches and their token frequencies.
We analyzed relations affected by co-occurences of
subjects with spurious object candidates, i.e. rela-
tions of type R1 and R2. We acquired word frequen-
cies from Speer et al. (2018) who collected word
frequencies from 8 domains including Wikipedia,
books, and news. As discussed in Section 4 of the
paper, we plotted the mean token frequencies of
top predictions obtained using different prompting
approaches and showed that SPE’s predictions have
lower frequencies than most baselines. For exam-
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Figure 4: Comparison of different methods using RWF
of top 10 predictions for relations with spurious asso-
ciations. Some markers are not visible because they
overlap with the green ones. A lower RWF is better and
indicates less association between token frequency and
predictions. We see that SPE (green) has lower RWF
than P-tuning (pink) in most relations. This indicates
that SPE can help PLM in outputing less frequent but
correct answers.

ple, in the field of work of Richard Wagner on Ta-
ble 3, the log word frequency of opera is -4.73 but
the log frequencies of music, history, philosophy
and psychology are -3.48, -3.61, -4.51 and -4.69
respectively, which have higher word frequencies
than opera (especially, the frequency of P-tuning’s
output music is 17 times higher). Similarly, in the
case of original language of Bazz, the log frequen-
cies of Hindi, Urdu, Punjabi are -5.18, -5.74, -5.84,
while for non-Indian languages like Turkish, En-
glish, and French they are -4.71, -3.81 and -3.91,
which means these frequencies are at least 10 times
higher than the Indian languages. Yet, SPE outputs
the correct, even though less frequent answers.

C.3 Investigating Token Frequencies of
Top-M Predictions.

We now extend the above-mentioned analysis from
top predictions to top M predictions and analyze if
SPE can help the PLMs output less frequent tokens
as answers. In particular, for different prompting
approaches, we consider their top M predictions
and compute the Rank Weighted Frequency (RWF)
using the following formula, where CM

n is the n-th
candidates among the top M predictions.

RWF =
M∑

n=1

1

n
log10(WordFreq(CM

n ))

re
lig

ion
co

nt
ine

nt
po

sit
ion

 pl
ay

ed
na

tiv
e l

an
gu

ag
e

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Pe
rc

en
ta

ge

SoftPrompt
Optiprompt
P-tuning
SPE

Figure 5: Comparison of different methods in percent-
age of majority training label in test predictions for R3
relations. A lower value means the method is less af-
fected by the label distribution in the training set. Invisi-
ble bars are overlapped with the red ones. SPE (green)
has lower values than the baselines in most relations.

A lower RWF indicates less association between
token frequencies and top predictions. Results are
shown in Figure 4 with M=10. We can see that for
most relations, SPE has a lower RWF than base-
lines, especially P-tuning. These experiments in-
dicate that SPE can mitigate the frequency bias
inherently contained in PLMs and avoid answers
with spurious associations with the subjects.

C.4 Investigating Percentage of Majority
Label in Predictions.

The analyses shown in Appendix C and C.3 focus
on relations of type R1 and R2. We now focus on
relations of type R3, i.e. relations affected by label
imbalance. Results in Figure 5 show that SPE pre-
dicts majority training labels less frequently than
the baselines in most relations, demonstrating that
it is less affected by the imbalances in the label
distribution.
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