@inproceedings{paul-etal-2022-class,
title = "Class Incremental Learning for Intent Classification with Limited or No Old Data",
author = "Paul, Debjit and
Sorokin, Daniil and
Gaspers, Judith",
editor = "Barbieri, Francesco and
Camacho-Collados, Jose and
Dhingra, Bhuwan and
Espinosa-Anke, Luis and
Gribovskaya, Elena and
Lazaridou, Angeliki and
Loureiro, Daniel and
Neves, Leonardo",
booktitle = "Proceedings of the First Workshop on Ever Evolving NLP (EvoNLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.evonlp-1.4",
doi = "10.18653/v1/2022.evonlp-1.4",
pages = "16--25",
abstract = "In this paper, we explore class-incremental learning for intent classification (IC) in a setting with limited old data available. IC is the task of mapping user utterances to their corresponding intents. Even though class-incremental learning without storing the old data yields high potential of reducing human and computational resources in industry NLP model releases, to the best of our knowledge, it hasn{'}t been studied for NLP classification tasks in the literature before. In this work, we compare several contemporary class-incremental learning methods, i.e., BERT warm start, L2, Elastic Weight Consolidation, RecAdam and Knowledge Distillation within two realistic class-incremental learning scenarios: one where only the previous model is assumed to be available, but no data corresponding to old classes, and one in which limited unlabeled data for old classes is assumed to be available. Our results indicate that among the investigated continual learning methods, Knowledge Distillation worked best for our class-incremental learning tasks, and adding limited unlabeled data helps the model in both adaptability and stability.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paul-etal-2022-class">
<titleInfo>
<title>Class Incremental Learning for Intent Classification with Limited or No Old Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Debjit</namePart>
<namePart type="family">Paul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniil</namePart>
<namePart type="family">Sorokin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Gaspers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Ever Evolving NLP (EvoNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Francesco</namePart>
<namePart type="family">Barbieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="family">Camacho-Collados</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bhuwan</namePart>
<namePart type="family">Dhingra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Espinosa-Anke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Gribovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angeliki</namePart>
<namePart type="family">Lazaridou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Loureiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leonardo</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we explore class-incremental learning for intent classification (IC) in a setting with limited old data available. IC is the task of mapping user utterances to their corresponding intents. Even though class-incremental learning without storing the old data yields high potential of reducing human and computational resources in industry NLP model releases, to the best of our knowledge, it hasn’t been studied for NLP classification tasks in the literature before. In this work, we compare several contemporary class-incremental learning methods, i.e., BERT warm start, L2, Elastic Weight Consolidation, RecAdam and Knowledge Distillation within two realistic class-incremental learning scenarios: one where only the previous model is assumed to be available, but no data corresponding to old classes, and one in which limited unlabeled data for old classes is assumed to be available. Our results indicate that among the investigated continual learning methods, Knowledge Distillation worked best for our class-incremental learning tasks, and adding limited unlabeled data helps the model in both adaptability and stability.</abstract>
<identifier type="citekey">paul-etal-2022-class</identifier>
<identifier type="doi">10.18653/v1/2022.evonlp-1.4</identifier>
<location>
<url>https://aclanthology.org/2022.evonlp-1.4</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>16</start>
<end>25</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Class Incremental Learning for Intent Classification with Limited or No Old Data
%A Paul, Debjit
%A Sorokin, Daniil
%A Gaspers, Judith
%Y Barbieri, Francesco
%Y Camacho-Collados, Jose
%Y Dhingra, Bhuwan
%Y Espinosa-Anke, Luis
%Y Gribovskaya, Elena
%Y Lazaridou, Angeliki
%Y Loureiro, Daniel
%Y Neves, Leonardo
%S Proceedings of the First Workshop on Ever Evolving NLP (EvoNLP)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F paul-etal-2022-class
%X In this paper, we explore class-incremental learning for intent classification (IC) in a setting with limited old data available. IC is the task of mapping user utterances to their corresponding intents. Even though class-incremental learning without storing the old data yields high potential of reducing human and computational resources in industry NLP model releases, to the best of our knowledge, it hasn’t been studied for NLP classification tasks in the literature before. In this work, we compare several contemporary class-incremental learning methods, i.e., BERT warm start, L2, Elastic Weight Consolidation, RecAdam and Knowledge Distillation within two realistic class-incremental learning scenarios: one where only the previous model is assumed to be available, but no data corresponding to old classes, and one in which limited unlabeled data for old classes is assumed to be available. Our results indicate that among the investigated continual learning methods, Knowledge Distillation worked best for our class-incremental learning tasks, and adding limited unlabeled data helps the model in both adaptability and stability.
%R 10.18653/v1/2022.evonlp-1.4
%U https://aclanthology.org/2022.evonlp-1.4
%U https://doi.org/10.18653/v1/2022.evonlp-1.4
%P 16-25
Markdown (Informal)
[Class Incremental Learning for Intent Classification with Limited or No Old Data](https://aclanthology.org/2022.evonlp-1.4) (Paul et al., EvoNLP 2022)
ACL