
Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP), pages 26 - 34
December 7, 2022 ©2022 Association for Computational Linguistics

CC-Top: Constrained Clustering for Dynamic Topic Discovery

Jann Goschenhofer1,2♠ Pranav Ragupathy1♣

1 Department of Statistics, LMU, Munich, Germany
2 Fraunhofer IIS, Erlangen, Germany

3 Munich Center for Machine Learning (MCML), LMU, Munich, Germany
♠{jann.goschenhofer,chris,bernd.bischl,matthias}@stat.uni-muenchen.de

♣p.ragupathy@campus.lmu.de

Christian Heumann1♠

Matthias Aßenmacher1♠
Bernd Bischl1,2,3♠

Abstract
Research on multi-class text classification of
short texts mainly focuses on supervised (trans-
fer) learning approaches, requiring a finite set
of pre-defined classes which is constant over
time. This work explores deep constrained clus-
tering (CC) as an alternative to supervised learn-
ing approaches in a setting with a dynamically
changing number of classes, a task we intro-
duce as dynamic topic discovery (DTD). We
do so by using pairwise similarity constraints
instead of instance-level class labels which al-
low for a flexible number of classes while ex-
hibiting a competitive performance compared
to supervised approaches. First, we substan-
tiate this through a series of experiments and
show that CC algorithms exhibit a predictive
performance similar to state-of-the-art super-
vised learning algorithms while requiring less
annotation effort. Second, we demonstrate the
overclustering capabilities of deep CC for de-
tecting topics in short text data sets in the ab-
sence of the ground truth class cardinality dur-
ing model training. Third, we showcase how
these capabilities can be leveraged for the DTD
setting as a step towards dynamic learning over
time. Finally, we release our codebase to nur-
ture further research in this area.

1 Introduction

There has been substantial research on methods
for the classification of short user-generated texts
such as customer reviews, search queries, tweets,
or articles (Mohammad et al., 2016; Sun et al.,
2019; Barbieri et al., 2020). Often, despite be-
ing handled differently in supervised frameworks,
one does not know a-priori what these classes are,
how many there are at time point t, or how many
there will be at a future time point t+ 1. In exist-
ing benchmark data sets from the natural language
processing (NLP) research community (e.g. Lang,
1995; Lehmann et al., 2015), this potential issue
is largely ignored, since only one training set is
provided alongside one test set. Performance can

Figure 1: Illustration of CC-Top and the training
paradigms 1) constrained clustering (CC), 2) overclus-
tering (OC) and 3) dynamic topic discovery (DTD).
Crosses and lines represent Cannot- and Must-Link pair-
wise relations, respectively.

thus only be measured in a static fashion, i.e. for
one fixed time point. While this problem of an
unknown number of classes is often tackled us-
ing unsupervised learning techniques (Deerwester
et al., 1990; Blei et al., 2003), these algorithms
come with an array of limitations and are not able
to (automatically) adapt to a changing number of
classes. We formally introduce this novel problem
setting with dynamically changing topics as DTD
and explore the potential of deep constrained clus-
tering (CC; Hsu et al., 2019) algorithms coupled
with pre-trained language models (BERT; Devlin
et al., 2019) for text classification in this setting.

Various approaches have been developed to com-
bine CC (Wagstaff and Cardie, 2000) with neural
networks, mainly for image datasets (Hsu and Kira,
2015; Hsu et al., 2019). In addition to strong pre-
dictive clustering performance, these methods are
able to recover the number of distinct clusters in
the data without access to instance-level class la-
bels during training. Hence, they can be used for
category detection, a capability that we leverage
for the detection of dynamically changing topics.
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Moreover, they address and alleviate the problem
of label annotation: Human annotators only need to
annotate pairs of samples indicating whether they
belong to a similar topic or not instead of annotat-
ing one distinct class label per sample. We argue
that for short texts this is easier and more efficient
than annotating individual samples.

We propose the use of Constrained Clustering
for Topic classification (CC-Top, cf. Fig. 1): We 1)
leverage pairwise constraint annotations for topic
classification of short texts in a weakly supervised
manner, we 2) demonstrate its topic discovery ca-
pabilities and 3) introduce a new problem setting
with dynamically changing topics. In a series of
experiments, we substantiate these findings and
publish our codebase1 to nurture further research
on constrained clustering in the NLP community.

2 Related Work

With the advent of supervised fine-tuning of pre-
trained models, text clustering performance further
increased (Huang et al., 2020; Schopf et al., 2021).
One main limitation of these models is their de-
pendence on a given amount of clusters as input
for model training, which limits their use for the
detection of clusters, i.e., topics/classes. Unsuper-
vised topic modeling algorithms (e.g. Blei et al.,
2003; Grootendorst, 2022) are no real alternative
here, since we focus on topic classification and not
on topic modeling. Note, that we make a clear dis-
tinction between these two approaches here: Topic
modeling aims at uncovering latent structures in
the data and puts a large emphasis on explaining
and interpreting the detected clusters. Further, as
opposed to Topic classification, it does not assume
the cluster assignment to be mutually exclusive,
i.e. a document is regarded as a (potential) mixture
of multiple topics. Since this is in sharp contrast
to the setting we are investigating, we do not con-
sider such approaches as potential unsupervised
baselines.

In turn, CC allows this detection of the number
of clusters using binary pairwise constraint anno-
tations. The introduction of pairwise constraints
for clustering (Wagstaff and Cardie, 2000) led to
the adaptation of existing clustering methods to-
wards the use of constraints (Basu et al., 2004) (see
Gançarski et al. (2020) for an overview). With the
proposal of the KCL loss based on the Kullback-
Leibler divergence, Hsu and Kira (2016) intro-

1https://github.com/rpranav22/cc-top

duced CC to deep learning settings. They further
showed its applicability to transfer learning (Hsu
et al., 2018), introduced the MCL as an alternative
loss (Hsu et al., 2019), and showed its applicability
for cluster detection, i.e., overclustering. We use
these two pairwise loss functions.

3 Materials and Methods

3.1 Method

We consider a dataset D that contains nc constraint
pairs of the form xij = (xi, xj , cij) ∈ Dc, where
xi, xj are two input samples and cij ∈ {0, 1} is
the associated binary constraint describing whether
the samples are in the same (cij = 1, Must-Link)
or different clusters (cij = 0, Cannot-Link). We
refer to true class labels as yi ∈ Y , where K = |Y|
describes the number of true underlying classes K
in the data set. When K is not known, the model’s
number of output neurons nout may differ from K.
We train a deep CC model f with its final head con-
sisting of a softmax layer i.e., the model predicts
a probability distribution over cluster assignments
ŷi = f(xi), where ŷil denotes the predicted proba-
bility of xi belonging to cluster l ∈ 1, ..., nout.

We follow Hsu and Kira (2016); Hsu et al. (2019)
for the training of the CC model: the model pre-
dictions ŷi, ŷj for text samples xi, xj are fed into
a pairwise loss function with their associated con-
straint cij . There exists a variety of loss functions
that can deal with pairwise constraints (Zhang et al.,
2021b), with the KCL (Hsu and Kira, 2016) and
the MCL (Hsu et al., 2019) being the most promi-
nent ones. The KCL is a pairwise loss function
based on the Kullback-Leibler divergence between
the pairwise model assignments ŷi, ŷj . Similarly,
the MCL loss is aligned on the binary cross en-
tropy loss and reportedly enables smoother model
training. Following prior work (Lin et al., 2020;
Zhang et al., 2021a), we use BERT (Devlin et al.,
2019) as a language model backbone for f .2 Note
that throughout our experiments we randomly sub-
sample a training dataset of 20, 000 pairwise con-
straints from the original fully labeled dataset.

Next to the application in settings where the true
number of clusters K is known a-priori, CC mod-
els can also be used when this information is ab-
sent during model training. This is also referred
to as overclustering (OC) where the model can

2Note that any (pre-trained) architecture can be used as
a backbone in conjunction with these loss functions. All
configurations can be found in Table 5 in Appendix A.
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assign more clusters than present in the data, i.e.
nout > K. This capability to learn the number
of clusters in the data from constraint annotations
differentiates CC from clustering methods such as
k-means, where K needs to be provided as a hyper-
parameter to the model, or supervised approaches.

3.2 Baselines
As a lower, unsupervised baseline, we use BERT
embeddings combined with K-MEANS++ (Arthur
and Vassilvitskii, 2006). For the fully supervised
upper bound trained via instance-level class labels,
we finetune the BERT-BASE-UNCASED architecture
from huggingface (Wolf et al., 2020), following
the standard pretrain-finetune paradigm. Both base-
lines are trained on the entire training dataset.

3.3 Dynamic Topic Discovery (DTD)
We now consider the scenario, where the set of
classes is not fixed and known a-priori at time point
t but is dynamically changing over time (t+ 1, t+
2, . . . ): First, at t, we have pairwise annotations for
samples that belong to Kt distinct classes. Second,
we train a CC model ft to assign any new data point
to one of the discovered clusters. Third, at t+1, we
obtain new samples that could either belong to one
of the initial Kt classes or to new, unseen classes
and the model fails to classify the new samples
accurately.

If our model was fully supervised (i.e., trained
on instance-level class labels), we would have to
reconsider the entire labeling scheme (i.e., produce
the new classes and revisit all existing labeled sam-
ples from t) and re-train the entire model. However,
in the case of CC, we can continue annotating the
data using pairwise constraints and continue to train
the existing model (i.e., let the model determine
(i) if there are new classes and (ii) how many of
them). We construct the following scenario to in-
vestigate the model’s capability to adapt to a chang-
ing number of classes over time: First, we fix the
architectural setup to CC-KCL on DBpedia and use
nout = 30 to provide the model with enough over-
clustering flexibility. Second, for t = 1, we take
a subset of the training set, consisting of samples
from 10 classes only, and sample nc = 20, 000
constraints from this subset, resulting in 38, 056
samples from 10 classes for training (Dtrain,t=1).
Third, for t = 2, we select 18, 000 samples from
the remainder of the training set (Dtrain,t=2) con-
trolling for the ratio of the classes that the samples
belong to x% from the ’old’ 10 classes at t = 1

and (100− x)% from the ’new’ 4 classes at t = 2,
which were withheld from Dtrain,t=1. The DB-
pedia test set is also split into two distinct parts:
Dtest,1 contains only samples from the 10 ’old’
classes, and Dtest,2 contains only samples from the
4 ’new’ ones. During the DTD experiments, we
denote the entire test set as Dtest,combined.

3.4 Datasets
We run experiments on three English datasets of
short texts with associated instance-level class la-
bels. An overview of the analyzed data sets AG
News (Zhang et al., 2015), TREC coarse (Li and
Roth, 2002), and DBpedia (Lehmann et al., 2015)
is provided in Table 1. We did not perform any fur-
ther special preprocessing. We used only DBPedia
for further experiments with respect to DTD, since
the number of classes in the other two data sets was
too small to construct a meaningful DTD scenario.

Name K #Train #V al #Test Avg. Length

AG News 4 120,000 8,000 7,600 40
TREC coarse 6 4,952 500 500 10

DBpedia 14 560,000 35,000 35,000 50

Table 1: Overview of the data sets used for evaluation.

3.5 Performance Metrics
Following prior work (Hsu et al., 2019; Lin et al.,
2020), we report model performance as measured
in Accuracy (ACC), Normalized Mutual Informa-
tion (NMI; Strehl and Ghosh, 2002) and the Ad-
justed Rand Index (ARI; Steinley, 2004). For more
in-depth explanations and for the formulas of all
three metrics, please refer to Appendix C. All three
metrics are normalized to [0, 1], where higher val-
ues indicate better performance. Similarly, we use
the Hungarian algorithm (Kuhn, 1955) to optimally
map predicted labels to the true cluster assignments
before calculating the performance metrics.

4 Experiments

In Table 2, we compare the CC models trained via
both the MCL and the KCL loss with the lower and
upper baselines. These results confirm that CC is a
suitable method to train weakly supervised models
for the detection of topics in short texts, reaching
almost full supervision performance.

Furthermore, we investigated the capabilities of
these models in the OC scenario, where the ground
truth number of classes is unknown during training
and the model can potentially assign nout = 30 >
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Lower Baseline CC-KCL CC-MCL Upper Baseline

Data set K ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AG News 4 0.830 0.577 0.605 0.870 0.714 0.739 0.917 0.755 0.795 0.919 0.759 0.800
TREC-coarse 6 0.542 0.299 0.302 0.953 0.890 0.900 0.967 0.908 0.923 0.962 0.897 0.917
DBPedia 14 0.631 0.726 0.494 0.982 0.963 0.967 0.661 0.805 0.653 0.989 0.974 0.977

Table 2: Averaged results for the baselines on all available training samples as well as for CC-MCL and CC-KCL
trained with 20, 000 constraints each. The better CC model (between KCL and MCL) is marked in bold and CC
models almost reach full supervision level performance (upper baseline). Refer to a larger version of this table
including standard deviations across runs in Appendix B, Table 6.

Dataset ACC NMI ARI

AG News 0.821± 0.068 0.670± 0.033 0.677± 0.067
TREC coarse 0.912± 0.070 0.892± 0.057 0.882± 0.075
DBpedia 0.986± 0.002 0.966± 0.003 0.969± 0.003

Table 3: Mean results ± std. deviations over 5 repe-
titions for overclustering with nout = 30. The model
performs well despite the absence of the true K.

K potential clusters. From the results in Table
3, we observe that CC copes very well with this
challenging scenario. This motivates the extension
towards DTD.

Following Section 3.3, we train five Phase 1
models fi,t=1 on Dtrain,t=1 and evaluate their per-
formance on the three different test sets using the
DBPedia data set. We use the KCL loss due to its
superior performance in the previous experiments.
We observe a decent performance on Dtest,1 along
with a correctly detected number of classes in Table
4. Note, that we consider a class as ’detected’ if the
model assigns at least one percent of the respective
test set to the specific cluster. We acknowledge that
this is a rather heuristic choice. For Dtest,2 and
Dtest,combined, the models perform substantially
worse and are not able to detect the correct number
of classes. Still, it is noteworthy, that the model is
able to detect that the four novel classes in Dtest,2

are distinct as it assigns them different clusters and
does not simply assign them one ’outlier’ cluster.
From the observation that the model detects a total
of ten clusters, as opposed to the correct K = 14
for Dtest,combined, we infer that while it realizes
these four new clusters are distinct, it assigns them
to the clusters present in Dtrain,t=1. However, the
Phase 2 model ft=2 obtained by fine-tuning the
best performing Phase 1 for 200 epochs on 10, 000
constraints sampled from Dtrain,t=2 (50% new vs.
50% old) performs very well on all three test sets
and is able to detect the correct overall number of
classes. Refer to the confusion matrices in Figure
2 for further illustration of these results. When

Dtrain,t=2 contains more samples from the ’old’
classes (25% new vs. 75% old), overall model
performance still improves compared to Phase 1,
but substantially less compared to when there is
more information about the ’new’ classes. These
results imply that the algorithm shows consider-
able sensitivity to the degree of novelty present in
the new training data, which has to be investigated
further in future research. This experiment shows
how an OC-KCL model can easily be adapted to a
dynamically changing number of clusters via con-
tinued training on pairwise annotations from newly
incoming training data.

5 Discussion and Conclusion

In this work, we connected two branches of re-
search: contemporary NLP research and weakly
supervised learning approaches. While the use-
fulness of CC-KCL (and MCL) had already been
shown for computer vision settings (Hsu and Kira,
2016; Hsu et al., 2019), we extended it towards
NLP. Based on this, we showcased how existing
shortcomings of ordinary supervised approaches –
the requirement of fixed, static label sets – could
be regarded as a new type of learning task which
we introduced as dynamic topic discovery. Within
DTD, we subsume a dynamic setting where an
initial, weakly annotated training data set at time
t = 1 is accompanied by a second data set at time
t = 2 which contains novel classes unseen at t = 1.
We proposed a potential solution for such DTD set-
tings via an alternative training scheme leveraging
the overclustering and category detection capabil-
ities of CC models. We acknowledge that there
are still numerous unsolved problems such as the
application on very short texts, very large label sets
with large class cardinality, or multi-label scenarios.
Nevertheless, we hope that our experimental results
can serve as a foundation for further research to-
ward tackling these increasingly complex problems
to ultimately reduce manual labeling efforts in NLP.
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Test set ACC NMI Predicted K

Phase 1 Dtest,1 0.988 / 0.982± 0.009 0.969 / 0.964± 0.005 10 (Range: [10− 10])
(Best / Mean ± Std. Dev) Dtest,2 0.616 / 0.570± 0.043 0.409 / 0.410± 0.048 4 (Range: [4− 5])

Dtest,combined 0.717 / 0.710± 0.011 0.809 / 0.808± 0.015 10 (Range: [10− 11])

50% new – 50% old 25% new – 75% old

ACC NMI Predicted K ACC NMI Predicted K

Phase 2 Dtest,1 0.980 0.951 10 0.880 0.895 9
Dtest,2 0.971 0.929 4 0.951 0.866 4
Dtest,combined 0.978 0.953 14 0.832 0.887 12

Table 4: DTD (with KCL) on DBpedia for different ratios of new versus old classes in Dtrain,t=2, from which
we sample the 10,000 constraints for Phase 2, controlling the degree of novelty. Phase 1 is based on five different
models on Dtrain,t=1. For Phase 2, we pick the best Phase 1 model and continue training on the constraints from
Dtrain,t=2 (no standard deviations, since no random initialization of any model weights for Phase 2).

Figure 2: Confusion matrices for the two DTD phases on the Dtest,combined. Phase 2 results (right) from the
50% new - 50% old setting illustrate a clear improvement over the results from Phase 1 (left). This shows that the
Phase 2 model is able to cluster both the new and old data correctly.

Further, we believe that there is a high necessity
for investigating DTD more in-depth. We believe
it is important to design appropriate benchmarks
and to investigate their relations to other dynamic
paradigms, such as e.g. online learning or novel cat-
egory discovery, and we hope this work can serve
as a step in that direction.

Limitations

While we hope that this work provides valuable
insights, there are still a couple of issues we did
not yet address. First, we observed considerable
instability during model training, especially for a
lower number of constraints. Second, we found
KCL to work better for DBpedia than MCL, which
is surprising given the findings of Hsu et al. (2019).
Finally, we (i) only evaluated DTD for one fixed set
of constraints, (ii) only used the DBPedia dataset
(due to the low number of classes in the other two
datasets), and (iii) used a rather heuristic rule for
determining the number of detected classes.
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Appendix

A Training Model Configurations

In Table 5 we list the specifications of the BERT-
based language model that we use as architec-
tural backbone which we obtained via huggingface
(Wolf et al., 2020). We implemented our models
and data loading logic in PyTorch (Paszke et al.,
2017). Model training for the constrained cluster-
ing and the overclustering experiments was done
on an NVIDIA A100-SXM4-40GB GPU with a
batch size of 256 for 200 epochs. The models for
the DTD part were trained on an NVIDIA Tesla-
V100-16GB GPU with a batch size of 196 for 100
training epochs for phase 1 and for 200 training
epochs for phase 2.

Parameter Value

Base model BERT-BASE-UNCASED

Learning rate 1× 10−5

Optimizer AdamW
(Loshchilov and Hutter, 2019)

Adam Epsilon 1× 10−8

Table 5: BERT configurations for all experiments.

B Detailed Results

In Table 6, we show results for the constrained clus-
tering experiments with nout = K and a total of
20.000 constraint annotations for model training
for the three datasets. This table includes mean
± standard deviations for the performance met-
rics across 5 repeated training runs to account for
randomness in the training process. The results
show that constrained clustering offers a viable
alternative to supervised learning, almost reach-
ing the upper baseline performance for the three
datasets. Further, the MCL loss works best for the
AGNews and the TREC-coarse datasets whereas
the KCL loss is more suitable for the DBPedia
dataset. Hence, we used the KCL loss in the experi-
ments on DBPedia for the dynamic topic discovery
experiments in Section 3.3.

C Performance metrics

Normalized Mutual Information (NMI) NMI
is generally used to measure the tightness of the
cluster formations. In other words, it quantifies
if all the clusters are mutually exclusive without
outliers (Strehl and Ghosh, 2002). Mathematically,

Lower Baseline

Data set K ACC NMI ARI

AG News 4 0.830 0.577 0.605
TREC-coarse 6 0.542 0.299 0.302
DBPedia 14 0.631 0.726 0.494

CC-KCL

AG News 4 0.870± 0.088 0.714± 0.059 0.739± 0.087
TREC-coarse 6 0.953± 0.007 0.890± 0.010 0.900± 0.012
DBPedia 14 0.982 ± 0.005 0.963 ± 0.005 0.967 ± 0.009

CC-MCL

AG News 4 0.917 ± 0.003 0.755 ± 0.004 0.795 ± 0.006
TREC-coarse 6 0.967 ± 0.004 0.908 ± 0.009 0.923 ± 0.009
DBPedia 14 0.661± 0.057 0.805± 0.038 0.653± 0.055

Upper Baseline

AG News 4 0.919± 0.001 0.759± 0.005 0.800± 0.003
TREC-coarse 6 0.962± 0.002 0.897± 0.006 0.917± 0.005
DBPedia 14 0.989± 0.001 0.974± 0.001 0.977± 0.001

Table 6: Results for the baselines on all available train-
ing samples for all of the analyzed data sets as well
as for CC-MCL and CC-KCL on 20,000 constraints
each. The better CC model (between KCL and MCL)
is marked in bold. Mean and standard deviations of the
metrics over five runs.

NMI describes the change in entropy of class labels
given the true cluster labels:

NMI =
2 · I(Y, Ŷ )

H(Y ) +H(Ŷ )

where I(Y, Ŷ ) = H(Y ) −H(Y |Ŷ ) is the mu-
tual information. H(Y ) and H(Ŷ ) are the entropy
of the ground truth class label Y distribution and
the entropy of the predicted cluster label distribu-
tion Ŷ , respectively. The NMI is bound to [0, 1]
where a higher score implies better clustering per-
formance.

Accuracy (ACC) Accuracy measures the similar-
ity of predicted results with the respective ground
truth. For clustering accuracy, we use the Hun-
garian algorithm (Kuhn, 1955) to assign predicted
clusters with associated class labels. Given ground
truth classes Y and predicted clusters Ŷ we calcu-
late accuracy as:

ACC =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN
is the number of true negatives, FP is the number
of false positives, and FN is the number of false
negatives.

Adjusted Rand Index (ARI) The ARI is used to
measure the similarity between two clustering out-
puts (Steinley, 2004). Here, the actual class labels
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are compared to predicted cluster labels to measure
the clustering performance. When comparing Y
and Ŷ , the ARI is calculated as follows:

R =
a+ b(

n
2

)

where a is the number of times, pairs of elements
are in the same cluster for Y and Ŷ , b is the number
of times a pair of elements is not in the same cluster
for Y and Ŷ and n is the total number of samples
in the batch.
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