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Abstract

This paper describes our methods for temporal
meaning shift detection, implemented during
the TempoWiC shared task. We present two
systems: with and without time span data usage.
Our approach is based on masked language
models continuously pre-trained with Twitter
data. Both systems outperformed all the com-
petition’s baselines except TimeLMs-SIM. Our
best submission achieved the macro-F1 score of
70.09% and took the 7th place. This result was
achieved by using diachronic language models
from the TimeLMs project.

1 Introduction

It is a commonplace that words change their mean-
ings and connotations through time. Despite nu-
merous studies about that, there are still difficulties
in semantic change detection. Static embeddings
are not suitable for working with semantic change,
since they cannot reflect the fact that a word can
have completely unrelated meanings. In this work,
we are focusing on contextualized embeddings,
which produce different vector representations de-
pending on the context.

There were a number of competitions dedicated
to semantic change detection, for example, Tem-
poWiC (Loureiro et al., 2022b) and LSCDiscov-
ery (Kashleva et al., 2022). These competitions
were aimed at determining the difference in the
meanings of words depending on the time period
in which they are used. Datasets at LSCDiscovery
consisted of texts from different centuries (Zamora-
Reina et al., 2022). For this shared task, Tem-
poWiC, the data with a time interval only of one
year is used. It significantly changes the approach
to the competition.

Temporal word in context (TempoWiC) bench-
mark aims to decide if there is a change between
the meaning of two words in a given pair of tweets.
TempoWiC is designed as a binary classification
problem where the target word is featured in two

tweets from different time periods, and the goal is
to detect whether there is a meaning shift or not.

When creating a dataset for the competition, the
authors decided to use data from social media (Twit-
ter), while when developing the previous dataset
WiC (Pilehvar and Camacho-Collados, 2018), word
usage was taken from more formal sources such as
Wiktionary, WordNet and VerbNet. The language
used in social networks is much more informal and
dynamic, so such a dataset is able to reflect even
minor changes in word usage.

The TempoWiC dataset consists of paired tweets
and is divided into train/validation/test samples of
size 1,428/396/1,473 instances, respectively. For
each sample, the set of target words is different. As
additional data, the publication date is indicated
for each tweet. There are no missing values in
the dataset. Participants of the competition were
asked to detect the change in the meaning of the
target word both with and without using time-span
information. To estimate the system’s performance,
the Macro-F1 score was used.

2 Systems Overview

In this section, we describe two systems that were
implemented by our team during the shared task.
Both systems are based on the pre-trained language
models. For our first system, we did not use time-
span information and extracted embeddings from
the Twitter-roBERTa-base model (Barbieri et al.,
2020). In the second approach, we tried to improve
our system’s performance by using diachronic lan-
guage models from the TimeLMs project (Loureiro
et al., 2022a).

2.1 General approach

First, we apply the continual learning strategy and
train a masked language model with the TempoWiC
data, using the script provided by the HuggingFace
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team1. Depending on the experiment, we use the
entire dataset or a sub-set. In each experiment, we
split a given corpus into train and test sets with a
95:5 ratio and train the model for 4 epochs with
a learning rate of 2e-5. Then we extract summed
representations for target words from all 12 layers
of a corresponding language model. We decided
to focus on word-level representations since they
showed a better performance than sentence-level
embeddings (see Appendix A for comparison re-
sults). For a word representation we adopt only the
embedding of the first subword. Finally, we cal-
culate cosine similarities between representations
of two target words in each pair of tweets and use
the obtained values to train a logistic regression
model. Though the cosine-based approach is rather
straightforward, its performance may strongly vary
on the choice of the language model.

2.2 System 1. Twitter-roBERTa-base with
additional pre-training

Our first system is based on the Twitter-roBERTa-
base language model. It is a RoBERTa model (Liu
et al., 2019) that was trained on 58M tweets. We
chose this model because the competition’s task
was focused on Twitter data. For additional pre-
training, we took all of the available tweets from the
TempoWiC dataset, including train, validation, and
test sets. For comparison, we also tried the BERT-
base model (Devlin et al., 2018) as a baseline for
our first system.

2.3 System 2. Diachronic models from the
TimeLMs project

The distinguishing feature of the TempoWiC
dataset is that each tweet has a specified time pe-
riod: a year and a month when the tweet was posted.
That means we can take into account not only the
context of the tweet but also use time as an addi-
tional feature to improve our meaning shift detec-
tion system.

Our second solution is based on diachronic
language models from the TimeLMs project.
TimeLMs is a set of diachronic language models,
based on RoBERTa, continuously trained on Twit-
ter data over regular time intervals. The initial
model was trained on tweets that were posted from
2018 until the end of 2019. Since the beginning
of 2020, the base model has been continuously

1The script is available at https://github.com/
huggingface/transformers/blob/main/examples/
pytorch/language-modeling/run_mlm.py

Time span Model
01.2019-12.2019 twitter-roberta-base-2019-90m
01.2020-03.2020 twitter-roberta-base-mar2020
04.2020-06.2020 twitter-roberta-base-jun2020
07.2020-09.2020 twitter-roberta-base-sep2020
10.2020-12.2020 twitter-roberta-base-dec2020
01.2021-12.2021 twitter-roberta-base-2021-124m

Table 1: TimeLMs models used in System 2 in accor-
dance with time spans for the tweets from the Tem-
poWiC dataset.

pre-training on diachronic Twitter data every three
months. The project is active and at the time of
this writing, models from 2019 to June 2022 are
available. Since the TempoWiC dataset contains
tweets from 2019, 2020, and 2021, models from
the TimeLMs project can be applied to improve our
first ‘nondiachronic’ approach.

For our baseline diachronic approach, we used
three TimeLMs models trained on Twitter data for a
specific year: 2019, 2020 and 2021. The choice of
the diachronic model for extracting the representa-
tion of a target word depends on the tweet’s publica-
tion year. We also split the TempoWiC dataset into
three corpora by year and additionally pre-trained
each of the TimeLMs models with the correspond-
ing corpus.

As an improvement strategy, we also decided to
engage the TimeLMs models from a year’s quar-
ters. In this case, the choice of the model depends
on the year’s quarter in which the tweet was posted.
Due to the lack of quarterly models for 2019 and
because the number of tweets for 2021 was in-
sufficient for pre-training quarterly models, this
improvement was applied only to the tweets from
2020. Table 1 lists all of the TimeLMs models that
were used for our second system.

3 Results

Table 3 shows the results for our two final systems.
Submissions were evaluated using the Macro-F1
metric. Our best submission took 7th place. That
is better than all baselines except TimeLMs-SIM
(Logistic Regression based on Similarity of Con-
textual Embeddings from TimeLMs-2019-90M).
This result is interesting because our best model
(TimeLMs-with-quarter) seems more complex than
the TimeLMs-SIM baseline, since we used a differ-
ent model depending on the time span. According
to the description of the baselines that became avail-
able after the evaluation phase, the task organiz-
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Model Validation
(original LM)

Validation
(LM with extra pre-training)

Test
(original LM)

Test
(LM with extra pre-training)

BERT-base-uncased 57.39 59.47 67.98 67.11
Twitter-RoBERTa-base 58.26 67.61 68.29 68.76

TimeLMs-by-year 57.50 66.63 63.81 68.69
TimeLMs-with-quarters 57.97 68.70 64.22 70.09

Table 2: Macro F1-scores for all of our models, including post-evaluation results for the Test set. Best results for
Validation and Test sets are highlighted in bold.

ers used SP-WSD layer pooling weights (Loureiro
et al., 2022d). Whereas in our system, we extracted
summed embeddings from all 12 layers without
pooling strategy.

Submission 1 Submission 2
Rank User/Baseline Macro-F1 Macro-F1

Our results
7 lisatukhtina 70.09 68.76

TOP-3 results from other teams
1 dma 77.05 77.05
2 macd 76.60 74.74
3 zackchen 73.64 74.87

Baselines
— TimeLMs - SIM 70.33
— RoBERTa-L - SIM 67.09
— RoBERTa-L - FT 59.10
— TimeLMs - FT 57.70
— Random 50.00
— All True 26.79

Table 3: Submission leaderboard

Table 2 shows detailed results for all the mod-
els we implemented during the shared task. For
the validation set, there is a noticeable difference
between the models with and without continued
pre-training. We expected a similar trend for the
test sample. To test this assumption, we obtained re-
sults for all our models in the post-evaluation phase.
The results showed that for the BERT and Twitter-
RoBERTa-base models, additional pre-training did
not improve the quality on the test set. As for
TimeLMs models, the results are correlated with
the validation set. It is also interesting that such a
general model as BERT-base performed as well as
more complex solutions, even without pre-training
for Twitter domain.

For the validation set, we also obtained Macro-
F1 scores for each target word (see Table 4). The
most challenging words for both models were re-
count and primo.

Word Macro-F1
Twitter-RoBERTa-base TimeLMs

impostor 65.97 70.62
lotte 67.07 64.10

recount 52.88 61.86
primo 57.65 60.17

Table 4: Macro-F1 scores for each word from the vali-
dation set.

4 Discussion

The main question that is still open is that: can
we really detect a meaning shift on such a short
time period as about a year? At TempoWiC it
was postulated that in social media we can observe
faster semantic shifts (Loureiro et al., 2022c). From
a linguistic point of view, a change occurred, when
there is evidence of transmission of innovations to
others, i.e., of conventionalization (Traugott, 2017).
It seems that one year is too short time for any
language innovation to become widespread, even
via social media. Moreover, it may take more time
to be sure that this is a real change and not a nonce
word. Let us consider words that were taken for a
validation set. There were 4 of them (lotte, primo,
recount, and impostor). According to the corpus
provided by the organizers, the word recount was
mostly used in the context of elections, lotte in the
context of a concert and as a hotel name. It means
that at least 50% of validation words demonstrate
that trending words in Twitter in general most likely
describe ongoing or recent events.

It was said that at TempoWiC the task was to
decide if the meaning of the first target word in con-
text is the same as the second one or not (Loureiro
et al., 2022c). There are also examples of anno-
tated sentences with target words in the article (see
Table 5). These examples demonstrate polysemy,
not semantic change. So it can be assumed that
the TempoWiC dataset is much more suitable for
word sense disambiguation task than for seman-
tic change detection. It is difficult to differentiate
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Tweet 1 Tweet 2 Label
2019-08

"In case you were wondering facial
devotion still worked with a face mask on"

2020-08
"With these mask at work customers

are forever confusing me and Reyna lmao"
1

Table 5: An example from the TempoWiC training set for a target word ’mask’. Label 1 indicates that the word has
different meanings in the two tweets.

between polysemy and semantic change on such
restricted data. That makes this shared task even
more complicated.

5 Conclusion

We presented two systems for temporal meaning
shift detection in Twitter, both with and without
time span data usage. The best result was ob-
tained with diachronic language models continu-
ously trained for the Twitter domain. For our future
research, we will consider weight-pooling methods
as an attempt to improve our system’s performance.
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A Sentence-Level Representations

Table 6 presents the comparison results for word-
level and sentence-level representations. Since the
sentence-level embeddings showed poor perfor-
mance for the Twitter-RoBERTa-base model (with
Macro-F1 of 0.3613), we chose the word-level ap-
proach.

Macro-F1
Model Sentence-level Word-level

BERT-base-uncased 56.33 57.39
Twitter-RoBERTa-base 36.13 58.26

Table 6: Comparison of sentence-level and word-level
representations. Macro-F1 scores for Validation set.
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